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Personal note

In 1981 I joined the Department of Economics at the Hebrew University of
Jerusalem and started teaching a course in “Price Theory”. In those days, I battled
colleagues to bring some game theory into the course — a step that was frowned
upon. In 1986, I stopped teaching undergraduate microeconomics (with excep-
tions in one or two years). But, as my retirement from my Israeli university ap-
proached, I felt an urge to return to the subject. For five years (2012–2017), I
taught a course in intermediate microeconomics at Tel Aviv University. This time
I tried to put less game theory in the course and focus more on concepts of mar-
ket equilibrium. One can view this trajectory as part of a cycle of life. But a prin-
ciple also links my strivings during these two periods: I don’t see anything holy
in economic models. I don’t view a model as right or wrong. I find some models
interesting and others less so. I prefer to teach a course that contains a vari-
ety of models and not to be dogmatic regarding one particular approach. And I
don’t have any respect for what is considered to be fashionable by the academic
community.

The lecture notes (in Hebrew) from my course in Tel Aviv were the basis of
this book. I thank my Teaching Assistants in that course for their help.

In 2016, I joined forces with my old friend and coauthor Martin Osborne. The
collaboration reshaped my original sloppy lecture notes in both style and degree
of precision.

I don’t consider the current version to be the end of the journey. We have
made some progress, but, to my mind, some chapters (chiefly 4–7, 11–12, and
15–16) are insufficiently innovative. So I hope we will revise the book signifi-
cantly in the coming years.

As for all my other books, the electronic version of this book is freely avail-
able. I invite you to download my books at http://arielrubinstein.tau.ac.
il/books.html.

Ariel Rubinstein
Tel Aviv University and New York University
http://arielrubinstein.tau.ac.il
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Preface

The book contains material for a year-long undergraduate course in what is of-
ten called “Intermediate microeconomics”. It covers basic concepts and models
of current microeconomics theory. Our main aim is to give the reader an under-
standing of the concepts of model and equilibrium in microeconomic theory.

The connection between models in microeconomics and the world is sub-
tle, and microeconomic theorists differ in their views about the purpose of their
work. Ariel has expressed his views about the meaning of models in economic
theory frequently, especially in his book Economic fables (Rubinstein 2012). Al-
though we do not discuss applications and implications of the theory for policy,
we strongly believe that economic models should be connected to the world;
they should concern concepts we use in the real world when thinking about
economic interactions.

A main principle that guides us is that concepts, models and results should
be stated precisely. Nevertheless, the mathematics we use is elementary, and
in particular we use almost no calculus. We also have tried to avoid involved
computations, both in the text and the exercises. However, many of the proofs
involve sustained logical arguments.

Contents

Part I (Chapters 1–7) presents basic models of an economic agent. We start with
an abstract discussion of preferences (Chapter 1), choice (Chapter 2), and de-
cision making under uncertainty (Chapter 3) and then discuss the consumer
(Chapters 4 and 5), the producer (Chapter 6) and monopoly (Chapter 7). The
chapter on the producer is unconventional in not assuming that a producer nec-
essarily wants to maximize profit.

The core of the book is Part II (Chapters 8–14), which introduces the con-
cept of equilibrium in economic models. Chapters 8 and 9 provide an unconven-
tional introduction to the topic through the models of the jungle (Chapter 8) and
an economy with indivisible goods (Chapter 9). The subsequent chapters cover
the more conventional model of an exchange economy (Chapters 10 and 11),
introducing production (Chapter 12), rational expectations (Chapter 13), and
asymmetric information (Chapter 14).

Part III (Chapters 15–16) provides a short introduction to game theory and
its applications in economics. We discuss only the concepts of Nash equilibrium

xiii
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and subgame perfect equilibrium, and treat equilibria only as steady states; we
do not discuss epistemic interpretations of the solution concepts.

Part IV (Chapters 17–20) gives the reader a taste of the topics of mechanism
design (Chapter 17), matching (Chapter 18), the axiomatic analysis of economic
systems (Chapter 19) and social choice (Chapter 20).

Some chapters (for example, 8, 9, 13, 14, and 17–20) could be used as a basis
for advanced undergraduate or graduate courses in microeconomics.

We intend to revise the book occasionally. See our personal websites for
information about revisions.

Exercises

The book contains about 150 exercises. A solution manual is available for in-
structors. To request it, please visit the page about the book on either of our
websites.

Hyperlinks

Every term with a technical meaning in each definition is hyperlinked to its def-
inition. After clicking on such a term, click the “Back” button in your pdf viewer
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to return to the definition; if your viewer does not have such a button, the key
combination alt+left arrow may have the same effect.

Personal pronouns

During our thirty years of collaboration we have often debated the use of gen-
dered pronouns in academic material. In our book A course in game theory (1994)
we expressed our opinions, which remain unchanged. Martin prefers to use fem-
inine pronouns and Ariel insists on using masculine pronouns. We do not repeat
our positions in detail here. In one sentence, Ariel argues: “I am a strong believer
in the need to repair gender injustice but the cure is in other frontiers, which
require much more than language gestures”. Martin’s position is elaborated in
his book An introduction to game theory (2004, xv–xvi), where he cites evidence
that the use of male-focussed language reinforces sexist stereotypes and ways of
thought, and argues that while the use of feminine pronouns is obviously not
sex-neutral, it can only help to address the existing bias.

In our 1994 book we adopted a compromise that neither of us liked. Here
we adopt a different solution: this book has two editions, one that uses feminine
pronouns and one that uses masculine pronouns. We leave it to you to make
your choice.
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1 Preferences and utility

1.1 Preferences

In the first part of the book we discuss models of individuals. These models are
of interest in their own right, but we discuss them mainly to prepare for the study
of interactions between individuals, which occupies the remaining parts of the
book.

Our goal is to study an individual’s choice from a set of alternatives in an eco-
nomic environment. We can imagine building models in which the individual’s
characteristics are, for example, her social status or ethnic identity, her expe-
rience in the environment we are studying, or even the structure of her brain.
However, we follow the approach of almost all economic theory and character-
ize an individual by her preferences among the alternatives, without considering
the origin of these preferences.

Before we study choice, we discuss in this chapter a model of preferences over
a set of alternatives. We regard an individual’s preferences as a description of her
mental attitude, outside the context of any choice. You may have preferences
regarding the works of art shown in a local museum even though you are not
going to see them; you might have preferences about what you would have done
had you lived 3,000 years ago although you cannot travel in time; you might have
preferences about the actions of others and the features of the natural world, like
the weather, although you cannot affect these actions and features.

When we express preferences, we make statements like “I prefer a to b ”, “I
like a much better than b ”, “I slightly prefer a to b ”, and “I love a and hate b ”.
In this book, as in much of economic theory, the model of preferences captures
only statements of the first type. That is, it contains information only about an
individual’s ranking of the alternatives, not about the intensity of her feelings.

At this point we suggest that you spend a few minutes completing
the questionnaire at http://arielrubinstein.org/gt/exp11/.

We can think of an individual’s preferences over a set of alternatives as encod-
ing the answers to a questionnaire. For every pair (x , y ) of alternatives in the set,

Chapter of Models in Microeconomic Theory by Martin J. Osborne and Ariel Rubinstein. Version 2023.5.30 (s).
c© 2023 Martin J. Osborne and Ariel Rubinstein CC BY-NC-ND 4.0. https://doi.org/10.11647/OBP.0361.01
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4 Chapter 1. Preferences and utility

the questionnaire asks the individual which of the following three statements fits
best her attitude to the alternatives.

1. I prefer x to y .
2. I prefer y to x .
3. I regard x and y as equally desirable.

The individual’s mental attitude to the alternatives determines her answers to
the questionnaire. We do not assume that the individual thinks explicitly about
such a questionnaire; rather, her preferences reflect the answers she would give
to such a questionnaire if she had to answer it.

One way to encode the individual’s answers to the questionnaire is to assign
a symbol “1”, “−1”, or “0” to (x , y ) according to whether the answer is “I prefer
x to y ”, “I prefer y to x ”, or “I regard x and y as equally desirable”. However,
we follow the convention in economics and describe the answers by means of a
binary relation.

A binary relation on a set X specifies, for each ordered pair (x , y ) of members
of X , whether or not x relates to y in a certain way. For example, “acquaintance”
is a binary relation on a set of people. For some pairs (x , y ) of people, the state-
ment “x is acquainted with y ” is true, and for some pairs it is false. Another
example of a binary relation is “smaller than” on the set of numbers. For some
pairs (x , y ) of numbers, x is smaller than y , and for some it is not. For a binary
relation R , the expression x R y means that x is related to y according to R . For
any pair (x , y ) of members of X , the statement x R y either holds or does not hold.
For example, for the binary relation < on the set of numbers, we have 3 < 5, but
not 7< 1.

Now return to the questionnaire. One way to encode the answers to it by
a binary relation is to say that x is at least as desirable as y , denoted x ¼ y , if
the individual’s answer to the question regarding x and y is either “I prefer x to
y ” or “I regard x and y as equally desirable”. In this way we encode the three
possible answers to the question regarding x and y , as illustrated in Figure 1.1.
The answer “I prefer x to y ” is encoded as x ¼ y but not y ¼ x ; the answer “I
prefer y to x ” is encoded as y ¼ x but not x ¼ y ; and the answer “I regard x and
y as equally desirable” is encoded as x ¼ y and y ¼ x .

From the binary relation ¼ we deduce two other binary relations, ∼ and �,
defined by

x ∼ y if both x ¼ y and y ¼ x

x � y if x ¼ y but not y ¼ x .

We interpret the relation ∼ as “indifference” and the relation � as “strict pref-
erence”. These interpretations are consistent with the derivation of ¼ from the
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x preferred to y
x � y

x and y equally desirable
x ∼ y

y preferred to x
y � x

x ¼ y y ¼ x

Figure 1.1 An individual’s preference between x and y .

individual’s answers to the questionnaire: if x ∼ y then x ¼ y and y ¼ x , so
that the individual’s answer to the questionnaire is “I regard x and y as equally
desirable”, and if x � y then the individual’s answer is “I prefer x to y ”.

We assume that the individual answers all the questions on the question-
naire. Given our interpretation of the binary relation ¼ as a description of re-
sponses to the questionnaire, this assumption means that for all distinct alter-
natives x and y either x ¼ y or y ¼ x . We assume in addition that the same is
true if x and y are the same alternative. That is, we assume that x ¼ x for every
alternative x , a property called reflexivity. The questionnaire does not ask “how
do you compare x and x ?”, so the reflexivity of an individual’s preferences cannot
be deduced from her answers. We assume it because it fits the interpretation of
the binary relation: it says that the individual regards every alternative to be at
least as desirable as itself.

The property that for all alternatives x and y , distinct or not, either x ¼ y or
y ¼ x , is called completeness.

Definition 1.1: Complete binary relation

A binary relation R on the set X is complete if for all members x and y of X ,
either x R y or y R x (or both). A complete binary relation is, in particular,
reflexive: for every x ∈ X we have x R x .

For a binary relation ¼ to correspond to a preference relation, we require not
only that it be complete, but also that it be consistent in the sense that if x ¼ y
and y ¼ z then x ¼ z . This property is called transitivity.

Definition 1.2: Transitive binary relation

A binary relation R on the set X is transitive if for any members x , y , and z
of X for which x R y and y R z , we have x R z .

In requiring that a preference relation be transitive, we are restricting the per-
mitted answers to the questionnaire. If the individual’s response to the question
regarding x and y is either “I prefer x to y ” or “I am indifferent between x and y ”,
and if her response to the question regarding y and z is “I prefer y to z ” or “I am
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indifferent between y and z ”, then her answer to the question regarding x and z
must be either “I prefer x to z ” or “I am indifferent between x and z ”.

To conclude, we model an individual’s preferences by a complete and transi-
tive binary relation.

Definition 1.3: Preference relation

A preference relation on the set X is a complete and transitive binary rela-
tion on X .

Note that the binary relations ∼ (indifference) and � (strict preference) de-
rived from a preference relation ¼ are both transitive. To show the transitivity of
∼, note that if x ∼ y and y ∼ z then x ¼ y , y ¼ x , y ¼ z , and z ¼ y , so by the
transitivity of ¼we have x ¼ z and z ¼ x , and hence x ∼ z . You are asked to show
the transitivity of � in Problem 1a. Note also that if x ¼ y and y � z (or x � y and
y ¼ z ) then x � z (Problem 1b).

We sometimes refer to the following additional properties of binary relations.

Definition 1.4: Symmetric and antisymmetric binary relations

A binary relation R on the set X is symmetric if for any members x and y of
X for which x R y we have y R x , and is antisymmetric if for any members
x and y of X for which x 6= y and x R y , it is not the case that y R x .

An example of a symmetric binary relation is “is a neighbor of” (a relation that
in general is not transitive) and an example of an antisymmetric binary relation
is “is older than”. Note that the property of antisymmetry differs from that of
asymmetry, which requires that for every x and y , including x = y , if x R y then
it is not the case that y R x .

The binary relation ∼ derived from a preference relation ¼ is reflexive, sym-
metric, and, as we have just argued, transitive. Binary relations with these prop-
erties are called equivalence relations.

Definition 1.5: Equivalence relation

A binary relation is an equivalence relation if it is reflexive, symmetric, and
transitive.

Problem 4 concerns the properties of equivalence relations. In particular, it
asks you to show that any equivalence relation R on a set X divides X into dis-
joint subsets such that two alternatives x and y belong to the same subset if and
only if x R y . Each of these subsets is called an equivalence class. For the indif-
ference relation, the equivalence classes are referred to also as indifference sets;
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the individual regards all alternatives in an indifference set as equally desirable
and alternatives in different indifference sets as not equally desirable.

1.2 Preference formation

When we model individuals, we endow them with preference relations, which
we take as given; we do not derive these preference relations from any more ba-
sic considerations. We now briefly describe a few such considerations, some of
which result in preference relations and some of which do not.

Value function The individual has in mind a function v that attaches to each
alternative a number, interpreted as her subjective “value” of the alternative; the
higher the value, the better the individual likes the alternative. Formally, the in-
dividual’s preference relation ¼ is defined by x ¼ y if and only if v (x )≥ v (y ). The
binary relation ¼ derived in this way is indeed a preference relation: it is com-
plete because we can compare any two numbers (for any two numbers a and b
either a ≥ b or b ≥ a (or both)) and it is transitive because the binary relation
≥ is transitive (if x ¼ y and y ¼ z then v (x ) ≥ v (y ) and v (y ) ≥ v (z ), and hence
v (x )≥ v (z ), so that x ¼ z ).

Distance function One alternative is “ideal” for the individual; how much she
likes every other alternative is determined by the distance of that alternative from
the ideal, as given by a function d . That is, the individual’s preference relation ¼
is defined by x ¼ y if and only if d (x ) ≤ d (y ). This scheme is an example of a
value function, with v (x ) =−d (x ).

Lexicographic preferences An individual has in mind two complete and transi-
tive binary relations, ¼1 and ¼2, each of which relates to one feature of the alter-
natives. For example, if X is a set of computers, the features might be the size
of the memory and the resolution of the screen. The individual gives priority to
the first feature, breaking ties by the second feature. Formally, the individual’s
preference relation ¼ is defined by x ¼ y if (i) x �1 y or (ii) x ∼1 y and x ¼2 y .

The binary relation ¼ defined in this way is a preference relation. Its com-
pleteness follows from the completeness of ¼1 and ¼2. Now consider its transi-
tivity. Suppose that x ¼ y and y ¼ z . There are two cases. (i) The first feature
is decisive when comparing x and y : x �1 y . Given y ¼ z we have y ¼1 z , so by
the transitivity of ¼1 we obtain x �1 z (see Problem 1b) and thus x ¼ z . (ii) The
first feature is not decisive when comparing x and y : x ∼1 y and x ¼2 y . If the
first feature is decisive for y and z , namely y �1 z , then from the transitivity of
�1 we obtain x �1 z and therefore x ¼ z . If the first feature is not decisive for y
and z , then y ∼1 z and y ¼2 z . By the transitivity of ∼1 we obtain x ∼1 z and by
the transitivity of ¼2 we obtain x ¼2 z . Thus x ¼ z .



8 Chapter 1. Preferences and utility

Unanimity rule The individual has in mind n considerations, represented by
the complete and transitive binary relations ¼1,¼2, . . . ,¼n . For example, a parent
may take into account the preferences of her n children. Define the binary rela-
tion ¼ by x ¼ y if x ¼i y for i = 1, . . . , n . This binary relation is transitive but not
necessarily complete. Specifically, if two of the relations ¼i disagree (x ¼j y and
y �k x ), then ¼ is not complete.

Majority rule The individual uses three criteria to evaluate the alternatives, each
of which is expressed by a complete, transitive, and antisymmetric binary rela-
tion ¼i . (The antisymmetry of the relations implies that no two alternatives are
indifferent according to any relation.) Define the binary relation ¼ by x ¼ y if and
only if a majority (at least two) of the binary relations ¼i rank x above y . Then ¼
is complete: for all alternatives x and y either x ¼i y for at least two criteria or
y ¼i x for at least two criteria. But the relation is not necessarily transitive, as an
example known as the Condorcet paradox shows. Let X = {a ,b , c } and suppose
that a �1 b �1 c , b �2 c �2 a , and c �3 a �3 b . Then a �b (a majority of the crite-
ria rank a above b ) and b � c (a majority rank b above c ), but c � a (a minority
rank a above c ).

1.3 An experiment

The assumption that preferences are transitive seems natural. When people are
alerted to intransitivities in their preferences they tend to be embarrassed and
change their evaluations. However, it is not difficult to design an environment
in which most of us exhibit some degree of intransitivity. In Section 1.1 we sug-
gested you respond to a long and exhausting questionnaire, with 36 questions,
each asking you to compare a pair of alternatives taken from a set of nine alter-
natives. Each alternative is a description of a vacation package with four param-
eters: the city, hotel quality, food quality, and price.

As of April 2018, only 15% of the approximately 1,300 responses to the ques-
tionnaire do not exhibit any violation of transitivity. We count a set of three al-
ternatives as a violation of transitivity if the answers to the three questions com-
paring pairs of alternatives from the set are inconsistent with transitivity. Among
participants, the median number of triples that violate transitivity is 6 and the
average is 9.5. (As a matter of curiosity, the highest number of intransitivities
for any participant is 66. There are 84 sets of three alternatives, but the highest
possible number of intransitivities is less than 84.)

A quarter of the participants’ expressed preferences violate transitivity among
the following alternatives.
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1. A weekend in Paris, with 4 star hotel, food quality 17, for $574.
2. A weekend in Paris, for $574, food quality 17, with 4 star hotel.
3. A weekend in Paris, food quality 20, with 3–4 star hotel, for $560.

Notice that options 1 and 2 describe the same package; the descriptions differ
only in the order of the characteristics. Almost all participants say they are in-
different between these two alternatives, so the intransitivity is a result of differ-
ences in the expressed preferences between options 1 and 3 and options 2 and 3.
That is, the order in which the features of the package are listed has an effect on
the expressed preferences.

Many responses consistent with transitivity are consistent with a simple prin-
ciple, like focussing on one feature, like the price, and ignoring the others, or giv-
ing priority to one feature, like the city, and breaking ties using a second feature,
like the food quality (as in lexicographic preferences). Principles like these may
be easier to apply consistently than more complex criteria.

1.4 Utility functions

In many economic models, an individual is described not by her preferences but
by a value function. This formulation does not imply that the individual explicitly
derives her preferences from a value function, but only that her preferences can
be derived from such a function. Preferences with this property are said to be
represented by the value function. We refer to a value function that represents
preferences as a utility function.

Definition 1.6: Utility function

For any set X and preference relation ¼ on X , the function u : X → R
represents ¼ if

x ¼ y if and only if u (x )≥ u (y ).

We say that u is a utility function for ¼.

Example 1.1

Consider the preference relation ¼ on the set {a ,b , c , d } for which a � b ∼
c � d . The function u for which u (a ) = 5, u (b ) = u (c ) = −1, and u (d ) =
−17 is a utility function for ¼.

Under what conditions can a preference relation be represented by a utility
function? To answer this question, we need another definition.
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Definition 1.7: Minimal and maximal alternatives

For any set X and preference relation¼ on X , the alternative x ∈ X is mini-
mal with respect to ¼ in X if y ¼ x for all y ∈ X and is maximal with respect
to ¼ in X if x ¼ y for all y ∈ X .

The next result shows that every preference relation on a finite set has mini-
mal and maximal members.

Lemma 1.1: Existence of minimal and maximal alternatives

Let X be a nonempty finite set and let ¼ be a preference relation on X . At
least one member of X is minimal with respect to ¼ in X and at least one
member is maximal.

Proof

We prove the result for minimality; the argument for maximality is analo-
gous. We use induction on the number n of members of X . If n = 1 the
single member of X is minimal with respect to ¼ in X . Assume the result is
true for n − 1; we prove it is true for n . Let y be an arbitrary member of X
and let x be minimal with respect to¼ in X \{y } (a set with n−1 members).
If y ¼ x then x is minimal in X . If not, then x ¼ y . In this case, take any
z ∈ X \{y }. Because x is minimal in X \{y }, we have z ¼ x , so by transitivity
z ¼ y . Thus y is minimal in X .

Problem 2b asks you to give an example of a preference relation on an infinite
set for which there is no minimal or maximal member.

We can now show that any preference relation on a finite set can be repre-
sented by a utility function.

Proposition 1.1: Representing preference relation by utility function

Every preference relation on a finite set can be represented by a utility
function.

Proof

Let X be a finite set and let ¼ be a preference relation on X . Let Y0 = X and
define M 1 to be the set of alternatives minimal with respect to ¼ in Y0. By
Lemma 1.1, Y0 is not empty. For k ≥ 1 inductively define Yk = Yk−1 \M k

as long as Yk−1 is nonempty, and let M k+1 be the (nonempty) set of alter-
natives minimal with respect to ¼ in Yk . In other words, at every stage
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X

M 1

u (x ) = 1
´

M 2

u (x ) = 2
´

M 3

u (x ) = 3
´ . . . ´

M K

u (x ) = K

Figure 1.2 An illustration of the construction in the proof of Proposition 1.1.

remove from the set of remaining alternatives the alternatives minimal
with respect to ¼. (Figure 1.2 illustrates the construction.)

As long as Yk is not empty, by Lemma 1.1 the set M k+1 is not empty.
Because X is finite, there exists a number K such that the set YK is empty
(but the set YK−1 is nonempty). Thus every x ∈ X is a member of some set
M k for some k , 1≤ k ≤ K .

Define the function u : X → R by u (x ) = k for all x ∈M k , k = 1, . . . , K .
That is, attach to every alternative the number of the stage at which it is
removed from X .

We argue that u is a utility function for ¼. That is, for any alternatives a
and b we have a ¼b if and only if u (a )≥ u (b ).

We have u (a ) = u (b ) if and only if a and b are both minimal with
respect to ¼ in Yu (a )−1, so that b ¼ a and a ¼b , and hence a ∼b .

We have u (b ) > u (a ) if and only if a is minimal with respect to ¼ in
Yu (a )−1, so that b ¼ a , and b ∈ Yu (a )−1 but is not minimal with respect to ¼
in Yu (a )−1, so that it is not the case that a ¼b . Hence b � a .

Example 1.2: Cinema seats

A cinema has 2,000 seats, arranged in 40 rows and 50 columns. The rows
are numbered starting at the screen from 1 to 40 and the columns are num-
bered from left to right from 1 to 50. An individual has a lexicographic pref-
erence relation over the set of seats. Her first priority is to sit as far back as
possible. Comparing seats in the same row, she prefers to sit as far to the
left as possible (close to the exit, which is on the left, in case she wants to
leave before the end of the screening).

In the construction in the proof of Proposition 1.1, the set M 1 consists
of the single seat in row 1, column 50, so this seat is assigned the utility 1;
the set M 2 consists of the single seat in row 1, column 49, so this seat is
assigned the utility 2; . . . ; the set M 2000 consists of the single seat in row 40,
column 1, so this seat is assigned the utility 2,000. (A cinema with ten rows
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Figure 1.3 A cinema like the one in Example 1.2, with ten rows of ten seats. For the
individual, no two seats are indifferent. She prefers seat x to seat y if x is shaded with a
darker blue than y .

of ten seats is illustrated in Figure 1.3.) The individual’s preference relation
is represented by the utility function u defined by u (x ) = 50r (x )−c (x )+1,
where r (x ) is the row number of the seat and c (x ) is its column number.

Many preference relations on infinite sets can also be represented by utility
functions. A simple example is the preference relation ¼ on the set of nonnega-
tive real numbers defined by x ¼ y if and only if x ≥ y , which is represented by
the utility function u defined by u (x ) = x . However, not all preference relations
on infinite sets can be represented by utility functions. An example is the lexico-
graphic preference relation over the unit square X = {(x1,x2) : x1,x2 ∈ [0,1]} for
which the first priority is the first coordinate and the second priority is the sec-
ond coordinate (so that, for example, (0.3,0.1)� (0.2,0.9)� (0.2,0.8)). (Figure 1.4
shows the set of alternatives preferred to a given alternative.)

Proposition 1.2: Preference relation not represented by utility function

The (lexicographic) preference relation ¼ on {(x1,x2) : x1,x2 ∈ [0,1]} de-
fined by (x1,x2) � (y1, y2) if and only if either (i) x1 > y1 or (ii) x1 = y1 and
x2 > y2 is not represented by any utility function.

The proof of this result requires more mathematical knowledge than the other
arguments in the book.

Proof

Assume, contrary to the claim, that the function u represents ¼. For each
x ∈ [0,1], we have (x ,1) � (x ,0), so that u (x ,1) > u (x ,0). Define a func-
tion f that assigns to every number x ∈ [0,1] a rational number in the
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0 x1→ 1

↑
x2

1

z 1

z 2

Figure 1.4 The set of alternatives preferred to (z 1, z 2) according to the lexicographic
preference relation described in the text is the area shaded blue, excluding the part of
the boundary indicated by a dashed line.

interval (u (x ,0), u (x ,1)). Such a number exists because between any two
real numbers there is a rational number. The function f is one-to-one
since if a >b then (a ,0)� (b ,1), so that u (a ,0)> u (b ,1), and hence the in-
terval (u (a ,0), u (a ,1)) from which f (a ) is selected does not intersect the
interval (u (b ,0), u (b ,1)) from which f (b ) is selected. The contradiction
now follows from Cantor’s diagonal argument, which shows that there is
no one-to-one function from the set [0,1] into a countable set (like the set
of rational numbers).

If a utility function represents a given preference relation, then many other
utility functions do so too. For example, if the function u represents a given pref-
erence relation then so does the function 3u − 7 or any other function of the
form a u +b where a is a positive number. Generally, we have the following re-
sult. Note that we define a function f to be increasing if f (x ) > f (y ) whenever
x > y (and nondecreasing if f (x )≥ f (y )whenever x > y ).

Proposition 1.3: Increasing function of utility function is utility function

Let f : R → R be an increasing function. If u represents the preference
relation¼ on X , then so does the function w defined by w (x ) = f (u (x )) for
all x ∈ X .

Proof

We have w (x ) ≥ w (y ) if and only if f (u (x )) ≥ f (u (y )) if and only if u (x ) ≥
u (y ) (given that f is increasing), which is true if and only if x ¼ y .
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Problems

1. Properties of binary relations. Assume that ¼ is a preference relation.

a. Show that the binary relation � defined by x � y if x ¼ y and not y ¼ x is
transitive and antisymmetric.

b. Show that if x ¼ y and y � z (or x � y and y ¼ z ) then x � z .

2. Minimal element. Let ¼ be a preference relation over a finite set X .

a. Show that a is minimal with respect to ¼ in X if and only if there is no
x ∈ X such that a � x .

b. Give an example to show that if X is not finite then a preference relation
may have no minimal and maximal elements in X .

3. Similarity relations. Consider the following preference formation scheme.
An individual has in mind a function v : X →R that attaches to each alterna-
tive a number, but is sensitive only to significant differences in the value of
the function; she is indifferent between alternatives that are “similar”. Specif-
ically, the individual prefers x to y if v (x )− v (y ) > 1 and is indifferent be-
tween x and y if −1≤ v (x )− v (y )≤ 1. Is the individual’s preference relation
necessarily transitive?

4. Equivalence relations.

a. Give two examples of equivalence relations on different sets.

b. Show that the binary relation R on the set of positive integers defined by
x R y if x + y is even is an equivalence relation.

c. A partition of the set X is a set of nonempty subsets of X such that every
member of X is a member of one and only one subset. For example, the
set of sets {{1,3,5},{2,4,6}} is a partition of the set {1,2,3,4,5,6}. Show
that every equivalence relation R on X induces a partition of the set X
in which x and y are in the same member of the partition if and only if
x R y .

5. Independence of properties. Find an example of a binary relation that is com-
plete and transitive but not symmetric. Find also an example of a binary
relation that is reflexive, transitive, and symmetric but not complete.

6. Shepard scale and Escher. Listen to the Shepard scale and look at a picture of
Penrose stairs. (The video at http://techchannel.att.com/play-video.
cfm/2011/10/10/AT&T-Archives-A-Pair-of-Paradoxes combines them.

http://techchannel.att.com/play-video.cfm/2011/10/10/AT&T-Archives-A-Pair-of-Paradoxes
http://techchannel.att.com/play-video.cfm/2011/10/10/AT&T-Archives-A-Pair-of-Paradoxes
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The lithograph Ascending and descending by M. C. Escher is a rendering of
Penrose stairs.) Explain the connection between these two examples and the
concept of transitivity.

7. Utility representation. Let X be the set of all positive integers.

a. An individual prefers the number 8 to all other numbers. Comparing a
pair of numbers different from 8 she prefers the higher number. Con-
struct a utility function that represents these preferences.

b. An individual prefers the number 8 to all other numbers. Comparing a
pair of numbers different from 8 she prefers the number that is closer to
8. Construct a utility function that represents these preferences.

8. Utility representation. Consider the preference relation on the positive inte-
gers in which x is preferred to y if either (i) x is even and y is odd, or (ii) x
and y are even and x > y , or (iii) x and y are odd and x > y .

a. Show that no utility function with integer values represents this prefer-
ence relation.

b. Define a utility function the values of which are real numbers that repre-
sents the preference relation.

9. Representations with additive utility. An individual has preferences over the
set of units in an apartment building. She prefers a unit with 5 rooms on floor
12 to one with 4 rooms on floor 20, one with 4 rooms on floor 5 to one with 2
rooms on floor 12, and one with 2 rooms on floor 20 to one with 5 rooms on
floor 5.

a. Show that the individual’s preferences are consistent with a preference
relation.

b. Show that the individual’s preference relation cannot be represented by
a function u with u (x ) = f (r (x )) + g (l (x )) for functions f and g , where
r (x ) is the number of rooms and l (x ) is the floor for any unit x .

Notes

The formalization of the notion of a preference relation appears to be due to
Frisch, in 1926 (see Frisch 1957), and the first analysis of the problem of rep-
resenting a preference relation by a utility function appears to be Wold (1943).
Proposition 1.2 is due to Debreu (1954, footnote 1, 164). The exposition of the
chapter draws on Rubinstein (2006a, Lecture 1).





2 Choice

2.1 Choice and rational choice

In the previous chapter we discuss an individual’s preference relation, a formal
concept that describes her mental attitude to all relevant alternatives. We now
develop a formal tool to describe an individual’s behavior. The two concepts,
preferences and choice, are building blocks of the economic models we develop
later.

Recall that the notion of a preference relation refers only to the individual’s
mental attitude, not to the choices she may make. In this chapter, we describe a
concept of choice, independently of preferences. This description specifies her
decision in any possible choice problem she may confront within the context
we are modeling. Suppose, for example, that we want to model a worker who
is applying for a job. Then a complete description of her behavior specifies not
only which job she chooses if all jobs in the world are open to her, but also her
choice from any subset of jobs that she might be offered.

Formally, let X be the set of all the alternatives an individual might face. A
choice problem is a nonempty subset A of X , from which the individual chooses
an alternative. A choice function describes the individual’s choice for every pos-
sible choice problem.

Definition 2.1: Choice problem and choice function

Given a set X , a choice problem for X is a nonempty subset of X and a
choice function for X associates with every choice problem A ⊆ X a single
member of A (the member chosen).

Usually in economics we connect the individual’s behavior and her mental
attitude by assuming that the individual is rational in the sense that

• she has a preference relation over X
• whenever she has to make a choice, she is aware of the set of possible alter-

natives
• she chooses an alternative that is best according to her preference relation

over the set of possible alternatives.

Chapter of Models in Microeconomic Theory by Martin J. Osborne and Ariel Rubinstein. Version 2023.5.30 (s).
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Note that this model of rationality does not make any assumptions about the
content of the individual’s preferences. Her preferences might be “irrational” in
the everyday sense of the word and be inconsistent with what she, or we, would
consider to be her well-being. For example, an individual who chooses an alter-
native that causes her the greatest pain (measured in some way) is rational in the
sense we have defined.

If the preference relation of an individual is represented by the utility func-
tion u , then the individual acts as if she maximizes the function u under the
constraint that x ∈ A. Formally we write her problem as

max{u (x ) : x ∈ A}.

Note that if two individuals have two different strict preference relations and,
given any set A choose alternatives in A that are best according to these prefer-
ence relations, then their corresponding choice functions differ. That is, if for
two alternatives x and y one individual prefers x to y and the other prefers y to
x , then the choice function of the first individual assigns x to the problem {x , y }
and the choice function of the second individual assigns y to this set.

2.2 Rationalizing choice

Human beings usually do not consciously maximize a preference relation when
they make decisions. The standard justification for modeling individuals as ra-
tional is that although individuals rarely explicitly choose the best alternatives
according to their preference relations, their behavior can often be described as
if they make choices in this way. Individuals do not have to be aware of their
preference relations. The assumption that they maximize some preference rela-
tion is appropriate as long as we can describe them as if they behave in this way.
Accordingly, we make the following definition.

Definition 2.2: Rationalizable choice function

A choice function is rationalizable if there is a preference relation such that
for every choice problem the alternative specified by the choice function
is the best alternative according to the preference relation.

Notice that this definition requires that the alternative chosen from any set is
the unique best alternative. If we were to require only that it is a best alternative,
then every choice function would be rationalizable by the preference relation in
which all alternatives are indifferent. We return to the issue in Section 5.5.
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Example 2.1

Let X = {a ,b , c }. The choice function that assigns a to {a ,b , c }, a to {a ,b},
a to {a , c }, and b to {b , c } is rationalized by the preference relation ¼ for
which a � b � c . That is, we can describe the behavior of an individ-
ual with this choice function as if she always chooses the best available
alternative according to ¼.

On the other hand, any choice function that assigns a to {a ,b}, c to
{a , c }, and b to {b , c } is not rationalizable. If this choice function could be
rationalized by a preference relation ¼, then a �b , b � c , and c � a , which
contradicts transitivity.

Of the 24 possible choice functions for the case in which X contains
three alternatives, only six are rationalizable.

We now give some examples of choice procedures and examine whether the
resulting choice functions are rationalizable.

Example 2.2: The median

An individual has in mind an ordering of the alternatives in the set X from
left to right. For example, X could be a set of political candidates and the
ordering might reflect their position from left to right. From any set A of
available alternatives, the individual chooses a median alternative. Pre-
cisely, if the number of available alternatives is odd, with a 1 < a 2 < · · · <
a 2k+1 for some integer k , the individual chooses the single median a k+1,
and if the number of alternatives is even, with a 1 < a 2 < · · ·< a 2k , then the
individual chooses a k , the leftmost of the two medians.

No preference relation rationalizes this choice function. Assume that
A contains five alternatives, a 1 < a 2 < a 3 < a 4 < a 5. From this set, she
chooses a 3. If she has to choose from {a 3, a 4, a 5}, she chooses a 4. If a
preference relation ¼ rationalizes this choice function then a 3 � a 4 from
her first choice and a 4 � a 3 from her second choice, a contradiction.

Note that the individual’s behavior has a rationale of a different type:
she always prefers the central option. But this rationale cannot be de-
scribed in terms of choosing the best alternative according to a prefer-
ence relation over the set of available alternatives. The behavior can
be rationalized if we view the set of alternatives to be the positions
Y = {median,one left of median,one right of median,two left of median,
two right of median}. Then the first choice problem is Y and the second
choice problem is {one left of median,median,one right of median}. The
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preference relation ¼ given by

median� one left of median� one right of median� . . .

rationalizes the choice function.

Example 2.3: Steak and salmon

Luce and Raiffa (1957, 288) give an example of a person entering a restau-
rant in a strange city.

The waiter informs him that there is no menu, but that this
evening he may have either broiled salmon at $2.50 or steak
at $4.00. In a first-rate restaurant his choice would have been
steak, but considering his unknown surroundings and the differ-
ent prices he elects the salmon. Soon after the waiter returns from
the kitchen, apologizes profusely, blaming the uncommunicative
chef for omitting to tell him that fried snails and frog’s legs are also
on the bill of fare at $4.50 each. It so happens that our hero detests
them both and would always select salmon in preference to either,
yet his response is “Splendid, I’ll change my order to steak”.

Consider a set X that consists of the four main courses, salmon, steak,
snails, and frog’s legs. No preference relation over X rationalizes the per-
son’s behavior, because such a preference relation would have to rank
salmon above steak by his choice from {salmon,steak} and steak above
salmon by his choice from X .

A reasonable explanation for the person’s behavior is that although
steak appears in both choice problems, he does not regard it to be the
same dish. The availability of snails and frog’s legs tells him that the steak
is likely to be of high quality. Without this information, he views steak as
low quality and chooses salmon.

No preference relation on X rationalizes the person’s behavior,
but a preference relation on {salmon, low quality steak,high quality steak,
snails, frog’s legs} does so:

high quality steak� salmon� low quality steak� snails� frog’s legs.

An underlying assumption behind the concept of a choice function is that
an alternative is the same in every choice set in which it appears. The choice
function in the example cannot be rationalized because the example identifies
two different options as the same alternative.
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Example 2.4: Partygoer

Each of the people in the set X = {A, B1, B2} organizes a party. A person
might be invited to a subset of those parties and can attend only one party.
Individuals B1 and B2 are both good friends of the partygoer but the re-
lations between B1 and B2 are tense. The person’s behavior is as follows.
If she is invited by A and B1, she accepts B1’s invitation. If she is invited
by all three individuals, she accepts A’s invitation. She does so because
she is worried that accepting the invitation of B1 or B2 will be interpreted
negatively by the other individual. Obviously such behavior is not ratio-
nalizable by a preference relation over X . As in the previous example, the
meaning of choosing one alternative (B1) is affected by the presence or
absence of another alternative (B2).

2.3 Property α

We say that a choice function satisfies property α if whenever the choice from A is
in a subset B then the alternative chosen from A is chosen also from B . We show
that (i) any choice function that selects the best alternative according to a prefer-
ence relation satisfies this property and (ii) any choice function that satisfies the
property is rationalizable.

Definition 2.3: Property α

Given a set X , a choice function c for X satisfies property α if for any sets A
and B with B ⊂ A ⊆ X and c (A)∈ B we have c (B ) = c (A).

Notice that property α is not satisfied by the choice functions in Examples 2.2,
2.3, and 2.4.

Proposition 2.1: Rationalizable choice function satisfies property α

Every rationalizable choice function satisfies property α.

Proof

Let c be a rationalizable choice function for X and let ¼ be a preference
relation such that for every set A ⊆ X , c (A) is the best alternative according
to ¼ in A. Assume that B ⊂ A and c (A) ∈ B . Since c (A)¼ y for all y ∈ A we
have c (A)¼ y for all y ∈ B and thus c (B ) = c (A).
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Proposition 2.2: Choice function satisfying property α is rationalizable

If X is a finite set then any choice function for X satisfying property α is
rationalizable.

Proof

Let c be a choice function for X satisfying property α. Denote by n the
number of elements in X . We construct a preference relation that rational-
izes c as follows. Denote c (X ) = a 1, c (X \{a 1}) = a 2, c (X \{a 1, a 2}) = a 3, and
so on. That is, a k is the choice from the set X after removing the elements
a 1, . . . , a k−1.

Consider the preference relation ¼ defined by a 1 � a 2 � · · · � a n . Let
A be a choice problem. The best alternative in A according to ¼ is the
first member of A in the sequence a 1, a 2, . . . , a n , say a m . By construction,
c ({a m ,a m+1, . . . , a n}) = a m and since A ⊆ {a m ,a m+1, . . . , a n} and a m ∈ A,
from property αwe have c (A) = a m .

2.4 Satisficing

Imagine an employer who must hire a worker. She interviews the candidates in
alphabetical order until she reaches a candidate whom she considers to be good
enough, and then stops. If no candidate is good enough, she chooses the last
candidate to be interviewed.

Formally, denote the set of candidates by X . The employer has in mind a
function v : X →R that measures the candidates’ qualities. She has in mind also
a number v ∗, an aspiration level. Let O be an ordering of the set X (for example,
alphabetical order), which describes the sequence in which the employer inter-
views candidates. Given a set A of alternatives, the employer chooses the first
alternative a ∈ A in the ordering O for which v (a ) ≥ v ∗ if such an alternative
exists, and otherwise chooses the last element in A according to O.

Definition 2.4: Satisficing choice function

Let X be a finite set. Given a function v : X → R (the valuation function),
a number v ∗ (the aspiration level), and an ordering O of X , the satisficing
choice function c is defined as follows. Let A = {a 1, . . . , a K }where a 1 O a 2 O
· · ·O a K . Then

c (A) =

(
a k if v (a k )≥ v ∗ and v (a l )< v ∗ for l = 1, . . . , k −1

a K if v (a l )< v ∗ for l = 1, . . . , K .
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Every alternative x for which v (x ) ≥ v ∗ is satisfactory and every other
alternative is unsatisfactory.

Proposition 2.3: Satisficing choice function is rationalizable

A satisficing choice function is rationalizable.

This result can be proved by showing that any satisficing choice function
satisfies property α (see Problem 3). Here we provide a direct proof.

Proof

Let c be the satisficing choice function for valuation function v , aspira-
tion level v ∗, and ordering O. We construct a preference relation ¼ that
rationalizes c . At the top of the preference relation we put the satisfac-
tory alternatives, X+ = {x ∈ X : v (x ) ≥ v ∗}, in the order given by O. Then
we put all the unsatisfactory alternatives, X− = {x ∈ X : v (x ) < v ∗}, in the
order given by the reverse of O. (If, for example, X = {a ,b , c , d }, O is alpha-
betical order, v ∗ = 0, and the valuation function is defined by v (a ) = −1,
v (b ) = −2, v (c ) = 1, and v (d ) = 3, then the preference relation we con-
struct is c � d �b � a .)

We now show that this preference relation rationalizes c . Let A ⊆ X . If
A contains a member of X+ then the best alternative in A according to ¼
is the first alternative, according to O, in A ∩ X+, which is c (A). If A does
not contain a member of X+ then A ⊆ X− and the best alternative in A
according to ¼ is the last element in A according to O, which is c (A).

2.5 The money pump argument

The assumption that a choice function is rationalizable is sometimes defended
on the ground that behavior that is inconsistent with rationality could produce
choices that harm the individual.

Suppose that X consists of three alternatives, a , b , and c , interpreted as ob-
jects, and that an individual’s choice function assigns a to {a ,b}, b to {b , c }, and
c to {a , c }. An implication of this choice function is that for any object x , if the
individual holds x then there is an object y such that the individual is willing to
exchange x for y ; given that she prefers y to x , she is willing to pay some (pos-
sibly small) amount of money to make the exchange. Assume that for each such
exchange, this amount of money is at least $1. In this case, a manipulator could
first give a to the individual, then offer to replace a with c in return for $1, then
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offer to replace c with b in return for another $1, and then offer to replace b with
a for yet another $1. After these three exchanges, the individual holds a , as she
did initially, and is $3 poorer. The manipulator can repeat the exercise, taking as
much money from the individual as she likes. Such a mechanism is known as a
money pump.

In fact, for any choice function c that does not satisfy condition α, such ma-
nipulation is possible. Assume that there are sets A and B with B ⊂ A ⊆ X and
c (A)∈ B and c (B ) 6= c (A). The manipulation goes as follows.

Take c (A). (i) Are you willing to replace c (A)with any element in B \{c (A)} for
some amount of money? The individual can now choose from the set B and will
agree and choose c (B ). (ii) Are you willing to replace c (B ) with an alternative in
A \ {c (B )} for some amount of money? The individual can now choose from the
entire set A and will agree and choose c (A). The manipulator can repeat the two
steps as many times as she wishes.

The effectiveness of the manipulation depends on the inability of the ma-
nipulated individual to notice the exploitation. We leave it to you to judge
whether the argument is a persuasive justification of the assumption that choice
is rationalizable.

2.6 Evidence of choices inconsistent with rationality

Ample research demonstrates that human behavior is sometimes not rational in
the sense we have defined. From the multitude of examples, we select three ex-
periments that demonstrate this point; for each example, we identify features of
behavior that are inconsistent with the assumption of rational behavior. The first
experiment involves a situation in which some subjects’ choices conflict with
property α. The second and third experiments challenge the assumption that an
individual chooses an alternative from a set, independently of the way the set is
described. The experiments were first conducted many years ago (see the Notes
at the end of the chapter). Here we report results of online experiments (us-
ing the website http://arielrubinstein.org/gt) in which the subjects were a
large number of students around the world with similar academic backgrounds
to those of the potential readers of this book.

2.6.1 Attention effect

Which of the following cameras do you choose?

Camera A Average rating 9.1, 6 megapixels
Camera B Average rating 8.3, 9 megapixels

http://arielrubinstein.org/gt
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Now make another choice.

Which of the following cameras do you choose?

Camera A Average rating 9.1, 6 megapixels
Camera B Average rating 8.3, 9 megapixels
Camera C Average rating 8.1, 7 megapixels

Each question was answered by about 1,300 participants on the website
http://arielrubinstein.org/gt. The results are given in the following tables.

Choice between A and B

Camera A 48%
Camera B 52%

Choice between A, B , and C

Camera A 30%
Camera B 68%
Camera C 2%

Thus the appearance of C does not lead people to choose C , but rather
causes a significant fraction of participants to choose B , which dominates C ,
even though in a choice between A and B they choose A. One explanation of this
result is that the availability of C directs the participants’ focus to B , the alter-
native that dominates it. An alternative explanation is that the dominance of B
over C provides a reason to choose B , a reason that does not apply to A.

2.6.2 Framing effects

Sometimes individuals’ choices depend on the way in which the alternatives are
described.

You have to spin either roulette A or roulette B . The outcomes of
spinning each roulette are given in the following table.

White Red Green Yellow

roulette A 90% 6% 1% 3%
$0 $45 $30 −$15

roulette B 90% 7% 1% 2%
$0 $45 −$10 −$15

Which roulette do you choose?

Subjects’ choices in this experiment are generally split more or less equally
between the two roulettes. About 51% of around 4,000 participants at the website
http://arielrubinstein.org/gt have chosen A.

http://arielrubinstein.org/gt
http://arielrubinstein.org/gt
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A common explanation for the choice of A is that the problem is complicated
and participants simplify it by “canceling” similar parameters. The outcomes
of White in the two roulettes are identical and the outcomes of Red and Yellow
are very similar; ignoring these colors leaves Green, which yields a much better
outcome for roulette A.

Here is another choice problem.

You have to spin either roulette C or roulette D . The outcomes of
spinning each roulette are given in the following table.

White Red Black Green Yellow

roulette C 90% 6% 1% 1% 2%
$0 $45 $30 −$15 −$15

roulette D 90% 6% 1% 1% 2%
$0 $45 $45 −$10 −$15

Which roulette do you choose?

It is clear that D dominates C , and indeed almost all participants (93%) at
http://arielrubinstein.org/gt have chosen D .

Now notice that A and C differ only in their presentation (the color Yellow in A
is split in C into two contingencies). The same is true of B and D (the color Red
in B is split in D into two contingencies). The different presentations seem to
cause at least half of the participants to apply different choice procedures: they
reduce the complicated problem to a simpler one in the choice between A and B
and apply a domination criterion in the choice between C and D .

2.6.3 Mental accounting

Imagine that you have bought a ticket for a show for $40. When
you reach the theatre you discover that you have lost the ticket.
You can buy another ticket at the same price. Will you do so?

Now think about another situation.

Imagine that you intend to go to a show. When you take your wal-
let out of your pocket to pay for the $40 ticket, you discover that
you have lost $40, but you still have enough cash to buy a ticket.
Will you do so?

http://arielrubinstein.org/gt


Problems 27

In both of these situations, you face a choice between

1. having $80 less than you did before departing home and seeing the perfor-
mance

2. having $40 less than you did before departing home and not seeing the per-
formance.

Although in both situations you face these same options, more people choose
to buy the ticket in the second situation than in the first situation. About 65% of
the 1,200 participants at http://arielrubinstein.org/gt have stated that they
would buy a new ticket in the first situation, in which they discover they have lost
a ticket they purchased previously. Among a similar number of different partic-
ipants, 79% have stated they would buy a ticket after discovering that they had
lost $40. The reason for the difference seems to be that in the first case people
follow a mental accounting process that counts the price of a ticket as $80, and
they regard that price as too high. In the second case, some people appear to
think about the loss of the $40 as unrelated to the issue of ticket purchase and
count the price of a ticket as only $40.

Problems

1. Five choice procedures. Determine whether each of the following five choice
functions over a set X is rationalizable. If the answer is positive, find a pref-
erence relation that rationalizes the choice function. Otherwise, prove that
the choice function is not rationalizable.

a. The set X consists of candidates for a job. An individual has a complete
ranking of the candidates. When she has to choose from a set A, she first
orders the candidates in A alphabetically, and then examines the list from
the beginning. She goes down the list as long as the new candidate is
better than the previous one. If the nth candidate is the first who is better
than the (n +1)th candidate, she stops and chooses the nth candidate. If
in her journey she never gets to a candidate who is inferior to the previous
one, she chooses the last candidate.

b. The set X consists of n basketball teams, indexed 1 to n . The teams par-
ticipate in a round robin tournament. That is, every team plays against
every other team. An individual knows, for every pair of teams, which
one wins. When she chooses a team from a set A, she chooses the one
with the largest number of wins among the games between teams in A.
If more than one team has the largest number of wins, she chooses the
team with the lowest index among the tied teams.

http://arielrubinstein.org/gt


28 Chapter 2. Choice

c. The set X consists of pictures. An individual has in mind L binary criteria,
each of which takes the value 0 (the criterion is not met) or 1 (the criterion
is met). Examples of such criteria are whether the painting is modern,
whether the painter is famous, and whether the price is above $1,000.
The criteria are ordered: criterion1, criterion2, . . . , criterionL . When the
individual chooses a picture from a subset of X , she rejects those that
do not satisfy the first criterion. Then, from those that satisfy the first
criterion, she rejects those that do not satisfy the second criterion. And
so on, until only one picture remains. Assume that any two alternatives
have a criterion by which they differ, so that the procedure always yields
a unique choice.

d. An individual has in mind two numerical functions, u and v , on the set
X . For any set A ⊆ X , she first looks for the u -maximal alternative in A. If
its u value is at least 10, she selects it. If not, she selects the v -maximal
alternative in A.

e. An individual has in mind a preference relation on the set X . Each al-
ternative is either red or blue. Given a set A ⊆ X , she chooses the best
alternative among those with the color that is more common in A. In the
case of a tie, she chooses among the red alternatives.

2. Property of a choice function satisfying property α. An individual has a choice
function that satisfies property α. Consider two sets, A and B , such that
c (A)∈ B and c (B )∈ A. Prove that c (A) = c (B ).

3. Alternative proof of Proposition 2.3. Prove Proposition 2.3 by showing that
any satisficing choice function satisfies property α.

4. Variant of satisficing. An individual follows a procedure that differs from the
satisficing procedure only in that if she does not find any satisfactory alterna-
tive then she goes back and examines all the alternatives and chooses the one
for which v (x ) is highest. Show that the individual’s choice function satisfies
property α and construct a preference relation that rationalizes it.

5. Path independence. Consider the following property of a choice function,
called path independence:

c (A ∪ B ) = c ({c (A), c (B )})whenever A ∩ B =∅.

That is, if the individual splits a choice set into two disjoint subsets, makes a
choice from each subset, and then chooses between those two alternatives,
she chooses the same alternative as she does when she chooses from the
entire set.
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a. Let c be a choice function that assigns to each set the best alternative
according to some preference relation. Show that c is path independent.

b. Show that any choice function that is path independent is rationalizable
(by showing it satisfies property α).

6. Caring up to a limit. An individual has in mind two numerical functions u
and v defined on the set X . Given a choice problem A, she first looks for
the u -maximal element x in A. If v (x ) ≥ v ∗ she chooses x . Otherwise, she
chooses the v -maximal element in A. (Notice that this choice function differs
from the one in Problem 1d.)

a. Interpret the choice function in the case that u is a measure of the well-
being of a friend and v is a measure of the wellbeing of the individual.

b. Show that for some X , u , and v the procedure is not rationalizable.

7. Extension of Proposition 2.2. Let X be an infinite set and c a choice function
on X . Show, using the following two steps, that if c satisfies property α then
it can be rationalized.

a. Define a binary relation ¼ by x ¼ y if c ({x , y }) = x . Show that this relation
is a preference relation.

b. Show that for every choice problem A, c (A)¼ a for every a ∈ A.

8. Money pump. Can a trader who thinks that 2 + 3 = 6 survive in our cruel
world?

Notes

Property α was formulated by Chernoff (1954, Postulate 4, 429). The notion of
satisficing is due to Simon (1956). The idea of a money pump appears to be due
to Davidson et al. (1955, 145–146). Example 2.3 is taken from Luce and Raiffa
(1957, 288). The experiment in Section 2.6.1 is based on the idea in Huber et al.
(1982). The experiment in Section 2.6.2 was suggested by Tversky and Kahneman
(1986, S263–S265). Section 2.6.3 is taken from Kahneman and Tversky (1984,
347–348). The exposition of the chapter draws on Rubinstein (2006a, Lecture 3).





3 Preferences under uncertainty

3.1 Lotteries

In Chapter 1 we discuss a model of preferences over an arbitrary set of alterna-
tives. In this chapter we study an instance of the model in which an alternative
in the set involves randomness regarding the consequence it yields. We refer to
these alternatives as lotteries. For example, a raffle ticket that yields a car with
probability 0.001 and nothing otherwise is a lottery. A vacation on which you will
experience grey weather with probability 0.3 and sunshine with probability 0.7
can be thought of as a lottery as well.

The set X in the model we now discuss is constructed from a set Z of objects
called prizes. A lottery specifies the probability with which each prize is realized.
For simplicity, we study only lotteries for which the number of prizes that can be
realized is finite.

Definition 3.1: Lotteries

Let Z be a set (of prizes). A lottery over Z is a function p : Z →R that assigns
a positive number (probability) p (z ) to a finite number of members of Z
and 0 to all other members, with

∑
z∈Z p (z ) = 1. The support of the lot-

tery p , denoted supp(p ), is the set of all prizes to which p assigns positive
probability, {z ∈Z : p (z )> 0}.

We denote the set of all lotteries over Z by L(Z ), the lottery that yields
the prize z with probability 1 by [z ], and the lottery that yields the prize z k

with probability αk for k = 1, . . . , K by α1 · z 1⊕α2 · z 2⊕ · · ·⊕αK · z K .

If Z consists of two prizes, z 1 and z 2, then each member p of L(Z ) is specified
by a pair (p1, p2) of nonnegative numbers with sum 1, where p1 = p (z 1) and p2 =
p (z 2) are the probabilities of the prizes. Thus in this case L(Z ) can be identified
with the blue line segment in Figure 3.1a. If Z includes three options, L(Z ) can
similarly be identified with the triangle in Figure 3.1b.

3.2 Preferences over lotteries

We are interested in preference relations over L(Z ). In terms of the model in
Chapter 1, the set X is equal to L(Z ). Here are some examples.
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0

1

1

p2

p1

(a) The set L({z 1, z 2}) of lotteries. The
point (p1, p2) on the line segment repre-
sents the lottery p for which p (z 1) = p1

and p (z 2) = p2.

1

1

1
p1p2

p3

(b) The set L({z 1, z 2, z 3}) of lotteries. The
point (p1, p2, p3) in the triangle represents
the lottery p for which p (z 1) = p1, p (z 2) =
p2, and p (z 3) = p3.

Figure 3.1

Example 3.1: A pessimist

An individual has a strict preference relation ¼∗ over the set Z of prizes
and (pessimistically) evaluates lotteries by the worst prize, according to
the preference relation, that occurs with positive probability. That is, she
prefers the lottery p ∈ L(Z ) to the lottery q ∈ L(Z ) if she prefers the worst
prize that occurs with positive probability in p to the worst prize that oc-
curs with positive probability in q . Formally, define w (p ) to be a prize in
supp(p ) such that y ¼∗ w (p ) for all y ∈ supp(p ). Then the individual’s
preference relation ¼ over L(Z ) is defined by p ¼q if w (p )¼∗ w (q ).

Note that there are many pessimistic preference relations, one for each
preference relation over the set of prizes.

For any such preferences, the individual is indifferent between two lot-
teries whenever she is indifferent between the worst prizes that occur with
positive probability in the lotteries. In one variant of the preferences that
breaks this tie, if two lotteries share the same worst possible prize then the
one for which the probability of the worst prize is lower is preferred.

Example 3.2: Good and bad

An individual divides the set Z of prizes into two subsets, good and bad.
For any lottery p ∈ L(Z ), let G (p ) =

∑
z∈good p (z ) be the total probability

that a prize in good occurs. The individual prefers the lottery p ∈ L(Z ) to
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the lottery q ∈ L(Z ) if the probability of a prize in good occurring is at least
as high for p as it is for q . Formally, p ¼q if G (p )≥G (q ).

Different partitions of Z into good and bad generate different prefer-
ence relations.

Example 3.3: Minimizing options

An individual wants the number of prizes that might be realized (the num-
ber of prizes in the support of the lottery) to be as small as possible. For-
mally, p ¼ q if |supp(p )| ≤ |supp(q )|. This preference relation makes sense
for an individual who does not care about the realization of the lottery but
wants to be as prepared as possible (physically or mentally) for all possible
outcomes.

Preference relations over lotteries can take an unlimited number of other
forms. To help us organize this large set, we now describe two plausible prop-
erties of preference relations and identify the set of all preference relations that
satisfy the properties.

3.2.1 Properties of preferences

Continuity Suppose that for the prizes a , b , and c we have [a ] � [b ] � [c ], and
consider lotteries of the form α · a ⊕ (1− α) · c (with 0 ≤ α ≤ 1). The continu-
ity property requires that as we move continuously from α = 1 (the degenerate
lottery [a ], which is preferred to [b ]) to α = 0 (the degenerate lottery [c ], which
is worse than [b ]) we pass (at least once) some value of α such that the lottery
α ·a ⊕ (1−α) · c is indifferent to [b ].

Definition 3.2: Continuity

For any set Z of prizes, a preference relation¼ over L(Z ) is continuous if for
any three prizes a , b , and c in Z such that [a ]� [b ]� [c ] there is a number
αwith 0<α< 1 such that [b ]∼α ·a ⊕ (1−α) · c .

When Z includes at least three prizes, pessimistic preferences are not contin-
uous: if [a ]� [b ]� [c ] then [b ]� α ·a ⊕ (1−α) · c , for every number α < 1. Good
and bad preferences and minimizing options preferences satisfy the continuity
condition vacuously because in each case there are no prizes a , b and c for which
[a ]� [b ]� [c ].

Independence To define the second property, we need to first define the notion
of a compound lottery. Suppose that uncertainty is realized in two stages. First
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the lottery pk is drawn with probability αk , for k = 1, . . . , K , and then each prize
z is realized with probability pk (z ). In this case, the probability that each prize z
is ultimately realized is

∑
k=1,...,K αk pk (z ). Note that

∑
k=1,...,K αk pk (z )≥ 0 for each

z and the sum of these expressions over all prizes z is equal to 1. We refer to
the lottery in which each prize z occurs with probability

∑
k=1,...,K αk pk (z ) as a

compound lottery, and denote it by α1 · p1 ⊕ · · · ⊕ αK · p K . For example, let Z =
{W, D, L}, and define the lotteries p = 0.6·W⊕0.4·L and q = 0.2·W⊕0.3·D⊕0.5·L.
Then the compound lottery α ·p ⊕ (1−α) ·q is the lottery

(α0.6+(1−α)0.2) ·W ⊕ ((1−α)0.3) ·D ⊕ (α0.4+(1−α)0.5) · L.

Definition 3.3: Compound lottery

Let Z be a set of prizes, let p1, . . . , pK be lotteries in L(Z ), and let α1, . . . ,αK

be nonnegative numbers with sum 1. The compound lottery α1 · p1 ⊕
· · · ⊕ αK · pK is the lottery that yields each prize z ∈ Z with probability∑

k=1,...,K αk pk (z ).

We can now state the second property of preference relations over lotteries.

Definition 3.4: Independence

Let Z be a set of prizes. A preference relation¼ over L(Z ) satisfies the inde-
pendence property if for any lotteries α1 · z 1⊕ · · ·⊕αk · z k ⊕ · · ·⊕αK · z K and
β ·a ⊕ (1−β ) ·b we have

[z k ]¼ β ·a ⊕ (1−β ) ·b

⇔

α1 · z 1⊕ · · ·⊕αk · z k ⊕ · · ·⊕αK · z K

¼α1 · z 1⊕ · · ·⊕αk · (β ·a ⊕ (1−β ) ·b )⊕ · · ·⊕αK · z K .

The logic of the property is procedural: the only difference between the lot-
tery α1 · z 1⊕· · ·⊕αk · z k ⊕· · ·⊕αK · z K and the compound lottery α1 · z 1⊕· · ·⊕αk ·
(βa ⊕ (1−β )b )⊕ · · · ⊕αK · z K is in the k th term, which is z k in the first case and
β ·a⊕(1−β ) ·b in the second case. Consequently it is natural to compare the two
lotteries by comparing [z k ] and β ·a ⊕ (1−β ) ·b .

Pessimistic preferences do not satisfy this property. Let [a ] � [b ] and con-
sider, for example, the lotteries

p = 0.6 ·a ⊕0.4 ·b and q = 0.6 ·b ⊕0.4 ·b = [b ].

These lotteries differ only in the prize that is realized with probability 0.6. Given
that [a ] � [b ], the independence property requires that p � q . However, for a
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pessimist the two lotteries are indifferent since the worst prize in the lotteries is
the same (b ).

Minimizing options preferences also violate the independence property: for
any prizes a and b , the lotteries [a ] and [b ] are indifferent, but 0.5 · a ⊕ 0.5 ·b ≺
0.5 ·b ⊕0.5 ·b .

Good and bad preferences satisfy the independence property. Let p be the
lottery α1 · z 1⊕ · · ·⊕αk · z k ⊕ · · ·⊕αK · z K and let q be the compound lottery

α1 · z 1⊕ · · ·⊕αk · (β ·a ⊕ (1−β ) ·b )⊕ · · ·⊕αK · z K .

Note that G (p )−G (q ) = αkG ([z k ])−αkG (β ·a ⊕ (1−β ) ·b ), so that since αk > 0,
the sign of G (p )−G (q ) is the same as the sign of G ([z k ])−G (β · a ⊕ (1−β ) ·b ).
Thus the preferences compare p and q in the same way that they compare [z k ]
and β ·a ⊕ (1−β ) ·b .

Monotonicity Consider lotteries that assign positive probability to only two
prizes a and b , with [a ] � [b ]. We say that a preference relation over L(Z ) is
monotonic if it ranks such lotteries by the probability that a occurs. That is,
monotonic preferences rank lotteries of the type α · a ⊕ (1− α) · b according to
the value of α.

The next result says that any preference relation over L(Z ) that satisfies the
independence property is monotonic.

Lemma 3.1: Independence implies monotonicity

Let Z be a set of prizes. Assume that ¼, a preference relation over L(Z ),
satisfies the independence property. Let a and b be two prizes with [a ]�
[b ], and let α and β be two probabilities. Then

α>β ⇔ α ·a ⊕ (1−α) ·b � β ·a ⊕ (1−β ) ·b.

Proof

Let pα = α ·a ⊕ (1−α) ·b . Because ¼ satisfies the independence property,
pα �α ·b ⊕ (1−α) ·b = [b ]. Using the independence property again we get

pα = (β/α) ·pα⊕ (1−β/α) ·pα � (β/α) ·pα⊕ (1−β/α) ·b = β ·a ⊕ (1−β ) ·b.

3.3 Expected utility

We now introduce the type of preferences most commonly assumed in economic
theory. These preferences emerge when an individual uses the following scheme
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to compare lotteries. She attaches to each prize z a number, which we refer to
as the value of the prize (or the Bernoulli number) and denote v (z ); when evalu-
ating a lottery p , she calculates the expected value of the lottery,

∑
z∈Z p (z )v (z ).

The individual’s preferences are then defined by

p ¼q if
∑

z∈Z

p (z )v (z )≥
∑

z∈Z

q (z )v (z ).

Definition 3.5: Expected utility

For any set Z of prizes, a preference relation ¼ on the set L(Z ) of lotteries
is consistent with expected utility if there is a function v : Z → R such that
¼ is represented by the utility function U defined by U (p ) =

∑
z∈Z p (z )v (z )

for each p ∈ L(Z ). The function v is called the Bernoulli function for the
representation.

We first show that a preference relation consistent with expected utility is
continuous and satisfies the independence property.

Proposition 3.1: Expected utility is continuous and independent

A preference relation on a set of lotteries that is consistent with expected
utility satisfies the continuity and independence properties.

Proof

Let Z be a set of prizes, let ¼ be a preference relation over L(Z ), and let
v : Z → R be a function such that the function U defined by U (p ) =∑

z∈Z p (z )v (z ) for each p ∈ L(Z ) represents ¼.

Continuity Let a , b , and c ∈ Z satisfy [a ] � [b ] � [c ]. For every z ∈ Z ,
U ([z ]) = v (z ). Thus v (a ) > v (b ) > v (c ). Let α satisfy αv (a ) + (1−α)v (c ) =
v (b ) (that is, 0<α= (v (b )−v (c ))/(v (a )−v (c ))< 1). Then α ·a ⊕ (1−α) ·c ∼
[b ].

Independence Consider lotteries α1 ·z 1⊕· · ·⊕αK ·z K and β ·a ⊕ (1−β ) ·b .
We have

α1 · z 1⊕ · · ·⊕αk · z k ⊕ · · ·⊕αK · z K

¼α1 · z 1⊕ · · ·⊕αk · (β ·a ⊕ (1−β ) ·b )⊕ · · ·⊕αK · z K

⇔ (by the formula for U , which represents ¼ )
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α1v (z 1)+ · · ·+αk v (z k )+ · · ·+αK v (z K )

≥α1v (z 1)+ · · ·+αkβv (a )+αk (1−β )v (b )+ · · ·+αK v (z K )

⇔ (by algebra)

αk v (z k )≥αkβv (a )+αk (1−β )v (b )

⇔ (since αk > 0)

v (z k )≥ βv (a )+ (1−β )v (b )

⇔ (by the formula for U , which represents ¼)

[z k ]¼ β ·a ⊕ (1−β ) ·b.

The next result, the main one of this chapter, shows that any preference re-
lation that satisfies continuity and independence is consistent with expected
utility. That is, we can attach values to the prizes such that the comparison of
the expected values of any two lotteries is equivalent to the comparison of the
lotteries according to the preference relation.

Proposition 3.2: Continuity and independence implies expected utility

A preference relation on a set of lotteries with a finite set of prizes that
satisfies the continuity and independence properties is consistent with
expected utility.

Proof

Let Z be a finite set of prizes and let ¼ be a preference relation on L(Z )
satisfying continuity and independence. Label the members of Z so that
[z 1]¼ · · ·¼ [z K ]. Let z 1 =M (the best prize) and z K =m (the worst prize).

First suppose that [M ]� [m ]. Then by continuity, for every prize z there
is a number v (z ) such that [z ]∼ v (z ) ·M ⊕ (1−v (z )) ·m . In fact, by mono-
tonicity this number is unique. Consider a lottery p (z 1) ·z 1⊕· · ·⊕p (z K ) ·z K .
By applying independence K times, the individual is indifferent between
this lottery and the compound lottery

p (z 1) ·
�

v (z 1) ·M ⊕ (1−v (z 1)) ·m
�
⊕· · ·⊕p (z K ) ·

�
v (z K ) ·M ⊕ (1−v (z K )) ·m

�
.

This compound lottery is equal to the lottery
� ∑

k=1,...,K

p (z k )v (z k )

�

·M ⊕

�

1−
∑

k=1,...,K

p (z k )v (z k )

�

·m .

Given [M ] � [m ], Lemma 3.1 implies that the comparison between the
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lotteries p and q is equivalent to the comparison between the numbers∑
k=1,...,K p (z k )v (z k ) and

∑
k=1,...,K q (z k )v (z k ).

Now suppose that [M ] ∼ [m ]. Then by independence, p ∼ [M ] for any
lottery p . That is, the individual is indifferent between all lotteries. In this
case, choose v (z k ) = 0 for all k . Then the function U defined by U (p ) =∑

z∈Z p (z )v (z ) = 0 for each p ∈ L(Z ) represents the preference relation.

Comment

Note that if the function v : Z →R is the Bernoulli function for an expected utility
representation of a certain preference relation over L(Z ) then for any numbers
α > 0 and β so too is the function w given by w (z ) = αv (z ) +β for all z ∈ Z . In
fact the converse is true also (we omit a proof): if v : Z → R and w : Z → R are
Bernoulli functions for representations of a certain preference relation then for
some numbers α> 0 and β we have w (z ) =αv (z )+β for all z ∈Z .

3.4 Theory and experiments

We now briefly discuss the connection (and disconnection) between the model
of expected utility and human behavior. The following well-known pair of ques-
tions demonstrates a tension between the two.

Imagine that you have to choose between the following two lot-
teries.

L 1: you receive $4,000 with probability 0.2 and zero otherwise.
R1: you receive $3,000 with probability 0.25 and zero otherwise.

Which lottery do you choose?

Imagine that you have to choose between the following two lot-
teries.

L 2: you receive $4,000 with probability 0.8 and zero otherwise.
R2: you receive $3,000 with certainty.

Which lottery do you choose?

The responses of 7,932 students at http://arielrubinstein.org/gt are
summarized in the following table.

http://arielrubinstein.org/gt
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L 2 R2

L 1 20% 44%
R1 5% 31%

In our notation, the lotteries are

L 1 = 0.2 · [$4000]⊕0.8 · [$0] and R1 = 0.25 · [$3000]⊕0.75 · [$0]

L 2 = 0.8 · [$4000]⊕0.2 · [$0] and R2 = [$3000].

Note that L 1 = 0.25 ·L 2⊕0.75 ·[0] and R1 = 0.25 ·R2⊕0.75 ·[0]. Thus if a preference
relation on L(Z ) satisfies the independence property, it should rank L 1 relative to
R1 in the same way that it ranks L 2 relative to R2. So among individuals who have
a strict preference between the lotteries, only those whose answers are (i) L 1 and
L 2 or (ii) R1 and R2 have preferences that can be represented by expected utility.
About 51% of the participants are in this category.

Of the rest, very few (5%) choose R1 and L 2. The most popular pair of answers
is L 1 and R2, chosen by 44% of the participants. Nothing is wrong with those
subjects (which include the authors of this book). But such a pair of choices
conflicts with expected utility theory; the conflict is known as the Allais paradox.

One explanation for choosing R2 over L 2 is that the chance of getting an extra
$1,000 is not worth the risk of losing the certainty of getting $3,000. The idea
involves risk aversion, which we discuss in the next section.

Many of us use a different consideration when we compare L 1 and R1. There,
we face a dilemma: increasing the probability of winning versus a significant loss
in the prize. The probabilities 0.25 and 0.2 seem similar whereas the prizes $4,000
and $3,000 are not. Therefore, we ignore the difference in the probabilities and
focus on the difference in the prizes, a consideration that pushes us to choose L 1.

Experimentalists usually present the two questions to different groups of peo-
ple, randomly assigning each participant to one of the questions. They do so to
avoid participants guessing the object of the experiment, in which case a partici-
pant’s answer to the second question might be affected by her answer to the first
one. However, even when the two questions are given to the same people, we get
similar results.

Findings like the ones we have described have led to many suggestions for
alternative forms of preferences over the set of lotteries. In experiments, the be-
havior of many people is inconsistent with any of these alternatives; each theory
seems at best to fit some people’s behavior in some contexts.

3.5 Risk aversion

We close the chapter by considering attitudes to risk. We assume that the set
Z of prizes is the set of nonnegative real numbers, and think of the prize z as
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0

v (z )

z →

Figure 3.2 A concave Bernoulli function.

the monetary reward of $z . We denote the expected value of any lottery p by
E (p ) =

∑
z∈supp(Z )p (z )z .

An individual is risk-neutral if she cares only about the expectation of a lot-
tery, so that her preferences over lotteries are represented by E (p ). Such prefer-
ences are consistent with expected utility—take v (z ) = z . An individual is risk-
averse if for every lottery p she finds the prize equal to the expectation of p at
least as good as p . That is, an individual with preference relation ¼ is risk-averse
if [E (p )]¼ p for every p . If for every lottery p that involves more than one prize,
the individual strictly prefers [E (p )] to p , she is strictly risk-averse.

Definition 3.6: Risk aversion and risk neutrality

If Z = R+, a preference relation ¼ on the set L(Z ) of lotteries over Z is
risk-averse if [E (p )] ¼ p for every lottery p ∈ L(Z ), is strictly risk-averse
if [E (p )] � p for every lottery p ∈ L(Z ) that involves more than one
prize, and is risk-neutral if [E (p )] ∼ p for every lottery p ∈ L(Z ), where
E (p ) =

∑
z∈Z p (z )z .

A strictly risk-averse individual is willing to pay a positive amount of money
to replace a lottery with its expected value, so that the fact that an individual buys
insurance (which typically reduces but does not eliminate risk) suggests that her
preferences are strictly risk-averse. On the other hand, the fact that an individual
gambles, paying money to replace a certain amount of money with a lottery with
a lower expected value, suggests that her preferences are not risk-averse.

The property of risk aversion applies to any preference relation, whether or
not it is consistent with expected utility. We now show that if an individual’s pref-
erence relation is consistent with expected utility, it is risk-averse if and only if
it has a representation for which the Bernoulli function is concave. (Refer to
Figure 3.2.)
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Proposition 3.3: Risk aversion and concavity of Bernoulli function

Let Z = R+, assume ¼ is a preference relation over L(Z ) that is consistent
with expected utility, and let v be the Bernoulli function for the represen-
tation. Then ¼ is risk-averse if and only if v is concave.

Proof

Let x and y be any prizes and let α ∈ [0,1]. If ¼ is risk-averse then [αx +
(1−α)y ]¼ α ·x ⊕ (1−α) · y , so that v (αx +(1−α)y )≥ αv (x )+ (1−α)v (y ).
That is, v is concave.

Now assume that v is concave. Then Jensen’s inequality implies that
v
�∑

z∈Z p (z )z
�
≥
∑

z∈Z p (z )v (z ), so that
�∑

z∈Z p (z )z
�
¼ p . Thus the indi-

vidual is risk-averse.

Problems

1. Most likely prize. An individual evaluates a lottery by the probability that the
most likely prize is realized (independently of the identity of the prize). That
is, for any lotteries p and q we have p ¼ q if maxz p (z ) ≥maxz q (z ). Such a
preference relation is reasonable in a situation where the individual is indif-
ferent between all prizes (e.g., the prizes are similar vacation destinations)
and she can prepare herself for only one of the options (in contrast to Ex-
ample 3.3, where she wants to prepare herself for all options and prefers a
lottery with a smaller support).

Show that if Z contains at least three elements, this preference relation is
continuous but does not satisfy independence.

2. A parent. A parent has two children, A and B . The parent has in hand only
one gift. She is indifferent between giving the gift to either child but prefers
to toss a fair coin to determine which child obtains the gift over giving it to
either of the children.

Explain why the parent’s preferences are not consistent with expected utility.

3. Comparing the most likely prize. An individual has in mind a preference re-
lation ¼∗ over the set of prizes. Whenever each of two lotteries has a single
most likely prize she compares the lotteries by comparing the most likely
prizes using ¼∗. Assume Z contains at least three prizes. Does such a prefer-
ence relation satisfy continuity or independence?
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4. Two prizes. Assume that the set Z consists of two prizes, a and b . Show that
only three preference relations over L(Z ) satisfy independence.

5. Simple lotteries. Let Y be a finite set of objects. For any number α ∈ [0,1] and
object z ∈ Y , the simple lottery (α, z ) means that z is obtained with proba-
bility α and nothing is obtained with probability 1−α. Consider preference
relations over the set of simple lotteries.

A preference relation satisfies A1 if for every x , y ∈ Y with (1, y )� (1,x ) there
is a probability α such that (α, y )∼ (1,x ).

A preference relation satisfies A2 if when α ≥ β then for any x , y ∈ Y the
comparison between (α,x ) and (β , y ) is the same as that between (1,x ) and
(β/α, y ).

a. Show that if an individual has in mind a function v that attaches a num-
ber v (z ) > 0 to each object z and her preference relation ¼ is defined by
(α,x )¼ (β , y ) if αv (x )≥ βv (y ), then the preference relation satisfies both
A1 and A2.

b. Suggest a preference relation that satisfies A1 but not A2 and one that
satisfies A2 but not A1.

The following questions refer to the model of expected utility with monetary
prizes and risk aversion described in Section 3.5. For these questions, consider
a risk-averse individual whose preferences are consistent with expected utility.
A prize is the total amount of money she holds after she makes a choice and
after the realization of the uncertainties. Denote by v a Bernoulli function whose
expected value represents the individual’s preferences over L(Z ) and assume that
v has a derivative.

6. Additional lottery. An individual faces the monetary lottery p . She is made
the offer to replace every z in the support of p with the lottery that yields
z − 1 and z + 1 each with probability 1

2
. Describe the lottery that she faces if

she accepts the offer and show that if she is strictly risk-averse she rejects the
offer.

7. Casino. An individual has wealth w and has to choose an amount x , after
which a lottery is conducted in which with probability α she gets 2x and
with probability 1 − α she loses x . Show that the higher is α the higher is
the amount x she chooses.

8. Insurance. An individual has wealth w and is afraid that an accident will
occur with probability p that will cause her a loss of D . The individual has
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to choose an amount, x , she will pay for insurance that will pay her λx (for
some given λ) if the accident occurs.

a. The insurer’s expected profit is x −λpx . Assume that λmakes this profit
zero, so that λ = 1/p . Show that if the individual is risk-averse she opti-
mally chooses x = p D , so that she is fully insured: her net wealth is the
same whether or not she has an accident.

b. Assume that pλ < 1 (that is, the insurer’s expected profit is positive).
Show that if the individual is strictly risk-averse then she chooses partial
insurance: λx <D .

Notes

The theory of expected utility was developed by von Neumann and Morgen-
stern (1947, 15–29 and 617–628). The Allais paradox (Section 3.4) is due to Allais
(1953, 527). The notion of risk aversion (Section 3.5) is due to Pratt (1964). The
exposition of the chapter draws upon Rubinstein (2006a, Lecture 7).





4 Consumer preferences

In this chapter and the next we study preferences and choice in a context central
to standard economic theory: an individual contemplating and choosing quan-
tities of various goods. We refer to such an individual as a consumer. In this
chapter, which is parallel to Chapter 1, we discuss preferences, without consid-
ering choice. In the next chapter, parallel to Chapter 2, we discuss properties of
a consumer’s choice function.

4.1 Bundles of goods

We take the set X of all alternatives that a consumer may face to be R2
+, the set of

all pairs of nonnegative numbers. We refer to an element (x1,x2) ∈ X as a bundle
and interpret it as a pair of quantities of two goods, called 1 and 2.

Definition 4.1: Set of alternatives (bundles)

The set of alternatives is X =R2
+. A member of X is a bundle.

Goods could be entities like tables, potatoes, money, or leisure time. But,
more abstractly, goods can be thought of as considerations the consumer has in
mind; her preferences over X reflect her tradeoffs between these considerations.
For example, the two goods could be the amounts of attention devoted to two
projects or the welfare of the individual and her partner.

The assumption that X = R2
+ may seem odd, since talking about π tables

or 1
9

of a car has little meaning. We consider the quantities of the goods to be
continuous variables for modeling convenience: doing so allows us to easily talk
about the tradeoffs consumers face when they want more of each good but are
constrained in what they can achieve.

The algebraic operations on the space X = R2
+ have natural interpretations.

Given two bundles x and y , x + y = (x1 + x2, y1 + y2) is the bundle formed by
combining x and y into one bundle. Given a bundle x and a positive number
λ, the bundle λx = (λx1,λx2) is the λ-multiple of the bundle x . For example, for
any integer m > 1 the bundle (1/m )x is the bundle obtained by dividing x into
m equal parts. Note that given two bundles x and y and a number λ ∈ (0,1), the
bundle λx+(1−λ)y lies on the line segment inR2

+ that connects the two bundles.
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0 x1→

↑
x2

(a) Some indifference sets for the prefer-
ence relation in Example 4.1 for v1/v2 =

4
3 .

0 x1→

↑
x2

(b) Some indifference sets for the prefer-
ence relation in Example 4.2.

Figure 4.1

4.2 Preferences over bundles

We now give some examples of preference relations over bundles. Many pref-
erence relations may helpfully be illustrated by diagrams that show a few indif-
ference sets (sometimes called indifference curves). The indifference set for the
preference relation ¼ and bundle a is {y ∈ X : y ∼ a }, the set of all bundles in-
different to a . The collection of all indifferent sets is the partition induced by the
equivalence relation ∼. If ¼ is represented by a utility function u , the indiffer-
ence set for the bundle a can alternatively be expressed as {y ∈ X : u (y ) = u (a )},
the contour of u for the bundle a .

Example 4.1: Constant tradeoff

The consumer has in mind two numbers v1 and v2, where vi is the value
she assigns to a unit of good i . Her preference relation ¼ is defined by the
condition that x ¼ y if v1x1 + v2x2 ≥ v1y1 + v2y2. Thus ¼ is represented
by the utility function v1x1 + v2x2. The indifference set for the bundle
(a 1, a 2) is {(x1,x2) : v1x1 + v2x2 = v1a 1 + v2a 2}, a line with slope −v1/v2.
Figure 4.1a shows some indifference sets for v1/v2 =

4
3

. The arrow in the
figure indicates the direction in which bundles are preferred.

Example 4.2: Only good 2 is valued

The consumer cares only about good 2, which she likes. Her preference re-
lation is represented by the utility function x2. For this preference relation,
every indifference set is a horizontal line; see Figure 4.1b.
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0 10 x1→

↑
x2

(a) Some indifference sets for the prefer-
ence relation in Example 4.3.

0 x1→

↑
x2

(b) Some indifference sets for the prefer-
ence relation in Example 4.4.

Figure 4.2

Example 4.3: Minimal amount of good 1 and then good 2

The consumer cares only about increasing the quantity of good 1 until this
quantity exceeds 10, and then she cares only about increasing the quantity
of good 2. Precisely, (x1,x2)¼ (y1, y2) if (i) y1 ≤ 10 and x1 ≥ y1 or (ii) x1 > 10,
y1 > 10, and x2 ≥ y2.

These preferences are represented by the utility function
(

x1 if x1 ≤ 10

11+x2 if x1 > 10.

See Figure 4.2a. Notice that the indifference sets for utility levels above 10
are horizontal half lines that are open on the left.

Example 4.4: Complementary goods

The consumer wants the same amount of each good and prefers larger
quantities. That is, she prefers a bundle x to a bundle y if and only if
min{x1,x2}>min{y1, y2}. (Think of the goods as right and left shoes). Thus
min{x1,x2} is a utility function that represents her preference relation (see
Figure 4.2b).

Example 4.5: Ideal bundle

The consumer has in mind an ideal bundle x ∗. She prefers a bundle x to a
bundle y if and only if x is closer to x ∗ than is y according to some measure
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0

x ∗

x1→

↑
x2

Figure 4.3 Some indifference sets for the preference relation in Example 4.5.

of distance. An example of a distance measure is the sum of the absolute
differences of the components, in which case x ¼ y if |x1−x ∗1|+ |x2−x ∗2| ≤
|y1−x ∗1|+ |y2−x ∗2|. A utility function that represents this preference relation
is −(|x1−x ∗1|+ |x2−x ∗2|). See Figure 4.3.

Example 4.6: Lexicographic preferences

The consumer cares primarily about the quantity of good 1; if this quantity
is the same in two bundles, then she prefers the bundle with the larger
quantity of good 2. Formally, x ¼ y if either (i) x1 > y1 or (ii) x1 = y1 and
x2 ≥ y2. For this preference relation, for any two bundles x and y we have
x � y or y � x , so that each indifference set consists of a single point. The
preference relation has no utility representation (Proposition 1.2).

In the rest of the chapter we discuss several properties of consumers’ prefer-
ences that are often assumed in economic models.

4.3 Monotonicity

Monotonicity is a property of a consumer’s preference relation that expresses the
assumption that goods are desirable.

Definition 4.2: Monotone preference relation

The preference relation ¼ on R2
+ is monotone if

x1 ≥ y1 and x2 ≥ y2 ⇒ (x1,x2)¼ (y1, y2)

and
x1 > y1 and x2 > y2 ⇒ (x1,x2)� (y1, y2).
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Thus if the bundle y is obtained from the bundle x by adding a positive amount
of one of the goods then for a monotone preference relation ¼we have y ¼ x , and
if y is obtained from x by adding positive amounts of both goods then y � x . For
example, the bundle (3,7) is preferred to the bundle (2,6) and it may be preferred
to (3,5) or indifferent to it, but cannot be inferior.

The following property is a stronger version of monotonicity. If the bundle x
has more of one good than the bundle y and not less of the other good then for a
strongly monotone preference relation ¼we have x � y .

Definition 4.3: Strongly monotone preference relation

The preference relation ¼ on R2
+ is strongly monotone if

x1 ≥ y1, x2 ≥ y2, and (x1,x2) 6= (y1, y2) ⇒ (x1,x2)� (y1, y2).

The following table indicates, for each example in the previous section,
whether the preference relation is monotone or strongly monotone.

Example Monotonicity Strong monotonicity

4.1: Constant tradeoff 3 if v1 > 0 and v2 > 0
4.2: Only good 2 is valued 3 7

4.3: Minimal amount of 1, then 2 3 7

4.4: Complementary goods 3 7

4.5: Ideal bundle 7 7

4.6: Lexicographic 3 3

4.4 Continuity

Continuity is a property of a consumer’s preference relation that captures the
idea that if a bundle x is preferred to a bundle y then bundles close to x are
preferred to bundles close to y .

Definition 4.4: Continuous preference relation

The preference relation ¼ on R2
+ is continuous if whenever x � y there

exists a number ε > 0 such that for every bundle a for which the distance
to x is less than ε and every bundle b for which the distance to y is less
than ε we have a � b (where the distance between any bundles (w1, w2)

and (z 1, z 2) is
p
|w1− z 1|2+ |w2− z 2|2).

Note that a lexicographic preference relation is not continuous. We have x =
(1,2) � y = (1,0), but for every ε > 0 the distance of the bundle a ε = (1− ε/2,2)
from x is less than ε but nevertheless a ε ≺ y .
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Proposition 4.1: Continuous preference relation and continuous utility

A preference relation onR2
+ that can be represented by a continuous utility

function is continuous.

Proof

Let¼ be a preference relation and let u be a continuous function that rep-
resents it. Let x � y . Then u (x ) > u (y ). Let ε = 1

3
(u (x )− u (y )). By the

continuity of u there exists δ > 0 small enough such that for every bundle
a within the distance δ of x and every bundle b within the distance δ of y
we have u (a ) > u (x )− ε and u (y ) + ε > u (b ). Thus for all such bundles a
and b we have u (a )> u (x )− ε > u (y )+ ε > u (b ) and thus a �b .

Comments

1. The converse result holds also: every continuous preference relation can be
represented by a continuous utility function. A proof of this result is above
the mathematical level of this book.

2. One can show that if ¼ is a continuous preference relation on X and a �
b � c then on the line between the bundles a and c there is a bundle that is
indifferent to b . That is, there is a number 0<λ< 1 such that λa +(1−λ)c ∼
b . This property is analogous to the property of continuity of preferences
over the space of lotteries in the previous chapter.

4.5 Convexity

Consider a world in which five candidates for a political job have positions com-
monly recognized to be ordered along the left-right political line as follows:

D A C B E

Assume that a person tells you that she cares only about the candidates’ positions
on this dimension and says that she prefers A to B . What additional conclusions
are you likely to make about her preferences?

You would probably conclude that she prefers C to B . If moving from B to A is
an improvement, then going part of the way should also be an improvement. As
to the comparison between A and C you would probably be unsure: you might
think that she prefers A (if you believe that she is inclined to the left) or you might
think that she prefers C (if you think that C is her favorite position among those
adopted by the candidates). Thus our intuition is asymmetric: if a change makes
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x2

(a) Some indifference sets for a convex
preference relation. Each bundle a , a ′,
and a ′′ is at least as good as b , and all the
bundles on each line segment from b to
any one of these bundles are also at least
as good as b , though bundles between a ′′

and b are not strictly better.

b

a
a ′

a ′′

0 x1→

↑
x2

(b) Some indifference sets for a strictly
convex preference relation. Each bundle
a , a ′, and a ′′ is at least as good as b , and
all the bundles on each line segment from
b to any one of these bundles, excluding
the endpoints, are better than b .

Figure 4.4

the person better off then a partial change probably does so too, but if a change
makes her worse off then a partial change may make her better off.

Another natural conclusion is that a person who prefers A to B prefers also B
to E , because it does not make sense that she considers candidates both to the
left and to the right of B to be improvements over B . But D might be preferred
to A (if D is the person’s favorite candidate) or inferior to A (if A is the person’s
favorite candidate).

This example leads us to define a property of preferences called convexity,
which is often assumed in economic theory.

Definition 4.5: Convex preference relation

The preference relation ¼ on R2
+ is convex if

a ¼b ⇒ λa +(1−λ)b ¼b for all λ ∈ (0, 1)

and is strictly convex if

a ¼b and a 6=b ⇒ λa +(1−λ)b �b for all λ ∈ (0,1).

Geometrically, λa + (1−λ)b is a bundle on the line segment from a to b , so
the condition for a convex preference relation says that if a is at least as good as
b then every bundle on the line segment from a to b is at least as good as b . For a
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strictly convex preference relation, all the bundles on the line segment, excluding
the end points, are better than b . See Figures 4.4a and 4.4b.

Example 4.7: Convexity of lexicographic preferences

Lexicographic preferences are convex by the following argument. Assume
(a 1, a 2)¼ (b1,b2). If a 1 >b1 then for everyλ ∈ (0,1)we haveλa 1+(1−λ)b1 >

b1 and thus λa + (1−λ)b � b . If a 1 = b1 then λa 1+ (1−λ)b1 = b1. In this
case a 2 ≥b2 and hence λa 2+(1−λ)b2 ≥b2, so that λa +(1−λ)b ¼b .

Proposition 4.2: Characterization of convex preference relation

The preference relation ¼ on R2
+ is convex if and only if for all x ∗ ∈ X the

set {x ∈ X : x ¼ x ∗} (containing all bundles at least as good as x ∗) is convex.

Proof

Assume that ¼ is convex. Let a ,b ∈ {x ∈ X : x ¼ x ∗}. Without loss of gener-
ality assume that a ¼ b . Then for λ ∈ (0,1), by the convexity of ¼ we have
λa +(1−λ)b ¼ b and by its transitivity we have λa +(1−λ)b ¼ x ∗, so that
λa +(1−λ)b ∈ {x : x ¼ x ∗}. Thus this set is convex.

Now assume that {x ∈ X : x ¼ x ∗} is convex for all x ∗ ∈ X . If a ¼ b
then we have a ∈ {x ∈ X : x ¼ b}. Given that b is also in {x ∈ X : x ¼
b}, the convexity of this set implies that λa + (1−λ)b is in the set. Thus
λa +(1−λ)b ¼b .

The next result involves the notion of a concave function. A function u : X →
R is concave if for all a ,b ∈ X , u (λa + (1− λ)b ) ≥ λu (a ) + (1− λ)u (b ) for all
λ ∈ (0,1).

Proposition 4.3: Preferences with concave representation are convex

A preference relation on R2
+ that is represented by a concave function is

convex.

Proof

Let¼ be a preference relation that is represented by a concave function u .
Assume that a ¼b , so that u (a )≥ u (b ). By the concavity of u ,

u (λa +(1−λ)b )≥λu (a )+ (1−λ)u (b )≥ u (b ).

Thus λa +(1−λ)b ¼b , so that ¼ is convex.
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Note that convex preferences may be represented also by utility functions
that are not concave. For example, the convex preference relation repre-
sented by the concave function min{x1,x2} is represented also by the function
(min{x1,x2})2, which is not concave.

The convexity of a strongly monotone preference relation is connected with
the property known as decreasing marginal rate of substitution. Consider three
bundles a = (10,10), b = (11,10−β ), and c = (12,10−β − γ) for which a ∼ b ∼
c . When the amount of good 1 increases from 10 to 11, the consumer is kept
indifferent by reducing the amount of good 2 by β , and when the amount of
good 1 increases by another unit, she is kept indifferent by further reducing the
amount of good 2 by γ. We now argue that if the consumer’s preference relation
is strongly monotone and convex then β ≥ γ. That is, the rate at which good 2
is substituted for good 1 decreases as the amount of good 1 increases. Assume
to the contrary that β < γ. Then β < 1

2
(β + γ), so that by strong monotonicity

(11,10− 1
2
(β + γ)) ≺ b = (11, 10− β ). But (11,10− 1

2
(β + γ)) = 1

2
a + 1

2
c , and the

convexity of the preferences implies that 1
2

a + 1
2

c ¼ c , so that (11,10− 1
2
(β +γ))¼

c ∼b , a contradiction.

4.6 Differentiability

Consumers’ preferences are commonly assumed to have smooth indifference
sets, like the one in Figure 4.5a. The indifference set in Figure 4.5b, by con-
trast, is not smooth. A formal property of a preference relation that ensures the
smoothness of indifference sets is differentiability. We define this property only
for monotone and convex preference relations.

Definition 4.6: Differentiable preference relation

A monotone and convex preference relation ¼ onR2
+ is differentiable if for

every bundle z there is a pair (v1(z ), v2(z )) 6= (0,0) of nonnegative numbers,
called the consumer’s local valuations at z , such that for all numbers δ1

and δ2,

v1(z )δ1+ v2(z )δ2 > 0 ⇔ there exists ε > 0 such that z +(εδ1,εδ2)� z .

Geometrically, this definition says that for any given bundle z there is a line
(like the green one in Figure 4.5a) such that (i) for any bundle x above the line,
every bundle sufficiently close to z on the line segment from z to x (like x ′ in
Figure 4.5a) is preferred to z and (ii) any bundle that is preferred to z is above the
line.

The numbers v1(z ) and v2(z ) can be interpreted as the consumer’s valuations
of small changes in the amounts of the goods she consumes away from z . If her
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0

z

x

x ′

x1→

↑
x2

(a) An indifference set for a differentiable
preference relation.

0

z

x

x1→

↑
x2

(b) An indifference set for a preference re-
lation that is not differentiable.

Figure 4.5

preference relation is differentiable, then for ε > 0 small enough the change from
the bundle z to the bundle z ′ = (z 1 + εδ1, z 2 + εδ2) is an improvement for the
consumer whenever v1(z )δ1 + v2(z )δ2 > 0. (Note that only the ratio v1(z )/v2(z )
matters; if (v1(z ), v2(z )) is a pair of local valuations, then so is (αv1(z ),αv2(z )) for
any number α> 0.)

Figure 4.5b gives an example of an indifference set for preferences that are not
differentiable. For every line (like the green one) through z such that all bundles
preferred to z lie above the line, there are bundles (like x in the figure) such that
no bundle on the line segment from x to z is preferred to z .

Lexicographic preferences are not differentiable. Suppose that the quantity
of the first good has first priority and that of the second good has second priority.
For any bundle z , the only vector (v1(z ), v2(z )) such that for all δ1 and δ2 the left-
hand side of the equivalence in Definition 4.6 implies the right-hand side is (1,0)
(or a positive multiple of (1,0)). However, for this vector the right-hand side of
the equivalence does not imply the left-hand side: for (δ1,δ2) = (0,1) we have
1 ·δ1+0 ·δ2 = 0 although (z 1+ εδ1, z 2+ εδ2)� (z 1, z 2) for ε > 0.

The following result, a proof of which is beyond the scope of the book, says
that a preference relation represented by a utility function with continuous par-
tial derivatives is differentiable and its pair of partial derivatives is one pair of
local valuations.

Proposition 4.4: Local valuations and partial derivatives

If a preference relation on R2
+ is monotone and convex and is represented

by a utility function u that has continuous partial derivatives, then it is
differentiable and for any bundle z one pair of local valuations is the pair
of partial derivatives of u at z .



Problems 55

Thus, for example, the preference relation represented by the utility function
u defined by u (x1,x2) = x1x2 is differentiable and for any bundle z , (v1(z ), v2(z )) =
(z 2, z 1) is a pair of local valuations.

Problems

1. Three examples. Describe each of the following three preference relations
formally, giving a utility function that represents the preferences wherever
possible, draw some representative indifference sets, and determine whether
the preferences are monotone, continuous, and convex.

a. The consumer prefers the bundle (x1,x2) to the bundle (y1, y2) if and only
if (x1,x2) is further from (0,0) than is (y1, y2), where the distance between
the (z 1, z 2) and (z ′1, z ′2) is

p
(z 1− z ′1)

2+(z 2− z ′2)
2.

b. The consumer prefers any balanced bundle, containing the same amount
of each good, to any unbalanced bundle. Between balanced bundles, she
prefers the one with the largest quantities. Between unbalanced bundles,
she prefers the bundle with the largest quantity of good 2.

c. The consumer cares first about the sum of the amounts of the goods; if
the sum is the same in two bundles, she prefers the bundle with more of
good 1.

2. Three more examples. For the preference relation represented by each of
the following utility functions, draw some representative indifference sets
and determine (without providing a complete proof) whether the preference
relation is monotone, continuous, and convex.

a. max{x1,x2}

b. x1−x2

c. log(x1+1)+ log(x2+1)

3. Continuous preferences. The preference relation ¼ is monotone and contin-
uous and is thus represented by a utility function u that is increasing and
continuous. Show that for every bundle x there is a bundle y with y1 = y2

such that y ∼ x .

4. Quasilinear preferences. A preference relation is represented by a utility func-
tion of the form u (x1,x2) = x2 + g (x1), where g is a continuous increasing
function.

a. How does each indifference set for this preference relation relate geomet-
rically to the other indifference sets?
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b. Show that if g is concave then the preference relation is convex.

5. Maxmin preferences. Prove that the preference relation represented by the
utility function min{x1,x2} is convex.

6. Ideal bundle. Show that the preference relation in Example 4.5, in which the
consumer has in mind an ideal bundle, is continuous and convex.

7. One preference relatively favors one good more than another. We say that the
preference relation ¼A favors good 1 more than does ¼B if for all positive
numbers α and β we have

(x1−α,x2+β )¼A (x1,x2) ⇒ (x1−α,x2+β )�B (x1,x2).

a. Illustrate by two collections of indifference sets the configuration in
which ¼A favors good 1 more than does ¼B .

b. Explain why the preference relation ¼A represented by 2x1 + x2 favors
good 1 more than does the preference relation ¼B represented by x1+x2.

c. Explain why a lexicographic preference relation (Example 4.6) favors
good 1 more than does any strongly monotone preference relation.

Notes

The result mentioned at the end of Section 4.4 that every continuous pref-
erence relation can be represented by a continuous utility function is due to
Debreu (1954). The exposition of the chapter, and in particular the presentation
of differentiability, draws upon Rubinstein (2006a, Lecture 4).



5 Consumer behavior

In this chapter we apply the model of individual choice presented in Chapter 2
to the behavior of a consumer. The set X of all alternatives the consumer may
face is R2

+, the set of bundles, and a choice problem is a subset of X . As we dis-
cussed in Chapter 2, to completely describe an individual’s behavior we need to
specify her choice for every choice problem she may face. Not every subset of
X is a choice problem for a consumer. Since we are interested in the connec-
tion between prices and the consumer’s choices, we focus on the behavior of a
consumer who faces a particular type of choice problem, called a budget set.

5.1 Budget sets

A choice problem for a consumer is the set of bundles that she can purchase,
given the prices and her wealth. We refer to this set as the consumer’s budget set.
More precisely, given prices p1 and p2 and wealth w , the consumer’s budget set
is the set of all bundles the consumer can obtain by exchanging w for the goods
at the fixed exchange rates of p1 units of wealth for one unit of good 1 and p2

units of wealth for one unit of good 2.

Definition 5.1: Budget set

For any positive numbers p1, p2, and w , the budget set of a consumer with
wealth w when the prices are (p1, p2) is

B ((p1, p2), w ) = {(x1,x2)∈ X : p1x1+p2x2 ≤w }.

The set {(x1,x2)∈ X : p1x1+p2x2 =w } is the consumer’s budget line.

Geometrically, a budget set is a triangle like the one in Figure 5.1. Note that
multiplying wealth and prices by the same positive number does not change the
set: B ((λp1,λp2),λw ) = B ((p1, p2), w ) for any λ > 0, because the inequalities
λp1x1+λp2x2 ≤λw and p1x1+p2x2 ≤w that define these sets are equivalent.

Every budget set is convex: if a and b are in B ((p1, p2), w ) then p1a 1+p2a 2 ≤
w and p1b1+p2b2 ≤w , so that for any λ ∈ [0,1]we have

p1(λa 1+(1−λ)b1)+p2(λa 2+(1−λ)b2)

=λ(p1a 1+p2a 2)+ (1−λ)(p1b1+p2b2)≤w ,

Chapter of Models in Microeconomic Theory by Martin J. Osborne and Ariel Rubinstein. Version 2023.5.30 (s).
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0

w /p2

w /p1 x1→

↑
x2

Figure 5.1 The light green triangle is the budget set of a consumer with wealth w when
the prices of the goods are p1 and p2, {(x1,x2)∈ X : p1x1+p2x2 ≤w }. The dark green line
is the budget line.

and hence (λa 1+(1−λ)b1,λa 2+(1−λ)b2) is in B ((p1, p2), w ).
Figure 5.1 shows also the budget line: the set of all bundles (x1,x2) satisfying

p1x1 + p2x2 = w , a line with negative slope. The equation of this line can be
alternatively expressed as x2 = (−p1/p2)x1+w /p1. The slope of the line, −p1/p2,
expresses the tradeoff the consumer faces: consuming one more unit of good 1
requires consuming p1/p2 fewer units of good 2.

Thus every choice problem of the consumer is a right triangle with two sides
on the axes. Every such triangle is generated by some pair ((p1, p2), w ). The same
collection of choice problems is generated also in a different model of the con-
sumer’s environment. Rather than assuming that the consumer can purchase
the goods at given prices using her wealth, assume that she initially owns a bun-
dle e and can exchange goods at the fixed rate of one unit of good 1 for β units of
good 2. Then her choice problem is {(x1,x2)∈ X : (e1−x1)β ≥ x2−e2} or {(x1,x2)∈
X :βx1+x2 ≤ βe1+ e2}, which is equal to the budget set B ((β ,1),βe1+ e2).

5.2 Demand functions

A consumer’s choice function, called a demand function, assigns to every budget
set one of its members. A budget set here is defined by a pair ((p1, p2), w )with p1,
p2, and w positive. (In some later chapters it is specified differently.) Thus, a
consumer’s behavior can be described as a function of ((p1, p2), w ).

Definition 5.2: Demand function

A demand function is a function x that assigns to each budget set one of
its members. Define x ((p1, p2), w ) to be the bundle assigned to the budget
set B ((p1, p2), w ).
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Note that x ((λp1,λp2),λw ) = x ((p1, p2), w ) for all ((p1, p2), w ) and all λ > 0
because B ((λp1,λp2),λw ) = B ((p1, p2), w ).

The definition does not assume that the demand function is the result of the
consumer’s maximizing a preference relation. We are interested also in patterns
of behavior that are not derived from such optimization.

Here are some examples of demand functions that reflect simple rules of be-
havior. In each case, the function x satisfies x ((λp1,λp2),λw ) = x ((p1, p2), w ) for
all ((p1, p2), w ) and all λ> 0, as required.

Example 5.1: All wealth spent on the cheaper good

The consumer purchases only the cheaper good; if the prices of the goods
are the same, she divides her wealth equally between the two. Formally,

x ((p1, p2), w ) =







(w /p1,0) if p1 < p2

(w /(2p1), w /(2p2)) if p1 = p2

(0, w /p2) if p1 > p2.

Example 5.2: Equal amounts of the goods

The consumer chooses the same quantity of each good and spends all her
wealth, so that x ((p1, p2), w ) = (w /(p1+p2), w /(p1+p2)).

Example 5.3: Half of wealth spent on each good

The consumer spends half of her wealth on each good, so that
x ((p1, p2), w ) = (w /(2p1), w /(2p2)).

Example 5.4: Purchase one good up to a limit

The consumer buys as much as she can of good 1 up to 7 units and with
any wealth remaining buys good 2. That is,

x ((p1, p2), w ) =

(
(w /p1,0) if w /p1 ≤ 7

(7, (w −7p1)/p2) otherwise.

5.3 Rational consumer

A rational consumer has a fixed preference relation, and for any budget set
chooses the best bundle in the set according to the preference relation. We refer
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to the problem of finding the best bundle in a budget set according to a given
preference relation as the consumer’s problem.

Definition 5.3: Consumer’s problem

For a preference relation ¼ onR2
+ and positive numbers p1, p2, and w , the

consumer’s problem is the problem of finding the best bundle in the budget
set B ((p1, p2), w ) according to ¼. If ¼ is represented by the utility function
u , this problem is

max
(x1,x2)∈X

u (x1,x2) subject to p1x1+p2x2 ≤w .

The following result gives some basic properties of a consumer’s problem.

Proposition 5.1: Solution of consumer’s problem

Fix a preference relation on R2
+ and a budget set.

a. If the preference relation is continuous then the consumer’s problem
has a solution.

b. If the preference relation is strictly convex then the consumer’s prob-
lem has at most one solution.

c. If the preference relation is monotone then any solution of the con-
sumer’s problem is on the budget line.

Proof

a. If the preference relation is continuous then it has a continuous utility
representation (see Comment 1 on page 50). Given that both prices are
positive, the budget set is compact, so that by a standard mathematical
result the continuous utility function has a maximizer in the budget
set, which is a solution of the consumer’s problem.

b. Assume that distinct bundles a and b are both solutions to a con-
sumer’s problem. Then the bundle (a+b )/2 is in the budget set (which
is convex); by the strict convexity of the preference relation this bundle
is strictly preferred to both a and b .

c. Suppose that the bundle (a 1, a 2) is in the consumer’s budget set for
prices p1 and p2 and wealth w , but is not on the budget line. Then
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p1a 1 + p2a 2 < w , so there exists ε > 0 small enough that p1(a 1+ ε) +
p2(a 2+ε)<w , so that (a 1+ε, a 2+ε) is in the budget set. By the mono-
tonicity of the preference relation, (a 1+ε, a 2+ε) is preferred to (a 1, a 2),
so that (a 1, a 2) is not a solution of the consumer’s problem.

The next two examples give explicit solutions of the consumer’s problem for
specific preference relations.

Example 5.5: Complementary goods

Consider a consumer with a preference relation represented by the utility
function min{x1,x2} (see Example 4.4). This preference relation is mono-
tone, so a solution (x1,x2) of the consumer’s problem lies on the budget
line: p1x1 + p2x2 = w . Since p1 > 0 and p2 > 0, any solution (x1,x2) also
has x1 = x2. If, for example, x1 > x2, then for ε > 0 small enough the bun-
dle (x1− ε,x2+ εp1/p2) is in the budget set and is preferred to x . Thus the
consumer’s problem has a unique solution (w /(p1+p2), w /(p1+p2)). No-
tice that the consumer’s problem has a unique solution even though the
preference relation is only convex, not strictly convex.

Example 5.6: Substitutable goods

A consumer wants to maximize the sum of the amounts of the two goods.
That is, her preference relation is represented by x1+x2 (Example 4.1 with
v1 = v2). Such a preference relation makes sense if the two goods differ
only in ways irrelevant to the consumer. When p1 6= p2, a unique bundle
solves the consumer’s problem: (w /p1,0) if p1 < p2 and (0, w /p2) when
p1 > p2. When p1 = p2, all bundles on the budget line are solutions of the
consumer’s problem.

5.4 Differentiable preferences

If a consumer’s preference relation is monotone, convex, and differentiable, then
for any bundle z the local valuations v1(z ) and v2(z ) represent the value of each
good to the consumer at z . Thus a small change in the bundle z is an improve-
ment for the consumer if and only if the change increases the value of the bundle
measured by the local valuations at z . The consumer finds it desirable to give up
a small amount α of good 1 in return for an additional amount β of good 2 if and
only if −αv1(z ) + βv2(z ) > 0, or β/α > v1(z )/v2(z ). Similarly, she finds it desir-
able to give up a small amount β of good 2 in return for an additional amount
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α of good 1 if and only if αv1(z )− βv2(z ) > 0, or β/α < v1(z )/v2(z ). The ratio
v1(z )/v2(z ) is called her marginal rate of substitution at z .

Definition 5.4: Marginal rate of substitution

For a monotone, convex, and differentiable preference relation on R2
+

and bundle z , the marginal rate of substitution at z , denoted MRS(z ), is
v1(z )/v2(z ), where v1(z ) and v2(z ) are the consumer’s local valuations at z .

The following result characterizes the solution of the consumer’s problem if
the consumer’s preference relation is monotone, convex, and differentiable.

Proposition 5.2: Marginal rate of substitution and price ratio

Assume that a consumer has a monotone, convex, and differentiable pref-
erence relation on R2

+. If x ∗ is a solution of the consumer’s problem for
(p1, p2, w ) then

a. x ∗1 > 0 and x ∗2 > 0⇒MRS(x ∗) = p1/p2

b. x ∗1 = 0⇒MRS(x ∗)≤ p1/p2

c. x ∗2 = 0⇒MRS(x ∗)≥ p1/p2.

Proof

To show (a), denote the local valuations at x ∗ by v1(x ∗) and v2(x ∗). Suppose
that x ∗1 > 0, x ∗2 > 0, and MRS(x ∗) = v1(x ∗)/v2(x ∗) < p1/p2. For any ε > 0 let
y (ε) = x ∗+(−ε,εp1/p2). (Refer to Figure 5.2a.) Then

p1y1(ε)+p2y2(ε) = p1(x
∗
1− ε)+p2(x

∗
2+ εp1/p2) =w ,

so that y (ε) is on the budget line. Also

v1(x
∗)(−ε)+ v2(x

∗)(εp1/p2) =−ε
�

v1(x
∗)− (p1/p2)v2(x

∗)
�
> 0.

Thus by the differentiability of the preference relation, there exists ε > 0
such that y (ε) � x ∗, contradicting the fact that x ∗ is a solution of the
consumer’s problem.

Similar arguments establish results (b) and (c) (refer to Figure 5.2b).
Notice that if a bundle x ∗ with x ∗1 = 0 is optimal, then the inequality
MRS(x ∗)< p1/p2 does not contradict the optimality of x ∗ because the con-
sumer cannot reduce her consumption of good 1 in exchange for some
amount of good 2. Therefore the optimality of x ∗ implies only the inequal-
ity MRS(x ∗)≤ p1/p2 and not the equality MRS(x ∗) = p1/p2.
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slope
−v1(x ∗)/v2(x ∗)

0

x ∗

y (ε) =
x ∗+(−ε,εp1/p2)

p1x1+p2x2 =w

x1→

↑
x2

(a) A case in which x ∗1 > 0 and x ∗2 > 0.

slope
−v1(x ∗)/v2(x ∗)

0

x ∗

y (ε) = x ∗+(ε,−εp1/p2)

p1x1+p2x2 =w

x1→

↑
x2

(b) A case in which x ∗1 = 0 and x ∗2 > 0.

Figure 5.2 An illustration of the proof of Proposition 5.2.

Example 5.7

A consumer’s preference relation is represented by the utility function
x1x2. (An indifference curve is shown in Figure 5.3.) Any bundle (x1,x2)
with x1 > 0 and x2 > 0 is preferred to any bundle with x1 = 0 or x2 = 0,
so if x ∗ is a solution of the consumer’s problem then x ∗1 > 0 and x ∗2 > 0.
The preference relation is monotone, convex, and differentiable, so by
Proposition 5.2, MRS(x ∗) = p1/p2. Proposition 4.4 implies that MRS(x ∗)
is the ratio of the partial derivatives of the utility function at x ∗, namely
MRS(x ∗) = x ∗2/x

∗
1. Thus x ∗2/x

∗
1 = p1/p2, so that p1x ∗1 = p2x ∗2. Since the pref-

erence relation is monotone, by Proposition 5.1c x ∗ lies on the budget line:
p1x ∗1 + p2x ∗2 = w . Therefore (x ∗1,x ∗2) = (w /(2p1), w /(2p2)): the consumer
spends half her wealth on each good.

Example 5.8

A consumer’s preference relation is represented by the utility function
x1 +

p
x2. This preference relation is monotone, convex, and differen-

tiable, so that by Proposition 5.1c a solution of the consumer’s problem
is on the budget line and satisfies the conditions in Proposition 5.2. We
have MRS(x1,x2) = 2

p
x2, so as x1 increases and x2 decreases along the

budget line, MRS(x1,x2) decreases from 2
p

w /p2 to 0. (See Figure 5.4.)
Hence if 2

p
w /p2 ≥ p1/p2 the unique solution (x ∗1,x ∗2) of the consumer’s

problem satisfies MRS(x ∗1,x ∗2) = 2
p

x ∗2 = p1/p2, or x ∗2 = p 2
1/(4p 2

2) and
x ∗1 = w /p1 − p1/(4p2). If 2

p
w /p2 ≤ p1/p2, we have (x ∗1,x ∗2) = (0, w /p2):

the consumer spends all her wealth on the second good.
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0

x ∗

p1x1+p2x2 =w

x1→

↑
x2

Figure 5.3 An indifference set for the preference relation in Example 5.7.

5.5 Rationalizing a demand function

In the previous two sections, we study the demand function obtained from the
maximization of a preference relation. We now study whether a demand func-
tion, which could be the outcome of a different procedure, is consistent with the
consumer’s maximization of a preference relation. That is, rather than deriving a
demand function from a preference relation, we go in the opposite direction: for
a given demand function, we ask whether there exists a monotone preference
relation such that the solutions of the consumer’s problem are consistent with
the demand function. Or, more compactly, we ask which demand functions are
rationalized by preference relations.

Definition 5.5: Rationalizable demand function

A demand function is rationalizable if there is a monotone preference rela-
tion such that for every budget set the alternative specified by the demand
function is a solution of the consumer’s problem.

Note that the definition does not require that the alternative specified by the
demand function is the only solution of the consumer’s problem.

In Section 2.2 we show (Propositions 2.1 and 2.2) that a choice function is
rationalizable if and only if it satisfies property α. These results have no impli-
cations for a consumer’s demand function, because property α is vacuous in this
context: if the bundle a is chosen from budget set B and is on the frontier of B
then no other budget set that contains a is a subset of B .

We now give some examples of demand functions and consider preference
relations that rationalize them.
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0

x ∗

p1x1+p2x2 =w

x1→

↑
x2

(a) A case in which the solution x ∗ has x ∗1 >
0 and MRS(x ∗1,x ∗2) = p1/p2.

0

x ∗

p1x1+p2x2 =w

x1→

↑
x2

(b) A case in which the solution x ∗ has x ∗1 =
0 and MRS(x ∗1,x ∗2)> p1/p2.

Figure 5.4 Solutions of the consumer’s problem in Example 5.8.

Example 5.9: All wealth spent on the cheaper good

Consider the demand function in Example 5.1. That is, if the prices of the
good differ, the consumer spends all her wealth on the cheaper good; if
the prices are the same, she splits her wealth equally between the two
goods. This demand function is rationalized by the preference relation
represented by x1 + x2. It is also rationalized by the preference relations
represented by max{x1,x2} and by x 2

1 +x 2
2 .

Example 5.10: Half of wealth spent on each good

Consider the demand function in Example 5.3. That is, the consumer
spends half of her wealth on each good, independently of the prices and
her wealth. This demand function is rationalized by the preference rela-
tion represented by the function x1x2 (Example 5.7). Thus although max-
imizing the product of the quantities of the goods may seem odd, this
function rationalizes a natural demand function.

Example 5.11: All wealth spent on the more expensive good

The consumer spends all her wealth on the more expensive good; if the
prices are the same, she buys only good 1. That is, x ((p1, p2), w ) = (w /p1,0)
if p1 ≥ p2 and (0, w /p2) if p1 < p2. This demand function cannot be ra-
tionalized by a monotone preference relation. The consumer chooses the
bundle a from B ((1,2),2) and the bundle b from B ((2,1),2) (see Figure 5.5).
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0

a

b

B ((1,2),2)

B ((2,1),2)

2

2

1

1 x1→

↑
x2

Figure 5.5 An illustration of the demand function in Example 5.11. The light blue trian-
gle is the budget set B ((1,2),2) and the light green triangle is the budget set B ((2,1),2).

Since b is in the interior of B ((1,2),2), we have a � b for any monotone
preference relation ¼ that rationalizes the demand function. Similarly,
b � a because a is in the interior of B ((2,1),2), a contradiction.

The demand function in this last example might make sense in environments
in which the price of a good reveals information about the quality of the good,
or consumers like the prestige of consuming an expensive good. The exam-
ple highlights a hidden assumption in the model of consumer behavior: prices
do not convey information about the quality of the goods, and an individual’s
preferences are not affected by the prices and her wealth.

The weak axiom of revealed preference

If an individual chooses alternative a when alternative b is available, we might
conclude that she finds a to be at least as good as b . If she chooses a when b
is available and costs less than a , we might similarly conclude, if the goods are
desirable, that she prefers a to b . (See Figure 5.6a.) For example, if an individ-
ual purchases the bundle (2,0)when she could have purchased the bundle (0,2),
then we conclude that she finds (2,0) at least as good as the bundle (0,2) and
prefers (2,0) to (0,1.9).

Definition 5.6: Revealed preference

Given the demand function x , the bundle a is revealed to be at least as
good as the bundle b if for some prices (p1, p2) and wealth w the budget
set B ((p1, p2), w ) contains both a and b , and x ((p1, p2), w ) = a . The bundle
a is revealed to be better than b if for some prices (p1, p2) and wealth w
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0

a = x ((p1, p2), w )

b

B ((p1, p2), w )

x1→

↑
x2

(a) The bundle a is revealed to be better
than b .

a

c

b = x ((p1, p2), w )

B ((p1, p2), w )

0 x1→

↑
x2

(b) An illustration of the proof of Proposi-
tion 5.3.

Figure 5.6

the budget set B ((p1, p2), w ) contains both a and b , p1b1+p2b2 <w , and
x ((p1, p2), w ) = a .

We now define a property that is satisfied by every demand function rational-
ized by a monotone preference relation.

Definition 5.7: Weak axiom of revealed preference (WARP)

A demand function satisfies the weak axiom of revealed preference (WARP)
if for no bundles a and b , both a is revealed to be at least as good as b and
b is revealed to be better than a .

Proposition 5.3: Demand function of rational consumer satisfies WARP

A demand function that is rationalized by a monotone preference relation
satisfies the weak axiom of revealed preference.

Proof

Let x be a demand function that is rationalized by the monotone prefer-
ence relation ¼. Assume, contrary to the result, that (i) a is revealed to be
at least as good as b and (ii) b is revealed to be better than a . Given (i),
we have a ¼ b. By (ii) there are prices p1 and p2 and wealth w such that
b = x ((p1, p2), w ) and p1a 1+p2a 2 <w . Let c be a bundle in B ((p1, p2), w )
with c1 > a 1 and c2 > a 2. (Refer to Figure 5.6b.) By the monotonicity of the
preference relation we have c � a , and since b is chosen from B ((p1, p2), w )
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we have b ¼ c . It follows from the transitivity of the preference relation that
b � a , contradicting a ¼b .

Propositions 2.1 and 2.2 show that for a general choice problem, a choice
function is rationalizable if and only if it satisfies property α. Notice that by con-
trast, Proposition 5.3 provides only a necessary condition for a demand func-
tion to be rationalized by a monotone preference relation, not a sufficient condi-
tion. We do not discuss a sufficient condition, called the strong axiom of revealed
preference.

5.6 Properties of demand functions

A demand function describes the bundle chosen by a consumer as a function
of the prices and the consumer’s wealth. If we fix the price of good 2 and the
consumer’s wealth, the demand function describes how the bundle chosen by
the consumer varies with the price of good 1. This relation between the price of
good 1 and its demand is called the consumer’s regular, or Marshallian, demand
function for good 1 (given the price of good 2 and wealth). The relation between
the price of good 2 and the demand for good 1 (given a price of good 1 and the
level of wealth), is called the consumer’s cross-demand function for good 2. And
the relation between the consumer’s wealth and her demand for good i (given
the prices) is called the consumer’s Engel function for good i .

Definition 5.8: Regular, cross-demand, and Engel functions

Let x be the demand function of a consumer.

• For any given price p 0
2 of good 2 and wealth w 0, the function x ∗1 defined

by x ∗1(p1) = x1((p1, p 0
2), w 0) is the consumer’s regular (or Marshallian)

demand function for good 1 given (p 0
2, w 0), and the function x̂2 defined

by x̂2(p1) = x2((p1, p 0
2), w 0) is the consumer’s cross-demand function for

good 2 given (p 0
2, w 0).

• For any given prices (p 0
1, p 0

2), the function x k defined by x k (w ) =
xk ((p 0

1, p 0
2), w ) is the consumer’s Engel function for good k given

(p 0
1, p 0

2).

Consider, for example, a consumer who spends the fraction α of her budget
on good 1 and the rest on good 2, so that x ((p1, p2), w ) = (αw /p1, (1−α)w /p2).
The consumer’s regular demand function for good 1 given p 0

2 and w 0 is given
by x ∗1(p1) = αw 0/p1 (and in particular does not depend on p 0

2), her cross-
demand function for good 2 given p 0

2 and w 0 is the constant function x̂2(p1) =
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a ′a

p1

p ′1

0 x1→

↑
x2

(a) An example in which the demand for
good 1 increases when the price of good 1
increases.

a

a ′

b

0 x1→

↑
x2

(b) An illustration of the proof of Proposi-
tion 5.4.

Figure 5.7

(1−α)w 0/p 0
2, and her Engel function for good 1 given the prices (p 0

1, p 0
2) is the

linear function x 1(w ) =αw /p 0
1.

We now introduce some terminology for various properties of the demand
function.

Definition 5.9: Normal, regular, and Giffen goods

A good is normal for a given consumer if, for any given prices, the con-
sumer’s Engel function for the good is increasing. A good is regular for
the consumer if for any price of the other good and any wealth, the con-
sumer’s regular demand function for the good is decreasing, and Giffen if
her regular demand function for the good is increasing.

This terminology can also be applied locally: we say, for example, that good
1 is a Giffen good at ((p 0

1, p 0
2), w 0) if the demand function is increasing around p 0

1

given p 0
2 and w 0 (but is not necessarily increasing at all values of p1).

It is common to assume that every good is regular: as the price of the good
increases, given the price of the other good and the consumer’s wealth, the con-
sumer’s demand for the good decreases. The demand function of a rational con-
sumer whose preference relation satisfies the standard assumptions of mono-
tonicity, continuity, convexity and differentiability does not necessarily have this
property. We do not give an explicit example but Figure 5.7a is suggestive: as
the price of good 1 increases from p1 to p ′1, given the price of good 2 and the
consumer’s wealth, the consumer’s demand for good 1 increases from a to a ′.

The following result gives a condition on the preference relation that guaran-
tees that a good is normal.
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Proposition 5.4: MRS and normal good

The demand function of a rational consumer whose marginal rate of sub-
stitution MRS(x1,x2) is increasing in x2 for every value of x1 has the prop-
erty that good 1 is normal (the consumer’s Engel function for the good is
increasing).

Proof

Fix p 0
1 and p 0

2 and let w ′ >w . Let a be a solution of the consumer’s prob-
lem for the budget set B ((p 0

1, p 0
2), w ) and let a ′ be a bundle on the frontier

of B ((p 0
1, p 0

2), w ′) with a ′1 = a 1. (Refer to Figure 5.7b.) By the assumption
on the marginal rate of substitution, MRS(a ′)>MRS(a ), and hence the so-
lution, b , of the consumer’s problem for the budget set B ((p 0

1, p 0
2), w ′) has

b1 > a ′1 = a 1.

The analysis in this section compares the choices of a consumer for two sets
of parameters. Such analyses are called comparative statics. The word statics
refers to the fact that the comparison does not involve an analysis of the path
taken by the outcome through time as the parameters change; we simply com-
pare one outcome with the other. For example, the properties of the regular de-
mand function can be viewed as answering the comparative statics question of
how a consumer’s behavior differs for two sets of parameters (prices and wealth)
that differ only in the price of one of the goods. Phenomena related to the fact
that people’s behavior when they confront one budget set depends also on their
behavior in a budget set they faced previously are not captured by this exercise.

The following comparative static result involves a consumer whose demand
function satisfies the weak axiom of revealed preference and who chooses a bun-
dle on the budget line. The result considers the effect of a change in the price of
a good when the consumer’s wealth is adjusted so that she has exactly enough
wealth to purchase the bundle she chose before the change. The result asserts
that if the consumer’s wealth is adjusted in this way when the price of good 1
increases, then the consumer purchases less of good 1.

Proposition 5.5: Slutsky property

Assume that the demand function x of a rational consumer is single-
valued, satisfies the weak axiom of revealed preference, and satisfies
p1x1((p1, p2), w ) + p2x2((p1, p2), w ) = w for all ((p1, p2), w ). Let p ′1 > p1

and let w ′ be the cost of the bundle x ((p1, p2), w ) for the pair of prices
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0

a = x ((p1, p2), w )

b = x ((p ′1, p2), w ′)

p1x1+p2x2 =w

p ′1x1+p2x2 =w ′

x1→

↑
x2

Figure 5.8 An illustration of the proof of Proposition 5.5.

(p ′1, p2) : w ′ = p ′1x1((p1, p2), w ) + p2x2((p1, p2), w ). Then x1((p ′1, p2), w ′) ≤
x1((p1, p2), w ).

Proof

Let a = x ((p1, p2), w ) and b = x ((p ′1, p2), w ′) (see Figure 5.8). By construc-
tion a is in the budget set B ((p ′1, p2), w ′) and therefore b is revealed to be
at least as good as a . The slope of the budget line for the price p ′1 is larger
than the slope for the price p1. Therefore if b1 > a 1 then b is in the interior
of B ((p1, p2), w ). As a is chosen from B ((p1, p2), w ) and b is interior, a is
revealed to be better than b . This conclusion contradicts the assumption
that the demand function satisfies the weak axiom of revealed preference.

Problems

1. Lexicographic preferences. Find the demand function of a rational consumer
with lexicographic preferences (with first priority on good 1).

2. Cobb-Douglas preferences. A consumer’s preference relation is represented
by the utility function xα1 x 1−α

2 where 0<α< 1. These preferences are convex
and differentiable. Show that for all prices and wealth levels the consumer
spends the fraction α of her budget on good 1.

3. Rationalizing a demand function I. Consider the demand function for which
the consumer spends her entire wealth on the two goods and the ratio of
the amount spent on good 1 to the amount spent on good 2 is p2/p1. Show
that the preference relation represented by the utility function

p
x1 +

p
x2

rationalizes this demand function.



72 Chapter 5. Consumer behavior

0

x ∗

B ((p1, p2), w )
where
w = e ((p1, p2),x ∗)

x1→

↑
x2

Figure 5.9 The budget set B ((p1, p2), e ((p1, p2),x ∗)) (see Problem 5).

4. Rationalizing a demand function II. A consumer chooses the bundle at the
intersection of the budget line and a ray from the origin orthogonal to the
frontier. Can this demand function be rationalized by a monotone prefer-
ence relation?

5. Expenditure function. A consumer’s preference relation is monotone, con-
tinuous, and convex. Let x ∗ = (x ∗1,x ∗2) be a bundle. For any pair (p1, p2) of
prices, let e ((p1, p2),x ∗) be the smallest wealth that allows the consumer to
purchase a bundle that is at least as good for her as x ∗:

e ((p1, p2),x ∗) = min
(x1,x2)

{p1x1+p2x2 : (x1,x2)¼ (x
∗
1,x ∗2)}.

(See Figure 5.9.)

a. Show that the function e is increasing in p1 (and p2).

b. Show that for all λ > 0 and every pair (p1, p2) of prices we have
e ((λp1,λp2),x ∗) = λe ((p1, p2),x ∗).

6. Rationalizing a demand function. If the cost of buying 10 units of good 1 is
less than 1

2
w , a consumer buys 10 units of good 1 and spends her remaining

wealth on good 2. Otherwise she spends half of her wealth on each good.
Show that this behavior is rationalized by a preference relation represented
by the utility function

u (x1,x2) =

(
x1x2 if x1 ≤ 10

10x2 if x1 > 10.

7. Consumer with additive utility function. Suppose that the two goods are food
(z ) and money (m ). A consumer’s preference relation is represented by the
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utility function m + v (z ), where v is increasing and concave and has a con-
tinuous derivative. The price of a unit of food in terms of money is α. The
consumer initially has M units of money and no food.

a. Characterize the solution of the consumer’s problem.

b. Compare the consumption of food of a consumer who faces two budget
sets that differ only in the price of food. Show that when the price of
food is β the amount of food consumed is not more than the amount
consumed when the price of food is α<β .

8. Time preferences I. Consider a consumer who chooses how much to consume
at each of two dates and can transfer consumption from one date to the other
by borrowing and lending. We can model her behavior by treating consump-
tion at date 1 and consumption at date 2 as the two different goods in the
model studied in this chapter.

Assume that the consumer is endowed with y units of money at each date
and faces an interest rate r > 0 for both borrowing and lending, so that she
can exchange 1 unit at date 1 for 1+r units at date 2. The consumer’s budget
set is then

{(x1,x2)∈ X : (1+ r )x1+x2 ≤ (1+ r )y + y }.

Denote the consumer’s demand function by x (r, y ). Assume that (i) x satis-
fies the weak axiom of revealed preference, (ii) for every pair (r, y ) the con-
sumer chooses a bundle on the budget line {(x1,x2) ∈ X : (1+ r )x1 + x2 =
(1+ r )y + y }, and (iii) consumption at each date is a normal good.

a. Show that if the consumer borrows when the interest rate is r1 then she
borrows less (and may even save) when the interest rate is r2 > r1.

b. Show that if the consumer chooses to lend when the interest rate is r1

then she does not borrow when the interest rate is r2 > r1.

9. Time preferences II. For the same model as in the previous question, assume
that the consumer has a preference relation ¼ that is monotone, continuous,
convex, and differentiable.

a. Say that the preference relation is time neutral if for all s and t we have
(s , t )∼ (t , s ). (That is, for any amounts s and t of consumption, the con-
sumer is indifferent between consuming s units at date 1 and t units at
date 2 and consuming t units at date 1 and s at date 2.) Show that for all
values of t we have MRS(t , t ) = 1.
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b. We say that the preference relation has present bias if whenever t > s we
have (t , s )� (s , t ). Show that for all values of t we have MRS(t , t )≥ 1.

c. Show, using only the assumption that the preferences are present biased,
that if r ≤ 0 then any solution of the consumer’s problem has at least as
much consumption at date 1 as it does at date 2.

Notes

Giffen goods were named after Robert Giffen by Marshall (1895, 208). Engel func-
tions are named after Ernst Engel. The Slutsky property is due to Slutsky (1915).
The theory of revealed preference is due to Samuelson (1938). The exposition of
the chapter draws upon Rubinstein (2006a, Lecture 5).



6 Producer behavior

We suggest that you begin by responding to the following question, to which we
return at the end of the chapter.

Assume that you are a vice president of a package delivery company. The
company employs 196 workers in addition to its management team. It was
founded five years ago and is owned by three families.

The work is unskilled; each worker needs one week of training. All the
company’s employees have been with the company for three to five years.
The company pays its workers more than the minimum wage and provides
the benefits required by law. Until recently, it was making a large profit. As
a result of a recession, profit has fallen significantly, but is still positive.

You attend a meeting of management to decide whether to lay off some
workers. The company’s Finance Department has prepared the following
forecast of annual profit.

Number of workers who will
continue to be employed

Expected annual profit
in millions of dollars

0 (all workers will be laid off) Loss of 8
50 (146 workers will be laid off) Profit of 1
65 (131 workers will be laid off) Profit of 1.5
100 (96 workers will be laid off) Profit of 2
144 (52 workers will be laid off) Profit of 1.6
170 (26 workers will be laid off) Profit of 1

196 (no layoffs) Profit of 0.4

How many workers would you continue to employ?

6.1 The producer

Producers, like consumers, play a central role in economic models. A consumer
can trade goods, changing the distribution of goods among the agents in the
economy. A producer can change the availability of goods, transforming in-
puts, which may be physical goods, like raw materials, or mental resources, like
information and attention, into outputs.
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In the model we study, a producer is specified by (i) a technology, which de-
scribes her ability to transform inputs into outputs, and (ii) the motives that
guide her decision regarding the amounts of inputs and outputs. Many produc-
ers are not individuals, but organizations, like collectives, families, or firms. Such
organizations typically have hierarchical structures and mechanisms to make
collective decisions. The model we study does not consider how these mecha-
nisms affect the production decision.

We study a simple model in which the producer can transform a single good,
input, into another good, output. The technology available to her is modeled by
a function f , where f (a ) = y means that the quantity a of input yields y units of
output. We assume that a positive output requires a positive input ( f (0) = 0) and
more input produces at least as much output ( f is nondecreasing). We further
assume that the impact on output of an extra unit of input is no larger for large
amounts of the input than it is for small amounts of the input ( f is concave) and
this impact goes to zero as the amount of input increases without bound (the
producer’s effectiveness is spread more thinly as output increases).

Definition 6.1: Production function

A production function is a function f : R+ → R+, giving the quantity of
output for any quantity of the input, that is continuous, nondecreasing,
and concave, satisfies f (0) = 0, and has the property that for any ε > 0
there is a quantity y such that f (y +1)− f (y )< ε.

We assume that the producer operates in an environment in which she has
to pay for the input and is paid for the output according to given prices. In this
chapter we assume that the producer believes her actions do not affect these
prices. That is, the producer, like the consumer in the previous chapters, is a
price-taker. This assumption fits situations in which the amount of input used
by the producer and the amount of her output are both small compared with
the total amounts of these goods in the economy, so that the producer’s actions
have little effect on the aggregates and thus do not significantly affect the prices
of the goods. The assumption is not appropriate for a producer whose use of an
input or production of an output dominates the markets for those goods, so that
her actions do affect the market prices. We consider such a producer in the next
chapter.

Denote the price of output by p and the price of input by w . A producer
who uses a units of input to produce y units of output obtains the revenue py
and profit π = py −w a . We assume that the producer has preferences over the
triples (a , y ,π). That is, she potentially cares about the amount of input she uses,
the amount of output she produces, and the amount of profit she obtains. Here
are some possible forms for her preferences.
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Output maximization
The producer prefers (a , y ,π) to (a ′, y ′,π′) if (i) y > y ′ and π ≥ 0, or (ii) π ≥ 0
and π′ < 0. Such a producer chooses (a , y ) to maximize output subject to
profit being nonnegative. The producer’s preference for profit to be nonneg-
ative may be due to the difficulty of surviving when she makes a loss.

Profit maximization
The producer prefers (a , y ,π) to (a ′, y ′,π′) if and only if π > π′. Such a pro-
ducer chooses (a , y ) to maximize profit.

Profit maximization with lower bar on output
For some given output y , the producer prefers (a , y ,π) to (a ′, y ′,π′) if (i) π >
π′ and y ≥ y , or (ii) y ≥ y and y ′ < y . Such a producer chooses (a , y ) to
maximize profit subject to producing at least y . If y is small, the constraint
does not bind. But if it is large, it constrains the amount of the input to at
least the number a for which f (a ) = y .

A cooperative
Assume that the producer is an organization that decides the number of its
members and divides its profit equally among them. It employs only its own
members. Each member contributes one unit of labor, so that the amount a
of the input is the number of members of the cooperative. The cooperative
aims to maximize the profit per member, π/a .

In this chapter we explore the implications of only the first two forms of pref-
erences: output maximization and profit maximization.

6.2 Output maximization

We start by considering a producer who aims to maximize the amount of output
subject to not making a loss.

Definition 6.2: Output-maximizing producer

Given the prices p for output and w for input, an output-maximizing pro-
ducer with production function f chooses the amount a of input to solve
the problem

max
a

f (a ) subject to p f (a )−w a ≥ 0.

Figure 6.1a illustrates such a producer’s decision problem. The producer’s
profit is given by the difference between the red curve labelled p f (a ) and the
line labelled w a . If, in addition to the assumptions we have made about the
production function f , it is strictly concave, then either profit is negative for all
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p f (a )

w a

a ∗0 a →

↑
$

(a) A case in which an output-maximizing
producer chooses a positive amount, a ∗,
of the input.

a ∗ a ∗∗

p f (a )

p g (a )

w a

0 a →

↑
$

(b) The effect of a technological improve-
ment for an output-maximizing producer.

Figure 6.1 An output-maximizing producer

positive values of a or there is a unique positive number a ∗ such that p f (a ∗)−
w a ∗ = 0. (Figure 6.1a illustrates the second case.)

Proposition 6.1: Optimal input for output-maximizing producer

If the production function f is strictly concave then the amount of in-
put chosen by an output-maximizing producer with production function
f facing the price w of input and the price p of output is

(
0 if p f (a )−w a < 0 for all a > 0

a ∗ otherwise

where a ∗ is the unique positive number for which p f (a ∗)−w a ∗ = 0.

The implications for the producer’s optimal action of changes in the prices of
the input and output and in the technology follow immediately from Figure 6.1a
(for prices) and from Figure 6.1b (for technology).

Proposition 6.2: Comparative statics for output-maximizing producer

If the production function f is strictly concave then a decrease in the
price of the input, an increase in the price of output, and a technologi-
cal improvement that changes the production function from f to g with
g (a )≥ f (a ) for all a , all cause the amount of input (and output) chosen by
an output-maximizing producer with production function f to increase or
stay the same.
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(a) The amount a ∗ of input chosen by a
profit-maximizing producer.

w a

p f (a )

p g (a )

a ∗fa ∗g0

slope =w

a →

↑
$

(b) A possible effect of an improvement
in technology for a profit-maximizing pro-
ducer.

Figure 6.2 A profit-maximizing producer

6.3 Profit maximization

Producers are more commonly assumed to be profit-maximizers than output-
maximizers.

Definition 6.3: Profit-maximizing producer

Given the prices p for output and w for input, a profit-maximizing pro-
ducer with production function f chooses the amount of input to solve the
problem

max
a

p f (a )−w a .

Figure 6.2a illustrates such a producer’s decision problem. If the production
function is differentiable and strictly concave then a solution of the producer’s
problem is characterized as follows.

Proposition 6.3: Optimal input for profit-maximizing producer

If the production function f is differentiable and strictly concave then the
amount of input chosen by a profit-maximizing producer with production
function f facing the price w of input and the price p of output is

(
0 if p f (a )−w a < 0 for all a > 0

a ∗ otherwise

where a ∗ is the unique positive number for which p f ′(a ∗)−w = 0.
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Proof

The producer’s profit when she chooses the amount a of input is p f (a )−
w a . Given that f is strictly concave, this function is strictly concave in
a . The result follows from the standard conditions for a maximizer of a
differentiable function.

A change in the price of input or the price of output changes the amount of
input chosen by a profit-maximizing producer in the same direction as it does
for an output-maximizing producer.

Proposition 6.4: Comparative statics for profit-maximizing producer

An increase in the price of input or a decrease in the price of output causes
the amount of input chosen by a profit-maximizing producer to decrease
or remain the same.

Proof

Denote by α(w ) the amount of input chosen by the producer when the
input price is w . By definition,

p f (α(w ))−wα(w )≥ p f (a )−w a for all a ,

or
p [ f (α(w ))− f (a )]≥w [α(w )−a ] for all a .

In particular, for the prices w 1 and w 2 of the input,

p [ f (α(w 1))− f (α(w 2))]≥w 1[α(w 1)−α(w 2)]

and
p [ f (α(w 2))− f (α(w 1))]≥w 2[α(w 2)−α(w 1)].

Adding these inequalities yields

0≥ (w 1−w 2)(α(w 1)−α(w 2)).

Thus if w 1 < w 2 then α(w 1) ≥ α(w 2). A similar argument applies to
changes in the price p of output.

Note that this proof does not use any property of the production function, so
that the result in particular does not depend on the concavity of this function.
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If the production function is differentiable, we can alternatively prove the re-
sult as follows, given Proposition 6.3. If p f ′(0) < w then increasing w preserves
the inequality and the optimal production remains 0. If p f ′(0)≥w then increas-
ing w does not increase the solution of the equation p f ′(a ) = w , given that f is
concave.

Unlike an output-maximizer, a profit-maximizer may decrease output when
the technology improves; Figure 6.2b gives an example. However, as you can ver-
ify, if the production function is differentiable and the technological improve-
ment from f to g is such that g ′(a ) ≥ f ′(a ) for all a , then a profit-maximizing
producer does increase the amounts of input and output.

6.4 Cost function

Given a production function, we can find the cost of producing any amount of
output. Specifically, for the production function f , the cost of producing y units
of output is w f −1(y ). Sometimes it is convenient to take the cost function as
the primitive of the model, rather than deriving it from the production function.
That is, we start with a function C that specifies the cost C (y ) of producing any
amount y of output. This approach is appropriate if we are interested only in the
market for output.

A natural assumption is C (0) = 0. We assume also that the average cost
C (y )/y of producing y units eventually exceeds any given bound. Some cost
functions C have the form C (y ) = k + c (y ) for y > 0, where k > 0 and c is an
increasing function with c (0) = 0. In such cases, we refer to k as the fixed cost of
production and to c (y ) as the variable cost.

Definition 6.4: Cost function

A cost function is an increasing function C : R+ → R+ with C (0) = 0 such
that for all L > 0 there exists (a large) number y such that C (y )/y > L. If
this function takes the form

C (y ) =

(
0 if y = 0

k + c (y ) if y > 0

for some increasing function c : R+ → R+ with c (0) = 0 and some k >
0, then C is called a cost function with a fixed cost k and variable cost
function c .

The function AC(y ) =C (y )/y for y > 0 is the average cost function for C ,
and if C is differentiable at y then MC(y ) =C ′(y ) is the marginal cost for C
at y.
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C (y )

0 y →

↑
$

(a) A cost function with no fixed cost.

C (y )

k

0 y →

↑
$

(b) A cost function with a fixed cost k .

Figure 6.3

Cost functions with and without a fixed cost are shown in Figures 6.3a and
6.3b. Average and marginal cost functions are shown in Figures 6.4a and 6.4b.

Note that if output is produced by a single input, as we assumed before, and
the production function is f , then C (y ) =w f −1(y ), a cost function with no fixed
cost (C is increasing since f is increasing). Given that f is concave, C is convex
in this case.

The following properties of the average and marginal cost functions are
sometimes useful.

Proposition 6.5: Properties of the average and marginal cost functions

Let C be a cost function (without any fixed cost).

a. If C is convex then AC is nondecreasing.

b. If C is differentiable then limy→0 AC(y ) =MC(0).

c. If C is differentiable then AC is increasing at y if AC(y ) < MC(y ) and
decreasing at y if MC(y )< AC(y ).

Proof

a. Let a >b and λ=b/a . Then λa +(1−λ)0=b , so that by the convexity
of C we have C (b ) ≤ λC (a ) + (1− λ)C (0) = λC (a ) and thus AC(b ) =
C (b )/b ≤C (a )/a = AC(a ).

b. We have

lim
y→0

AC(y ) = lim
y→0

C (y )

y
= lim

y→0

C (y )−C (0)

y −0
=C ′(0).
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AC(y )

MC(y )

0 y →

↑
$

(a) A case with no fixed cost.

AC(y )

MC(y )

0 y →

↑
$

(b) A case with a fixed cost.

Figure 6.4 Average and marginal cost functions.

c. Differentiating AC we get

AC′(y ) =C ′(y )/y −C (y )/y 2 = (MC(y )−AC(y ))/y ,

from which the result follows.

An intuition for part c of the result is that C (y ) is the sum of the marginal
costs up to y , so that AC(y ) is the average of MC(z ) for 0≤ z ≤ y . Thus if MC(y )>
AC(y ) and y increases then we add a cost greater than AC(y ), so that the average
increases.

The profit of a producer with cost function C who faces the price p for output
and produces y units of output is

py −C (y ).

The following result, for an output-maximizing producer, is immediate. An
example in which the producer’s optimal output is positive is given in Figure 6.5a.

Proposition 6.6: Output chosen by output-maximizing producer

An output-maximizing producer with cost function C who faces the price
p for output chooses the largest positive output y ∗ for which C (y ∗)/y ∗ =
AC(y ∗) = p if such an output exists, and otherwise chooses output 0.

The output chosen by a profit-maximizing producer with a convex differ-
entiable cost function is also easy to characterize. An example in which the
producer’s optimal output is positive is shown in Figure 6.5b.
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AC(y )

MC(y )

p

y ∗0 y →

↑
$

(a) Output-maximizing producer.

AC(y )

MC(y )

p

y ∗0 y →

↑
$

(b) Profit-maximizing producer.

Figure 6.5 The output chosen by a producer facing the price p .

Proposition 6.7: Output chosen by profit-maximizing producer

A profit-maximizing producer with a convex differentiable cost function
C who faces the output price p chooses an output y ∗ for which C ′(y ∗) =
MC(y ∗) = p if p ≥ AC(y ∗) and otherwise chooses output 0.

Proof

Given the convexity of C , the function py −C (y ) is concave in y , so that
the result follows from the standard conditions for a maximizer of a differ-
entiable function.

6.5 Producers’ preferences

We have discussed two possible preferences for producers, output maximization
and profit maximization. Many other textbooks restrict attention to profit max-
imization. By contrast, the preferences of individuals in consumer theory are
usually taken to be subject only to mild assumptions (discussed in Chapter 4).

Why is profit maximization usually assumed? Some people think of it as a
normative assumption: producers should maximize profit. Others consider it
descriptive: the main goal of producers is to maximize profit. Some researchers
think that the assumption of profit-maximization is made only because it al-
lows economists to draw analytically interesting and nontrivial results. Yet others
think that the assumption is so that students believe that profit-maximization is
the only legitimate goal of producers.
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We refrain from expressing our opinion on the issue. We suggest only that you
consider it taking into account how students of economics and other disciplines
have responded to the question at the beginning of the chapter.

Did you decide to maximize profit and lay off 96 workers? Or did you decide
to give up all profit and not lay off any worker? Or did you compromise and
choose to lay off only 26 or 52 workers? Surely you did not lay off more than 96
workers, since doing so is worse than laying off 96 in terms of both the number
of layoffs and profit.

When the question is posed to students in various disciplines, students of
economics tend to lay off more workers than students in philosophy, law, math-
ematics, and business. It is not clear whether this effect is due to selection bias
(students who choose to study economics are different from students in the other
disciplines) or to indoctrination (studying material in which profit-maximization
is assumed has an effect). In any case, even among students of economics, only
about half choose the profit-maximizing option. So maybe profit-maximization
is not the only goal of producers that we should investigate?

Problems

1. Comparative statics. Propositions 6.2 and 6.4 give comparative static results
for a producer with a concave production function. Consider analogous re-
sults for a producer with a convex cost function.

For an output maximizer and a profit maximizer, analyze diagrammatically
the effect of (a) an increase in the price of output and (b) a technological
change such that all marginal costs decrease.

2. Two factories. A producer can use two factories to produce output. The pro-
duction functions for the factories are f (a 1) =

p
a 1 and g (a 2) =

p
a 2, where

a i is the amount of input used in factory i . The cost of a unit of input is 1
and the cost of activating a factory is k > 0. Calculate the producer’s cost
function.

3. A producer with a cost of firing workers. A producer uses one input, workers,
to produce output according to a production function f . She has already
hired a 0 workers. She can fire some or all of them, or hire more workers. The
wage of a worker is w and the price of output is p . Compare the producer’s
behavior if she maximizes profit to her behavior if she also takes into account
that firing workers causes her to feel as if she bears the cost l > 0 per fired
worker.
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4. Robinson Crusoe. Robinson Crusoe is both a producer and a consumer. She
has one unit of time, which she can divide between leisure and work. If she
devotes the amount of time x to work then her output is f (x ), where f is
increasing and strictly concave. She has a monotone convex preference rela-
tion over the set of leisure–consumption pairs (l , c ) that is represented by a
differentiable utility function u .

a. Formally state the problem that Crusoe’s optimal choice of (l , c ) solves.

b. Calculate the solution of Crusoe’s problem for f (x ) =
p

x and u (l , c ) = l c .

c. Explain why the marginal rate of substitution between leisure and con-
sumption at the pair (l ∗, c ∗) chosen by Crusoe is equal to f ′(1− l ∗) (the
marginal product at 1− l ∗).

(More difficult) Now assume that Crusoe has two independent decision-
making units. One unit decides the amount to produce and the other decides
how much to consume. The units make their decisions simultaneously. Each
unit takes the value of a unit of time devoted to work to be some number w .
The consumption unit chooses a leisure-consumption pair (l , c ) that max-
imizes u (l , c ) given the budget constraint c = w (1− l ) + π, where π is the
profit of the production unit. The production unit maximizes its profit given
that it has to pay w for a unit of time devoted to work.

The units are in harmony in the sense that given the price w , the decision
of how much to consume is consistent with the decision of how much to
produce.

d. Give the formal conditions required for harmony between the consump-
tion and production units to prevail.

e. Find the value of w ∗, and the associated pair (l ∗, c ∗), that satisfies the
conditions in the previous part when f (x ) =

p
x and u (l , c ) = l c .

f. Demonstrate graphically why Crusoe behaves in the same way if she
makes her decision as in the first part of the problem as she does if she
makes her decision using two separate units, as in the second part of the
problem.

g. Suppose that Crusoe’s production unit acts as an output maximizer
rather than a profit maximizer. Show diagrammatically that the pair
(l ∗, c ∗) that is in harmony differs from the pair that maximizes u (l , c )
subject to c = f (1− l ).
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Notes

See Rubinstein (2006b) for the issue discussed in Section 6.5. The exposition of
the chapter draws upon Rubinstein (2006a, Lecture 6b).





7 Monopoly

7.1 Basic model

In the previous chapter we consider a producer who acts as if her behavior has
no effect on the prices of the input or output. We argue that this assumption may
be appropriate if the producer’s quantities of inputs and output are small relative
to the total volume of trade in the markets.

In this chapter we study several variants of a model that fits a very different
situation, in which the producer of a single good is the only one serving a market.
The variants differ in the type of options the producer can offer potential buyers.
In the basic case, the producer can post a price per unit, and each buyer can
purchase any amount of the good at that price. In other cases, the producer
has other instruments like offering all consumers a set of price-quantity pairs.
In each case, every potential buyer chooses the option she most prefers. The
producer predicts correctly the buyers’ responses and acts to advance her target
(like maximizing profit or increasing production).

We allow for the possibility that the market has a number of segments, with
distinct demand functions. Thus a specification of the market consists of two
elements, (i) a demand function for each segment and (ii) a description of a
producer, which includes her cost function and preferences.

Definition 7.1: Monopolistic market

A monopolistic market 〈(qi )ki=1,C ,¼〉 for a single good has the following
components.

Demand
A collection (qi )ki=1 of decreasing functions, where qi : R+ → R+. The
function qi , the demand function in segment i , associates with every
price pi for segment i the total amount qi (pi ) of the good demanded in
that segment.

Producer
A single producer, called a monopolist, characterized by a cost function
C that is continuous and convex and satisfies C (0) = 0, and a preference
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relation ¼ over pairs ((y1, . . . , yk ),π), where yi is the quantity sold in
segment i for i = 1, . . . , k and π is the producer’s profit.

7.2 Uniform-price monopolistic market

We first consider a monopolist who sets a single price, the same for all segments
of the market. The monopolist might act in this way because she is prohibited
by law from setting different prices for different segments of the market. (For
example, charging men and women different prices may be outlawed.) Also, a
producer’s ability to enforce different prices in different segments of the market
is limited if individuals can buy the good in one segment at a low price and sell it
in another segment at a high price. (Such arbitrage is easier for some goods, like
books, than it is for others, like haircuts.)

Definition 7.2: Uniform-price monopolistic market

A uniform-price monopolistic market is a monopolistic market in which
the producer chooses a single price, the same in all segments.

7.2.1 Profit-maximizing monopolist

Let 〈(qi )ki=1,C ,¼〉 be a uniform-price monopolistic market. Define the total de-

mand function Q by Q(p ) =
∑k

i=1 qi (p ) for all p . The profit of a producer who sets
the price p in a uniform-price monopolistic market is π(p ) = pQ(p )−C (Q(p )).
Given that each function qi is decreasing, the function Q is decreasing, and hence
has an inverse, say P . Thus the producer’s setting a price p and obtaining the
profit π(p ) is equivalent to her choosing the output y =Q(p ) and obtaining the
profit Π(y ) = P(y )y −C (y ).

A useful concept in the analysis of a uniform-price monopolistic market is
marginal revenue.

Definition 7.3: Marginal revenue

The marginal revenue at the output y for the differentiable (demand) func-
tion Q is

MR(y ) = [P(y )y ]′ = P(y )+P ′(y )y ,

where P is the inverse of Q .

The number MR(y ) is the rate of change in revenue as output increases. If the
function P is decreasing, we have MR(y )≤ P(y ) for all y . The intuitive reason for
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this inequality is that selling an additional unit of the good increases revenue by
approximately P(y ) but also causes a reduction in the price of all y units sold.

Usually the function MR is assumed to be decreasing, but this property does
not follow from the assumptions we have made. The derivative of MR at y is
2P ′(y ) + P ′′(y )y , so that if P ′′(y ) is positive and large enough, the derivative is
positive even if P is decreasing. The following example illustrates this point in an
environment in which the good is indivisible.

Example 7.1: Monopoly with marginal revenue that is not decreasing

Consider a market for an indivisible good and three consumers, each of
whom buys either one unit of the good or no units. One consumer buys
one unit of the good if and only if the price is at most 10; the cutoff
prices for the two other consumers to buy a unit are 6 and 5. In this
context, P(y ) is the highest price at which the producer can sell y units
of the good. Thus P(1) = 10, P(2) = 6, and P(3) = 5. Given the indi-
visibility of the good, we define the marginal revenue at the output y as
MR(y ) = P(y )y − P(y −1)(y −1), yielding the following numbers, where
MR(3)>MR(2).

y Revenue(y ) MR(y )

1 10 10
2 12 2
3 15 3

The next result gives a necessary condition for an output to maximize the
profit of a producer in a uniform-price monopolistic market.

Proposition 7.1: Uniform-price profit-maximizing monopolist

Consider a uniform-price monopolistic market 〈(qi )ki=1,C ,¼〉 in which
C and each function qi is differentiable. For any price p , let Q(p ) =∑k

i=1 qi (p ), let MR be the marginal revenue function for Q , and let MC be
the marginal cost function for C . If the monopolist’s preferences ¼ are
profit-maximizing and her optimal output y ∗ is positive, then MR(y ∗) =
MC(y ∗).

Proof

The monopolist chooses p to maximize pQ(p )−C (Q(p )), or equivalently
y to maximize P(y )y −C (y ), where P is the inverse of Q . The result fol-
lows from the standard necessary condition for an interior maximizer of a
differentiable function.
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MC(y )

MR(y )

P(y ∗)

y ∗0

P(y )

y →

↑
$

(a) A case in which MR(y ) =MC(y ) for only
one value of y .

y1 y2

↑
$

0

P(y )
MR(y )

MC(y )
P(y ∗)

y → y ∗

(b) A case in which MR(y ) = MC(y ) for
multiple values of y .

Figure 7.1 The output y ∗ chosen by a profit-maximizing producer in a uniform-price
monopolistic market, and the resulting price P(y ∗).

Note that the condition in the result is only necessary, not sufficient. In the
left panel of Figure 7.1, a single output satisfies the condition, and this output
maximizes profit. In the right panel, three outputs satisfy the condition. The
output labeled y ∗ is the profit-maximizer, because the difference between the
area under the MR curve (the total revenue) and the area under the MC curve
(the total cost) up to y ∗ is larger than the difference between these areas for y1

and y2.

Inefficiency Since MR(y ) < P(y ) for all y , an implication of Proposition 7.1 is
that the price charged by a profit-maximizing producer in a uniform-price mo-
nopolistic market is greater than the marginal cost at this output. As a conse-
quence, an inefficiency of sorts exists in such a market: the cost of production of
another unit of the good is less than the price that some buyers are willing to pay
for the good. The monopolist does not produce the extra unit because she takes
into account that the price reduction necessary to sell the extra unit will affect all
the other units, too, causing her profit to fall.

Sometimes the area under the inverse demand function,

W (y ) =

∫ y

0

P(x )d x , (7.1)

is used as a measure of the consumers’ welfare when y units of the good are
sold. The logic behind this definition is clear when the good is indivisible, each
consumer either buying one unit or none. The number P(1) is then the highest
price that any consumer in the market is willing to pay for the good, P(2) is the
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MC(y )

MR(y )

P(y ∗)

P(yc )

ycy ∗0

P(y )

y →

↑
$

Figure 7.2 The reduction in W (y ) caused by the reduction in output from yc to y ∗.

highest price any remaining consumer is willing to pay, and so forth. The integral
is analogous to the sum P(1)+P(2)+ · · ·+P(y ), the maximum amount of money
for which y units can be sold.

The area under the marginal cost function between 0 and y is the total cost
of producing y . Thus it is common to interpret the integral between 0 and y
of the difference between the demand function and the marginal cost function
as a measure of the welfare added to the world by the production of y units of
the good. This measure of welfare is maximized at the quantity yc for which
P(yc ) = MC(yc ). Thus the loss of welfare due to the operation of the producer
as a monopolist is the yellow triangle in Figure 7.2. This triangle is called the
deadweight loss due to the monopoly.

Two policies to control a monopolist’s behavior involve setting a maximum
price and providing the monopolist with a subsidy.

Maximum price If the maximum price the monopolist is allowed to charge is
pmax, then for outputs y with P(y ) < pmax the value of MR remains the same as
before, while for outputs such that p (y )> pmax we have MR(y ) = pmax. That is, the
function MR is not continuous and has two segments, as shown in Figure 7.3a.

If pmax is set equal to the price P(yc ), where yc is the output for which P(yc ) =
MC(yc ), then the producer chooses yc , reducing her profit and eliminating the
deadweight loss.

Subsidy Suppose that the producer gets a subsidy of t units of money for each
unit she sells, in addition to the amount the consumers pay. Such a subsidy
raises the MR curve by t , so that the intersection of the new MR and MC is at
a higher quantity. For an appropriate value of the subsidy the monopolist opti-
mally produces the quantity yc (see Figure 7.3b). However, if the consumers pay
the subsidy then this policy may not improve their welfare.
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MC(y )

MR(y )

pmax

P(yc )

ycy ∗0

P(y )

y →

↑
$

(a) The output chosen by a monopolist
who can set a price of at most pmax.

MC(y )

MR(y )

t

P(y ∗)

P(yc )

ycy ∗0

P(y )

y →

↑
$

(b) The output chosen by a monopolist
who receives a subsidy of t per unit sold.

Figure 7.3 The effect of policies to change the output of a producer in a uniform-price
monopolistic market.

7.2.2 Output-maximizing monopolist

As we discussed in the previous chapter, profit maximization is not the only pos-
sible target for a producer. Consider a monopolist who maximizes output subject
to obtaining nonnegative profit. Such a monopolist produces the quantity y ∗ for
which AC(y ∗) = P(y ∗) (see Figure 7.4). This output is larger than the output yc

that maximizes the consumers’ welfare W (y ).

7.3 Discriminatory monopoly

We now consider a monopolistic market in which the producer can set different
prices in different segments.

Definition 7.4: Discriminatory monopolistic market

A discriminatory monopolistic market is a monopolistic market in which
the producer chooses a collection of prices, one for each segment of the
market.

Note that the model assumes that the demand in each segment depends only
on the price in that segment. In particular, this demand does not depend on
the prices in other segments, so that we are assuming implicitly that consumers’
demands are not affected by any feeling they may have that charging different
prices to different groups is unfair.
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MC(y )

AC(y )

MR(y )

P(yc )

P(y ∗)

y ∗yc 10

P(y )

y →

↑
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Figure 7.4 The output y ∗ chosen by an output-maximizing producer in a uniform-price
monopolistic market, and the resulting price P(y ∗).

Let 〈(qi )ki=1,C ,¼〉 be a discriminatory monopolistic market in which the pro-
ducer’s preferences are profit-maximizing, so that her problem is

max
y1,...,yk

� k∑

i=1

Pi (yi )yi −C

� k∑

i=1

yi

��

, (7.2)

where Pi is the inverse of qi . Note that this problem cannot be decomposed into
k independent problems because the cost is a function of the total output.

The next result generalizes the necessary condition for an output to maximize
the producer’s profit in a uniform-price monopolistic market (Proposition 7.1).

Proposition 7.2: Discriminatory profit-maximizing monopolist

Consider a discriminatory monopolistic market 〈(qi )ki=1,C ,¼〉 in which C
and each function qi is differentiable. For each segment i , let MRi be the
marginal revenue function for qi , and let MC be the marginal cost func-
tion for C . If the monopolist’s preferences are profit-maximizing and her
optimal output y ∗i in segment i is positive, then

MRi (y
∗

i ) =MC

� k∑

j=1

y ∗j

�

.

Proof

The result follows from the standard necessary condition for a maximizer
of a differentiable function, applied to (7.2).
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MR1(y1)
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P1(y1)
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Figure 7.5 The outputs chosen by a profit-maximizing producer in each segment of a
discriminatory monopolistic market. In segment i the output is y ∗i and the price is Pi (y ∗i ).

Two intuitions lie behind this result. First, the marginal revenues for all seg-
ments in which output is positive must be the same since otherwise the pro-
ducer could increase her profit by moving some production from a segment with
a low marginal revenue to one with a high marginal revenue. Second, if the
marginal cost is higher than the common marginal revenue then the producer
can increase her profit by reducing production, and if the marginal cost is smaller
than the common marginal revenue she can increase her profit by increasing
production.

The result is illustrated in Figure 7.5. The curve MR(y ) is the horizontal sum
of the MRi curves. For any output y , MR(y ) is the marginal revenue of the mo-
nopolist given that she allocates the output y optimally between the segments.

7.4 Implicit discrimination

In this section we assume that the monopolist is aware that the consumers have
different demand functions, but cannot discriminate between them explicitly,
either because she is prohibited from doing so or because she does not know
who is who. We consider the possibility that she can offer an arbitrary set of pairs
(q , m ), where q is an amount of the good and m is the (total) price of purchasing
q . She offers the same set to all consumers, each of whom is limited to choosing
one member of the set or not buying the good at all.

Specifically, we consider a market for a good that can be consumed in any
quantity between 0 and 1. Each consumer i is willing to pay up to V i (q ) for the
quantity q , where the function V i is increasing and continuous, and V i (0) = 0. A
single producer (a monopolist) produces the good at no cost.

The monopolist offers a finite set of pairs (q , m ), referred to as a menu. If
consumer i chooses (q , m ), then her utility is V i (q )−m . Each consumer chooses
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V 1(1)

V 2(q ∗)

1

V 2(q )

2V 2(q )−V 1(q )

m ∗
1

q ∗ q →0

V 1(q ∗)−V 2(q ∗)

V 1(q )

Figure 7.6 An example of a monopolistic market with a menu in which the profit-max-
imizing menu for the monopolist contains two options, (q ∗, V 2(q ∗)) and (1, m ∗

1), where
m ∗

1 = V 1(1)− (V 1(q ∗)−V 2(q ∗)).

an option in the menu for which her utility is highest, if this maximal utility is
nonnegative; otherwise, she buys nothing. The monopolist assumes that the
consumers behave optimally and chooses a menu for which her profit, the total
amount paid by the consumers, is maximal.

Definition 7.5: Monopolistic market with a menu

A monopolistic market with a menu has the following components.

Demand
A collection (V i )ni=1 of increasing continuous functions, where V i :
[0,1] → R+ and V i (0) = 0. The function V i is the value function for
consumer i , giving the maximum amount V i (q ) consumer i is willing
to pay for q units of the good.

Producer
A single producer, called a monopolist, with no costs, who chooses a set
M of pairs, called a menu, where a pair (q , m ) represents the option to
buy q units of the good at the (total) price m .

If V i (q ) −m ≥ 0 for some (q , m ) ∈ M , consumer i chooses an option
(q , m ) ∈ M for which V i (q ) −m is maximal; otherwise she buys noth-
ing. The producer chooses M so that the consumers’ choices maximize
her profit.

We now analyze a monopolistic market with a menu in which there are two
consumers, one of whom values each additional unit of the good more than the
other. One implication of the following result is that for some such markets, of-
fering a menu that consists of more than one pair is optimal for the monopolist.
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Proposition 7.3: Monopolistic market with a menu

Consider a two-consumer monopolistic market with a menu (V 1, V 2) in
which V 1(q 1)−V 1(q 2)> V 2(q 1)−V 2(q 2) whenever q 1 > q 2 ≥ 0. Let q ∗ be a
maximizer of 2V 2(q )−V 1(q ). The monopolist’s maximal profit is

max{V 1(1),2V 2(1), V 1(1)+2V 2(q ∗)−V 1(q ∗)}.

• If V 1(1) is the largest term, then {(1, V 1(1))} is an optimal menu and
consumer 1 alone purchases the single option.

• If 2V 2(1) is the largest term, then {(1, V 2(1))} is an optimal menu and
both consumers purchase the single option.

• If V 1(1) + 2V 2(q ∗)−V 1(q ∗) is the largest term, then M ∗ = {(q ∗, V 2(q ∗)),
(1, V 1(1) − (V 1(q ∗) − V 2(q ∗)))} is an optimal menu; consumer 2 pur-
chases the first option and consumer 1 purchases the second option.

Proof

First note that the monopolist cannot gain by offering options not chosen
by any consumer. Thus an optimal menu consisting of one or two options
exists.

Consider menus that consist of a single option, (q , m ). (i) If V 1(q )<m ,
then neither consumer chooses the option and the monopolist’s profit is
0. (ii) If V 2(q ) < m ≤ V 1(q ), then consumer 1 alone chooses the option.
Out of these menus, the best one for the monopolist is {(1, V 1(1)}, which
yields the profit V 1(1). (iii) If m ≤ V 2(q ), then both consumers choose the
option. Out of these menus, the best one for the monopolist is {(1, V 2(1))},
which yields the profit 2V 2(1).

Now consider the setM 2 of menus that consist of two options, one cho-
sen by each consumer. The menu M ∗ specified in the proposition belongs
toM2. (Consumer 1 is indifferent between the two options. Consumer 2
is indifferent between (q ∗, V 2(q ∗)) and not buying anything, and her utility
from (1, V 1(1)− (V 1(q ∗)−V 2(q ∗))) is nonpositive by the assumption about
the relation between the two value functions.)

We argue that if the menu {(q 1, m 1), (q 2, m 2)} is optimal inM2 and con-
sumer i chooses (q i , m i ), then the menu is M ∗.

Step 1 V 2(q 2) =m 2.

Proof. Given that both consumers purchase an option, we have V i (q i ) ≥
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m i for i = 1, 2. We now argue that V i (q i ) =m i for some i . If V i (q i )>m i for
both consumers, then there exists ε > 0 (small enough) such that increas-
ing m i by ε increases the monopolist’s profit by 2ε. We need V 2(q 2) =m 2

since if V 1(q 1) = m 1 then, given that V 1(q ) > V 2(q ) for all q , we have
0= V 1(q 1)−m 1 ≥ V 1(q 2)−m 2 > V 2(q 2)−m 2, contradicting V 2(q 2)≥m 2.Ã

Step 2 (q 1, m 1) = (1, V 1(1)− (V 1(q 2)−V 2(q 2))).

Proof. For consumer 1 to choose (q 1, m 1) we need V 1(q 1)−m 1 ≥ V 1(q 2)−
m 2 = V 1(q 2)− V 2(q 2) (using Step 1), or m 1 ≤ V 1(q 1)− (V 1(q 2)− V 2(q 2)).
Given (q 2, m 2), the best (q 1, m 1) satisfying this condition is (1, V 1(1) −
(V 1(q 2)−V 2(q 2)). Ã

By Steps 1 and 2, the optimal menu in M2 has the form {(q 2, V 2(q 2)),
(1, V 1(1)− (V 1(q 2)−V 2(q 2)))}. This menu yields the profit V 2(q 2)+V 1(1)−
(V 1(q 2)−V 2(q 2)) = 2V 2(q 2)+V 1(1)−V 1(q 2), which is maximized by q 2 =q ∗.
Thus M ∗ is optimal inM2.

Figure 7.6 shows an example of a monopolistic market with a menu in which
a menu with two options is optimal.

Problems

1. Double margins. A profit-maximizing producer in a uniform-price monopo-
listic market has no production cost.

a. Suppose that the good in the market is indivisible. There are two con-
sumers, each of whom wants to purchase either one or zero units of the
good. One consumer is willing to pay $10 for the good and the other is
willing to pay $8. What price does the monopolist set?

Assume now that the monopolist does not sell the good directly to the con-
sumers, but sells it to an intermediary, who sells it to the consumers at a
uniform price.

b. Under the assumptions of the previous part, find the demand function of
the intermediary and analyze the behavior of the producer.

c. Repeat the previous parts when the good is divisible, the monopolist’s
cost function is c (y ) = y 2, and the consumer’s inverse demand function
is P(y ) = 1− y .
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d. Prove that if the monopolist’s cost function is convex and the consumers’
inverse demand function is P(y ) = A − By then in the presence of an
intermediary the output of the monopolist is at most her output when
she sells directly to consumers.

2. Imposing a tax.

a. Imposing a sales tax can cause a profit-maximizing monopolist in a
uniform-price monopolistic market to increase the price she charges by
more than the tax. To verify this claim, consider a monopolist selling a
single good who has no costs and faces two consumers, 1 and 2. Con-
sumer i purchases one unit if the price she pays does not exceed v i . As-
sume v 1 = 1 > v 2 = v > 0. Show that for some values of v and t , the
imposition of a tax of t causes the price charged by the monopolist to
rise by more than t .

b. Show that if the monopolist faces a linear inverse demand function
P(q ) = A − Bq and constant marginal cost of c , then the price increase
due to a tax of t is less than t .

3. Monopolist interested in fairness. Consider a monopolist who faces a market
with two segments, with demand functions q1 and q2, and has no production
cost. Suppose that she maximizes profit subject to the constraint that the
outcome is fair in the sense that W1(q1(p1))−p1q1(p1) =W2(q2(p2))−p2q2(p2),
where pi is the price in segment i and Wi (q ) is the area under the inverse
demand function Pi between 0 and q , as in (7.1). (Recall that Wi (q ) is a rough
measure of the welfare of consumers in segment i from purchasing q units
of the good.)

Formulate the optimization problem of this monopolist and solve the prob-
lem when qi (pi ) = a i − pi for i = 1, 2, with a 1 ≥ a 2. Compare the outcome
with the one generated by a profit-maximizing monopolist.

4. Nonlinear prices. Consider a market for a single indivisible good; each indi-
vidual can consume either one or two units of the good. A monopolist has no
cost of production and faces two consumers. Consumer i (= 1, 2) is willing
to pay up to V i (q ) for q units of the good, where V i (2) > V i (1) > V i (0) = 0.
The monopolist cannot discriminate between the consumers, but can offer
nonlinear prices: the price of the first unit a consumer buys does not have to
be the same as the price of the second unit.

Give an example in which a profit-maximizing monopolist optimally chooses
a price schedule for which the price of the second unit is less than the price
of the first unit, and also an example in which the reverse is true.
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5. Bundling. A profit-maximizing monopolist produces two indivisible goods,
A and B , at zero cost. She confronts a population in which individual i is will-
ing to pay up to v i

a for good A, v i
b for good B , and v i

a +v i
b for both goods. The

monopolist can sell either each good separately or a bundle of both goods;
she is restricted to charge the same price for all individuals. Construct two
examples, one in which the monopolist’s optimal policy is to offer the two
goods in a bundle, and one in which the optimal policy is to sell the two
goods separately.

6. Two-part tariff. Assume that a profit-maximizing monopolist with a differ-
entiable cost function C confronts a single consumer, who has a continuous
decreasing inverse demand function P . Let W (q ) =

∫ q

0
P(x )d x , the maxi-

mum amount the consumer is willing to pay for q units of the good. The
monopolist makes an offer (A, p ), where A is the cost of the option to pur-
chase from the monopolist and p is a price per unit, so that a consumer who
purchases any amount x > 0 pays A +px . Formulate the monopolist’s prob-
lem and prove that an output q > 0 that maximizes the monopolist’s profit
satisfies P(q ) =MC(q ).

7. Implicit discrimination. Consider a market with two consumers and a good
that is available in discrete amounts. The maximum amount V i (q ) that each
consumer i is willing to pay for q units of the good, for q = 1 or 2, is given
in the following table, which shows also each consumer’s marginal valuation
MVi (q ) = V i (q )−V i (q − 1), the maximum amount i is willing to pay for an
additional unit when she has q −1 units.

q V 1(q ) MV1(q ) V 2(q ) MV2(q )

0 0 0
1 12 12 10 10
2 19 7 13 3

Consider a profit-maximizing monopolist whose cost of production is zero.

a. Find the price charged by the monopolist if she can offer only a uniform
price to all consumers.

b. Suppose the monopolist can offer only a single option (q , m ), where q is
an amount of the good and m is an amount of money. Each consumer
can either pay m and get q units of the good, or buy nothing. Find the
option chosen by the monopolist.

c. Now suppose that the monopolist can offer the consumers a menu con-
sisting of two such options (q , m ). Each consumer either chooses one
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of the options or buys nothing. Show that the menu {(1,10), (2,17)} is
profit-maximizing and yields the profit 27 (consumer 1 chooses (2,17)
and consumer 2 chooses (1,10)).

8. Coupons. Some stores issue coupons, giving a discount to a customer who
has one. To understand the logic of this phenomenon, consider a profit-
maximizing monopolist with no production cost who faces two equal-sized
groups of consumers. Each member of group 1 is willing to pay 7 for the
monopolist’s good and incurs a cost of 4 to search for a coupon, and each
member of group 2 is willing to pay up to 5 for the good and incurs a cost of 1
to search for a coupon. What price and discount does the monopolist offer?

9. Two workers and one employer. An employer has two workers, a and b . Each
worker can produce any quantity in [0, 1]. The payoff of worker i (= a , b ) if
she produces yi and is paid mi is mi − ei (yi ), where the (effort cost) function
ei is increasing, differentiable, and convex, and satisfies ei (0) = 0, e ′i (0) < 1,
and e ′i (1)> 1. Assume that e ′a (y )< e ′b (y ) for all y > 0. The employer’s profit is
ya + yb −ma −mb .

The employer offers a menu of contracts, each of which is a pair (y , m ) with
the interpretation that the employer will pay m to a worker who produces y .
Each worker chooses the contract she prefers or rejects all contracts.

Show that if it is optimal for a profit-maximizing employer to offer a menu
consisting of two distinct contracts, (ya , ma ), chosen by a , and (yb , mb ), cho-
sen by b , then e ′b (yb ) = 1, 1 − e ′a (ya ) = e ′a (ya ) − e ′b (ya ), ma = ea (ya ), and
mb = eb (yb )+ma − eb (ya ).

Notes

The material in this chapter is standard. Problem 1 is based on Tirole (1988, 174).
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8 A jungle

In this chapter and the next we study a society consisting of a set of individuals
and a set of houses. Each house can accommodate only one person and each
person can occupy only one house. Different people may have different pref-
erences over the houses, but everyone prefers to occupy any house than to be
homeless.

In this chapter we analyze a model in which the assignment of houses is de-
termined by the individuals’ strengths; the concepts of property and ownership
do not exist. A person who wants to occupy a house currently occupied by a
weaker person can do so simply by presenting herself to the current occupant.
The process is orderly: everyone knows everyone else’s strength, and on seeing
that a stronger person wants to occupy her house, a person vacates it without a
fight, which she knows she would lose.

We study the existence and character of a stable assignment of houses to indi-
viduals. Will the people forever be evicting each other, or does an assignment of
people to houses exist in which no one wants the house of anyone who is weaker
than her? What are the properties of such an assignment?

8.1 Model

Society

A society is defined by a set of individuals, a set of houses, and the individu-
als’ preferences over the houses. To simplify the analysis, we assume that the
number of houses is equal to the number of individuals and that no individual is
indifferent between any two houses.

Definition 8.1: Society

A society 〈N , H , (¼i )i∈N 〉 consists of

individuals
a finite set N
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houses
a finite set H with the same number of members as N

preferences
for each individual i ∈N , a strict preference relation ¼i over H .

We interpret h �i h ′ to mean that individual i prefers to occupy house h
than house h ′. Notice that we assume that each individual cares only about the
house she occupies, not about the house anyone else occupies. We discuss this
assumption in Section 8.6.

An outcome of the model is an assignment of houses to individuals. Formally,
an assignment is a function from the set N of individuals to the set H of houses.
We typically denote an assignment by a , with a (i ) being the house assigned to
individual i . Since we assume that a house can be occupied by at most one indi-
vidual, an assignment is feasible only if it assigns different individuals to different
houses (that is, only if it is a one-to-one function). We call such an assignment
an allocation.

Definition 8.2: Assignment and allocation

An assignment for a society 〈N , H , (¼i )i∈N 〉 is a function from the set N of
individuals to the set H of houses, associating a house with every individ-
ual. An allocation is an assignment in which each house is assigned to
exactly one individual.

Example 8.1

The following table gives an example of a society with four individuals, 1,
2, 3, and 4, and four houses, A, B , C , and D . Each column indicates the
preference ordering of an individual, with the individual’s favorite house
at the top. For example, individual 1’s preference ordering is B �1 C �1

D �1 A.
Individuals

1 2 3 4

B B A B
C D B C
D A C A
A C D D

One allocation, in which individuals 1, 2, 3, and 4 occupy houses D , A,
C , and B respectively, is highlighted.
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Power

What determines the allocation of houses? Presumably the individuals’ prefer-
ences play a role. In this chapter, we focus on an additional factor: the individu-
als’ relative power. We assume that between any two individuals there is a stable
power relation: either i is stronger than j , or j is stronger than i . No two indi-
viduals are equally powerful. Precisely, we take as given a binary relation Â on
the set of individuals, where i Â j means that i is more powerful than j , in which
case i can take over the house occupied by j .

Definition 8.3: Jungle

A jungle 〈N , H , (¼i )i∈N ,Â〉 consists of a society 〈N , H , (¼i )i∈N 〉 and a power
relationÂ , a complete, transitive, antisymmetric binary relation on the set
N of individuals.

Comments

1. Power is not only physical. One individual may be more powerful than an-
other because she is physically stronger. But alternatively, her social sta-
tus, ability to persuade, or seniority may be sufficient to allow her to force
another individual to relinquish the house that individual occupies.

2. No property rights. The model makes no reference to property rights. An
individual can occupy a house, but does not own it. No legal system by which
an individual can defend her occupation of a house exists. In many societies,
property rights interfere, to some extent, with the exercise of power. Many
models in economics consider the extreme case in which property rights are
perfectly enforced. In this chapter, we consider the other extreme, where
power alone determines the outcome.

3. Outcome of a struggle is deterministic. The notion of power is deterministic:
if i Â j , then in a contest between i and j , i wins for sure; there is no chance
that j wins.

4. No cost of fighting. Vacating a house involves no cost. Whenever the occu-
pant of a house is confronted by a stronger individual, the occupant recog-
nizes her inferiority and costlessly vacates her house.

5. No coalitions. The model specifies the actions possible for each individ-
ual; it does not include any separate specification of the actions possible for
groups of individuals. This formulation reflects an implicit assumption that
each individual acts on her own; no group can achieve any outcome that its
members cannot achieve by themselves.
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8.2 Equilibrium

An equilibrium in a model is generally an outcome that is stable given the forces
assumed to be active. In a jungle, a stable outcome is an allocation in which no
individual prefers any house that she can obtain to the one she occupies. Thus
an allocation is not an equilibrium if some individual prefers the house occupied
by a weaker individual to the house she currently occupies.

More precisely, an equilibrium of a jungle is an allocation a for which no in-
dividual i prefers the house a (j ) occupied by any individual j who is weaker than
i to the house a (i ) that she occupies.

Definition 8.4: Equilibrium

An equilibrium of the jungle 〈N , H , (¼i )i∈N ,Â〉 is an allocation a ∗ such that
for no individuals i , j ∈N is it the case that i Â j and a ∗(j )�i a ∗(i ).

Example 8.2

For the jungle consisting of the society in Example 8.1 together with the
power relation Â for which 1 Â 2 Â 3 Â 4, the allocation (B , D, A,C ), high-
lighted in the following table, is an equilibrium.

Individuals
1 2 3 4

B B A B
C D B C
D A C A
A C D D

Individuals 1 and 3 occupy their favorite houses. Individuals 2 and 4
do not occupy their favorite house, which is occupied by a stronger indi-
vidual. Individual 2 prefers D to the houses occupied by the individuals
weaker than her, namely 3 and 4; no individual is weaker than 4.

Every jungle has an equilibrium. That is, for every set of individuals, set
of houses, profile of preference relations, and power relation, an allocation—at
least one, possibly more than one—is stable against the exercise of power.

We prove this result by showing that an allocation generated by a procedure
called serial dictatorship is an equilibrium. This procedure is defined for an arbi-
trary ordering of the individuals. It assigns to the first individual in the ordering
her favorite house, say h1, and to the second individual in the ordering her fa-
vorite house among all those that remain after removing h1. It continues in the
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same way according to the ordering of the individuals, assigning to each indi-
vidual her favorite house among all houses that remain after removing the ones
assigned to the individuals who precede her in the ordering.

Procedure: Serial dictatorship

For the society 〈N , H , (¼i )i∈N 〉 and ordering i 1, i 2, . . . , i n of the members
of N , the serial dictatorship procedure generates the allocation defined
inductively as follows.

Initialization
The house h1 allocated to individual i 1 is the best house in H according
to i 1’s preference relation, ¼i 1 .

Inductive step
For every k ≥ 2, the house hk allocated to individual i k is the best house
in H \ {h1, . . . , hk−1} according to i k ’s preference relation, ¼i k .

If we apply this procedure to the society in Example 8.1 and the ordering 1, 2,
3, 4 then we get the allocation (B , D, A,C ), which Example 8.2 shows is an equi-
librium of the jungle with the power relation Â for which 1 Â 2 Â 3 Â 4. We now
show that this result is general.

Proposition 8.1: Every jungle has an equilibrium

For any jungle 〈N , H , (¼i )i∈N ,Â〉, the allocation generated by the serial dic-
tatorship procedure for the society 〈N , H , (¼i )i∈N 〉 and the ordering Â is an
equilibrium.

Proof

Let a be the assignment generated by the serial dictatorship procedure for
the society 〈N , H , (¼i )i∈N 〉 and the ordering Â. The number of houses is
the same as the number of individuals, so the procedure assigns to every
individual a house. Every house is assigned only once, so the assignment
a is feasible, and hence an allocation. The allocation is an equilibrium be-
cause the house assigned to each individual is the best house, according to
the individual’s preferences, among all the houses not assigned to stronger
individuals.

Note that the serial dictatorship procedure is not the equilibrium concept;
it is only a means by which to prove that an equilibrium exists. Proposition 8.1
leaves open the possibility that other equilibria, constructed differently, exist,
but we now show that in fact no other equilibria exist.
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Proposition 8.2: Every jungle has a unique equilibrium

Every jungle has a unique equilibrium.

Proof

Consider the jungle 〈N , H , (¼i )i∈N ,Â〉. Without loss of generality assume
that N = {1, . . . , n} and 1 Â 2 Â · · · Â n . Assume, contrary to the claim,
that a and b are two equilibria of the jungle. Denote by i ∗ the strongest
individual i for whom a (i ) 6= b (i ). That is, a (i ) = b (i ) for all i < i ∗ and
a (i ∗) 6=b (i ∗), as illustrated in the following diagram.

i : 1 2 . . . i ∗ −1 i ∗ . . . j . . . k . . . n
a (i ): . . . . . . . . . . . .
b (i ): . . . . . . . . . . . .

The set of houses allocated to individuals 1 through i ∗ −1 is the same in a
and b , so the set of houses allocated to i ∗ through n is also the same in the
two allocations. Thus the house a (i ∗) (orange in the diagram) is allocated
by b to some individual j less powerful than i ∗: a (i ∗) = b (j ). Also the house
b (i ∗) (blue) is allocated by a to some individual k less powerful than i ∗:
b (i ∗) = a (k ). (Individual j could be more or less powerful than k ; in the
diagram she is more powerful.) The fact that a is an equilibrium implies
that a (i ∗)�i ∗ a (k ) = b (i ∗) and the fact that b is an equilibrium implies that
b (i ∗)�i ∗ b (j ) = a (i ∗), a contradiction.

Comments

1. Equilibrium is static. The concept of equilibrium in a jungle, like the other
equilibrium concepts in this part of the book, is static. Problem 5 describes a
dynamic process that starts from an arbitrary initial allocation and asks you
to show that this process converges to an equilibrium.

2. Strict preferences. The assumption that the individuals’ preferences are strict
(that is, no individual is indifferent between any two houses), is essential
for this result. Problem 1 asks you to show that if one or more individuals
are indifferent between two houses then a jungle may have more than one
equilibrium.

8.3 Pareto stability

Now suppose that the allocation of houses to people is determined not by the
balance of power, but by mutual agreement. One allocation is replaced by
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another only if everyone agrees: no one objects and at least one person prefers
the new allocation. Thus an allocation is immune to replacement if no allocation
is better for some people and no worse for anyone.

Formally, an allocation b Pareto dominates an allocation a if for every indi-
vidual the house assigned by b is at least as good as the house assigned by a , and
at least one individual prefers the house assigned by b to the one assigned by a .
An allocation is Pareto stable if no allocation Pareto dominates it.

Definition 8.5: Pareto stability

The allocation b in the society 〈N , H , (¼i )i∈N 〉 Pareto dominates the allo-
cation a if b (i ) ¼i a (i ) for all i ∈ N and b (i ) �i a (i ) for some i ∈ N . An
allocation is Pareto stable if no allocation Pareto dominates it.

Consider the allocation in Example 8.1; denote it by a . Let b be the allocation
in which b (1) =C , b (2) =D , b (3) = A, and b (4) = B . Individuals 1, 2, and 3 prefer
the house assigned to them by b to the one assigned to them by a , and individ-
ual 4 occupies the same house in both allocations. Thus b Pareto dominates a
and hence a is not Pareto stable.

Note that under the assumption that no individual is indifferent between any
two houses, an allocation a is Pareto stable if for no allocation b does every in-
dividual who is allocated different houses by a and b prefer the house she is
allocated by b to the one she is allocated by a .

Comments

1. Terminology. You may have previously encountered the term “Pareto opti-
mal” or “Pareto efficient”. These terms are different names for “Pareto sta-
ble”. We use this terminology for two reasons. First, we want to emphasize
that Pareto stability is an equilibrium concept. The force that can upset an
allocation is an agreement between all individuals to replace the allocation
with another one. Second, we want to use a name that has no normative fla-
vor. A Pareto stable allocation might be good or bad, fair or unfair. Making
such assessments requires information not present in the model.

2. The notion of Pareto stability does not involve power. Whether an allocation
is Pareto stable depends only on the characteristics of the society, not on the
power relation.

3. Another potential source of instability. Behind the definition of Pareto stabil-
ity lies the assumption that whenever one allocation is Pareto dominated by
another, the latter will replace the former. This assumption is strong. If the
allocations b and c both Pareto dominate a , and b is better than c for some
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individuals whereas c is better than b for others, then the individuals might
disagree about the allocation that should replace a . The concept of Pareto
stability implicitly assumes that this disagreement is not an obstacle to the
replacement of a .

We now show that for any society and any ordering of the individuals, the
allocation generated by the serial dictatorship procedure is Pareto stable.

Proposition 8.3: Serial dictatorship allocation is Pareto stable

For any society and any ordering of the individuals, the allocation gener-
ated by the serial dictatorship procedure is Pareto stable.

Proof

Let 〈N , H , (¼i )i∈N 〉 be a society and i 1, i 2, . . . , i n an ordering of the individu-
als in N . Denote by a the allocation generated by the serial dictatorship
procedure for the society with this ordering. That is, a (i 1) is i 1’s most
preferred house, a (i 2) is i 2’s most preferred house in H \ {a (i 1)}, and so
on.

Suppose, contrary to the claim that a is Pareto stable, that b is an al-
location with b (i ) ¼i a (i ) for every individual i ∈ N and b (i ) �i a (i ) for
at least one individual i ∈ N . Let i r be the first individual in the ordering
i 1, i 2, . . . , i n for whom b (i r )�i r a (i r ). Then b (i q ) = a (i q ) for every q < r (be-
cause no individual is indifferent between any two houses), as illustrated
in the following diagram.

i : i 1 i 2 . . . i r−1 i r . . . i s . . . i n

a (i ): . . . . . . . . .
b (i ): . . . . . . . . .

Therefore b (i r ) = a (i s ) for some individual i s with s > r , and hence
a (i s )�i r a (i r ), contradicting the fact that a (i r ) is i r ’s favorite house among
the houses that remain after removing those allocated to individuals who
precede her in the ordering.

8.4 Equilibrium and Pareto stability in a jungle

We now connect the notion of equilibrium, which requires that an outcome be
immune to the use of power, to the concept of Pareto stability, which requires
that the outcome be immune to a reallocation to which everyone agrees.
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Proposition 8.4: Equilibrium of every jungle is Pareto stable

The equilibrium of every jungle is Pareto stable.

Proof

By Proposition 8.2 every jungle has a unique equilibrium, and by Propo-
sition 8.1 this equilibrium is obtained by applying the serial dictatorship
procedure for the power relation. Thus by Proposition 8.3 the equilibrium
is Pareto stable.

In Section 8.6 we show that this result depends on the assumption that each
individual cares only about the house she occupies: equilibria of some jungles
in which individuals care about the houses occupied by other individuals are not
Pareto stable.

8.5 Which allocations can be obtained by a social planner who
controls the power relation?

Now consider a social planner who can determine the power relation in the so-
ciety but cannot dictate the allocation of houses. We assume that the planner
believes that whatever power relation she dictates, the outcome will be an equi-
librium of the jungle for that power relation. Which allocations can the plan-
ner induce? More precisely, for which allocations a is there a power relation
such that a is an equilibrium of the jungle with that power relation? By Proposi-
tion 8.4 all equilibria are Pareto stable, so a necessary condition for an allocation
to be achievable as an equilibrium for some power relation is that it be Pareto
stable. We now show that this condition is in fact also sufficient. That is, a plan-
ner can, by choosing the power relation appropriately, induce any Pareto stable
allocation. To prove this result we use the following lemma.

Lemma 8.1: Pareto stable allocation and favorite houses

In every Pareto stable allocation of any society, at least one individual is
allocated her favorite house.

Proof

Let a be an allocation in the society 〈N , H , (¼i )i∈N 〉 for which a (i ) 6= h∗(i )
for every i ∈ N , where h∗(i ) is i ’s favorite house. We show that a is not
Pareto stable.
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Choose, arbitrarily, individual i 1. By our assumption, a (i 1) 6= h∗(i 1): i 1

does not occupy her favorite house. So that house, h∗(i 1), is occupied by
some other individual, say i 2: a (i 2) = h∗(i 1).

Similarly, i 2’s favorite house, h∗(i 2), is occupied by an individual other
than i 2, say i 3: a (i 3) = h∗(i 2). This individual could be i 1 or some other
individual.

If i 3 = i 1, define the allocation b by b (i 1) = a (i 2) = h∗(i 1), b (i 2) = a (i 1) =
h∗(i 2), and b (j ) = a (j ) for every other individual. That is, switch the houses
of i 1 and i 2 and keep everyone else’s house the same. Then both i 1 and i 2

prefer the house allocated to them in b to the house allocated to them in
a , and everyone else occupies the same house in both allocations. Thus a
is not Pareto stable.

If i 3 6= i 1, continue in the same way to construct a sequence of indi-
viduals such that for each k , i k ’s favorite house, h∗(i k ), is a (i k+1), the one
allocated by a to i k+1. Because the set of houses is finite, for some k ≤ n
we have i k = i m for some m < k .

The following diagram illustrates the construction. An arrow from i to
j means that i ’s favorite house is the one allocated by a to j .

i 1 → i 2 → . . . → i m → i m+1→ . . . → i k

Now define the allocation b by b (i j ) = a (i j+1) for all j = m , . . . , k − 1,
b (i k ) = a (i m ), and b (i ) = a (i ) for every other i . Every individual i j for
j = m , . . . , k prefers the house allocated to her in b to the one allocated
to her in a and every other individual occupies the same house in both
allocations. Thus a is not Pareto stable.

We now show that by choosing the power relation appropriately, a social plan-
ner can achieve any Pareto stable allocation as the unique equilibrium.

Proposition 8.5: Pareto stable allocation is equilibrium for some power
relation

Let a be a Pareto stable allocation of a society 〈N , H , (¼i )i∈N 〉. There ex-
ists a power relation Â such that a is the only equilibrium of the jungle
〈N , H , (¼i )i∈N ,Â〉.

Proof

We construct the power relation Â as follows.
By Lemma 8.1, at least one individual is allocated her favorite house by



8.5 Social planned who controls power relation 115

a . Let i 1 be such an individual, and start constructing Â by making i 1 the
most powerful individual.

Now remove i 1 from the set of individuals and a (i 1) from the set of
houses. That is, consider the society in which the set of individuals is
N \ {i 1} and the set of houses is H \ {a (i 1)}. The allocation a restricted
to the individuals in this smaller society—that is, the allocation a ′ defined
by a ′(i ) = a (i ) for all i ∈N \{i 1}—is Pareto stable in the smaller society. The
reason is that if it were not, there would be an allocation b ′ in the smaller
society for which some individual in the smaller society is better off than
she is in a ′, and no individual is worse off than she is in a ′. But then in the
allocation b in the original society defined by b (i 1) = a (i 1) and b (i ) = b ′(i )
for all i ∈N \ {i 1} Pareto dominates a , contradicting the Pareto stability of
a in the original society.

Given the Pareto stability of a ′ in the smaller society, again by
Lemma 8.1 there exists an individual, say i 2, who is allocated her favorite
house in H \ {a (i 1)} by a ′. We continue the construction of Â by making
her the second most powerful individual.

Continue in the same way. At stage k +1, identify an individual i k+1 for
whom a (i k+1) is the favorite house among H \ {a (i 1), . . . , a (i k )} and make
her the (k +1)th most powerful individual.

By construction, for any individual i the house a (i ) allocated to her is
better according to her preferences than every house allocated to an indi-
vidual who is weaker according to Â. Thus a is an equilibrium, and hence
by Proposition 8.2 the only equilibrium, of the jungle 〈N , H , (¼i )i∈N ,Â〉.

Comment

Assume that you observe a group of individuals occupying a set of houses. You
know the preferences of each individual (so that you know the society) but you
do not know the power relation in the group. You want to determine whether the
allocation you observe is consistent with an equilibrium of a jungle. To do so,
you need to check whether there is a power relation such that the allocation you
observe is the equilibrium of the jungle consisting of the society accompanied
by that power relation.

By Proposition 8.4 an allocation that is not Pareto stable is not an equilibrium,
so that its appearance is inconsistent with equilibrium. On the other hand, by
Proposition 8.5 every Pareto stable allocation is an equilibrium of some jungle.
So the observation of an allocation over which individuals do not quarrel is con-
sistent with the allocation’s being the outcome of the power struggle captured by
a jungle.
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8.6 Externalities

So far we have assumed that each individual cares only about the house she
occupies. In fact, people may care not only about the houses they occupy but
also about the allocation of houses to other people. For example, people gener-
ally care about their neighbors. They may care also about the appropriateness
of other people’s houses relative to their needs. They may consider, in addi-
tion, the fairness of the allocation. For example, a person may prefer an allo-
cation in which everyone gets her second best house to an allocation in which
she gets her favorite house but others get houses they rank near the bottom of
their preferences.

The influence of one person’s action on another person is called an external-
ity by economists. We now extend the model of a jungle to allow for externalities.
The following definition of a society differs from our previous definition in two
respects. First, the preferences of each individual are defined over the set of allo-
cations rather than the set of houses. Second, these preferences are not required
to be strict. We allow non-strict preferences to include cases in which some in-
dividuals care only about the houses occupied by a specific group of individuals,
possibly only herself. An individual who has such preferences is indifferent be-
tween allocations that differ only in the houses assigned to individuals outside
the group.

Definition 8.6: Society with externalities

A society with externalities 〈N , H , (¼i )i∈N 〉 consists of

individuals
a finite set N

houses
a finite set H with the same number of members as N

preferences
for each individual i ∈N , a preference relation ¼i over the set of alloca-
tions.

The definition of a jungle with externalities differs from our previous defini-
tion only in that the society is replaced by a society with externalities.

Definition 8.7: Jungle with externalities

A jungle with externalities 〈N , H , (¼i )i∈N ,Â〉 consists of a society with ex-
ternalities 〈N , H , (¼i )i∈N 〉 and a power relation Â, a complete, transitive,
antisymmetric binary relation on the set N of individuals.
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Despite the similarity of this definition with our original definition of a jungle,
the meanings of the power relation Â in the definitions differ. In a jungle, i Â j
means simply that i can take over the house occupied by j . In a jungle with
externalities, i Â j means that individual i can take over the house occupied by
j and force j to occupy the house currently occupied by i . When considering
whether to force such an exchange, individual i compares the current allocation
with the one in which she and individual j exchange houses.

Definition 8.8: Equilibrium of jungle with externalities

An equilibrium of the jungle with externalities 〈N , H , (¼i )i∈N ,Â〉 is an al-
location a ∗ such that for no individuals i , j ∈ N is it the case that i Â j
and b �i a ∗, where b is the allocation that differs from a ∗ only in that
b (i ) = a ∗(j ) and b (j ) = a ∗(i ).

The following examples show that the two basic results about the equilibrium
of a jungle without externalities, its existence (Proposition 8.1) and its Pareto
stability (Proposition 8.4), do not hold in a jungle with externalities.

Example 8.3: Nonexistence of equilibrium in jungle with externalities

Suppose N = {1,2,3} and H = { , , }, and think of the houses as being
located on a circle, as in the following figure.

Assume that 1 Â 2 Â 3 and suppose that individual 1 most prefers any
of the three allocations in which she is individual 2’s clockwise neighbor,
and individual 2 most prefers any of the three allocations in which she is
individual 1’s clockwise neighbor.

In an equilibrium, 1 must be the clockwise neighbor of 2, because if 3 is
the clockwise neighbor of 2, individual 1 can become the clockwise neigh-
bor of 2 by forcing 3, who is less powerful than her, to exchange houses
with her. Similarly, in an equilibrium, 2 must also be the clockwise neigh-
bor of 1. But in no allocation is 1 the clockwise neighbor of 2 and 2 the
clockwise neighbor of 1. Thus no equilibrium exists.

Example 8.4: Equilibria not Pareto stable in jungle with externalities

Consider a jungle that differs from the one in the previous example only in
the individuals’ preferences. Individual 1 most prefers to be individual 2’s
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clockwise neighbor, individual 2 most prefers to be 3’s clockwise neigh-
bor, and individual 3 most prefers to be 1’s clockwise neighbor. Each in-
dividual prefers every allocation in which her clockwise neighbor is the
individual she most prefers in that position to any other allocation. In ad-
dition, among the three allocations a , b , and c in which each individual
has her favorite clockwise neighbor, shown in the following figures, each
individual prefers a to b to c .

1

2 3
a

2

3 1
b

3

1 2
c

These three allocations are all equilibria, but b and c are not Pareto
stable: all three individuals prefer a to both b and c . (For another example
of an equilibrium in a jungle with externalities that is not Pareto stable, see
Problem 6.)

Problems

1. Jungle with preferences with indifference. In a variant of a jungle in which the
individuals’ preferences are not necessarily strict, show the following results.

a. An equilibrium exists, but may not be unique.

b. An equilibrium may not be Pareto stable.

2. Comparative statics. Two jungles have the same set of individuals, the same
set of houses, and the same preference profile (that is, the same society),
but different power relations. The power relations differ only in that two
individuals exchange positions. Compare the equilibria of the two jungles.
Which individuals are necessarily assigned the same houses in both jungles?
How are the individuals who exchange positions affected? How are the other
individuals affected?

3. Manipulability. To prevent unnecessary clashes, the individuals in the jun-
gle decide that a computer will calculate the equilibrium and they will abide
by its recommendation. The computer is informed of the power relation,
and each individual reports to the computer her preference relation. Then
the computer calculates the equilibrium (given the reported preference rela-
tions), and the individuals abide by the allocation. Show that no individual
can do better than reporting her true preference relation, regardless of the
other individuals’ reports.
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4. The jungle with insufficient housing. Extend the model of the jungle to the
case in which the number of houses is smaller than the number of indi-
viduals. In this case, an allocation is a function from the set of individuals
to the set H ∪ {homeless} with the property that no two individuals are as-
signed to the same house. Each individual has a preference ordering over
H ∪{homeless}. Assume, as before, that this ordering is strict; assume also
that every individual prefers to be allocated any house than to be homeless.
Define an equilibrium for this extended model and show that it exists.

5. A dynamic process. Consider the following dynamic process for the jungle
〈N , H , (¼i )i∈N ,Â〉. At each stage, each member of a subset of the individuals
occupies a distinct house.

At stage 0, no individual occupies any house.

For any t ≥ 0, at stage t + 1 every individual goes to the house that is best
for her among the houses that, at the end of stage t , are either vacant or
are occupied by her or by individuals weaker than her. For each house h,
the individual who occupies h at the end of stage t + 1 is defined as follows.
If exactly one individual goes to h, then she occupies h. If more than one
individual goes to h, then the strongest among these individuals occupies h
(and the other individuals at h do not occupy any house). If no individual
goes to h, then it is unoccupied.

Show that this process converges (at the latest at stage |N |) to an equilibrium
of 〈N , H , (¼i )i∈N ,Â〉.

6. The cream guard. An organization consists of n workers and n jobs, with
n ≥ 3. A manager, who is not one of the workers, assigns the workers to
the jobs. The workers differ in their influence on the manager. If i has a
larger influence than j , then i can persuade the manager to exchange i ’s and
j ’s jobs. The nickname of one worker is “the cat”; she is at the bottom of
the influence ladder. The jobs in the organization have an agreed ranking
in terms of prestige, h1, h2, . . . , hn , and every individual wants a job that is as
prestigious as possible.

However, there is a small complication. The most prestigious job h1 is the
“cream guard”. Every worker benefits from the situation in which the cat,
rather than anyone else, guards the cream. Everyone is willing to sacrifice
one place in the prestige ranking (but not more) to have the cat guard the
cream.

a. Find the equilibrium of this jungle with externalities.

b. Explain why the equilibrium you found is not Pareto stable.
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7. Pareto instability and pairwise exchange. Construct a society with an allo-
cation that is not Pareto stable but for which no pair of individuals want to
exchange their houses.

8. Unique Pareto stable allocation. Characterize the societies that have a unique
Pareto stable allocation.

9. Change requires majority approval. Consider a variant of Pareto stability in
which an allocation a is dominated by another allocation b if and only if
b (i ) �i a (i ) for a strict majority of individuals. Construct a society in which
no allocation is stable in this sense.

10. Preference for strong neighbors. Suppose N = {1,2, . . . ,2k } where 1Â 2Â · · ·Â
2k and H = {1a ,1b ,2a ,2b , . . . , k a , kb}. Every individual can force an individ-
ual who is weaker than her to exchange apartments. Every pair of apartments
m a and m b for m = 1, . . . , k are adjacent. Every individual has a preference
relation over the pairs (h, j ), where h is the apartment she occupies and j is
the occupant of the adjacent apartment.

Characterize the equilibrium of the jungle with externalities that models this
situation under the assumption that every individual prefers (h, j ) to (h ′, j ′)
if and only if j is stronger than j ′. That is, she cares only about the strength
of her neighbor, not about the apartment she occupies. Is an equilibrium of
this jungle Pareto stable?

Notes

This chapter is based on Piccione and Rubinstein (2007) and Rubinstein (2012,
Chapter 3).
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As in the previous chapter, a society consists of a set of individuals and a set of
houses; each house can accommodate only one person and each person can oc-
cupy only one house. Different individuals may have different preferences over
the houses, but everyone prefers to occupy any house than to be homeless.

In this chapter, unlike in the previous one, we assume that the ownership of
a house is recognized and protected. Each house is initially owned by some indi-
vidual. Houses can be exchanged only with the mutual consent of both owners;
no individual can force another individual to give up her house.

The model allows us to introduce the central economic idea of prices as a
means of guiding the individuals to a reallocation of the houses in which no
group of individuals want to voluntarily exchange their houses.

9.1 Model

A society is defined as in the previous chapter. In particular, we assume that each
individual cares only about the house that she occupies, not about the houses
occupied by other individuals. Also, we continue to assume, for simplicity, that
preferences are strict: no individual is indifferent between any two houses.

We study a model called a market, which differs from a jungle in that owner-
ship replaces power and an initial pattern of ownership replaces the power rela-
tion. A market consists of a society and an allocation e , where e (i ) is the house
initially owned by individual i .

Definition 9.1: Market

A market 〈N , H , (¼i )i∈N , e 〉 consists of a society 〈N , H , (¼i )i∈N 〉 and an allo-
cation e for the society, called the initial allocation, which represents the
initial ownership of the houses.

Example 9.1

Consider the market 〈N , H , (¼i )i∈N , e 〉 in which N = {1,2, 3,4}, H = {A, B ,
C , D}, and the individuals’ preferences and the initial allocation are given
in the following table. Each column indicates the preference ordering of
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an individual, with the individual’s favorite house at the top; the initial
allocation is highlighted.

Individuals
1 2 3 4

B A A A
C B C D
D C D B
A D B C

Individual 1 initially owns house A, which is the one she least prefers
and everyone else most prefers. Thus every other individual wants to
exchange houses with individual 1. Individual 2 can offer her the most
attractive exchange, because she initially owns house B , which is indi-
vidual 1’s favorite. Thus we might expect that the outcome includes an
exchange between individuals 1 and 2.

Example 9.2

Consider the market in the following table.

Individuals
1 2 3 4

D A A B
C D C C
A C D D
B B B A

Individuals 1 and 3 are interested in exchanging their houses, and so
are individuals 2 and 4. These two exchanges lead to the allocation indi-
cated in red in the left-hand table below. After the exchanges, no further
reallocation within any group is mutually desirable.

Individuals
1 2 3 4

D A A B
C D C C
A C D D
B B B A

Individuals
1 2 3 4

D A A B
C D C C
A C D D
B B B A

Another possible outcome of exchange is indicated in the right-hand
table. This allocation may be achieved by an agreement between indi-
viduals 1, 2, and 4. Alternatively, it may be achieved by individual 1 first
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exchanging her house, A, with individual 2, which leads individual 1 to
hold B , and then exchanging B with individual 4. After the first exchange,
individual 1 holds a house, B , that she does not like; but she knows that she
can subsequently exchange it with individual 4 for D , her favorite house.

Equilibrium of market

The central concept in this chapter is that of an equilibrium of a market. In an
equilibrium, a number is attached to each house. We may interpret the num-
ber as the value or price of the house. Each individual can exchange the house
she owns initially only for houses with lower or equal prices. An equilibrium sat-
isfies two conditions. First, each individual chooses the house that is best for
her among the houses with prices at most equal to the price of the house she
initially owns. Second, the outcome is harmonious in the sense that the individ-
uals’ independent choices generate an allocation, in which each house is chosen
by precisely one individual.

Definition 9.2: Equilibrium of market

An equilibrium of the market 〈N , H , (¼i )i∈N , e 〉 is a pair (p , a )where

• p , a price system, is a function that attaches a number p (h) (a price) to
each house h ∈H

• a is an assignment

such that

optimality of choices
for every individual i ∈ N , the house a (i ) maximizes i ’s preference
relation ¼i over her budget set {h ∈H : p (h)≤ p (e (i ))}:

a (i )¼i h for all h ∈H with p (h)≤ p (e (i ))

feasibility
a is an allocation.

Notice the structure of the definition, which is common to many definitions
of equilibrium. First we specify the nature of a candidate for equilibrium, which
in this case is a pair consisting of a price system and an assignment. Then we
specify the conditions for such a candidate to be an equilibrium.



124 Chapter 9. A market

Example 9.3

Consider Example 9.2. The allocation that results from the first pair of ex-
changes, a = (C , D, A, B ), is not an outcome of any market equilibrium, by
the following argument. If there is a price system p such that (p , a ) is an
equilibrium then we need p (A) = p (C ): since C must be in the budget set
of individual 1, we need p (C ) ≤ p (A), and since A must be in the budget
set of individual 3, we need p (A) ≤ p (C ). Similarly, p (B ) = p (D). But if
p (A)≥ p (D) then individual 1 chooses house D , which is her favorite, not
C , and if p (A) < p (D) = p (B ) then individual 2 chooses house A, not D .
Thus for no price system p is (p , a ) a market equilibrium.

The allocation that results from the second group of exchanges, b =
(D, A,C , B ), is the outcome of a market equilibrium with a price system p
satisfying p (A) = p (B ) = p (D)> p (C ). (In fact, Proposition 9.5 implies that
b is the only equilibrium allocation of this market.)

Example 9.4: Market with common preferences

Consider a market 〈N , H , (¼i )i∈N , e 〉 in which all individuals have the same
preference relation: ¼i = ¼ for all i ∈ N . Let p be a price system that
reflects ¼ in the sense that for any houses h and h ′, p (h) > p (h ′) if and
only if h � h ′. (In the terminology of Chapter 1, p is a utility function that
represents ¼.) Then the pair (p , e ) is an equilibrium: the assignment e
is an allocation; the budget set of each individual i consists of the house
e (i ) and all houses that are inferior according to the common preferences
¼, and thus her most preferred house in this set is e (i ). Notice that any
equilibrium allocation a satisfies a (i )¼ e (i ) for all i and thus a = e .

If every individual has a different favorite house, then there is an equilibrium
that assigns the same price to every house.

Example 9.5: Market in which individuals have different favorite houses

Consider a market 〈N , H , (¼i )i∈N , e 〉 in which each individual has a dif-
ferent favorite house. Then (p , a ) is an equilibrium if p assigns the
same price to all houses and for every individual i , a (i ) is i ’s fa-
vorite house. For this price system all budget sets are equal to H ,
so that each individual optimally chooses her favorite house; since no
two individuals have the same favorite house, a is an allocation. In
fact, in any equilibrium allocation a each individual gets her favorite
house. Otherwise, let h∗ be a most expensive house in {h ∈ H :
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h is not the favorite house of the individual i for whom a (i ) = h}. Let i ∗ be
the individual for whom a (i ∗) = h∗. Then i ∗’s favorite house is not more
expensive than h∗ and thus given that she can afford a (i ∗) she can afford
her favorite house, so that a (i ∗) is not optimal for i ∗ in her budget set, a
contradiction.

Comments

1. Note that the notion of equilibrium does not require an individual to be
aware of the preferences of the other individuals. Each individual has to
know only the price system to make her choice.

2. The notion of equilibrium is static. If a society is at an equilibrium, there is
no reason for it to move away. But we do not specify a process by which a
society that is not at an equilibrium might move to an equilibrium.

Any allocation can be transformed into any other allocation by implement-
ing a set of trading cycles, each of which is a rotation of houses within a set of
individuals.

For example, the move from (A, B ,C , D) to (C , D, A, B ) can be achieved by in-
dividual 1 exchanging her house with individual 3 and individual 2 exchanging
her house with individual 4. In this case, each trading cycle consists of a single
bilateral exchange; we denote these cycles by (1,3) and (2,4).

As another example, the move from (A, B ,C , D) to (D, A,C , B ) can be achieved
by individuals 1, 2, and 4 agreeing on a rotation of the houses they initially own
so that individual 1 get 4’s house, 4 gets 2’s house, and 2 gets 1’s house, while
individual 3 keeps her house. We denote these trading cycles by (1,4,2) and (3).
Note that the trading cycle (1,4,2) can be achieved also by individual 1 first ex-
changing her house with individual 4, to yield the allocation (D, B ,C , A), and then
individual 4 exchanging her house (which is now A) with individual 2.

In general, a trading cycle is a sequence (i 1, . . . , i k ) of individuals, with the in-
terpretation that (either by simultaneous rotations of houses or by a sequence
of bilateral exchanges) individual i j gets the house originally owned by i j+1 for
j = 1, . . . , k−1 and i k gets the house owned initially by i 1. A trading cycle consist-
ing of a single individual, for example (i 1), means that the individual keeps the
house she owns.

Definition 9.3: Trading cycle and trading partition

A trading cycle in a market 〈N , H , (¼i )i∈N , e 〉 is a finite sequence of dis-
tinct individuals (members of N ). A trading partition is a set of trading
cycles such that every individual belongs to exactly one of the cycles. A
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trading partition {(i 1
1, . . . , i 1

k1
), . . . , (i m

1 , . . . , i m
km
)} transforms the allocation a

to the allocation b for which for each j = 1, . . . , m we have b (i j
l ) = a (i j

l+1)

for l = 1, . . . , k j −1 and b (i j
k j
) = a (i j

1).

We now show that for any pair of allocations, a unique trading partition trans-
forms one allocation to the other.

Lemma 9.1: Uniqueness of transforming trading partition

For any allocations a and b in a market, a unique trading partition trans-
forms a to b .

Proof

We construct the trading partition T inductively. Start with an arbitrary
individual i 1. If b (i 1) = a (i 1), add the (degenerate) trading cycle (i 1) to T .
Otherwise, let i 2 be the individual for whom a (i 2) = b (i 1). If b (i 2) = a (i 1),
add the trading cycle (i 1, i 2) to T . Otherwise let i 3 be the individual for
whom a (i 3) = b (i 2), and continue in same way until an individual i k is
reached for whom b (i k ) = a (i 1); the number of individuals is finite, so such
an individual exists. At this point, add the trading cycle (i 1, i 2, . . . , i k ) to T .

If any individuals remain, select one of them arbitrarily and repeat the
construction. Continue until every individual is a member of a trading
cycle in T . By construction, T transforms a to b and is a trading partition
because no individual appears in more than one of the trading cycles it
contains. Given that for any individual i , the individual j for whom b (j ) =
a (i ) is unique, T is the only trading partition that transforms a to b .

We now show that for any equilibrium allocation a the prices of all houses
initially owned by the members of each trading cycle in the trading partition that
transforms e to a are the same.

Proposition 9.1: Transforming initial allocation to equilibrium by trade

Let (p , a ) be an equilibrium of the market 〈N , H , (¼i )i∈N , e 〉. The prices
of all houses initially owned by the members of each trading cycle in the
trading partition that transforms e to a are the same.

Proof

Let (i 1, . . . , i k ) be a trading cycle in the trading partition that transforms
e to a (described in the proof of Lemma 9.1). Then a (i l ) = e (i l+1) for
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l = 1, . . . , k −1 and a (i k ) = e (i 1). Thus for l = 1, . . . , k − 1 we need e (i l+1)
to be in i l ’s budget set, so that p (e (i l )) ≥ p (e (i l+1)), and we need e (i 1) to
be in i k ’s budget set, so that p (e (i k ))≥ p (e (i 1)). Hence p (e (i 1))≥ p (e (i 2))≥
· · · ≥ p (e (i k ))≥ p (e (i 1)), so that all these prices are equal.

9.2 Existence and construction of a market equilibrium

We now show that every market has an equilibrium. In fact, we show how to con-
struct an equilibrium. The construction involves a sequence of trading cycles.
We start by identifying a trading cycle that gives every individual in the cycle her
favorite house. We call such a cycle a top trading cycle.

Definition 9.4: Top trading cycle

The trading cycle (i 1, . . . , i k ) in the market 〈N , H , (¼i )i∈N , e 〉 is a top trading
cycle if for l = 1, . . . , k individual i l ’s favorite house is initially owned by
individual i l+1, where i k+1 = i 1. That is, e (i l+1)¼i l h for l = 1, . . . , k and all
h ∈H .

To find a top trading cycle, first choose an arbitrary individual, say i 1. If she
initially owns her favorite house, then (i 1) is a (degenerate) top trading cycle.
Otherwise, let i 2 be the initial owner of i 1’s favorite house. If i 2 initially owns her
favorite house, then (i 2) is a top trading cycle; if i 1 initially owns this house then
(i 1, i 2) is a top trading cycle; otherwise let i 3 be the owner. Continue in the same
way, at each step k checking whether the owner of k ’s favorite house is a member
of the sequence (i 1, . . . , i k ), say i l , in which case (i l , . . . , i k ) is a top trading cycle,
and otherwise adding the owner to the list as i k+1. The number of individuals is
finite, so eventually the procedure identifies a top trading cycle. The procedure
is illustrated in the following diagram, in which an arrow from i to j means that
j is the owner of i ’s favorite house, and then defined more formally.

i 1 → i 2 → . . . → i l → i l+1 → . . . → i k

Procedure 9.1: Procedure for generating a top trading cycle

For a market 〈N , H , (¼i )i∈N , e 〉, the following inductive procedure gener-
ates a top trading cycle.

Initialization
Choose an arbitrary individual i 1 ∈N , and define the sequence (i 1).
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Inductive step
Let (i 1, . . . , i k ) be the sequence of individuals in N that is obtained in
step k , so that e (i l+1) is i l ’s favorite house for l = 1, . . . , k −1.

• If the owner of i k ’s favorite house is a member of the sequence, say
i l , stop; the sequence (i l , . . . , i k ) is a top trading cycle.

• Otherwise, add the owner of i k ’s favorite house to the sequence as
i k+1, to generate the sequence (i 1, . . . , i k , i k+1), so that e (i l+1) is i l ’s
favorite house for l = 1, . . . , k , and continue.

Notice that the procedure is initialized with an arbitrary individual. The in-
dividual chosen may affect the top trading cycle that is generated. Consider, for
example, a market in which individual i initially owns her favorite house, individ-
ual j owns the favorite house of individual k , and individual k owns the favorite
house of individual j . Then the procedure generates the (degenerate) cycle (i ) if
we initially select individual i and the cycle (j , k ) if we initially select individual j .

We now specify an iterative procedure that generates an equilibrium of a mar-
ket. The procedure first finds a top trading cycle in the market, assigns the same
arbitrary price, say p1, to all the houses initially owned by individuals in the cycle,
and assigns to each individual in the cycle her favorite house (that is, the house
owned by the next individual in the cycle). It then removes all these individuals
(and the houses they initially own) from the market, and finds a top trading cycle
in the smaller market. It assigns an arbitrary price p2 with p2 < p1 to the houses
initially owned by the individuals in this cycle and assigns to each individual in
the cycle her favorite house among those available in the smaller market. It then
removes the individuals in the cycle from the smaller market, to produce an even
smaller market. The procedure continues in the same way until no individuals
remain.

Procedure 9.2: Top trading procedure

For a market 〈N , H , (¼i )i∈N , e 〉, the top trading procedure is defined as fol-
lows. First, for any set N ′ ⊆ N , define M (N ′) be the market in which the
set of individuals is N ′, the set H ′ consists of the houses owned initially by
members of N ′, the preference relation of each member of N ′ is her origi-
nal preference relation restricted to H ′, and the initial allocation assigns to
each member of N ′ the house she owns in the original market.

Initialization
Start with the set of individuals N1 =N , and any number p0 > 0.
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Inductive step
For a given set of individuals Ns ⊆ N , find a top trading cycle in the
market M (Ns ); denote by Is the set of individuals in the cycle.

Assign a price ps with 0< ps < ps−1 to all the houses initially owned by
the individuals in Is , and assign to each member of Is her favorite house
in M (Ns ) (the house initially owned by the individual who follows her
in the top trading cycle).

Let Ns+1 =Ns \ Is . If Ns+1 =∅, stop; otherwise continue with Ns+1.

This procedure generates a price system and an assignment.

As we mentioned previously, a market may contain more than one top trad-
ing cycle, so different operations of the procedure may lead to different out-
comes. We now show that every outcome of the procedure is an equilibrium
of the market.

Proposition 9.2: Existence of a market equilibrium

Every market has an equilibrium; any pair consisting of a price system and
an assignment generated by the top trading procedure is an equilibrium.

Proof

The assignment and price system generated by the top trading procedure
is an equilibrium because (1) every house is assigned only once, so that
the assignment is an allocation, and (2) every individual is assigned her fa-
vorite house among all houses that are not more expensive than the house
she owns initially.

Example 9.6

For the market in Example 9.1, the top trading procedure operates as fol-
lows. The only top trading cycle in the entire market is (1,2). We assign a
price p1 to the houses initially owned by individuals 1 and 2, A and B , allo-
cate to each of these individuals her favorite house (a (1) = B and a (2) = A),
and remove these individuals from the market.

The smaller market has two top trading cycles, (3) and (4). If we choose
(3), then we assign a price p2 < p1 to the house individual 3 initially owns,
C , allocate this house to her, and remove her from the market.
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Now only individual 4 remains, and in this market the only top trading
cycle is (4). So we assign a price p3 < p2 to the house individual 4 initially
owns, D , and assign this house to her.

Thus the pair consisting of the allocation (B , A,C , D) and price system
p with p (D)< p (C )< p (A) = p (B ) is an equilibrium of the market.

If, at the second stage, we select individual 4 instead of individual 3, we
generate the same allocation (B , A,C , D), but a price system p with p (C )<
p (D)< p (A) = p (B ), so such a pair is also an equilibrium of the market.

Example 9.7

For the market in Example 9.2, the top trading procedure operates as fol-
lows. The only top trading cycle of the market is (1,4,2). We assign some
price p1 to the houses initially owned by individuals 1, 2, and 4, allocate
to each of these individuals her favorite house (a (1) = D , a (2) = A, and
a (4) = B ), and remove the individuals from the market.

The only individual remaining in the market is 3, and thus the only top
trading cycle in the smaller market is (3). We assign a price p2 < p1 to the
house individual 3 initially owns, C , and assign this house to her.

Thus the pair consisting of the allocation (D, A, B ,C ) and price system
p with p (C ) < p (A) = p (B ) = p (D) is an equilibrium of the market, as we
saw in Example 9.2.

Proposition 9.2 does not assert that the equilibrium is unique, and indeed the
ranking of prices may differ between equilibria, as Example 9.6 shows. However,
in both examples the procedure finds only one equilibrium allocation, and this
property is general: every market has a unique equilibrium allocation. We defer
this result, Proposition 9.5, to a later section because its proof is somewhat more
complex than the other proofs in this chapter.

Say that i is richer than j if p (e (i )) > p (e (j )), so that i can afford any house
that j can afford and also at least one house that j cannot afford. What makes
an individual in a market richer than other individuals? One factor that seems
intuitively important in making i rich is the number of individuals whose favorite
house is the house initially owned by i . The more individuals who like i ’s house,
the more likely i is to be a member of a top trading cycle that appears early in the
procedure in the proof of Proposition 9.2, so that a high price is attached to her
house. But the ranking of an individual’s house by the other individuals is not
the only factor in determining her wealth. The house owned initially by i may be
the favorite house of many individuals, but those individuals may initially own
houses that no one likes. In this case, although many individuals desire i ’s house,
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i will not necessarily be relatively rich. Another contributor to a high market
price for i ’s house is the attractiveness of the houses owned by the individuals
who like i ’s house. Overall, it is the coordination of desires that makes a person
rich in this model. For example, if for two individuals i and j , i ’s favorite house is
the one initially owned by j , and vice versa, and these houses are at the bottom
of the rankings of all other individuals, the equilibrium price of the two houses
could be higher than the equilibrium price of any other house.

9.3 Equilibrium and Pareto stability

Proposition 8.4, in the previous chapter, shows the Pareto stability of any equilib-
rium of a jungle without externalities (in which each individual cares only about
the house she occupies and not about the house anyone else occupies). We now
show an analogous result for a market. That is, if each individual cares only about
the house she occupies, then for any equilibrium allocation in a market, no other
allocation is at least as good for every individual and preferred by at least one
individual.

Proposition 9.3: Pareto stability of equilibrium allocation

For any market, every equilibrium allocation is Pareto stable.

Proof

Let (p , a ) be an equilibrium of the market 〈N , H , (¼i )i∈N , e 〉. If a is not
Pareto stable then for some allocation b we have b (i ) ¼i a (i ) for every
i ∈ N and b (i ) �i a (i ) for some i ∈ N . For any i for which b (i ) �i a (i )
we have p (b (i )) > p (a (i )), since otherwise p (b (i )) ≤ p (a (i )) = p (e (i )) and
thus a (i ) is not optimal for i in the set {h ∈ H : p (h) ≤ p (e (i ))}. For any
other i , b (i ) = a (i ) (because each preference relation is strict) and thus
p (b (i )) = p (a (i )). Hence

∑
i∈N p (b (i )) >

∑
i∈N p (a (i )). But a and b are

both allocations, so each side of this inequality is equal to
∑

i∈N p (e (i )).
This contradiction implies that no such allocation b exists, and hence a is
Pareto stable.

The name conventionally given to this result and similar results for other
models of economies is the “first fundamental theorem of welfare economics”.
However, the result establishes only that an equilibrium is Pareto stable, a
concept unrelated to welfare. The concept of a market specifies only the individ-
uals’ ordinal preferences, not any measure of their welfare in the everyday sense
of the word. The result says that for any equilibrium allocation, no other alloca-
tion exists for which some individual is better off and no individual is worse off.
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But allocations may exist in which the vast majority of individuals, and even all
individuals but one, are better off. For these reasons, we refrain from using the
conventional label for the result.

An implication of Proposition 9.3 is that if the initial allocation is not Pareto
stable, every equilibrium involves trade: at least two individuals trade their
houses. We now show conversely that if the initial allocation is Pareto stable then
no trade occurs in equilibrium.

Proposition 9.4: No trade from a Pareto stable allocation

Let 〈N , H , (¼i )i∈N , e 〉 be a market. If e is Pareto stable then for every equi-
librium (p , a ) of the market we have a = e .

Proof

Let (p , a ) be an equilibrium of the market. Since e (i ) is in the budget set
of individual i given the price system p , a (i ) ¼i e (i ) for all i ∈ N . If a 6= e
then a (i ) �i e (i ) for some individual i , which means that e is not Pareto
stable.

A conclusion from Propositions 9.3 and 9.4 is that if a market starts operating
at date 1 and results in an equilibrium allocation, and then is opened again at
date 2 with initial endowments equal to the equilibrium allocation at the end of
date 1, then no trade occurs in the equilibrium of the market at date 2.

Proposition 9.4 has an interpretation parallel to the one we give to Proposi-
tion 8.5 for a jungle. We interpret that result to mean that an authority in the
society that controls the power relation and is aware of the individuals’ pref-
erences can obtain any Pareto stable allocation as an equilibrium by choosing
the power relation appropriately. Proposition 9.4 may be given a similar inter-
pretation. Suppose that an authority in the society can allocate initial property
rights but cannot prevent individuals from trading. If trade is conducted accord-
ing to the equilibrium concept we have defined, the authority can induce any
Pareto stable allocation by assigning the initial rights appropriately. In this way,
ownership in a market plays a role parallel to power in a jungle.

Proposition 9.4 is often called the “second fundamental theorem of welfare
economics”. We refrain from using this name because as for Proposition 9.3, we
regard the word “welfare” as inappropriate in the context of the result.

9.4 Uniqueness of market equilibrium

The uniqueness of equilibrium in an economic model is appealing because it
means that the model narrows down the outcome as much as possible. It also
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simplifies an analysis of the effect of a change in a parameter of the model.
The ranking of the prices in an equilibrium of a market is not necessarily

unique, as Example 9.6 shows. But we now show that every market has a unique
equilibrium allocation. This result depends on our assumption that no individ-
ual is indifferent between any two houses (see Problem 7).

Proposition 9.5: Uniqueness of equilibrium

Every market has a unique equilibrium allocation.

Proof

Assume, contrary to the claim, that the market 〈N , H , (¼i )i∈N , e 〉 has equi-
libria (p , a ) and (q ,b ) with a 6= b . Let i 1 be an individual whose initial
house e (i 1) has the highest price according to p . Let (i 1, i 2, . . . , i k ∗) be a
trading cycle in the trading partition that transforms e into a . By Proposi-
tion 9.1, p (e (i )) is the same for all i ∈ I = {i 1, i 2, . . . , i k ∗}, so that every house
is in the budget set of every i ∈ I , and hence a (i ) is i ’s favorite house in H
for every i ∈ I .

Now consider the equilibrium (q ,b ). Without loss of generality, e (i 1) is
the most expensive house according to q among the houses in {e (i ) : i ∈ I }.
That is, q (e (i 1)) ≥ q (e (i )) for all i ∈ I . Since e (i 2) = a (i 1) is i 1’s favorite
house in H , in the equilibrium (q ,b ) individual i 1 chooses e (i 2). That is,
b (i 1) = e (i 2). Therefore, by Proposition 9.1, q (e (i 2)) = q (e (i 1)), so that i 2

also owns a most expensive house according to q among the houses in
{e (i ) : i ∈ I }. Continue in this way to conclude that (i 1, i 2, . . . , i k ) is also a
trading cycle in the trading partition that transforms e to b .

Now delete from the set of individuals and the set of houses the mem-
bers of this trading cycle and their initial houses. We are left with a smaller
market and two equilibria of this market. The reason is that if, before
the deletion, every individual chose the best house that she could afford
given the equilibrium prices, the deletion of the houses that she did not
choose does not affect the optimality of her choice. Therefore we can con-
tinue with the restricted market and choose again a trading cycle with the
highest price according to p .

Continuing in this way, we conclude that the trading partition that
transforms e into a is the same as the one that transforms e into b , so
that a =b .

More formally, we can prove the result by induction on the number of
individuals. A market with one individual of course has a unique equilib-
rium allocation. If every market with not more than n − 1 individuals has
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a unique equilibrium allocation, then the argument we have made shows
that a market with n individuals also has a unique equilibrium allocation.

Problems

1. Trade for an allocation that is not Pareto stable. Show that if an allocation is
not Pareto stable then some (nonempty) group of individuals can exchange
the houses they own among themselves in such a way that all members of
the group are better off.

2. Examples of markets.

a. Consider a market in which some individual initially owns her favorite
house. Show that in any equilibrium this individual is allocated this
house.

b. What can you say about the equilibrium allocation in a market equilib-
rium in which every house has a different price?

c. Show that in an equilibrium of any market consistent with the following
table, individual 4 is allocated her favorite house.

Individual 1 2 3 4

Initial allocation D C B A

Favorite house A A D ?

3. Effect of removing an individual. Give an example of a market for which re-
moving one of the individuals, together with the house she initially owns,
makes one of the remaining individuals better off and another of the remain-
ing individuals worse off.

4. Effect of changes in one individual’s preferences.

a. Let M 1 be a market and let (p , a ) be an equilibrium of M 1. Assume that
M 2 differs from M 1 only in that a (1) moves up in individual 1’s prefer-
ences. What can you say about the equilibrium allocations in the two
markets?

b. (More difficult.) In the market M 1, individual 1 initially owns house A.
The market M 2 differs from M 1 only in that in M 2 the ranking of A in
individual 2’s preferences is higher than it is in M 1. Show that individual 1
is not worse off, and may be better off, in the equilibrium of M 2 than in
the equilibrium of M 1.
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5. Manipulation. Explain why no individual in a market is better off behaving
as if her preferences are different from her actual preferences. That is, if the
markets M and M ′ differ only in the preferences of individual i , then the
equilibrium allocation in M ′ is no better according to i ’s preferences in M
than the equilibrium allocation in M .

6. The core. Like Pareto stability, the core is a notion of stability. An allocation
a is in the core of a market if no set of individuals can leave the market with
their initial houses and reallocate them among themselves (in any way, not
necessarily consistent with equilibrium) so that all of them are better off than
in a . Show that the equilibrium of any market is in the core.

7. Market with indifferences. Some of the results in this chapter rely on the
assumption that the individuals’ preference relations do not have indiffer-
ences. Construct a market in which individuals have preferences with indif-
ferences, some equilibrium is not Pareto stable, and there is more than one
equilibrium allocation.

Notes

The model presented in this chapter is due to Shapley and Scarf (1974), who at-
tribute the proof for the existence of a market equilibrium to David Gale. The
presentation here draws upon Rubinstein (2012, Chapter 3).





10 An exchange economy

In this chapter we study a market in which the goods, unlike the houses in the
previous two chapters, can be consumed in any quantity: they are divisible. As
in the previous chapter, the ownership of goods is recognized and protected.
Each individual initially owns a bundle of goods. We look for a distribution of
the goods among the individuals and a price system with the property that for
each good the total amount the individuals want to purchase is equal to the total
amount other individuals want to sell: demand and supply are equal.

10.1 Model

In a market there are two goods, called 1 and 2. Each good can be consumed in
any (nonnegative) quantity. As in Chapter 4, a bundle is a pair (x1,x2), where xk ,
the quantity of good k for k = 1, 2, is a nonnegative number, so that the set of all
possible bundles is R2

+. The set of individuals in the market is denoted N . Each
individual i ∈N initially owns the bundle e (i ) = (e1(i ), e2(i )). We take these initial
bundles as given; we do not ask where they come from. We assume that the total
amount of each good initially owned by all individuals is positive (not zero).

Each individual cares about the bundle she owns after trading. Sometimes
we say she “consumes” this bundle. As in the previous two chapters, we assume
that each individual has no interest, selfish or altruistic, in the bundles chosen by
other individuals. Thus the desires of each individual i are captured by a prefer-
ence relation over the set R2

+ of possible bundles, which we assume is monotone
and continuous.

Collecting these elements, we define an exchange economy as follows.

Definition 10.1: Exchange economy

An exchange economy 〈N , (¼i )i∈N , e 〉 consists of

individuals
a finite set N

preferences
for each individual i ∈N , a monotone and continuous preference rela-
tion ¼i over R2

+
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initial allocation
a function e that assigns to each individual i ∈ N a bundle e (i ) ∈ R2

+,
the bundle that i initially owns, with

∑
i∈N ek (i )> 0 for k = 1,2.

Comments

1. The model of an exchange economy is closely related to that of a market dis-
cussed in the previous chapter. In the model of a market, each house is an
indivisible good that can be consumed by only a single individual. In the
model of an exchange economy, each good is divisible, and the total amount
of it can be divided arbitrarily among the individuals. The analogue of the
set H in the previous chapter is the set R2

+ here.

2. Many goods are in fact not divisible. For example, you can own four or six
chairs, but not 5.3. We assume divisibility because it simplifies the analysis
without, apparently, significantly affecting the conclusions.

3. Like the houses in the previous chapters, any given amount of each good
in our model can be consumed by only one individual: the total amount of
the good available has to be divided up among the individuals. This for-
mulation excludes from consideration goods like information that can be
simultaneously consumed by many individuals.

10.1.1 Prices and budget sets

A price system is a pair of nonnegative numbers p = (p1, p2) different from (0,0).
Given a price system p , the value of the bundle x = (x1,x2) is p1x1+p2x2, which
we write also as px (the inner product of the vectors p and x ). By exchanging
some or all of her initial bundle e (i ) with other individuals, i can obtain any
bundle x whose value px does not exceed p e (i ), the value of e (i ); that is, she
can obtain any bundle x for which px ≤ p e (i ). As before we refer to the set of
such bundles as the budget set of individual i and denote it B (p , e (i )). Given
our assumption that each individual’s preference relation is monotone, a bun-
dle is optimal in i ’s budget set if and only if it is optimal on the budget line
{x ∈R2

+ : px = p e (i )}.

Definition 10.2: Price system and budget set

A price system is a pair of nonnegative numbers different from (0,0). The
value of the bundle x = (x1,x2) according to the price system p = (p1, p2) is
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px = p1x1+p2x2, and for the exchange economy 〈N , (¼i )i∈N , e 〉, the budget
set of individual i ∈N given the price system p is

B (p , e (i )) = {x ∈R2
+ : px ≤ p e (i )}.

We have in mind two interpretations of a price system. The first and most
literal is that the prices are quoted in a monetary unit. Each individual can sell
any amounts of the goods in her initial bundle and use the monetary proceeds
to buy amounts of other goods. If, for example, she sells y1 units of good 1 then
she obtains the amount of money p1y1, which she can use to buy the amount
z 2 of good 2 for which p1y1 = p2z 2. The second interpretation is that the prices
represent the ratio at which the goods may be exchanged. Specifically, the price
system (p1, p2)means that one unit of good 1 may be exchanged for p1/p2 units
of good 2.

Note that in both interpretations a price system p is equivalent to any price
system of the form λp = (λp1,λp2) for λ > 0 (that is, a price system in which all
prices are multiplied by a positive number), because B (λp , e (i )) = B (p , e (i )) for
all values of p and e (i ).

10.1.2 Allocations

The total amount of each good k available in the economy is
∑

i∈N ek (i ). An
allocation is a distribution of these total amounts among the individuals.

Definition 10.3: Assignment and allocation

An assignment in an exchange economy 〈N , (¼i )i∈N , e 〉 is a function from
the set N of individuals to the set R2

+ of possible bundles of goods. An
allocation is an assignment a for which the sum of the assigned bundles is
the sum of the initial bundles:

∑

i∈N

a (i ) =
∑

i∈N

e (i ).

10.2 Competitive equilibrium

The central concept in this chapter is competitive equilibrium. A competitive
equilibrium consists of a price system and an assignment such that each indi-
vidual’s bundle in the assignment is optimal for her given the price system and
her initial endowment, and the assignment is an allocation. If this condition is
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not satisfied then either at least one individual does not choose her optimal bun-
dle or, for at least one of the goods, the total amount that the individuals want to
purchase is different from the total amount available.

Definition 10.4: Competitive equilibrium of exchange economy

A competitive equilibrium of the exchange economy 〈N , (¼i )i∈N , e 〉 is a pair
(p , a ) in which

• p = (p1, p2) is a price system

• a is an assignment

such that

optimality of choices
for every individual i ∈ N the bundle a (i ) is optimal according to ¼i

in the budget set B (p , e (i )) (that is, B (p , e (i )) contains no bundle b for
which b �i a (i ))

feasibility
a is an allocation.

An allocation a is a competitive equilibrium allocation of the exchange
economy 〈N , (¼i )i∈N , e 〉 if for some price system p , (p , a ) is a competitive
equilibrium of 〈N , (¼i )i∈N , e 〉.

Note that if (p , a ) is a competitive equilibrium of 〈N , (¼i )i∈N , e 〉 then so is
(λp , a ) for any λ> 0, because B (λp , e (i )) = B (p , e (i )) for all i ∈N .

In a competitive equilibrium all individuals face the same price system and
each individual chooses an optimal bundle from a budget set defined by this
price system, which is not affected by the individual’s choice. This assumption
seems reasonable when the market contains a large number of individuals, none
of whom initially owns a large fraction of the total amount of any good. It is
less reasonable when the number of individuals is small, in which case some
individuals’ actions may significantly affect the prices. Note, however, that the
concept of competitive equilibrium is well-defined regardless of the number of
individuals and the distribution of their initial bundles. In particular, it is well-
defined even for an economy with only one individual; only the reasonableness
of the concept is questionable in this case.

Figure 10.1 illustrates a competitive equilibrium for an exchange economy
with two individuals. In this figure, the orange vectors are equal in length and
opposite in direction, so that the sum of the individuals’ optimal bundles is equal
to the sum of their initial bundles.
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0 x 1
1 →

↑
x 1

2
Indifference set

a (1)

e (1)

Individual 1
0 x 2

1 →

↑
x 2

2
Indifference set

a (2)e (2)

Individual 2

Figure 10.1 A competitive equilibrium in an exchange economy with two individuals.
The ratio p1/p2 of the prices is the (common) slope of the (black) budget frontiers, and
a (1) and a (2) are the bundles the individuals optimally choose. The prices are consistent
with a competitive equilibrium because the orange vectors exactly cancel each other out:
e (1)−a (1) =−(e (2)−a (2)), so that a (1)+a (2) = e (1)+ e (2).

Example 10.1: Competitive equilibrium with substitutable goods

Consider an exchange economy 〈N , (¼i )i∈N , e 〉 for which N = {1,2}, e (1) =
(α,0), and e (2) = (0,β ) (with α> 0 and β > 0), so that each good is initially
owned exclusively by one individual, and each individual’s preference re-
lation ¼i is represented by the utility function x1 + x2 (Example 4.1 with
v1/v2 = 1).

In this economy, (p , a ) with p = (1,1) and a = e is a competitive equi-
librium. In this equilibrium, the budget lines of individuals 1 and 2 are
{(x1,x2) ∈ R2

+ : x1 + x2 = α} and {(x1,x2) ∈ R2
+ : x1 + x2 = β}, so that each

individual i is indifferent between all bundles on her budget line and the
bundle e (i ), in particular, is optimal for her (see Example 5.6). Note that
the concept of competitive equilibrium requires only that the bundle as-
signed to each individual is optimal for the individual, not that it is the
only bundle optimal for her.

More generally, every pair (p , a ) where p = (1,1), a (1) = (α− ε,ε), and
a (2) = (ε,β − ε), with 0 ≤ ε ≤min{α,β}, is a competitive equilibrium. In
such an equilibrium each individual exchanges ε units of the good she ini-
tially owns for ε units of the other good. Neither individual can do better
because given the price system, for every bundle an individual can achieve
by exchange, the sum of the amounts of the two goods is the same.

This economy has no equilibrium in which the prices of the goods are
not equal. For any such price system, each individual’s unique optimal
bundle contains none of the more expensive good and thus is not consis-
tent with a competitive equilibrium.
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Example 10.2: Competitive equilibrium with complementary goods

Consider an exchange economy 〈N , (¼i )i∈N , e 〉 for which N = {1,2}, e (1) =
(α,0), and e (2) = (0,β ), as in the previous example, but each individ-
ual’s preference relation is represented by the utility function min{x1,x2}
(Example 4.4).

For any price system p in which p1 > 0 and p2 > 0, the bundles opti-
mally chosen by the individuals are

x 1(p ) =

�
αp1

p1+p2
,
αp1

p1+p2

�

and x 2(p ) =

�
βp2

p1+p2
,
βp2

p1+p2

�

(see Example 5.5). For this pair of bundles to be an allocation we need

αp1

p1+p2
+

βp2

p1+p2
=α and

αp1

p1+p2
+

βp2

p1+p2
= β .

The left-hand sides of these equations are the same, so that if α = β
then for every price system p with p1 > 0 and p2 > 0 the economy has a
competitive equilibrium (p , a )with a (1) = x 1(p ) and a (2) = x 2(p ).

If α 6= β then no equilibrium in which both prices are positive ex-
ists, but the economy has an equilibrium in which one of the prices is
zero. Suppose that α > β . Then the economy has an equilibrium in
which the price system is (0,1) (good 1, of which there is a surplus, has
no value). Given that the price of good 1 is zero, individual 2 can con-
sume any quantity of good 1, so that any bundle (x 2

1 ,β ) with x 2
1 ≥ β is

optimal for her. Individual 1, who has only good 1, is indifferent between
all bundles (x 1

1 ,0) on her budget line. For a competitive equilibrium we
need x 1

1 + x 2
1 = α, so ((0,1), a ) is a competitive equilibrium if and only if

a (1) = (x 1
1 ,0) and a (2) = (α−x 1

1 ,β ), with x 1
1 ≤ α−β . In particular, ((0,1), a )

with a (1) = (α−β ,0) and a (2) = (β ,β ) is a competitive equilibrium.

This example shows, incidentally, that an individual who destroys some of
her initial bundle may improve the bundle she consumes in a competitive equi-
librium. If α > β , then the bundle individual 1 consumes in a competitive equi-
librium is (x 1

1 ,0) where x 1
1 ≤ α−β . If she destroys some of her initial holding of

good 1, reducing the amount to γ with 0 < γ < β , then the competitive equilib-
rium price system changes from (0,1) to (1,0) and the equilibrium allocations a
have a (1) = (γ,β − x 2

2) and a (2) = (0,x 2
2) for 0 ≤ x 2

2 ≤ β − γ. Individual 1 prefers
all of these allocations to the ones in the original equilibrium. The fact that an
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individual may benefit from destroying some of the goods she initially owns does
not depend on an equilibrium price being zero; other examples show that the
phenomenon may occur when both equilibrium prices are positive.

The definition of a competitive equilibrium requires that the sum of the bun-
dles optimal for the individuals, given the prices, is equal to the sum of the initial
bundles (demand is equal to supply for all goods). The next result says that given
any price system and any assignment that consists of optimal bundles (given the
price system), if for one good the sum of the assigned quantities is equal to the
sum of the individuals’ initial holdings, then the same is true also for the other
good. This result is useful when calculating competitive equilibria, because it
means that if we find a price system for which demand and supply are equal for
one good then we know that they are equal for the other good, so that the price
system is consistent with competitive equilibrium.

Proposition 10.1: Property of assignment of bundles on budget lines

Consider an exchange economy 〈N , (¼i )i∈N , e 〉. Let p be a price system
with p1 > 0 and p2 > 0. Consider an assignment a with p a (i ) = p e (i ) for
all i ∈ N . (That is, a (i ) is on i ’s budget line for each i .) If the sum of the
quantities of one good in the bundles in the assignment a is equal to the
sum of the quantities of the good in the initial bundles then this equality
holds also for the other good. That is,

∑

i∈N

a 1(i ) =
∑

i∈N

e1(i ) ⇔
∑

i∈N

a 2(i ) =
∑

i∈N

e2(i ).

Proof

The fact that p a (i ) = p e (i ) for each i ∈ N means that p1a 1(i ) + p2a 2(i ) =
p1e1(i )+p2e2(i ) for each i ∈N , and hence

∑

i∈N

�
p1a 1(i )+p2a 2(i )

�
=
∑

i∈N

�
p1e1(i )+p2e2(i )

�
.

Thus

p1

�∑

i∈N

a 1(i )−
∑

i∈N

e1(i )

�

= p2

�∑

i∈N

e2(i )−
∑

i∈N

a 2(i )

�

,

so that given p1 > 0 and p2 > 0,
∑

i∈N

a 2(i )−
∑

i∈N

e2(i ) = 0 ⇔
∑

i∈N

e1(i )−
∑

i∈N

a 1(i ) = 0.
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Example 10.3

Consider an exchange economy 〈N , (¼i )i∈N , e 〉 in which, as in the previous
two examples, N = {1,2}, e (1) = (α,0), and e (2) = (0,β ). Assume now that
each individual’s preference relation is represented by the utility function
x1x2. Recall that the optimal bundle for such an individual has the prop-
erty that the amount the individual spends on each good is the same (see
Example 5.7). Now, if ((p1,1), a ) is a competitive equilibrium with p1 > 0,
then individual 1 spends p1α/2 on each good and thus a (1) = (α/2, p1α/2).
Similarly a (2) = (β/(2p1),β/2). By Proposition 10.1, ((p1,1), a ) is a com-
petitive equilibrium if and only if α/2+ β/(2p1) = α. The economy has
no equilibrium in which a price is zero, so (p , a ) with p = (β/α,1) and
a (1) = a (2) = (α/2,β/2) is the only equilibrium.

10.3 Existence of a competitive equilibrium

A result that gives precise conditions under which an exchange economy has
a competitive equilibrium requires mathematical tools beyond the level of this
book. However, we can establish the following result, for the case in which each
individual has a continuous demand function. When each individual is ratio-
nal and has strictly convex and continuous preferences, her optimal choice as a
function of the price system results in such a demand function. The result states
that if every individual wants to obtain more of a good than she initially owns
when its price is low enough and sell some of her initial holding when its price is
high enough, then a competitive equilibrium exists.

Proposition 10.2: Existence of competitive equilibrium

Let 〈N , (¼i )i∈N , e 〉 be an exchange economy. For each i ∈N and every price
system p with p1 > 0 and p2 > 0, let x i (p ) be a bundle that maximizes ¼i

in the budget set B (p , e (i )). Let d i (p1) = x i
1(B ((p1,1), e (i ))), individual i ’s

demand for good 1 given the price system (p1,1). Assume that

• each function d i is continuous

• for some price p1 low enough we have d i (p1)> e1(i ) for all i ∈N (every
individual wants to consume more of good 1 than she initially owns)

• for some price p1 high enough we have d i (p1) < e1(i ) for all i ∈ N
(every individual wants to sell some of the amount of good 1 that she
initially owns).

Then the exchange economy has a competitive equilibrium.
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p1→
0

z (p1)

Figure 10.2 An example of an excess demand function z for good 1 satisfying the con-
ditions of Proposition 10.2. The three red disks indicate competitive equilibrium prices
for good 1.

Proof

For any price p1, let z (p1) =
∑

i∈N [d
i (p1)− e1(i )], the difference between

the total demand for good 1 when the price system is (p1,1) and the total
amount of good 1 available. By the assumption that each function d i is
continuous, the function z is continuous. By the assumptions about the
values of the demand functions for low and high values of p1, z (p1) is pos-
itive for p1 small enough and negative for p1 high enough. (A function z
satisfying these conditions is shown in Figure 10.2.) By the Intermediate
Value Theorem the value of this function z is thus zero for at least one
price p ∗1. (It may be zero for more than one price.)

We claim that ((p ∗1, 1), (x i (p ∗1,1))i∈N ) is a competitive equilibrium. The
optimality condition is satisfied by the definition of the demand functions.
The feasibility condition follows from Proposition 10.1, which states that
if the excess demand for one good is zero, so is the excess demand for the
second good.

An exchange economy in which some individuals’ preferences are not con-
vex may not have a competitive equilibrium; Problem 5 asks you to study an
example. Example 10.2 shows that an exchange economy may have multiple
equilibria, differing both in the price system and the equilibrium allocation.

10.4 Reopening trade

Consider an exchange economy 〈N , (¼i )i∈N , e 〉 in which each individual i ini-
tially holds the bundle e (i ). Suppose that the individuals trade according to a



146 Chapter 10. An exchange economy

competitive equilibrium (p , a ). After trade, each individual i holds the bundle
a (i ). Now suppose that the possibility of trade reopens; the exchange economy
〈N , (¼i )i∈N , a 〉, in which the initial bundle of each individual i is a (i ), models the
situation. Does (p , a ) remain a competitive equilibrium in this economy? The
next result states that it does.

Proposition 10.3: No trade from competitive equilibrium

A competitive equilibrium (p , a ) of the exchange economy 〈N , (¼i )i∈N , e 〉
is a competitive equilibrium of the exchange economy 〈N , (¼i )i∈N , a 〉.

Proof

The feasibility condition for competitive equilibrium is satisfied because
a by definition is an allocation. The optimality condition is satisfied also:
since p a (i ) = p e (i ), the budget sets B (p , e (i )) and B (p , a (i )) are the same,
so that the bundle a (i ), which is optimal in the budget set B (p , e (i )), is
optimal for individual i also in B (p , a (i )).

10.5 Equilibrium and Pareto stability

We now show that a competitive equilibrium allocation is Pareto stable.

Proposition 10.4: Pareto stability of competitive equilibrium allocation

Every competitive equilibrium allocation of an exchange economy is
Pareto stable.

Proof

Let (p , a ) be a competitive equilibrium of the exchange economy
〈N , (¼i )i∈N , e 〉. Assume that a is not Pareto stable. That is, assume that
there is an allocation y such that y (i ) ¼i a (i ) for every individual i and
y (j )�j a (j ) for some individual j .

The optimality of a (i ) according to ¼i in i ’s budget set implies that
py (i ) ≥ p e (i ): if py (i ) < p e (i ) then the budget set contains a bundle that
i prefers to y (i ) and hence to a (i ). Furthermore, the optimality of a (j ) in
j ’s budget set implies that py (j ) > p e (j ). Thus p

∑
i∈N y (i ) > p

∑
i∈N e (i ),

contradicting the feasibility of y , which requires
∑

i∈N y (i ) =
∑

i∈N e (i ).
Hence a is Pareto stable.
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Comments

1. The conclusion of this result depends critically on the assumption that each
individual cares only about the bundle she consumes. Consider a variant of
an exchange economy in which individuals care also about the bundles con-
sumed by other individuals. Suppose specifically that the economy contains
two individuals, with initial bundles (1,0) and (0,1). Individual 1 is nega-
tively affected by individual 2’s consumption of good 2; her utility from any
allocation a is a 1(1) + a 2(1)− 2a 2(2). Individual 2 cares only about her own
consumption; her utility from a is 2a 1(2) + 3a 2(2). Assuming that each in-
dividual takes the consumption of the other individual as given, the only
price systems (p1, 1) for which the demands for each good is equal to 1 sat-
isfy 2

3
≤ p1 ≤ 1 and no trade occurs (the induced allocation is the initial

allocation). This outcome is not Pareto stable: the allocation b for which
b (1) = (0,0.5) and b (2) = (1,0.5) is preferred by both individuals.

2. An allocation is Pareto stable if no other allocation is at least as good for all
individuals and better for at least one. We suggest that you verify that under
either of the following conditions, an allocation is Pareto stable if and only if
no other allocation is better for every individual.

a. The individuals’ preference relations are convex and every bundle in the
allocation contains a positive quantity of each good.

b. The individuals’ preference relations are strongly monotone.

3. An implication of Proposition 10.4 is an analogue of Proposition 9.4. If the
exchange economy 〈N , (¼i )i∈N , e 〉 has a competitive equilibrium (p , a ), then
a (i )¼i e (i ) for every individual i ∈N . Thus if the initial allocation e is Pareto
stable, then every individual i is indifferent between a (i ) and e (i ), so that
(p , e ) is also a competitive equilibrium of the economy. Suppose an authority
that is able to redistribute goods between individuals wants the allocation in
the economy to be some Pareto stable allocation a . The result says that if the
authority redistributes goods to generate a , subsequently opening up trade
will not undo the redistribution, in the sense that the outcome will be an
allocation b for which b (i )∼i a (i ) for every individual i .

4. Proposition 10.4 is an analogue of Proposition 9.3. Like that result, it is
conventionally referred to as the “first fundamental theorem of welfare eco-
nomics”. The result in the previous comment is an analogue of Proposi-
tion 9.4 and is conventionally referred to as the “second fundamental the-
orem of welfare economics”. For the reasons we give in the discussion fol-
lowing Proposition 9.3, we regard these names as inappropriate.
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10.6 The core

Proposition 10.4 says that no allocation is unanimously preferred to a competi-
tive equilibrium allocation. In fact, a stronger result holds: for any competitive
equilibrium allocation a , no group of individuals can benefit from seceding from
the economy and reallocating their initial bundles among themselves (without
exchanging goods with any individuals outside the group), in such a way that
they are all better off than they are in a . To state the result, we use a stability
concept called the core.

Definition 10.5: Core

Consider the exchange economy 〈N , (¼i )i∈N , e 〉. A nonempty set S ⊆ N
of individuals can improve upon an allocation a if for some collection
(b (i ))i∈S of bundles with

∑
i∈S b (i ) =

∑
i∈S e (i ) we have b (i ) �i a (i ) for all

i ∈ S. An allocation a is in the core if no set of individuals can improve
upon it.

Note that whether an allocation is in the core, unlike its Pareto stability, de-
pends on the allocation of the initial bundles.

The following example shows that an allocation can be Pareto stable and
preferred by every individual to his initial bundle and yet not be in the core.

Example 10.4: Pareto stable allocation not in core

Consider an exchange economy with two individuals of type 1 and two of
type 2. Each individual of type 1 has the initial bundle (1,0) and a pref-
erence relation represented by the utility function min{x1,x2}. Each in-
dividual of type 2 has the initial bundle (0,1) and a preference relation
represented by the utility function x1+x2.

Consider the allocation a in which each individual of type 1 is assigned
the bundle (0.1,0.1) and each individual of type 2 is assigned the bundle
(0.9,0.9). Each individual prefers her assigned bundle in this allocation
to her initial bundle. The allocation is Pareto stable (for every bundle
preferred by any individual, the sum of the amounts of the goods ex-
ceeds the sum of the amounts she is allocated). However, all members
of a set S consisting of two individuals of type 1 and one of type 2, can
improve upon the allocation: if each individual of type 1 is assigned
the bundle (0.2,0.2) and the individual of type 2 is assigned the bundle
(1.6,0.6), then all three individuals are better off than they are in the origi-
nal allocation a .
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Proposition 10.5: Competitive equilibrium is in core

Every competitive equilibrium allocation of an exchange economy is in the
core of the economy.

Proof

Let (p , a ) be a competitive equilibrium of the exchange economy
〈N , (¼i )i∈N , e 〉. Suppose that a is not in the core of the economy. Then
there is a nonempty set S ⊆ N and a collection (b (i ))i∈S of bundles with∑

i∈S b (i ) =
∑

i∈S e (i ) such that b (i ) �i a (i ) for all i ∈ S. Now, the fact that
(p , a ) is a competitive equilibrium means that for each individual i , the
bundle a (i ) is optimal according to ¼i in i ’s budget set. Thus b (i ) �i a (i )
implies that pb (i ) > p e (i ), so that p

∑
i∈S b (i ) > p

∑
i∈S e (i ). This inequal-

ity contradicts the condition
∑

i∈S b (i ) =
∑

i∈S e (i ). Thus a is in fact in the
core.

10.7 Competitive equilibrium based on demand functions

The individuals in an exchange economy are characterized by their preference
relations and initial bundles. In a competitive equilibrium, each individual
chooses her favorite bundle, according to her preferences, from her budget set.
In a variant of the model, individuals are characterized instead by their demand
functions and initial bundles, with the demand function of each individual spec-
ifying the bundle she consumes for each price system, given her initial bundle.
These demand functions may not be rationalized by preference relations. (See
Section 5.5 for examples of such demand functions.)

A competitive equilibrium of this variant of an exchange economy is a pair
(p , a ) consisting of a price system p and an assignment a such that (1) for each
individual i the bundle a (i ) is the one specified by her demand function given
the price system p and her initial bundle e (i ) and (2) a is an allocation.

Example 10.5: Competitive equilibrium based on demand functions

Consider an economy with two individuals in which individual 1 con-
sumes only the good with the higher price; if the prices of the goods are
the same, she consumes only good 1. No monotone preference relation
rationalizes this demand function (see Example 5.11). Assume that indi-
vidual 2 demands a bundle that maximizes the function x1 + x2 over her
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budget set, so that if the prices of the goods differ, she demands only the
good with the lower price.

Suppose that e (1) = (α,0) and e (2) = (0,β ). Then every pair (p , a ) in
which p is a price system with p1 ≥ p2 = 1 and a is the allocation with
a (1) = (α,0) and a (2) = (0,β ) is a competitive equilibrium since individ-
ual 1 demands only the first (and more expensive) good and individual 2
demands only the second (and cheaper) good.

For (p , a ) with p1 < p2 = 1 to be an equilibrium we need a (1) = (0,αp1)
and a (2) = (β/p1,0). These two bundles sum to the total bundle (α,β )
if and only if p1 = β/α. Thus for such an equilibrium to exist we need
β < α. Indeed, if β < α then in addition to the equilibria in the previous
paragraph, the pair (p , a ) in which p = (β/α,1), a (1) = (0,β ), and a (2) =
(α,0) is a competitive equilibrium.

10.8 Manipulability

Can an individual bias a competitive equilibrium in her favor by acting as if her
preferences differ from her true preferences? The next example shows that the
answer to this question is affirmative. (By contrast, Problem 5 in Chapter 9 shows
that such manipulation is not possible in the markets studied in that chapter.)

Example 10.6: Manipulability of competitive equilibrium

Consider an exchange economy with two individuals in which the prefer-
ence relation of individual 1 is represented by the function x1+x2, the pref-
erence relation of individual 2 is represented by the function min{x1,x2},
and the initial bundles are e (1) = (1,0) and e (2) = (0,1). This economy has
a unique competitive equilibrium (p , a ), with p = (1,1) and a (1) = a (2) =
( 1

2
, 1

2
).

If individual 1 acts as if her preferences are represented by the func-
tion 3x1 + x2 (which means that she acts as if good 1 is more desirable to
her than it really is) then the competitive equilibrium prices are (3,1) and
the equilibrium allocation gives her the bundle ( 3

4
, 3

4
), which is better for

her than the bundle ( 1
2

, 1
2
) she receives in the equilibrium when she acts

according to her true preferences.

10.9 Edgeworth box

The Edgeworth box is a graphical tool for analyzing an exchange economy with
two individuals and two goods. We take a diagram like the one in Figure 10.1



10.9 Edgeworth box 151

0 x 1
1 →

↑
x 1

2
Indifference curve

x 1

e (1)

Individual 1

0← x 2
1

↑x 2
2Indifference curve

x 2 e (2)

Individual 2

Figure 10.3 The competitive equilibrium in Figure 10.1, with the diagram for individ-
ual 2 rotated 180 degrees.

and rotate the right-hand panel, which represents individual 2’s optimization
problem, 180 degrees, to get Figure 10.3. Then we move the panels together,
so that the initial bundles (represented by small green disks) coincide, to get Fig-
ure 10.4a. In this diagram, a point in the rectangle bounded by the two sets of
axes represents an allocation, with the bundle assigned to individual 1 plotted
relative to the axes with origin at the bottom left, and the bundle assigned to
individual 2 plotted relative to the axes with origin at the top right.

The green disk in the figure represents the individuals’ initial bundles; the
segment of the black line between the blue disks (viewed relative to individual 1’s
axes) represents individual 1’s budget set, and the segment between the violet
disks (viewed relative to individual 2’s axes) represents individual 2’s budget set.
The line corresponds to a competitive equilibrium if the disk representing the
optimal bundle x 1 of individual 1 coincides with the disk representing the opti-
mal bundle x 2 for individual 2, as it does in Figure 10.4a, because in this case the
assignment in which each individual gets her optimal bundle given the price sys-
tem is an allocation. Figure 10.4b shows a price system that does not correspond
to a competitive equilibrium: the total amount of good 1 demanded is less than
the total amount available and the total amount of good 2 demanded exceeds
the total amount available.

The set of Pareto stable allocations and the core are shown in Figure 10.5. Ev-
ery allocation on the line colored black and red connecting individual 1’s origin
to individual 2’s origin is Pareto stable. The reason is that every allocation on or
above the indifference curve of one individual through the allocation is below
(relative to other individual’s origin) the indifference curve of the other individ-
ual through the allocation. Similarly, any allocation not on the black and red line
is not Pareto stable, because there is another allocation in which both individuals
are better off.
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0 x 1
1 →

↑
x 1

2

x 1

0← x 2
1

↑x
2
2

x 2

(a) The competitive equilibrium in Fig-
ure 10.1, with the diagram for individual 2
rotated 180 degrees and moved so that the
points representing the individuals’ initial
bundles coincide.

0 x 1
1 →

↑
x 1

2

x 1

0← x 2
1

↑x
2
2

x 2

(b) A price system that is not consistent
with a competitive equilibrium.

Figure 10.4 Edgeworth boxes.

An allocation is in the core of this two-individual economy if and only if it
is Pareto stable and each individual likes the allocation at least as much as her
initial bundle. Thus the core is the set of allocations on the red line in Figure 10.5.

Problems

1. Examples. Consider the following exchange economies, in which n A indi-
viduals have preferences represented by the utility function u A and initial
bundle e A and n B individuals have preferences represented by the utility
function u B and initial bundle e B .

economy n A n B u A u B e A e B

E1 1 1 x1+x2 min{x1,x2} (α,0) (0,β )
E2 1 2 x1+x2 min{x1,x2} (1,0) (0,1)
E3 n A n B x2 x1 (α,0) (0,β )
E4 1 1 x1x2 x 2

1x2 (2,3) (5,4)

a. Characterize the competitive equilibria of E1 for α ≤ β ≤ 2α. Draw the
Edgeworth box of E1 and indicate the set of Pareto stable allocations and
the core.

b. Characterize the competitive equilibria of E2.

c. Characterize the competitive equilibria of E3.
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0
x 1

1 →

↑
x 1

2

← x 2
1

x 2
2

↓

core

e

0

Figure 10.5 The core (red line) and set of Pareto stable allocations (core plus black lines).

d. Find the competitive equilibria of E4. (Ariel does not like problems like
this one, but suggests you do the problem, so that you appreciate what
you would be missing.) You should conclude that the competitive price
system is ( 25

16
,1).

2. A market with perfectly complementary goods. All individuals in an exchange
economy have preferences represented by the function min{x1,x2}; n 1 of
them have the initial bundle (1,0) and the remaining n 2 have the initial bun-
dle (0,1), where n 1 ≥ n 2.

a. Show that the allocation in which each individual holds the bundle
(n 1/(n 1+n 2), n 2/(n 1+n 2)) is Pareto stable.

b. Show that this allocation is in the core if and only if n 1 = n 2.

c. What are the competitive equilibria of the economy when n 1 > n 2?

3. Replicating a market. Let M 1 = 〈N , (¼i )i∈N , e 〉 be an exchange economy in
which N = {A, B}. Let M n be the exchange economy containing n individu-
als identical to A (type A) and n individuals identical to B (type B ).

a. Suppose that (p , a ) is a competitive equilibrium of M 1 and that the as-
signment b in M n gives each of the n individuals of type A the bundle
a (A) and each of the n individuals of type B the bundle a (B ). Show that
(p ,b ) is a competitive equilibrium of M n .

b. Show that if all individuals have strictly convex preferences and (p ,b ) is
a competitive equilibrium of M n , then all individuals of type A consume
the same bundle, say xA , and all individuals of type B consume the same
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bundle, say x B , and (p , a ) with a (A) = xA and a (B ) = x B is a competitive
equilibrium of M 1.

4. Robinson Crusoe economy. Consider an exchange economy with a single in-
dividual, R , who has the initial bundle e . A competitive equilibrium of this
economy is a pair (p ,x ∗)where p is a price system and x ∗ is a bundle, with x ∗

optimal for R in {x ∈ R2
+ : px = p e } and x ∗ = e . Assume that R ’s preference

relation is monotone, continuous, and convex. Explain graphically why this
economy has a competitive equilibrium.

5. Economy with nonconvex preferences. We remark before Proposition 10.2
that one of the sufficient conditions for the existence of a competitive equi-
librium in an exchange economy is that the individuals’ preferences are con-
vex. In this question you will see that competitive equilibrium may exist if
the individuals’ preferences are not convex. Consider an exchange econ-
omy with two individuals whose preferences are represented by the utility
function (x1)2+(x2)2, and thus are not convex (see Problem 1a in Chapter 4).
Assume that ek (1)+ ek (2)> 0 for k = 1, 2.

a. Show that the economy with e (1) = (α,0) and e (2) = (0,β ) has a competi-
tive equilibrium.

b. Show that if the economy has a competitive equilibrium then the equi-
librium prices are equal.

c. Show that if e (1) = e (2) = (2,1) then the economy has no competitive
equilibrium.

d. Characterize all initial allocations for which the economy has a competi-
tive equilibrium.

6. Integration of exchange market and housing market. In the exchange econ-
omy 〈N , (¼i )i∈N , e 〉 the initial bundle of each individual differs from the initial
bundle of every other individual (e (i ) 6= e (j ) for all i 6= j in N ). Each indi-
vidual has a monotone, continuous, and convex preference relation. Rather
than assuming that each individual can choose any bundle in R2

+, assume
that each individual can choose only one of the bundles held initially by one
of the individuals.

a. Assume that in equilibrium a price is attached to each bundle (not each
good). Explain how the housing model of Chapter 9 can be applied to
define an equilibrium of the market.

b. Construct an example of such an economy with four individuals where
e (1) = (2,0), e (2) = (0,2), e (3) = (1,0), and e (4) = (0,1) such that any
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competitive equilibrium price function p is not linear in the sense that
for no (p1, p2) is it the case that p (e (i )) = p1e1(i )+p2e2(i ) for all i .

7. Economy with differentiable preferences. Characterize in an Edgeworth box
(Section 10.9) all the Pareto stable allocations in an exchange economy with
two individuals in which the sum of the individuals’ initial bundles is (1,1),
the individuals’ preference relations are strictly monotone, convex, and dif-
ferentiable, and, for each individual, the marginal rate of substitution is less
than 1 at each bundle (x1,x2) for which x1+x2 > 1, greater than 1 at each bun-
dle for which x1+x2 < 1, and equal to 1 at each bundle for which x1+x2 = 1.

8. Exchange economy with one indivisible good. Consider an exchange econ-
omy 〈N , (¼i )i∈N , e 〉 in which N = {1, . . . , n}, where n is odd. Good 1 can be
consumed only in the amounts 0, 1, or 2 whereas good 2 can be consumed in
any amount. Assume that each individual i has a preference relation repre-
sented by the function t i x1+x2, where t 1 > t 2 > · · ·> t n > 0, and initially has
the bundle (1, M i ), where M i > t 1. Characterize the competitive equilibria of
this economy.

9. One individual determines the prices. Consider an exchange economy with
two individuals in which individual 2 chooses the price ratio and commits to
comply with any exchange that individual 1 chooses given that ratio. Individ-
ual 2 foresees 1’s response and chooses the exchange rate so that individual
1’s response is best for her (individual 2). Use an Edgeworth box to show
graphically the following two results.

a. The outcome of the procedure might (and typically does) differ from a
competitive equilibrium, and when it differs it is better for individual 2.

b. Proposition 10.3 does not hold for the procedure: if the outcome of the
procedure is the allocation b and the individuals are assigned the bun-
dles b (1) and b (2) then individual 2 can achieve a bundle better than b (2)
by announcing a price for a trade away from b .

Notes

The modern theory of competitive equilibrium, which has its origins in the work
of Walras (1874), was developed by Kenneth J. Arrow, Gerard Debreu, and Lionel
McKenzie (see for example Arrow and Debreu 1954, Debreu 1959, and McKenzie
1954, 1959). The Edgeworth box (Section 10.9) was introduced by Edgeworth
(1881, 28, 114).





11 Variants of an exchange economy

In this chapter we study two variants of the model of an exchange economy that
demonstrate the richness of the model. In the first variant we insert into the
framework the basic model of supply and demand for a single indivisible good
(with which you may be familiar from an introductory course in economics). In
the second variant we use the framework to capture a situation in which individ-
uals face uncertainty about the future resources. This variant is used to analyze
markets for insurance and bets.

11.1 Market with indivisible good and money

A single indivisible good is traded in a market for money. Each person can con-
sume either one unit of the good, or none of it. Consuming more than one unit,
or a fraction of a unit, is impossible. A ticket for a performance and member-
ship in a club are examples of such goods. Some people initially own one unit of
the good and some do not. Every person is characterized by the monetary value
she assigns to having one unit of the good. There is room for trade if the value
assigned by some person who initially has the good is lower than the value as-
signed by some person who does not initially have the good. In that case, many
transactions may be mutually beneficial for the pair of people. We are interested
in who buys the good, who sells it, and the prices at which the transactions take
place.

11.1.1 Model

The model is a variant of an exchange economy with two goods. Good 1 is money,
which can be held in any nonnegative amount, and good 2 is an indivisible good,
which can be held (1) or not held (0). Thus a bundle is a pair (x1,x2), where x1 is a
nonnegative number and x2 is either 0 or 1. Formally, the set of possible bundles
of goods (which is R2

+ in the previous chapter) is

X = {(x1,x2) : x1 ∈R+ and x2 ∈ {0,1}}=R+×{0,1}.

We assume that the preferences over X of each individual i are represented by
the function x1+ v i x2 where v i ≥ 0. Thus individual i prefers the bundle (s ,1) to
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the bundle (t ,0) if and only if s+v i > t . That is, she prefers holding the indivisible
good to not owning it if and only if she has to give up less than v i units of money
to obtain it. We refer to v i as i ’s valuation of the good.

We assume that every individual who does not own the indivisible good ini-
tially has enough money to pay her valuation to obtain the good: no individual
is cash constrained. That is, for every individual i whose initial bundle e (i ) has
e2(i ) = 0 we assume that e1(i )≥ v i .

Definition 11.1: Exchange economy with indivisible good and money

An exchange economy with an indivisible good and money 〈N , (v i )i∈N , e 〉
has the following components.

Individuals
A finite set N .

Valuations
For each individual i ∈N , a nonnegative number v i (i ’s valuation of the
good); the preference relation of each individual i over X = R+×{0,1}
is represented by the function u i defined by u i (x1,x2) = x1+ v i x2.

Initial allocation
A function e that assigns to each individual i a bundle e (i ) ∈ X , the
bundle that i initially owns, with e1(i )≥ v i if e2(i ) = 0.

Individual i is a (potential) buyer if e2(i ) = 0 and a (potential) seller
if e2(i ) = 1. To avoid degenerate cases, we assume that the economy
contains at least one buyer and one seller.

As for an exchange economy studied in the previous chapter, we assume that
a single price for the indivisible good prevails. No individual has the power to
influence the price and every individual believes that she can trade the good at
this price, and only at this price.

The assumption that all transactions take place at the same price is not obvi-
ously reasonable. Consider, for example, the economy that consists of two buy-
ers, B4 and B10, with valuations 4 and 10, and two sellers, S0 and S6, with val-
uations 0 and 6. If first B10 meets S6 they may trade at a price between 6 and
10. If, subsequently, B4 meets S0 they may trade at a price between 0 and 4.
Whether such a sequence of transactions occurs might depend on the informa-
tion available to the individuals about other individuals’ valuations and the pat-
tern in which they meet. For example, if B10 realizes that S0 is about to sell the
good at a price of at most 4, she might approach S0 and offer her a price between
4 and 6. The concept of competitive equilibrium that we study in this chapter
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does not model the formation of prices; it simply assumes that somehow a price
emerges and becomes known to all individuals.

As the equilibrium notion we adapt the concept of competitive equilibrium
for an exchange economy. We set the price of money to be 1. Thus a price sys-
tem is a pair (1, p ), where p is the amount of money transferred from a buyer to
a seller in exchange for the indivisible good. The budget set of each seller i con-
tains two bundles, (e1(i ),1) (she retains the good) and (e1(i ) +p ,0) (she sells the
good). She optimally sells the good if p > v i , and is indifferent between selling
and not if p = v i . Similarly, the budget set of each buyer i contains two bundles,
(e1(i )−p ,1) (she buys the good) and (e1(i ),0) (she does not). She optimally buys
the good if p < v i , and is indifferent between buying and not if p = v i . A price p
is an equilibrium price if the number of units buyers wish to purchase is equal to
the number of units sellers wish to sell.

Definition 11.2: Competitive equilibrium of exchange economy with
indivisible good and money

A competitive equilibrium of the exchange economy with an indivisible
good and money 〈N , (v i )i∈N , e 〉 is a pair (p , a )where

• p is a nonnegative number (the price of the indivisible good)

• a = (a (i ))i∈N is a profile of bundles

such that

optimality of choices
for each individual i , (i) a 2(i ) = 1 if p < v i , (ii) a 2(i ) = 0 if p > v i , and
(iii) a 1(i ) = e1(i )+p (e2(i )−a 2(i )).

feasibility∑
i∈N a (i ) =

∑
i∈N e (i ).

Notice the analogue of Proposition 10.1 for this model: if the total amount
of the indivisible good demanded by all individuals is equal to the total amount
available, that is,

∑
i∈N a 2(i ) =

∑
i∈N e2(i ), then the total amount of money de-

manded by all individuals,
∑

i∈N (e1(i ) + p (e2(i )− a 2(i ))), is equal to
∑

i∈N e1(i ),
the total amount of money available.

Consider the economy with four individuals we specified earlier. Every price
p with 4 ≤ p ≤ 6 is part of an equilibrium, in which B10 buys the good, S0 sells
the good, and the other two individuals refrain from trade. A price greater than
6 is not part of an equilibrium since for such a price at most one individual, B10,
wants to have the indivisible good but two units of it are available. By a similar
argument, a price less than 4 is not part of an equilibrium.
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Example 11.1

An exchange economy with an indivisible good and money contains 14
sellers with valuation 0 and 17 buyers with valuation 100.

This economy has no equilibrium with a price less than 100, because
at such a price all 17 buyers optimally choose to have the good, but only
14 units of the good are available. Also the economy has no equilibrium
with a price greater than 100, because at such a price no individual wants
to have the good. Thus the only possible equilibrium price is 100. At this
price, all 14 sellers optimally wish to sell the good and every buyer is indif-
ferent between buying and not buying the good. Therefore the price 100
together with a profile of choices in which every seller sells her unit, 14 of
the 17 buyers choose to buy a unit, and the remaining 3 buyers choose not
to do so, is a competitive equilibrium.

Note that a competitive equilibrium may involve no trade. If the valuation
of every seller exceeds the valuation of every buyer, in no competitive equilib-
rium does any trade take place; an equilibrium price is any number between the
lowest valuation among the sellers and the highest valuation among the buyers.

The following result proves that competitive equilibrium exists and charac-
terizes all equilibria.

Proposition 11.1: Characterization of competitive equilibrium

Let 〈N , (v i )i∈N , e 〉 be an exchange economy with an indivisible good and
money. Denote the number of individuals by n and name them so that
v 1 ≥ v 2 ≥ · · · ≥ v n . Denote by s the number of sellers (equal to the number
of units of the indivisible good available). A number p is a competitive
equilibrium price for the economy if and only if v s+1 ≤ p ≤ v s .

Proof

Let p ∈ [v s+1, v s ] and define the allocation a as follows.

individuals a (i )

buyers i ∈ {1, . . . , s } (e1(i )−p ,1)
sellers i ∈ {1, . . . , s } (e1(i ),1)

buyers i ∈ {s +1, . . . , n} (e1(i ),0)
sellers i ∈ {s +1, . . . , n} (e1(i )+p ,0)

The optimality condition is satisfied since any individual whose valuation
is greater than p is in {1, . . . , s } and any individual whose valuation is less
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Figure 11.1 Equilibria of exchange economies with an indivisible good and money. The
red lines represent the sellers’ valuations and the blue lines represent the buyers’ valu-
ations. The green line segment and disk on the vertical axis represent the equilibrium
prices and the green disks on the horizontal axis represent the number of units traded in
an equilibrium.

than p is in {s + 1, . . . , n}. The allocation is feasible because
∑

i∈N a 2(i ) =
s =

∑
i∈N e2(i ). Thus (p , a ) is a competitive equilibrium.

A price greater than v s is not an equilibrium price because for such a
price the number of individuals who optimally hold the good is less than
s . Similarly, a price less than v s+1 is not an equilibrium price.

Comments

1. This result is illustrated in Figure 11.1. The blue lines show the buyers’ val-
uations, plotted in descending order. The length of each solid line segment
is the number of buyers whose valuations are equal to the height of the seg-
ment. The red lines similarly show the sellers’ valuations, plotted in ascend-
ing order. In the left panel economy, there is a range of competitive equilib-
rium prices, indicated in green; in every equilibrium the total amount of the
good traded is q ∗. In the right panel economy, there is a unique competitive
equilibrium price p ∗ and a range of possible equilibrium quantities.

2. The result implies that an economy has a unique equilibrium price if and
only if v s = v s+1. In this case, as in the right-hand panel of Figure 11.1, the
number of equilibrium transactions is not unique. For example, if s is a seller
and s+1 is a buyer, then there is an equilibrium in which these two trade, and
also an equilibrium in which they do not.

We now characterize the Pareto stable allocations and prove that, as in the
model of the previous chapter, every competitive equilibrium allocation is Pareto
stable.
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Proposition 11.2: Pareto stable allocations

Let 〈N , (v i )i∈N , e 〉 be an exchange economy with an indivisible good and
money. (a) An allocation a is Pareto stable if and only if v i ≥min{v j , a 1(j )}
for any pair (i , j ) of individuals in which i holds the good (a 2(i ) = 1) and j
does not (a 2(j ) = 0). (b) Every competitive equilibrium allocation is Pareto
stable.

Proof

(a) Consider an allocation a which in which a 2(i ) = 1, a 2(j ) = 0, and v i <

min{v j , a 1(j )}. Let b be the allocation identical to a except that b (i ) =
(a 1(i ) +δ,0) and b (j ) = (a 1(j )−δ,1) where v i < δ <min{v j , a 1(j )}. Then
b is feasible and Pareto dominates a , so that a is not Pareto stable.

Now let a be an allocation such that for any pair of individuals i and j
for which a 2(i ) = 1 and a 2(j ) = 0, we have v i ≥min{v j , a 1(j )}. We argue
that a is Pareto stable.

Suppose the allocation b Pareto dominates a . By the feasibility of a and
b , the number k of individuals who hold the good in a but not in b is equal
to the number of individuals who hold the good in b but not in a (refer to
Figure 11.2). Denote by v the lowest valuation of an individual who holds
the good in a .

If b2(i ) = a 2(i ) then b1(i )≥ a 1(i ). For each of the k individuals for whom
a 2(i ) = 1 and b2(i ) = 0, we have b1(i )≥ a 1(i )+v i ≥ a 1(i )+v . For each of the
k individuals for whom a 2(i ) = 0 and b2(i ) = 1 we have b1(i ) + v i ≥ a 1(i )
and b1(i )≥ 0. Thus b1(i )≥ a 1(i )−min{v i , a 1(i )}. By the assumption on a ,
v j ≥min{v i , a 1(i )} for all j who hold the good in a so v ≥min{v i , a 1(i )}
and thus b1(i )≥ a 1(i )−v . For at least one individual the inequality is strict,
so that

∑
i∈N b1(i )>

∑
i∈N a 1(i ), contradicting the feasibility of b . Thus no

allocation Pareto dominates a .
(b) Let (p ∗, a ) be a competitive equilibrium. Then for every individual i

who holds the good v i ≥ p ∗, and for every individual j who does not hold
the good v i ≤ p ∗. Then (a) implies that a is Pareto stable.

Recall that an allocation is in the core of an exchange economy if no subset
of individuals can secede from the economy and allocate their initial bundles (in
this case, units of the good and money) between themselves so that they are all
better off. Proposition 10.5, showing that a competitive equilibrium allocation is
in the core of an exchange economy, holds also for an exchange economy with
an indivisible good and money (as you can verify). Further, for such an economy,
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a

b

v i ≥ v v i ≤ v

b1(i )≥ a 1(i ) b1(i )≥ a 1(i )+ v b1(i )≥ a 1(i )− v b1(i )≥ a 1(i )

︷ ︸︸ ︷
k

︷ ︸︸ ︷
k

Figure 11.2 An illustration of the argument in the second part of the proof of part (a) of
Proposition 11.2. Each disk represents an individual who holds the indivisible good, and
each circle represents an individual who does not hold the good.

a stronger result is true: every core allocation is a competitive equilibrium allo-
cation, so that the core is exactly the set of competitive allocations.

Proposition 11.3: Core and competitive equilibrium

For every allocation a in the core of an exchange economy with an indivis-
ible good and money there is a number p such that (p , a ) is a competitive
equilibrium of the economy.

Proof

Denote the economy 〈N , (v i )i∈N , e 〉. We have a 1(i )+v i a 2(i )≥ e1(i )+v i e2(i )
for every individual i since otherwise i can improve upon a by herself.
Also, if a 2(i ) = e2(i ) then a 1(i ) = e1(i ) because if a 1(i ) > e1(i ) then the set
N \ {i } of individuals can improve upon a (it has the same amount of the
indivisible good in a and e but has less money in a ).

If a = e then the valuation of every individual who holds the good in a
is at least as high as the valuation of any individual who does not hold the
good, since otherwise such a pair can improve upon a (given the assump-
tion that each buyer i has at least v i units of money). In this case (p , a )
is an equilibrium for any p with maxi∈N {v i : a 2(i ) = 0} ≤ p ≤mini∈N {v i :
a 2(i ) = 1}.

Now suppose a 6= e . Let B = {i ∈N : e2(i ) = 0 and a 2(i ) = 1} and S = {i ∈
N : e2(i ) = 1 and a 2(i ) = 0}. Since a 6= e both B and S are nonempty and by
the feasibility of a they have the same size. For every other individual i we
have a (i ) = e (i ).

If a 1(j )− e1(j ) < e1(i )− a 1(i ) for some j ∈ S and i ∈ B (seller j receives
less than buyer i pays) then for any number p with a 1(j )− e1(j ) < p <
e1(i )−a 1(i ) the set {i , j } can improve upon a with the bundles (e1(i )−p ,1)
for i and (e1(j )+p ,0) for j .
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e :

a : e (i ) e (i )

S B

a 2(i ) = 0 & a 1(i )− e1(i )≥ v i a 2(i ) = 1 & e1(i )−a 1(i )≤ v i

sellers buyers

Figure 11.3 An illustration of the sets S and B in the proof of Proposition 11.3.

Thus for all i ∈ B and j ∈ S we have e1(i )− a 1(i ) ≤ a 1(j )− e1(j ). By the
feasibility of a ,

∑
i∈B (e1(i )−a 1(i )) =

∑
j∈S(a 1(j )− e1(j )) (given that a 1(k ) =

e1(k ) for all k /∈ B ∪S). Thus e1(i )− a 1(i ) is the same for all i ∈ B , a 1(j )−
e1(j ) is the same for all j ∈ S, and these amounts are equal. Denote their
common value by p .

It remains to show that (p , a ) is an equilibrium. Consider an individual
i with e2(i ) = 0. If v i < p then i /∈ B because if i ∈ B then a 1(i ) = e1(i )−p
and hence e1(i )> a 1(i )+v i (buyer i pays more than v i for the good) so that
e (i ) is better for i than a (i ). If v i > p then i ∈ B since otherwise a (i ) = e (i )
and i can join with any j ∈ S to improve upon a (i is willing to pay more
than the amount j receives). Similarly for an individual i with e2(i ) = 1.

11.2 Exchange economy with uncertainty

People are uncertain about the future, and often believe that their wealth de-
pends on it. To mitigate the impact of uncertainty, they engage in contracts in-
volving payments that depend on the form the future may take. By using such
contracts, they may insure each other. For example, if in future A person 1 has
a high wealth and in future B she has a low wealth, and the reverse is true for
person 2, then they may both be better off with a contract that transfers money
from person 1 to person 2 in future A in exchange for a transfer from person 2 to
person 1 in future B . We study the terms of such contracts in an equilibrium of a
model like the one in Chapter 10.

11.2.1 Model

We call each possible future a state of the world, or simply a state, and assume
for simplicity that only two states, called 1 and 2, are possible. Every individual
believes that the probability of state k is πk , with πk > 0. All individuals agree
on these probabilities. The individuals buy and sell contracts that specify pay-
ments depending on the state that occurs. We model these contracts by stretch-
ing the notion of a good: good k is a payment of 1 unit of money if state k occurs
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Figure 11.4 An indifference set of an individual whose preference relation is represented
by a utility function π1u i (x1)+π2u i (x2), where u i is a Bernoulli utility function.

and nothing otherwise. Thus the owner of the bundle (x1,x2) obtains x1 units of
money if the state is 1 and x2 units of money if the state is 2. Each individual i
starts with the initial bundle e (i ).

We assume that each individual’s enjoyment of the money she gets is inde-
pendent of the state. Thus a bundle (x1,x2) is viewed by each individual as a
lottery that gives x1 units of money with probability π1 and x2 with probability
π2. In particular, if x1 = x2 then the bundle gives the same amount in each state,
and thus corresponds to a sure outcome.

The preferences over lotteries of each individual i are assumed to be repre-
sented by the expected value of a Bernoulli utility function u i , so that her prefer-
ence relation over the set of bundles (x1,x2) is represented by the utility function
U i (x1,x2) =π1u i (x1)+π2u i (x2). We assume that each individual is risk-averse, so
that u i is concave, and for convenience assume also that u i is differentiable. The
marginal rate of substitution for individual i at (x1,x2) is thus π1u ′i (x1)/π2u ′i (x2).
Thus it is π1/π2 if x1 = x2, greater than π1/π2 if x1 < x2, and less than π1/π2 if
x1 < x2 as illustrated in Figure 11.4.

To summarize, we study the following model.

Definition 11.3: Exchange economy with uncertainty

An exchange economy with uncertainty 〈N , (u i )i∈N , (π1,π2), e 〉 consists of

individuals
a finite set N

utility functions
for each individual i ∈ N , a differentiable concave function u i : R→ R
(i ’s Bernoulli utility function)
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probabilities of states
probabilities π1 and π2 with π1+π2 = 1 (πk is the probability that each
individual assigns to state k )

initial allocation
a function e that assigns to each individual i a bundle e (i ) ∈ R2, the
bundle that i initially owns.

The notion of equilibrium we use is an adaptation of the notion of competi-
tive equilibrium for an exchange economy.

Definition 11.4: Competitive equilibrium of economy with uncertainty

A competitive equilibrium of the exchange economy with uncertainty
〈N , (u i )i∈N , (π1,π2), e 〉 is a competitive equilibrium of the exchange econ-
omy 〈N , (¼i )i∈N , e 〉 where ¼i is a preference relation represented by the
utility function π1u i (x1)+π2u i (x2).

11.2.2 Uncertainty about distribution of wealth

We start by considering an economy in which the total amount of money avail-
able to all individuals is independent of the state of the world, but the distribu-
tion of the money among the individuals may depend on the state. We show that
if each individual is strictly risk-averse (her Bernoulli utility function is strictly
concave) then in a competitive equilibrium the individuals perfectly insure each
other, consuming the same bundle in each state.

Proposition 11.4: Competitive equilibrium of economy with uncertainty

Let 〈N , (u i )i∈N , (π1,π2), e 〉 be an exchange economy with uncertainty in
which each function u i is strictly concave. Assume that

∑
i∈N e (i ) = (c , c )

for some c > 0. This economy has a unique competitive equilibrium (p , a )
in which p1/p2 = π1/π2 and a (i ) = (π1e1(i ) +π2e2(i ),π1e1(i ) +π2e2(i )) for
each individual i . That is, each individual consumes with certainty the
expected amount of money she owns initially.

Proof

We first argue that (p , a ) is a competitive equilibrium. We have p1/p2 =
π1/π2, so that a bundle (x1,x2) is on individual i ’s budget line if π1x1 +
π2x2 = π1e1(i ) +π2e2(i ). That is, all bundles on the budget line represent
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x1→

↑
x2

e (i )

Slope
=−π1/π2

Indifference set of
π1u i (x1)+π2u i (x2)

a (i )

45◦

a 1(i )

a 2(i )

Figure 11.5 If p1/p2 = π1/π2 then an individual i for whom u i is strictly concave opti-
mally consumes the bundle a (i ) on her budget line for which a 1(i ) = a 2(i ).

lotteries with the same expectation. Therefore, by i ’s strict risk aver-
sion the only optimal bundle for her is a (i ), which gives the amount
π1e1(i ) + π2e2(i ) with certainty. (See Figure 11.5.) The allocation a is
feasible because for each good k
∑

i∈N

a k (i ) =
∑

i∈N

(π1e1(i )+π2e2(i )) =π1

∑

i∈N

e1(i )+π2

∑

i∈N

e2(i ) =π1c +π2c = c .

The economy has no competitive equilibrium (q ,b )with q1/q2 6=π1/π2.
If q1/q2 <π1/π2 then the bundle b (i ) optimal for each individual i satisfies
b1(i ) > b2(i ), so that

∑
i∈N b1(i ) >

∑
i∈N b2(i ), contradicting the feasibil-

ity condition that the total amount in each state is the same, equal to c .
Similarly the economy has no equilibrium in which q1/q2 >π1/π2.

11.2.3 Collective uncertainty

Now suppose that state 1 is a disaster that reduces the total wealth. Then the
equilibrium price ratio is greater than π1/π2 and every individual consumes less
in state 1 than in state 2.

Proposition 11.5: Competitive equilibrium of economy with uncertainty

Let 〈N , (u i )i∈N , (π1,π2), e 〉 be an exchange economy with uncertainty in
which each function u i is strictly concave and

∑
i∈N e1(i ) <

∑
i∈N e2(i ). In

a competitive equilibrium (p , a ), (i) p1/p2 >π1/π2 and (ii) a 1(i )< a 2(i ) for
every individual i .
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Proof

(i) If p1/p2 ≤ π1/π2 then the bundle x (i ) optimal for individual i satisfies
x1(i ) ≥ x2(i ) and thus

∑
i∈N e1(i ) =

∑
i∈N x1(i ) ≥

∑
i∈N x2(i ) =

∑
i∈N e2(i ),

which contradicts our assumption that the total wealth is less in state 1
than in state 2. (ii) Since the marginal rate of substitution at (x1,x2) with
x1 ≥ x2 is at most π1/π2, (i) implies a 1(i )< a 2(i ).

11.2.4 An economy with a risk-neutral insurer

Now suppose that each individual owns one unit of wealth, which will be wiped
out if state 1 occurs. The market is served by an insurer who is involved also in
many other markets. The risks in each market are independent of the risks in
every other market, so that the insurer faces little risk in aggregate. Thus it seems
reasonable to model the insurer as acting in any given market to maximize her
expected wealth (π1x1+π2x2). That is, we model the insurer as being risk-neutral.
The next result shows that in a competitive equilibrium in such an economy the
risk-averse individuals may be fully insured or only partially insured, depending
on the size of the insurer’s initial resources.

Proposition 11.6: Competitive equilibrium in market with insurer

Let 〈N , (u i )i∈N , (π1,π2), e 〉 be an exchange economy with uncertainty in
which N = {I } ∪M , where I is risk-neutral and all m members of M
are strictly risk-averse, with the same strictly concave utility function u .
Assume that e (I ) = (α,α) and e (i ) = (0,1) for every i ∈M .

a. If α ≥ mπ2 then the economy has a unique competitive equilibrium
(p , a ), in which p1/p2 = π1/π2, a (I ) = (α−mπ2,α+mπ1), and a (i ) =
(π2,π2) for all i ∈M .

b. If α < mπ2 then the economy has a competitive equilibrium. In
any equilibrium p1/p2 > π1/π2, a (I ) = (0,α(1 + p1/p2)), and a (i ) =
(α/m ,1−αp1/(m p2)) for all i ∈M .

Proof

First note that in both cases the economy has no equilibrium with p1/p2 <

π1/π2, since for such a price ratio we have a 1(I ) > α, so that the insurer’s
demand for good 1 exceeds the amount available in the economy.
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a. We first show that (p , a ) is the unique equilibrium with p1/p2 =
π1/π2. For such a price system the only optimal bundle of each individ-
ual i ∈ M is a (i ) = (π2,π2). Given α ≥ mπ2, in any such equilibrium
feasibility requires that the insurer chooses the bundle a (I ) = (α−mπ2,
α+mπ1). This bundle is on the insurer’s budget line and hence is optimal
for her since all bundles on her budget line yield the same expected utility.
Thus the pair (p , a ) is the unique equilibrium.

The economy has no equilibrium (q ,b ) in which q1/q2 > π1/π2. For
such a price ratio, I ’s optimal bundle is (0,α(q1+q2)/q2) (see the left panel
in Figure 11.6) and b1(i ) < q2/(q1+q2) for each i ∈M (see the right panel
in Figure 11.6). Hence

b1(I )+
∑

i∈M

b1(i )<m
q2

q1+q2
=m

1

1+q1/q2
<m

1

1+π1/π2
=mπ2 ≤α

contradicting the equilibrium condition that the total demand for good 1
is equal to α.

b. The economy has no equilibrium with price ratio π1/π2 since then
each individual i ∈M optimally chooses the bundle (π2,π2), contradicting
the feasibility requirement, given α<mπ2.

Thus in any equilibrium (q ,b )we have q1/q2 >π1/π2 and hence the in-
surer chooses b (I ) = (0,α(q1 +q2)/q2) (as in the left panel of Figure 11.6).
The feasibility constraint then requires that b1(i ) = α/m for all i ∈ M .
Thus the price system q is part of an equilibrium if and only if q1/q2

is equal to the marginal rate of substitution for each member of M at
(α/m ,1−αq1/(mq2)) . Our assumptions ensure that at least one such price
system exists. Although this result is intuitively plausible, the proof is be-
yond the scope of this book. The main idea of the proof is that the amount
of good 1 demanded by an individual is π2 if q1/q2 = π1/π2 and is close to
0 if q1/q2 is large enough, so that for some intermediate value of q1/q2 her
demand is α/m .

Comment

One purpose in building and analyzing formal models is to test our intuitions
about the world. The analysis may sharpen our intuition or, alternatively, sug-
gest that our assumptions are not reasonable. Proposition 11.6 leads us to a con-
clusion of the latter type. In a competitive equilibrium, the insurer’s profit is
zero, whereas the individuals prefer the bundles they are allocated to their initial
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↑
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e (I )
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Figure 11.6 If q1/q2 > π1/π2 then the insurer’s optimal bundle is (0,α(q1 +q2)/q2) (left
panel) and individual i ’s optimal bundle b (i ) satisfies b1(i )<q2/(q1+q2) (right panel).

bundles. This result conflicts with our intuition that a large insurer will achieve
a large profit at the expense of the risk-averse individuals. The result appears to
depend on the assumption that the single large insurer takes prices as given, an
assumption that does not seem reasonable. Our intuition suggests that a large
monopolistic insurer will be able to exercise market power, committing to prices
that generate a positive profit.

11.2.5 Heterogeneous beliefs

We have assumed so far that the probability assigned to any given state is the
same for all individuals. The next example considers an economy in which the
individuals’ beliefs about the states differ.

Example 11.2: Exchange economy with uncertainty and heterogeneous
beliefs

Consider a variant of an exchange economy with uncertainty in which
the probabilities the individuals assign to the states differ. The set of in-
dividuals is N = {1,2} and each individual i ’s Bernoulli utility function
is u i (x ) = x , her initial bundle is e (i ) = (1,1), and she assigns probabil-
ity π1(i ) to state 1 and π2(i ) to state 2. We suggest you verify that the
following table describes the unique competitive equilibrium for various
configurations of the individuals’ beliefs.

p a (1) a (2)
1
2
<π1(2)<π1(1) (π1(2),π2(2)) (1/π1(2),0) (2−1/π1(2),2)
π1(2)<

1
2
<π1(1) ( 1

2
, 1

2
) (2,0) (0,2)

π1(2)<π1(1)<
1
2
(π1(1),π2(1)) (2,2−1/π2(1))) (0,1/π2(1)))
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Thus when both individuals believe that state 1 is more likely than state
2 and individual 1 assigns higher probability than individual 2 to state 1
then the only equilibrium prices coincide with the probabilities that indi-
vidual 2 assigns to the states, and individual 1 bets only on state 1. When
the individuals disagree about the more likely state then in the unique
equilibrium each of them bets on the state she believes to be more likely.

Problems

Section 11.1

1. In equilibrium the sum of utilities is maximized. Show that in any com-
petitive equilibrium of an exchange economy with an indivisible good and
money the sum of the individuals’ utilities is maximized.

2. Equilibrium with cash constraints. In an exchange economy with an indivis-
ible good and money, each buyer is assumed to have at least as much money
as her valuation. Consider the following example of a variant of such an
economy with five individuals in which some buyers have less money than
their valuations. Characterize the competitive equilibrium of this economy
under the assumption that no individual can spend more money than she
originally holds.

i 1 2 3 4 5

v i 2 10 8 4 6
e1(i ) 13 6 5 2 10
e2(i ) 0 0 0 1 1

3. Comparative statics. Consider an exchange economy with an indivisible
good and money in which the unique competitive equilibrium price is p ∗.

a. Show that if the valuation of one of the individuals (either a buyer or a
seller) increases then any equilibrium price in the new economy is at
least as high as p ∗.

b. Show that the addition of a buyer cannot decrease the equilibrium price
of the good and the addition of a seller cannot increase this price.

4. Manipulability. Consider an exchange economy with an indivisible good
and money with a unique competitive equilibrium price. Give an example
in which an individual can benefit (according to her original preferences)
from acting as if she has a different valuation.
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5. Transaction costs. Consider a variant of an exchange economy with an in-
divisible good and money in which every individual has to decide to go to
the market or stay home. Going to the market involves a monetary loss of
c > 0. A candidate for an equilibrium is now a price of the good and a profile
of decisions for the individuals, where each individual has three alternatives:
(i) stay home with her initial bundle; (ii) go to the market and trade at the
equilibrium price; (iii) go to the market and do not trade.

Define equilibrium to be a price and a decision profile such that (a) the ac-
tion of every individual is optimal, given the price and (b) the number of
individuals who go to the market and buy the good is equal to the number of
individuals who go to the market and sell the good.

Show that any equilibrium price is an equilibrium price in the market with-
out transaction costs in which each seller with original valuation v has valu-
ation v + c and each buyer with original valuation v has valuation v − c .

6. Payments not to participate in the market. Construct an example of an ex-
change economy with an indivisible good and money where it is worthwhile
for one of the individuals to offer other individuals the following deal: “don’t
participate in the market and I will compensate you with a sum of money
that will make you better off than if you refuse my offer and participate in
the market”.

Section 11.2

7. Heterogeneous beliefs. Two individuals in an exchange economy with uncer-
tainty have the same Bernoulli utility function, u , which is increasing, strictly
concave, and differentiable. Individual 1 believes that the probability that
the yellow basketball team will win the next game is t and individual 2 be-
lieves that this probability is s , where 0 < s ≤ t < 1. The two goods in the
economy are tickets that pay $1 if the yellow team wins and $1 if the yellow
team loses. Each individual initially has 100 tickets of each type.

a. Analyze the competitive equilibrium of this market when t = s .

b. Assume that t > s . Show, graphically, that in a competitive equilibrium
individual 1 holds more tickets that pay $1 if the yellow team wins than
tickets that pay $1 if the team loses.

8. Exchange economy with uncertainty and indivisible goods. A show will take
place only if the weather permits. To watch the show, a person needs a ticket,
which will not be refunded if the show is cancelled. Each individual has a
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Bernoulli utility function that takes the value 10+m if the individual watches
the show and m if she does not, where m is the amount of money she holds.
Of the n = n 1+n 0 individuals, n 1 each initially holds a single ticket and n 0

each has initially an amount of money greater than 10 but no ticket. Each
individual i believes that the show will take place with probability t i where
0 < t n < t n−1 < · · · < t 2 < t 1 < 1. Define and characterize the competitive
equilibria of the variant of an exchange economy with an indivisible good
and money that models this situation.

9. Betting market. Two candidates, A and B run for office. An even number
n of individuals gamble on the outcome of the election. All gamblers are
risk-neutral. Gambler i assigns probability αi to A’s winning and probability
1−αi to B ’s winning. Each gambler chooses whether to bet on A or B . An in-
dividual who bets on A pays a price p and gets $1 if A wins, and an individual
who bets on B pays 1−p and gets $1 if B wins.

a. Define an equilibrium price as the price for which the number of indi-
viduals who bet on A is equal to the number of individuals who bet on B .
What is a rationale for this definition?

b. Find the equilibrium prices if there are eight gamblers and (α1, . . . ,α8) =
(0.95,0.9,0.8,0.7,0.6, 0.4,0.1,0).

10. Time preferences. Consider an economy with two types of individuals; each
individual lives for two periods. There are n individuals of generation 1, each
of whom holds $1 in period 1, and n individuals of generation 2, each of
whom holds $1 in period 2. A bundle is a pair (x1,x2) with the interpretation
that its holder consumes xt units at time t = 1, 2. The preferences of each
individual are represented by the utility function U (x1,x2) = u (x1) +δu (x2),
where 0<δ< 1 and u is increasing and strictly concave.

a. Characterize the competitive equilibria of this economy. Are the individ-
uals of generation 1 better off than those of generation 2, or vice versa?

b. (If you wish) Calculate the equilibria for the case that u (x ) =
p

x .

Notes

The adaptation of the model of an exchange economy to an environment with
uncertainty in Section 11.2 was suggested by Arrow (1964) (originally published
in French in 1953).

Problem 9 is inspired by the Iowa election markets (see http://tippie.
uiowa.edu/iem/markets/).

http://tippie.uiowa.edu/iem/markets/
http://tippie.uiowa.edu/iem/markets/




12 A market with consumers and
producers

This chapter describes two models that extend the model of an exchange econ-
omy to economies in which goods are produced. We do not analyze the models
in detail, but only prove, for each model, one result regarding the Pareto stability
of the equilibrium outcome.

12.1 Production economy

12.1.1 Introduction

Every day has a morning and an afternoon. All decision-makers face the same
price system, which remains the same during the day. Each production unit is
controlled by a manager and is owned by consumers. In the morning, each man-
ager chooses a feasible production plan. Here we assume that the manager’s ob-
jective is to maximize the profit of the production unit, on the assumption that
all of the output will be sold at the given prices. After lunch the profit of each
production unit is divided among the owners of the unit. Every individual ob-
serves the sum of the profits she has received from the production units in which
she has an ownership share. In the afternoon she chooses a consumption bundle
that is optimal for her in the budget set determined by her income and the price
system.

If every consumer is able to purchase a bundle that is optimal for her and
no surplus of any good remains, then the producers’ and consumers’ decisions
are in harmony and the prices are consistent with equilibrium. If a surplus or
shortage of some good exists (goods remain on the shelves or the shelves are
empty and some consumers cannot purchase as much as they desire), then the
economy is not in equilibrium, and we expect prices to change.

12.1.2 Model

The economy has two goods, 1 and 2, a set I of consumers, and a set J of pro-
ducers. Each consumer i is characterized by an increasing, continuous, and con-
vex preference relation ¼i on the set of bundles R2

+. Each producer j is char-
acterized by a technology, a set T (j ) ⊆ R2

+ of all the bundles she can produce.
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0 x1→

↑
x2

(z 1, z 2)

{(y1, y2)∈R2
+ :

y1 ≤ z 1, y2 ≤ z 2}

Figure 12.1 An example of a technology: a closed, bounded, convex subset of R2
+ that

includes (0,0) and has the property that for every point (z 1, z 2) in the set, every point
(y1, y2)∈R2

+ with y1 ≤ z 1 and y2 ≤ z 2 is in the set.

Each producer j chooses a member of T (j ). Notice that this formalization of
the producer’s decision is simplistic: she is endowed with production abilities
and needs merely to choose a combination of goods to produce. (She incurs no
cost.) We assume that each T (j ) is a technology, defined as follows and illustrated
in Figure 12.1.

Definition 12.1: Technology

A technology T is a set T ⊆R2
+ that is closed, bounded, and convex, and has

the property that if (x1,x2) ∈ T (j ), y1 ≤ x1, and y2 ≤ x2 then (y1, y2) ∈ T (j )
(that is, goods can be freely disposed).

Each producer j , when choosing the output of her production unit (an ele-
ment in T (j )) takes as given the price system (p1, p2) prevailing in the market and
maximizes the value of this output (the unit’s profit). That is, producer j chooses
a solution of the problem

max
x∈T (j )

px

where px = p1x1+p2x2.
The last element of the model provides a link between the production units’

profits and the consumers’ budgets. We assume that the profit of each unit is
divided among the consumers. Denote by α(i , j ) the fraction of the profit of pro-
ducer j that belongs to consumer i . All the profit of each production unit is dis-
tributed to consumers, so

∑
i∈I α(i , j ) = 1 for every j . Each consumer chooses

a bundle to maximize her preferences given her wealth, which is the total profit
she receives. Note that the model takes the ownership shares as given; it does not
include the process by which ownership is determined.
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Definition 12.2: Production economy

A production economy 〈I , J , (¼i )i∈I , (T (j ))j∈J ,α〉 consists of

consumers
a finite set I

producers
a finite set J

consumers’ preferences
for each consumer i ∈ I , a preference relation ¼i over R2

+ that is mono-
tone, continuous, and convex

technologies
for each producer j ∈ J , a technology T (j )⊆R2

+, the set of bundles that
j can produce

ownership shares
for every consumer i ∈ I and producer j ∈ J , a number α(i , j ) ∈ [0,1]
with

∑
i∈I α(i , j ) = 1 for every j ∈ J ; α(i , j ) is the fraction of producer j ’s

profit owned by consumer i .

A feasible outcome in the economy specifies the bundle chosen by each pro-
ducer and by each consumer such that the total amount of each good produced
is equal to the total amount of each good consumed.

Definition 12.3: Consumption-production plan

A consumption-production plan in the production economy 〈I , J , (¼i )i∈I ,
(T (j ))j∈J ,α〉 is a pair (x , y ) where x = (x (i ))i∈I is an assignment of bundles
to consumers and y = (y (j ))j∈J is an assignment of bundles to producers
such that y (j )∈ T (j ) for every producer j ∈ J and

∑
i∈I x (i ) =

∑
j∈J y (j ).

A candidate for a competitive equilibrium of a production economy con-
sists of a price system p ∗ = (p ∗1, p ∗2), a consumption decision x ∗(i ) for every con-
sumer i ∈ I , and a production decision y ∗(j ) for every producer j ∈ J . A candi-
date is a competitive equilibrium if the following conditions are satisfied.

• For every consumer i , the bundle x ∗(i ) is optimal given p ∗ and the income i
gets from her shares of the producers’ profits.

• For every producer j , the bundle y ∗(j )maximizes j ’s profit given p ∗ and her
technology T (j ).
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• The combination of consumption and production decisions is feasible: it is
a consumption-production plan.

Definition 12.4: Competitive equilibrium of production economy

A competitive equilibrium of the production economy 〈I , J , (¼i )i∈I ,
(T (j ))j∈J ,α〉 is a pair (p , (x , y )) consisting of

• a price system p = (p1, p2) and

• an assignment of bundles to consumers x = (x (i ))i∈I and an assign-
ment of bundles to producers y = (y (j ))j∈J

such that

optimality of consumers’ choices
for every consumer i ∈ I , the bundle x (i ) is maximal according to ¼i

in the set {x ∈ R2
+ : px =

∑
j∈J α(i , j )π(j )}, where π(j ) = py (j ) for each

j ∈ J (the profit of producer j )

optimality of producers’ choices
for every producer j ∈ J , the bundle y (j )maximizes pz subject to z ∈
T (j )

feasibility
(x , y ) is a consumption-production plan.

The notion of Pareto stability can be applied to a production economy: a
consumption-production plan is Pareto stable if no consumption-production
plan is at least as good for all consumers and better for at least one of them.

Definition 12.5: Pareto stable consumption-production plan

The consumption-production plan (x ′, y ′) in the production economy
〈I , J , (¼i )i∈I , (T (j ))j∈J ,α〉 Pareto dominates the consumption-production
plan (x , y ) if x ′(i ) ¼i x (i ) for all i ∈ I and x ′(i ) �i x (i ) for some i ∈ I .
The consumption-production plan (x , y ) is Pareto stable if no plan (x ′, y ′)
Pareto dominates it.

12.1.3 Competitive equilibrium

We now show that the consumption-production plan generated by a competitive
equilibrium of a production economy is Pareto stable (a counterpart of Proposi-
tion 10.4 for an exchange economy).
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Proposition 12.1: Pareto stability of competitive equilibrium

The consumption-production plan generated by any competitive equilib-
rium of a production economy is Pareto stable.

Proof

Let (p , (x , y )) be a competitive equilibrium of the production economy
〈I , J , (¼i )i∈I , (T (j ))j∈J ,α〉. Assume that the consumption-production plan
(x ′, y ′) Pareto dominates (x , y ). The optimality of the producers’ choices in
the competitive equilibrium implies that py (j )≥ py ′(j ) for every j ∈ J , so
that

p
∑

j∈J

y (j )≥ p
∑

j∈J

y ′(j ).

Also, px ′(i ) ≥ px (i ) for every consumer i ∈ I (if px ′(i ) < px (i ) then
given that x ′(i ) ¼i x (i ) and that ¼i is monotone, there is a bundle z with
pz < px (i ) and z �i x (i ), contradicting the optimality of x (i )). For the
consumer i for whom x ′(i )�i x (i ), we have px ′(i )> px (i ) (otherwise x (i )
is not optimal for i given the price system p ). Thus

p
∑

i∈I

x ′(i )> p
∑

i∈I

x (i ).

But the feasibility requirement of the equilibrium,
∑

i∈I x (i ) =
∑

j∈J y (j ),
so

p
∑

i∈I

x ′(i )> p
∑

i∈I

x (i ) = p
∑

j∈J

y (j )≥ p
∑

j∈J

y ′(j ),

contradicting
∑

i∈I x ′(i ) =
∑

j∈J y ′(j ).

Note that the proof of this result does not use the convexity of the preferences
or of the technology. However, without these assumptions a competitive equilib-
rium may not exist. Consider a production economy with one producer and one
consumer, who owns the producer’s profit. The consumer’s preference relation is
convex, and is represented by the function min{x1,x2}. The technology is the set
T as depicted in Figure 12.2. For any price system, the production bundle that
maximizes profit is either a or b (or both). But for any budget set the consumer’s
optimal bundle involves equal amounts of the goods. So for no price system does
the consumer’s optimal bundle coincide with the producer’s optimal bundle, as
competitive equilibrium requires in this economy.
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0 x1→

↑
x2

T

a

b

Figure 12.2 An economy with production with a single consumer and single production
unit in which the technology is not convex.

12.2 An economy with capital and labor

12.2.1 Introduction

A capitalist uses the labor of a worker to produce a good. Given the wage rate, the
capitalist decides how much labor time to buy, and the production process she
owns yields a quantity of the good; she uses some of the output to pay the worker
and consumes the remainder. The worker decides how long to work, is paid,
and consumes her income and any remaining leisure time. In an equilibrium,
wages are such that the amount of time the worker wants to work is equal to the
quantity of labor the capitalist wants to buy.

12.2.2 Model

There are two goods, a consumption good and leisure, and two individuals, a
capitalist and a worker. The production process transforms an amount of time
into an amount of the consumption good. The production function f describes
this process: the output produced by a units of time is f (a ). We assume that f is
increasing and concave, and satisfies f (0) = 0. (Figure 12.3 shows an example.)

The worker has one unit of time and decides how to divide it between leisure
and work. She is characterized by a preference relation on {(l ,x ) : 0 ≤ l ≤ 1,
x ≥ 0}, where l is an amount of leisure and x is an amount of the consumption
good. We assume that this preference relation is monotone, continuous, and
convex.

Definition 12.6: Capitalist-worker economy

A capitalist-worker economy 〈 f ,¼〉 consists of
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0 a →

f (a )

Figure 12.3 A production function.

capitalist’s technology
an increasing concave function f : R+ → R+ with f (0) = 0, the pro-
duction function available to the capitalist, which associates with ev-
ery nonnegative number a (an amount of labor) a nonnegative number
f (a ) (the amount of a consumption good produced).

worker’s preferences
a monotone, continuous, and convex preference relation ¼ over R2

+

(the worker’s preferences over pairs (l ,x ) consisting of an amount l of
leisure and an amount x of the consumption good).

We assume one individual of each type only for simplicity. The model can
easily be extended to include multiple capitalists and workers.

Given a wage rate, the producer chooses the amount of labor time to buy.
We assume here that she aims to maximize profit. That is, given the wage rate
w (measured in units of the consumption good per unit of time) the producer
chooses a to maximize f (a )−w a . The worker decides the amount of time l to
keep for leisure; she chooses the value of l that generates the pair (l , w (1− l ))
that is best according to her preferences.

Definition 12.7: Consumption-production plan

A consumption-production plan in the capitalist-worker economy 〈 f ,¼〉 is
a pair ((l ,x ), (a , z )) consisting of an amount l of leisure for the worker, an
amount x of the consumption good assigned to the worker, an employ-
ment level a , and an amount z of the consumption good assigned to the
capitalist, with a = 1− l and f (a ) = x + z .

The following definition of Pareto stability is appropriate for the model.
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Definition 12.8: Pareto stability

A consumption-production plan ((l ,x ), (a , z )) in the capitalist-worker
economy 〈 f ,¼〉 is Pareto stable if there is no consumption-production plan
((l ′,x ′), (a ′, z ′)) for which z ′ ≥ z and (l ′,x ′) ¼ (l ,x ), with at least one strict
inequality.

A competitive equilibrium consists of a wage rate w ∗, an employment level
a ∗, and a consumption bundle (l ∗,x ∗) for the worker such that

• the bundle (l ∗,x ∗) is optimal for the consumer and the employment level a ∗

maximizes the capitalist’s profit, given the wage rate

• the amount of time the worker wants to devote to production is equal to the
amount of labor time the capitalist wants to use (the employment level).

Definition 12.9: Competitive equilibrium of capitalist-worker economy

A competitive equilibrium of a capitalist-worker economy 〈 f ,¼〉 is a pair
(w ∗, ((l ∗,x ∗), (a ∗, z ∗))) consisting of a positive number w ∗ (the wage rate)
and a pair of choices, one for the worker, (l ∗,x ∗), and one for the capitalist,
(a ∗, z ∗), such that

optimality of worker’s choice
(l ∗,x ∗) is maximal with respect to ¼ in the budget set {(l ,x ) : 0 ≤ l ≤
1,x =w ∗(1− l )} (the worker chooses amounts of leisure and consump-
tion that she likes best given the wage rate)

optimality of capitalist’s choice
a ∗ maximizes f (a )−w ∗a (the employment level maximizes the capital-
ist’s profit, given the wage rate) and z ∗ = f (a ∗)−w ∗a ∗

feasibility
((l ∗,x ∗), (a ∗, z ∗)) is a consumption-production plan.

A competitive equilibrium is illustrated in Figure 12.4. Given the wage rate
w ∗, the capitalist optimally chooses the employment level a ∗, resulting in the
output x ∗ + z ∗. The worker optimally supplies a ∗ units of labor time, earning
w ∗a ∗ and thus facing the budget set indicated. In this set, the optimal bundle for
the consumer is (l ∗,x ∗).

Proposition 12.2: Pareto stability of competitive equilibrium

The consumption-production plan in any competitive equilibrium of a
capitalist-worker economy is Pareto stable.
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0 a → 1a ∗

f (a )

indifference set

slope =w ∗

slope =w ∗

a ∗ l ∗
x ∗

z ∗

Figure 12.4 An illustration of a competitive equilibrium in a capitalist-worker economy.

Proof

Consider a competitive equilibrium (w ∗, ((l ∗,x ∗), (a ∗, z ∗))). Let ((l ′,x ′),
(a ′, z ′)) be a consumption-production plan that Pareto dominates ((l ∗,x ∗),
(a ∗, z ∗)). Thus z ′ ≥ z ∗ and (l ′,x ′) ¼ (l ,x ) with at least one strict inequal-
ity. By the optimality of (l ∗,x ∗) in the set {(l ,x ) : 0 ≤ l ≤ 1,x = w ∗(1− l )}
we have x ′ ≥ w ∗(1 − l ′). Therefore one of the inequalities z ′ ≥ z ∗ and
x ′ ≥ w ∗(1− l ′)must be strict. By the feasibility of the plan, x ′+ z ′ = f (a ′)
and a ′ = (1− l ′). Thus f (a ′)−w ∗a ′ = f (a ′)−w ∗(1− l ′) ≥ f (a ′)− x ′ = z ′ ≥
z ∗ = f (a ∗)−w ∗a ∗ with one of the inequalities strict. Thus f (a ′)−w ∗a ′ >
f (a ∗)−w ∗a ∗, contradicting the optimality of a ∗ for the capitalist.

We close the chapter by emphasizing again that Pareto stability is not a nor-
mative notion. The fact that a consumption-production plan is Pareto stable
means only that any plan that one of the individuals (the capitalist and the
worker) prefers is worse for the other individual. A competitive equilibrium may
be just or unjust; a regulation like a minimum wage may lead to a consumption-
production plan that is not Pareto stable but is fairer.

Problems

1. Comparative advantage and specialization. Consider an economy with two
goods and a set N = {1, . . . , n} of individuals. Each individual is both a con-
sumer and a producer. Individual i chooses a bundle from the set T (i ) =
{(y1, y2) : t i y1 + y2 ≤ c i }, where c i and t i are positive constants, with t 1 <

t 2 < · · ·< t n . Each individual can trade the bundle she produces for another
bundle at the market prices.
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a. Given a price system p , define a p -production-consumption plan for in-
dividual i to be a pair (x (i ), y (i )) such that y (i ) ∈ T (i ) and px (i ) = py (i ).
Define an appropriate concept of competitive equilibrium.

b. Show that given the price system (p1, p2), every individual for whom t i <

p1/p2 produces only good 1, every individual for whom t i > p1/p2 pro-
duces only good 2, and every individual for whom t i = p1/p2 are indiffer-
ent between all p -production-consumption plans.

c. Show that if all individuals have the same preference relation, repre-
sented by the utility function t x1+x2, then the economy has a competi-
tive equilibrium in which each individual consumes the bundle that she
produces.

d. Assume that n = 2 and each individual has preferences represented by
the utility function min{x1,x2}. Give an example of an economy in which
t 1 < t 2 (individual 1 has a comparative advantage in producing good
1) with a competitive equilibrium in which individual 1 produces both
goods.

2. Capitalist-worker economy with output-maximizing capitalist. Assume that
in a capitalist-worker economy the capitalist maximizes output subject to
the constraint that profit is nonnegative (see Section 6.2). Illustrate in a dia-
gram like Figure 12.4 a competitive equilibrium of the economy. Is an equi-
librium outcome necessarily Pareto stable?

3. Technological improvement in capitalist-worker economy. Show by examples
that a technological improvement in a capitalist-worker economy (in which
the capitalist maximizes profit) may change the competitive equilibrium so
that the capitalist is worse off or the worker is worse off.

4. Production chain. Consider an economy with two producers. Producer 1
makes the good X using her own labor time; t units of time generate the
output f (t ). Producer 2 makes good Y using X as an input; her production
function is g . Both f and g are strictly concave, increasing, and differen-
tiable. Producer 1 has a differentiable, monotone, and convex preference re-
lation over pairs consisting of amounts of Y and leisure. Producer 2 chooses
the amount of X to maximize her profit. Each producer is the sole owner of
her technology.

A candidate for a competitive equilibrium consists of (i) a price p ∗ of X in
terms of Y , (ii) the amount of time t ∗ that producer 1 devotes to making X ,
and (iii) the quantity x ∗ of X that producer 2 uses. A candidate (p ∗, t ∗,x ∗) is a
competitive equilibrium if (i) producer 1’s decision maximizes her preference
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relation given p ∗, (ii) producer 2’s decision maximizes her profit, and (iii) the
supply of X by producer 1 is equal to the demand for X by producer 2.

Show that the outcome of a competitive equilibrium is Pareto stable.

5. Pollution. In an economy in which one individual’s action has a direct effect
on another individual, a competitive equilibrium may not be Pareto stable.
To demonstrate this point, consider an economy with two goods, N pro-
ducers, and N consumers. Each producer has the production technology
T = {(y1, y2) : 2y1+y2 = 2} (and incurs no cost), and maximizes her profit. The
producers’ profits are divided equally among all consumers. Consumption
of good 2 produces pollution. The pollution index is 1.5 times the average
consumption of good 2. Each consumer has the utility function x1+ x2− z ,
where z is the pollution index. When choosing a bundle a consumer takes
the pollution index as given. (This assumption seems reasonable when N is
large.) Define an appropriate notion of symmetric competitive equilibrium
in which all consumers choose the same bundle and all producers choose
the same member of T . Show that any symmetric equilibrium outcome is
not Pareto stable.





13 Equilibrium with prices and
expectations

In the models of markets we have discussed so far, equilibrium prices make the
individuals’ decisions compatible. Each individual takes the prices as given when
deciding on her action, and at the equilibrium prices the demand and supply of
every good are equal.

In this chapter, an individual’s behavior is affected not only by the prices but
also by her expectations regarding other parameters. Each individual takes these
expectations, like the prices, as given. In equilibrium, each individual behaves
optimally, the supply and demand for each good are equal, and the expectations
of individuals are correct.

We present three models. In the first model, each individual chooses one of
two bank branches. Her decision is affected only by her belief about the expected
service time in each branch. In the second model, potential buyers of a used
car, who cannot observe the quality of the cars for sale, take into account their
expectation of the average quality of these cars as well as the price. In the third
model, the unit cost of catching fish depends on the total amount of fish caught.
Each fisher makes her decision taking as given both the price of fish and her
expectation about the unit cost she will incur.

13.1 Distributing customers among bank branches

13.1.1 Introduction

Individuals live on the long main street of a town. At each end of the street there
is a branch of a bank. Each individual cares only about the amount of time she
spends dealing with the bank, which is the sum of her travel time and waiting
time. The waiting time in each branch depends on the number of individuals
who patronize the branch; each individual forms expectations about these wait-
ing times. We are interested in the distribution of the individuals between the
branches in an equilibrium in which each individual’s expectations are correct.

13.1.2 Model

We model the street along which the individuals live as the interval [0,1]; the
bank branches are located at the points 0 and 1. The set of individuals is the
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interval [0,1], with the interpretation that individual z resides at point z . Thus
for each z ∈ [0,1], the fraction z of individuals reside to the left of z and the
fraction 1− z reside to the right of z . The assumption that the set of individuals
is infinite aims to capture formally a situation in which the number of individuals
is very large and each individual’s behavior has a negligible effect on the waiting
times in the branches, even though these waiting times are determined by the
aggregate behavior in the population.

The waiting time in each branch depends on the number of individuals who
use that branch. Specifically, if the fraction of individuals who use branch j (i.e.
the branch located at j , which is 0 or 1) is n j , then the waiting time in that branch
is f j (n j ). We assume that each function f j is increasing and continuous, with
f j (0) = 0 (i.e. if there are no customers in a branch, the waiting time in that
branch is zero).

We assume, for simplicity, that an individual’s travel time from x to branch
z is the distance d (z ,x ) = |z − x | between x and z . Every individual prefers the
branch for which the sum of the travel time and the waiting time is smallest.

Definition 13.1: Service economy

A service economy 〈B , I , ( f j )j∈B , d 〉 consists of

branches
a set B = {0,1}

individuals
a set I = [0,1]

waiting time technology
continuous increasing functions f j : [0,1] → R with f j (0) = 0 for j =
0, 1, where f j (n j ) is the waiting time at branch j when the fraction of
individuals who choose branch j is n j

preferences
each individual i ∈ I prefers a smaller loss to a larger one, where the
loss from choosing branch j when t j is the waiting time in that branch
is d (i , j )+ t j , where d (i , j ) = |i − j |.

Note that the bank branches are not decision-makers in this model: their
locations and service technologies are fixed. The only decision-makers are the
individuals.

13.1.3 Equilibrium

We define an equilibrium in the spirit of competitive equilibrium. Each indi-
vidual has beliefs about the waiting times and assumes that her action does not



13.1 Distributing customers among bank branches 189

affect these waiting times. This assumption is analogous to our earlier assump-
tion when defining competitive equilibrium that consumers and producers take
prices as given, ignoring the effect of their own actions on the prices. Each indi-
vidual chooses the branch that minimizes the time she spends dealing with the
branch, given her beliefs about the waiting times. In equilibrium the individuals’
beliefs are correct. Behind this definition is the assumption that agents’ holding
incorrect beliefs is a source of instability in the interaction; for stability, we need
not only the individuals’ actions to be optimal but also their beliefs to be correct.

A candidate for equilibrium consists of two numbers, t0 and t1, the individ-
uals’ (common) beliefs about the waiting times in the branches, and a function
l : [0,1]→{0,1}, assigning to every individual at point x the branch l (x ) (either 0
or 1) that she chooses.

To be an equilibrium, a candidate has to satisfy two conditions.

• The decision of each individual is optimal given her beliefs about the waiting
times in the branches.

• The individuals’ decisions and beliefs are consistent in the sense that the
belief about the waiting time in each branch is correct, given the service
technology and the fraction of individuals who select that branch.

Definition 13.2: Equilibrium of service economy

An equilibrium of the service economy 〈B , I , ( f j )j∈B , d 〉 is a pair ((t0, t1), l ),
consisting of a pair of numbers (t0, t1) (the waiting times in the branches)
and a function l : I → B (an assignment of each x ∈ I to a branch), such
that

optimality of individuals’ choices

l (x ) = 0 ⇒ x + t0 ≤ (1−x )+ t1

l (x ) = 1 ⇒ (1−x )+ t1 ≤ x + t0

(each individual is assigned to a branch for which the travel time plus
waiting time for that branch is at most the travel time plus waiting time
for the other branch)

consistency

t j = f j (α(l , j )) for each j ∈ B

where α(l , j ) is the fraction of individuals assigned to branch j by the
function l .
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13.1.4 Analysis

We now prove the existence of an equilibrium in this model, characterize it, and
show that it is Pareto stable. We start by showing that there is a unique point
z ∗ such that if all individuals to the left of z ∗ use branch 0 and all individuals
to the right of z ∗ use branch 1 then individual z ∗ is indifferent between the two
branches.

Lemma 13.1

There is a unique number z ∗ such that z ∗+ f 0(z ∗) = 1− z ∗+ f 1(1− z ∗).

Proof

The function z+ f 0(z ) is continuous and increasing in z and takes the value
0 at the point 0 and the value 1+ f 0(1) at the point 1. The function 1− z +
f 1(1− z ) is continuous and decreasing in z and takes the value 1+ f 1(1)
at 0 and the value 0 at 1. So the graphs of the functions have a unique
intersection.

Next we show that for any expected waiting times, if for an individual at x
branch 0 is at least as good as branch 1, then all individuals to the left of x prefer
branch 0 to branch 1 (and analogously for an individual for whom branch 1 is at
least as good as branch 0).

Lemma 13.2

For any pair of expected waiting times, if branch 0 is at least as good as
branch 1 for an individual at x then branch 0 is better than branch 1 for
every individual y with y < x , and if branch 1 is at least as good as branch
0 for an individual at x then branch 1 is better than branch 0 for every
individual y with y > x .

Proof

Denote by t0 and t1 the expected waiting times in the branches. For
branch 0 to be at least as good as branch 1 for an individual at x we need

t0+d (x ,0)≤ t1+d (x ,1).

If y < x then d (y ,0) < d (x ,0) and d (y ,1) > d (x ,1), so that t0 + d (y ,0) <
t1+d (y ,1). A similar argument applies to the other case.
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We can now prove the existence and uniqueness of an equilibrium in a ser-
vice economy.

Proposition 13.1: Equilibrium of service economy

Every service economy has a unique equilibrium (up to the specification
of the choice at one point).

Proof

We first show that every service economy has an equilibrium. Let z ∗ be the
number given in Lemma 13.1. Let (t ∗0 , t ∗1 ) = ( f 0(z ∗), f 1(1− z ∗)) and let l ∗ be
the function that assigns 0 to all individuals in [0, z ∗] and 1 to all individuals
in (z ∗,1]. We now argue that ((t ∗0 , t ∗1 ), l ∗) is an equilibrium.

Optimality of individuals’ choices
Individual z ∗ is indifferent between the two branches since z ∗ + t ∗0 =
z ∗+ f 0(z ∗) = 1− z ∗+ f 1(1− z ∗) = 1− z ∗+ t ∗1 (using the definition of z ∗).
By Lemma 13.2, all individuals on the left of z ∗ prefer 0 to 1 and all on
the right of z ∗ prefer branch 1 to 0.

Consistency
The proportion α(l ∗,0) of individuals who choose branch 0 is z ∗. There-
fore t ∗0 = f 0(z ∗) = f 0(α(l ∗,0)). Similarly, the proportion α(l ∗,1) of in-
dividuals who choose branch 1 is 1 − z ∗, so that t ∗1 = f 1(1 − z ∗) =
f 1(α(l ∗,1)).

We now show that the equilibrium is unique. First note that a service
economy has no equilibrium in which one branch is not used since if there
were such an equilibrium, the waiting time at the unused branch would be
0 while the waiting time at the other branch would be positive, and hence
individuals who are located close to the unused branch would prefer that
branch to the other one.

Let ((t0, t1), l ) be an equilibrium. By Lemma 13.2, there is a point z such
that all individuals to the left of z choose 0 and all individuals to the right
of z choose 1. Thus an individual at z is indifferent between the branches,
so that z + t0 = 1− z + t1, and hence z = z ∗ by Lemma 13.1. Therefore l is
identical to l ∗ up to the assignment at z ∗. By the consistency condition for
equilibrium, t0 = f 0(z ∗) and t1 = f 1(1− z ∗).

We now define the notion of Pareto stability for a service economy and show
that the equilibrium of such an economy is Pareto stable.
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Definition 13.3: Pareto stability

Consider a service economy 〈B , I , ( f j )j∈B , d 〉. For any assignment l and
individual x ∈ I define L x (0, l ) = x + f 0(α(l ,0)), the loss of x from choosing
0 given that all other individuals behave according to l . Similarly define
L x (1, l ) = 1−x + f 1(α(l ,1)) .

An assignment l is Pareto stable if there is no assignment l ′ that Pareto
dominates l in the sense that L x (l ′(x ), l ′) ≤ L x (l (x ), l ) for all x ∈ I , with
strict inequality for some x ∈ I .

Proposition 13.2: Pareto stability of equilibrium of service economy

Every equilibrium of a service economy is Pareto stable.

Proof

Let ((t ∗0 , t ∗1 ), l ∗) be an equilibrium of the service economy 〈B , I , ( f j )j∈B , d 〉.
Let l ′ be an assignment. If the proportions of individuals at each branch
are the same in l ∗ and l ′, then the waiting times induced by the two as-
signments are the same. Since all individuals make the optimal choices in
l ∗, the assignment l ′ does not Pareto dominate l ∗.

If more individuals are assigned to branch 0 (say) by l ′ than l ∗, then
some individuals who are assigned to branch 1 by l ∗ are assigned to branch
0 by l ′. In the equilibrium such individuals like branch 1 at least as much
as branch 0. Under l ′, branch 0 is less attractive for each of them since the
waiting time at that branch is greater than it is under l ∗. Hence l ′ does not
Pareto dominate l ∗.

13.2 Asymmetric information and adverse selection

13.2.1 Introduction

Second-hand cars of a particular model may differ substantially in quality. Each
owner knows the quality of her car, but no buyer knows the quality of any given
car. Because cars are indistinguishable to buyers, the price of every car is the
same. Each owner decides whether to offer her car for sale, given this price. The
decision of each potential buyer depends on her expectation of the quality of the
cars offered for sale. A buyer may believe that the quality of the cars offered for
sale is low, because owners of high-quality cars are not likely to want to sell, given
the uniform price. The fact that the cars selected for sale by the owners have low
quality is often called adverse selection.
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13.2.2 Model

The set of individuals in the market consists of a finite set S of owners and a larger
finite set B of potential buyers. Each i ∈S owns a car of quality Q(i )∈ (0,1], which
she knows. The utility of an owner of a car of quality q is q if she keeps it and p if
she sells it at the price p . Each potential buyer obtains the utility αq −p , where
α> 1, if she purchases a car of quality q at the price p , and the utility 0 if she does
not purchase a car. The assumption that α > 1 implies that mutually beneficial
trade is possible: every car is valued more highly by every potential buyer than
by its owner.

A potential buyer does not know and cannot determine the quality of any
specific car before purchasing it, and no owner can credibly communicate the
quality of her car to a potential buyer. Thus for a potential buyer, purchasing a
car is a lottery with prizes equal to the possible qualities of the car. We assume
that a buyer maximizes her expected utility, so her decision depends on her ex-
pectation q̂ of the quality of the cars for sale; she wishes to purchase a car if the
amount she pays for it is less than αq̂ .

Definition 13.4: Second-hand car market

A second-hand car market 〈S, B ,Q ,α〉 consists of

owners
a finite set S, each member of which owns one car

buyers
a finite set B with |B |> |S|, each member of which buys at most one car

qualities
a function Q : S→ (0,1], where Q(i ) is the quality of the car owned by i

preferences
the owner of a car of quality q prefers to sell it if in exchange she gets an
amount of money p > q and prefers not to sell it if she gets an amount
of money p <q

a potential buyer prefers to buy a car than not to do so if αq̂ > p , prefers
not to buy it if αq̂ < p , and is indifferent between the two options if
αq̂ = p , where α > 1 and p is the amount she pays and q̂ is her belief
about the expected quality of the cars for sale.

13.2.3 Equilibrium

Two parameters determine the behavior of the buyers and owners: the price of a
car and the belief of the potential buyers about the expected quality of the cars
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0 q →p ∗ =αq ∗q ∗

Figure 13.1 Equilibrium of a second-hand car market. Each small disk represents a car;
the red ones are offered for sale.

for sale. An equilibrium consists of a price p ∗, a (common) belief q ∗ of the po-
tential buyers about the expected quality of cars for sale, a specification of the
owners who offer their cars for sale, and a specification of the potential buyers
who purchase cars, such that

• the decision of every owner and potential buyer is optimal, given p ∗ and q ∗

• the number of cars offered for sale is equal to the number of buyers who wish
to purchase a car

• if at least one car is traded, the buyers’ belief about the expected quality of the
cars offered for sale is correct (if there is no trade the belief is not restricted).

Definition 13.5: Equilibrium of second-hand car market

An equilibrium (p ∗,q ∗,S∗, B ∗) of a second-hand car market (S, B ,Q ,α) con-
sists of a number p ∗ ≥ 0 (the price of a car), a number q ∗ ≥ 0 (the potential
buyers’ common belief about the expected quality of the cars offered for
sale), a set S∗ ⊆ S (the set of owners who offer their cars for sale), and a set
B ∗ ⊆ B (the set of potential buyers who purchase a car) such that

optimality of choices
for potential buyers: if B ∗ 6= ∅ then p ∗ ≤ αq ∗ and if B \ B ∗ 6= ∅ then
p ∗ ≥αq ∗

for owners: if i ∈S∗ then p ∗ ≥Q(i ) and if i ∈S \S∗ then p ∗ ≤Q(i )

consistency
|S∗| = |B ∗| (the number of owners who sell their cars is equal to the
number of potential buyers who buy a car)

if S∗ 6=∅ then q ∗ =
∑

i∈S∗Q(i )/|S
∗|, the average quality of the cars owned

by the members of S∗ (the potential buyers’ belief about the expected
quality of the cars offered for sale is correct).

An equilibrium in which∅⊂ B ∗ ⊂ B , so that p ∗ =αq ∗, is illustrated in Figure 13.1.

13.2.4 Analysis

We now show that every second-hand car market has an equilibrium in which
trade occurs (the set of owners who sell their cars is nonempty).
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Proposition 13.3: Equilibrium of second-hand car market

Let 〈S, B ,Q ,α〉 be a second-hand car market. Name the owners so that S =
{s1, . . . , s |S|}with Q(s1)≤Q(s2)≤ · · · ≤Q(s |S|). The market has an equilibrium
(p ∗,q ∗,S∗, B ∗) with S∗ 6= ∅. In any equilibrium the quality of every car that
is sold is no greater than the quality of every other car.

Proof

For m = 1, . . . , |S|, let A(m ) be the average quality of the m lowest qual-
ity cars: A(m ) =

∑m
i=1Q(si )/m . Given α > 1, we have αA(1) > Q(s1).

Let m ∗ be the maximal m for which αA(m ) ≥ Q(sm ). Let p ∗ = αA(m ∗),
q ∗ = A(m ∗), and S∗ = {s1, . . . , sm ∗}; let B ∗ be a subset of B with m ∗ mem-
bers. Then (p ∗,q ∗,S∗, B ∗) is an equilibrium. To verify the optimality of the
individuals’ choices, note that p ∗ = αq ∗ = αA(m ∗) ≥ Q(sm ∗) ≥ Q(sm ) for
every m ≤ m ∗, so that each owner s1, . . . , sm ∗ optimally sells her car. Also
p ∗ = αA(m ∗) ≤ αA(m ∗ + 1) <Q(sm ∗+1) ≤Q(sm ) for all m ≥ m ∗+1, so that
each owner sm ∗+1, . . . , s |S| optimally does not sell her car. Each potential
buyer is indifferent between buying and not buying a car since αq ∗ = p ∗.

The last claim in the proposition follows from the optimality of the
owners’ equilibrium choices. The quality of the cars of owners who sell
is at most p ∗ and the quality of the other owners’ cars is at least p ∗.

Every second-hand car market has also an equilibrium in which no car is
traded. Let p ∗ be a positive number less than Q(s1), the lowest quality, and let
q ∗ be such that αq ∗ < p ∗. Then (p ∗,q ∗,∅,∅) is an equilibrium: no potential buyer
is willing to pay p ∗ for a car, given her belief that the average quality of the cars
for sale is q ∗, and no owner has a car whose quality is low enough to justify her
selling it for p ∗. In this equilibrium, the potential buyers expect that the aver-
age quality of cars for sale is less than the lowest quality of all owners’ cars. Note
that the definition of equilibrium does not restrict the belief of the potential buy-
ers when no owner offers a car for sale. We might regard the belief q ∗ that we
have assumed to be unreasonable. For example, if potential buyers know the
range of qualities of the owners’ cars, then their expectation should reasonably
lie within this range, in which case an equilibrium in which no trade occurs does
not exist.

Note that the equilibrium constructed in the proof of Proposition 13.3 is not
Pareto stable unless S∗ = S. If S∗ ⊂ S, suppose that the owner of a car of quality q
who has not sold the car transfers it to a potential buyer who has not purchased
a car, in exchange for an amount of money between q and αq . Then both the
owner and the buyer are better off.
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For some second-hand car markets, in all equilibria with trade only the low-
est quality car is traded. Suppose for example that the set of car qualities is
{1,2, . . . , |S|} and α< 4

3
. In an equilibrium there is a number m ∗ such that S∗ con-

sists of the owners of cars with qualities 1, 2, . . . , m ∗ and m ∗ ≤αq ∗, where q ∗ is the
average quality of the cars for sale, which is 1

2
(1+m ∗). That is, m ∗ ≤ 1

2
α(1+m ∗)<

2
3
(1+m ∗), which is satisfied only by m ∗ = 1.

13.3 A fishing economy

13.3.1 Introduction

A community of fishers and consumers lives near a lake. Each fisher decides how
many fish to catch and each consumer decides how many fish to buy, given the
price of fish. The cost of catching fish increases with the number of fish caught.
In an equilibrium, the total amount of fish the fishers decide to catch is equal to
the total amount the consumers decide to buy. Will the fishers catch too much
in the sense that if they reduced their catch the price would adjust in such a way
that everybody would be better off?

13.3.2 Model

The set of individuals in the economy consists of a set I of consumers and a set
J of fishers. Each fisher decides how many fish to catch, up to a limit of L. If
the total amount of fish caught by all fishers is T then the cost for a fisher to
catch x fish is c (T )x , where c is a continuous, increasing function with c (0) = 0.
That is, the larger is the total catch the more costly it is to fish. Each consumer
decides how much fish to consume, up to a limit of one unit. Each consumer’s
preferences are represented by the function v x +m , with v > 0, where m is the
amount of money she has and x is the amount of fish she consumes.

To make the main point of this section we analyze the model under the addi-
tional assumptions that (i) c (|J |L) > v (if all fishers operate at full capacity then
their unit cost exceeds the value of a unit to consumers), (ii) c (0)< v (if all fishers
are idle then their unit cost is less than the value of a unit to the consumers), and
(iii) |J |L ≤ |I | (if all fishers operate at full capacity, their total output is less than
the maximum possible total amount the consumers can consume).

Definition 13.6: Fishing economy

A fishing economy 〈I , J , v, L, c 〉 consists of

consumers
a finite set I
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fishers
a finite set J

consumers’ preferences
a number v > 0, the consumers’ monetary equivalent of a unit of fish,
so that each consumer’s preferences are represented by the utility func-
tion v x +m , where m is the amount of money the consumer has and
x ∈ [0,1] is the amount of fish she consumes

fishers’ technology
a number L with 0< L ≤ |I |/|J | and an increasing and continuous func-
tion c : [0, |J |L] → R with c (0) < v and c (|J |L) > v (a fisher can catch
up to L units of fish and one who catches y units incurs the cost c (T )y
when the total amount of fish caught by all fishers is T ).

13.3.3 Equilibrium

A candidate for an equilibrium of a fishing economy consists of a price for a
unit of fish, the fishers’ common expectation about the unit cost of fishing, the
amount of fish that each fisher decides to catch, and the amount of fish chosen
by each consumer, such that

• every fisher chooses the amount of fish she catches to maximize her profit
given the price and her expectation of the cost of fishing

• every consumer chooses her consumption optimally given the price

• the expectations of the fishers about the cost of fishing are correct

• the total amount of fish caught is equal to the total amount the consumers
choose to consume.

Definition 13.7: Competitive equilibrium of fishing economy

A competitive equilibrium (p ∗, c ∗, y ∗,x ∗) of the fishing economy 〈I , J , v,
L, c 〉 consists of a positive number p ∗ (the price of a unit of fish), a non-
negative number c ∗ (the fishers’ belief about the unit cost of fishing), a
non-negative number y ∗ (the amount of fish caught by each fisher), and
a non-negative number x ∗ (the amount of fish chosen by each consumer)
such that

optimality of choices
for consumers: x ∗ maximizes the utility v x −p ∗x over [0,1]

for fishers: y ∗ maximizes the profit p ∗y − c ∗y over [0, L]
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feasibility
|I |x ∗ = |J |y ∗ (the total amount of fish consumed is equal to the total
amount of fish caught)

consistency
c ∗ = c (|J |y ∗) (the fishers’ expectation about the unit fishing cost is cor-
rect).

13.3.4 Analysis

Proposition 13.4: Competitive equilibrium of fishing economy

A fishing economy 〈I , J , v, L, c 〉 has a unique competitive equilibrium
(p ∗, c ∗, y ∗,x ∗), in which p ∗ = v = c ∗ = c (|J |y ∗) and |I |x ∗ = |J |y ∗.

Proof

First, given c (0)< v , c (|J |L)> v , and the continuity of c there exists a num-
ber y ∗ such that c (|J |y ∗) = v . Now, given that c (|J |y ∗) = v , our assumptions
that c (|J |L) > v and c is increasing imply that y ∗ < L and our assumption
that L ≤ |I |/|J | implies that x ∗ < 1. The tuple (p ∗, c ∗, y ∗,x ∗) is a competitive
equilibrium because all consumers and fishers are indifferent between all
their possible actions, total production is equal to total consumption, and
the fishers’ expectation about the unit cost is correct.

To prove that the economy has no other equilibrium, suppose that
(p ′, c ′, y ′,x ′) is an equilibrium.

If p ′ > v then the optimal choice of every consumer is 0, so that x ′ =
y ′ = 0. But then c ′ = c (0) < v , so that the optimal choice of every fisher is
L, violating feasibility.

If p ′ < v then the optimal choice of every consumer is 1, so that x ′ = 1
and by the feasibility condition y ′ = |I |/|J |. By the consistency condition
c ′ = c (|I |) and by our assumption that |J |L ≤ |I |we have c (|I |)≥ c (|J |L)> v ,
so that catching a positive amount of fish is not optimal for any fisher.

Therefore p ′ = v . It now suffices to show that c ′ = p ′, since then by
consistency we have v = c (|J |y ′) and by feasibility |J |y ′ = |I |x ′. If c ′ > p ′

then the optimality of the fishers’ choices implies that y ′ = 0; hence x ′ = 0,
so that the optimality of the consumers’ choices requires p ′ ≥ v . But now
by consistency c ′ = c (0) < v , a contradiction. A similar argument shows
that c ′ < p ′ is not possible.
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A competitive equilibrium outcome is not Pareto stable, by the following ar-
gument. Let (p ∗, c ∗, y ∗,x ∗) be a competitive equilibrium. The utility of each con-
sumer is v x ∗ − p ∗x ∗ = 0 and the profit of each fisher is p ∗y ∗ − c (|J |y ∗)y ∗ = 0.
Now consider ŷ and k̂ with 0 < ŷ < y ∗ and c (|J |ŷ ) < k̂ < v . The production-
consumption plan in which each fisher catches ŷ fish and receives k̂ ŷ units of
money and each consumer receives ŷ |J |/|I | fish and pays k̂ ŷ |J |/|I | generates
positive utility to all consumers and positive profits to all fishers.

This model is used by many economists (including MJO, but not AR) to argue
that a tax-redistribution scheme can make all agents (consumers and fishers)
better off. Assume that each fisher has to pay a tax t = v − c (|J |ŷ ) per unit of
fish caught (where 0 < ŷ < y ∗), so that in equilibrium the unit cost for a fisher is
c ∗+ v − c (|J |ŷ ). This tax changes the unit cost of fishing when the total amount
of fish caught is T from c (T ) to d (T ) = c (T )+v −c (|J |ŷ ), so that d (|J |ŷ ) = v . Thus
Proposition 13.4 implies that the economy with the tax has a unique equilib-
rium, in which each fisher catches ŷ fish, the price paid by consumers is v , and
each consumer purchases ŷ |J |/|I | fish. In this equilibrium the utility of every
consumer and the profit of every fisher is zero. The taxes collected can be dis-
tributed among the consumers and producers to make every consumer’s utility
and every fisher’s profit positive.

Problems

1. Service economy.

a. Compare the equilibrium of the service economy 〈B , I , ( f j )j∈B , d 〉 with
the equilibrium of the service economy that differs only in that f 0 is re-
placed by f̂ 0 with f̂ 0(x )< f 0(x ) for all x > 0 (branch 0 becomes more effi-
cient). Show that more individuals use branch 0 in an equilibrium of the
modified economy than in an equilibrium of the original economy.

b. Show that if branch 0 is more efficient than branch 1 in the sense that
f 0(x ) < f 1(x ) for every x > 0, then in equilibrium the waiting time in
branch 1 is larger than it is in branch 0.

c. Some evidence suggests that some people exaggerate their estimate of
the time they spend in activities like going to a bank. (See for example
Jones and Hwang 2005.) Assume that an individual who spends the total
amount of time t acts as if this total time is λt , with λ> 1. How does the
equilibrium change?

d. How does the equilibrium change if individuals exaggerate only the wait-
ing time in a branch, not the transportation time?
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2. Total loss in equilibrium of service economy. Consider a service economy.
Suppose that all individuals to the left of z use branch 0 and the remainder
use branch 1. Then the total time spent by the individuals is

∫ z

0

[x + f 0(z )]d x +

∫ 1

z

[(1−x )+ f 1(z )]d x .

Explain why the equilibrium may not (and typically does not) minimize
the total time spent by all individuals even though we know from Proposi-
tion 13.2 that the equilibrium is Pareto stable. (If you wish, just calculate the
equilibrium for the service economy with f 0(x ) = x and f 1(x ) = 2x and show
that the assignment of individuals to branches that minimize the total loss
differs from the equilibrium allocation.)

3. Fund-raising party. Each of the 1,200 participants at a fund-raising event can
choose a raffle ticket marked L or H . One ticket marked L is randomly cho-
sen and its holder is given the prize L, and one ticket marked H is randomly
chosen and its holder is given the prize H , where 0 < L < H . The prefer-
ences of each individual i over the set of lotteries are represented by the ex-
pected value of a Bernoulli utility function u i with u i (0) = 0, u i (H ) = 1, and
u i (L) = v , where 0< v < 1.

a. Formulate an equilibrium concept in the spirit of this chapter.

b. What is the equilibrium if v = 1
3

?

4. Matching. Individuals are divided into a members of type A and b members
of type B , where a ≥ b . Each individual wishes to be matched with an indi-
vidual of the other type. An individual can be matched with only one other
individual. Matches can occur in two possible venues, 1 and 2. Each indi-
vidual chooses one of these venues. Given that α individuals of type A and β
individuals of type B choose a venue, the probability of a type A individual
being matched at that venue is min{α,β}/α and the probability of a type B
individual being matched is min{α,β}/β . Each individual chooses a venue
to maximize the probability she is matched.

A profile is a list (a 1,b1, a 2,b2) of nonnegative real numbers for which a 1 +
a 2 = a and b1 +b2 = b , with the interpretation that a i and bi are the num-
bers of type A and type B individuals who choose venue i . For simplicity,
we do not require these numbers to be integers. A candidate for equilibrium
is a profile (a 1,b1, a 2,b2) and a vector of nonnegative numbers (p1, p2,q1,q2)
with p1+p2 = 1 and q1+q2 = 1, where pi is the probability a type A individual
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assigns to being matched in venue i and qi is the probability that a type B in-
dividual assigns to being matched in venue i . A candidate is an equilibrium
if the following two conditions are satisfied.

Optimality
If some type A individual is assigned to venue i (a i > 0) then pi ≥ p j ,
where j 6= i , and if some type B individual is assigned to venue i (bi > 0)
then qi ≥qj .

Consistency
We have pi = min{1,bi/a i } and qi = min{1, a i/bi } for i = 1,2. (Define
min{1,0/0}= 0 and for every x 6= 0 define min{1,x/0}= 1.)

a. Show that any profile (a 1,b1, a 2,b2) satisfying b1/a 1 = b2/a 2 = b/a to-
gether with the vector (p1, p2,q1,q2) with pi = b/a and qi = 1 for i = 1, 2
is an equilibrium.

b. Characterize all the equilibria for which individuals of each type choose
each venue.

c. Find an equilibrium in which every individual chooses venue 1.

5. Health services. Consider a market for health services in which there is a large
number n of individuals, each with a large amount of money m . Each indi-
vidual can purchase a quantity of health services. If individual i buys y (i )
units of health services, the probability that she survives is α(y (i ), y ∗), where
y ∗ is the average level of health services obtained by all individuals. Individ-
uals take y ∗ as given although it is influenced by their behavior. The function
α is increasing and concave. Each individual aims to maximize the product
of the amount of money she is left with and the probability of survival. That
is, she chooses y (i ) to maximize (m −p ∗y (i ))α(y (i ), y ∗).

a. Define an equilibrium. Write the equations that characterize an equilib-
rium in which all agents purchase a positive quality of health services.
Assume that the function α is differentiable.

b. Explain why an equilibrium is not Pareto stable.

Notes

The model in Section 13.2 is due to Akerlof (1970).





14 A market with asymmetric
information

In this chapter we study an equilibrium concept that differs from the notions of
competitive equilibrium discussed in Chapters 9–12. The models in the earlier
chapters specify the precise set of economic agents who operate in the market,
and an equilibrium specifies the terms of trade (prices) for which the aggregate
demand and supply of these agents are equal. The model we study in this chapter
does not explicitly specify the set of agents. As a consequence, the equilibrium
notion is more abstract. A set of contracts is an equilibrium if no agent who offers
a contract wants to withdraw it, and no agent can profit by adding a contract.

We illustrate the concept by applying it to a model central to the economics
of information. The problems at the end of the chapter demonstrate the use of
the concept to study other economic interactions.

14.1 Introductory model

To explain the logic of the solution concept, we start with a model of a simple
labor market without asymmetric information. The market contains employers
and workers. Employers post wage offers. Workers are identical, with productiv-
ity, if employed, equal to v > 0. Each worker either selects a posted offer that is
best for her or, if no posted offer is better for her than being unemployed, does
not select any offer. A worker who selects an offer is matched with the employer
posting the offer; she produces v and receives the posted wage. The profit of an
employer who pays a wage w to a worker is v −w .

We say that a wage offer (a nonnegative number) is optimal for a worker given
the set W of offers if it is the highest wage in W . (We assume that not accepting
any offer is equivalent to receiving a wage of 0.) An equilibrium is a finite set W
of wage offers for which

I. every offer in W is optimal for a worker

II. no offer in W generates a loss to an employer who posts it

III. no offer w 6∈W is optimal for a worker, given the offers in W ∪{w }, and would
yield an employer who posts it a positive profit.

Chapter of Models in Microeconomic Theory by Martin J. Osborne and Ariel Rubinstein. Version 2023.5.30 (s).
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Condition I captures the idea that offers that are not accepted by any worker
do not survive. Condition II requires that no offer that is accepted yields a loss
to the employer who posts it. Condition III requires that no employer can post a
new offer that is optimal for a worker and yields the employer a positive profit.

The notion of equilibrium differs from the ones we analyze in earlier chap-
ters in that it does not specify the choices made by specific participants. An equi-
librium is a set of acceptable contracts in the market. The equilibrium is silent
about who makes which offer.

We claim that the set {v }, consisting of the single wage offer v , is an equilib-
rium. Workers optimally choose it, as it is better than not accepting an offer; it
yields zero profit to an employer; and any new offer is either not accepted (if it is
less than v ) or is accepted (if it is greater than v ) but yields negative profit to the
employer who posts it.

In fact, {v } is the only equilibrium. Let W ∗ be an equilibrium. If W ∗ = ∅
then any offer w with 0 < w < v is optimal given W ∗ ∪ {w } = {w } and yields
an employer who posts it a positive profit, violating III. By I, if W ∗ 6= ∅ then W ∗

consists of a single offer, say w ∗. By II, w ∗ ≤ v . If w ∗ < v , then an offer w with
w ∗ < w < v is optimal for a worker given W ∗ ∪ {w } and yields a positive profit,
violating III.

14.2 Labor market with education

Imagine a labor market in which employers do not know, before hiring workers,
how productive they will be, but do know their educational backgrounds. If ed-
ucation enhances productivity, we might expect employers to be willing to pay
higher wages to more educated workers. We study a model in which education
does not affect productivity, but productivity is negatively related to the cost of
acquiring education: the more productive a worker, the less costly it is for her
to acquire education. Under this assumption, we might expect employers to be
willing to pay a high wage to a worker with a high level of education because they
believe that acquiring such an education is worthwhile only for high productiv-
ity workers. The model we study investigates whether such a relation between
wages and education exists in equilibrium.

In the model there are two types of worker, H and L. When employed, a type
H worker creates output worth vH and a type L worker creates output worth vL ,
where 0 < vL < vH . The proportion of workers of type L in the population is αL

and the proportion of workers of type H is αH , with αH +αL = 1. No employer
knows the type of any given worker before hiring her.

If an employer offers a wage w and a worker who accepts the offer is of type
H with probability γH and type L with probability γL then the employer obtains
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an expected profit of γH vH + γLvL −w . If a contract is simply a wage offer, then
by the argument in the previous section the only equilibrium is {v }, where v =
αH vH +αLvL , the expected productivity of a worker.

We now add education to the model. Each worker chooses a level of edu-
cation, which does not affect her productivity. The cost of obtaining education
is linear in the level of education and is higher for type L workers (who have
lower productivity) than it is for type H workers. Specifically, the income of a
type X worker with t years of education who is paid the wage w is w −βX t , with
0<βH <βL .

An employer can observe a worker’s education but not her productivity. A
contract now specifies a wage and a minimal acceptable number of years of
education.

Facing a set of contracts, an individual who is planning her career chooses
her education level bearing in mind the maximal wage that this level allows her to
obtain. Thus her decision is to choose one of the available contracts (or to choose
not to be employed). We assume that each worker’s preferences over contracts
are lexicographic: her first priority is high income (taking into account the cost
of the required level of education), and among contracts that yield her the same
income, she prefers one with a lower educational requirement. Thus no worker
is indifferent between any two contracts.

Definition 14.1: Labor market with asymmetric information

A labor market with asymmetric information is a list of numbers (vL , vH ,
αL ,αH ,βL ,βH ), where 0< vL < vH , αL ≥ 0, αH ≥ 0, αL+αH = 1, and 0<βH <

βL . The market consists of employers and workers. The workers are of two
types.

Type L (fraction αL)
Productivity vL and cost βL for each unit of education

Type H (fraction αH )
Productivity vH and cost βH for each unit of education.

A contract is a pair (t , w ) of nonnegative numbers; t is the number of
units of education required for the job and w is the wage.

We now specify a worker’s preferences over contracts.

Definition 14.2: Worker’s preferences

In a labor market with asymmetric information (vL , vH ,αL ,αH ,βL ,βH ), the
income of a worker of type X (= H , L) who accepts the contract (t , w ) is
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t →

↑
w

L H

slope = βL

slope = βH

0
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c

Figure 14.1 Iso-income lines for workers. Along each blue line the income of a worker of
type L is constant, and along each red line the income of a worker of type H is constant.
Income is higher along the darker lines. A type H worker prefers a to b because a re-
quires less education and both contracts yield her the same income. If only c is offered,
each type of worker prefers not to accept any offer, because c yields negative income.

w −βX t . The preference relation ¼X of a worker of type X over the set of
contracts is lexicographic, giving first priority to larger income w−βX t and
second priority to smaller values of the education requirement t .

For any set C of contracts the alternative that is optimal given C for a
worker of type X (=H , L) is

(
(t , w )∈C if w −βX t ≥ 0 and (t , w )¼X (t ′, w ′) for all (t ′, w ′)∈C

φ if w ′ −βX t ′ < 0 for every (t ′, w ′)∈C ,

where φ means that the worker does not accept any contract.

Figure 14.1 shows iso-income lines for each type of worker. The blue lines
belong to a type L worker; their slope is βL . Each additional unit of education
has to be compensated by an increase βL in the wage to keep the income of such
a worker the same. The red iso-income lines belong to a type H worker; their
slope is βH . Incomes for each type increase in a northwesterly direction: every
worker prefers contracts with lower educational requirements and higher wages.

Given that the set of contracts offered is C , an employer who offers a contract
c = (t , w ) expects a payoff that depends on the types of workers for whom c is
optimal given C . If c is not optimal given C for any worker, the employer’s payoff
is zero; if c is optimal given C only for type X workers, her payoff is vX −w , the
profit from hiring a type X worker; and if c is optimal for all workers, her payoff
is αLvL +αH vH −w .
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Definition 14.3: Employer’s payoff

In a labor market with asymmetric information (vL , vH ,αL ,αH ,βL ,βH ), for
any set C of contracts and any c = (t , w ) ∈ C , the payoff π(c ,C ) of an
employer who offers the contract c when C is the set of posted contracts is







0 if c is not optimal given C for either type of worker

vX −w if c is optimal given C only for type X workers

αLvL +αH vH −w if c is optimal given C for both types of worker.

The payoff of an employer who does not offer a contract is 0.

Equilibrium An equilibrium is a finite set C ∗ of contracts for which (I) every
contract in C ∗ is optimal for at least one type of worker given C ∗, (II) no contract
in C ∗ yields a negative payoff to an employer, and (III) no contract c 6∈ C ∗ that is
optimal for at least one type of worker given C ∗ ∪ {c } yields a positive payoff for
an employer.

Note that this notion of equilibrium reflects an assumption that an employer
who considers offering a new contract correctly anticipates the types of workers
for whom the contract is optimal given the other contracts offered.

Definition 14.4: Equilibrium of labor market

An equilibrium of a labor market with asymmetric information (vL , vH ,αL ,
αH ,βL ,βH ) is a finite set C ∗ of contracts such that

I. each c ∈C ∗ is optimal given C ∗ for at least one type of worker

II. if c ∈C ∗, then π(c ,C ∗)≥ 0 (no employer wants to withdraw a contract)

III. if c /∈C ∗ and c is optimal given C ∗ ∪ {c } for some type of workers, then
π(c ,C ∗ ∪ {c })≤ 0 (no employer wants to add a contract).

An equilibrium C ∗ for which the same alternative is optimal given C ∗ for
both types of worker is a pooling equilibrium. An equilibrium for which
a different alternative is optimal given C ∗ for each type is a separating
equilibrium.

We first argue that the set consisting solely of the contract b = (0, v ) =
(0,αH vH +αLvL) is not an equilibrium. The reason is that the contract a in Fig-
ure 14.2a, like any contract in the area shaded green, is optimal given the set
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(a) Illustration of the argument that {(0, v )}
is not an equilibrium.
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(b) The contracts offered in an equilibrium
(Proposition 14.1), if one exists.

Figure 14.2

{a ,b} for a type H worker but not for a type L worker. Thus, given that the wage
in a is less than vH , an employer who offers a when the only other contract is b
obtains a positive payoff, violating condition III in Definition 14.4.

The next result shows more generally that a labor market with asymmetric
information has no pooling equilibrium and that an equilibrium, if one exists,
is separating, containing two contracts, one of which is optimal for each type of
worker. These contracts are illustrated in Figure 14.2b. The contract optimal for
a type L worker entails a wage equal to her productivity, vL , and no education
(t = 0). The contract optimal for a type H worker also pays a wage equal to her
productivity, vH , but requires enough education that a type L worker is not better
off choosing it.

Proposition 14.1: Characterization of equilibrium of labor market

If a labor market with asymmetric information (vL , vH ,αL ,αH ,βL ,βH ) has
an equilibrium C ∗, then C ∗ = {c ∗L , c ∗H} where c ∗L = (0, vL), c ∗H = (tH , vH ), and
tH satisfies vH −βLtH = vL . Given C ∗, the contract c ∗L is optimal for a type L
worker and c ∗H is optimal for a type H worker.

Proof

Consider an equilibrium C ∗.

Step 1 The action φ (not accepting any offer) is not optimal for either type
of worker given C ∗ and thus in particular C ∗ is not empty.



14.2 Labor market with education 209

t →0

↑
w
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H
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vL

(a) Step 1 of the proof of Proposition 14.1.
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w L H

c ∗ = (t ∗, w ∗)

c ′ = (t ′, w ′)

t ∗

vH

vL

v
w ∗

(b) Step 2 of the proof of Proposition 14.1.

Figure 14.3

Proof. Suppose that φ is optimal for some type X worker given C ∗. Then
no contract in the region shaded green in Figure 14.3a is in C ∗ (because
if it were it would be better than φ for type X given C ∗). Thus any such
contract c is optimal for type X given C ∗ ∪ {c }. Whether X is L or H , the
contract c yields a positive payoff for an employer (the wage is less than
vL), and thus violates condition III. Ã

Step 2 C ∗ is not a pooling equilibrium.

Proof. Assume C ∗ is a pooling equilibrium. By Step 1, C ∗ is nonempty, so
some contract, say c ∗ = (t ∗, w ∗), is optimal given C ∗ for both types, and by
condition I, C ∗ contains no other contract.

Suppose that w ∗ > v = αH vH + αLvL . Then π(c ∗,C ∗) = v − w ∗ < 0,
violating condition II.

Now suppose that w ∗ ≤ v . Consider a contract c ′ = (t ′, w ′) in the green
triangle in Figure 14.3b. That is, w ∗+βH (t ′ − t ∗) <w ′ <min{w ∗+βL(t ′ −
t ∗), vH}. The contract c ′ is optimal given {c ∗, c ′} for type H , and is not opti-
mal given {c ∗, c ′} for type L (who prefer c ∗). Thus π(c ′,{c ∗, c ′}) = vH −w ′ >

0, violating condition III. Ã

Given Step 1, Step 2, condition I, and the fact that no worker is indif-
ferent between any two contracts, C ∗ contains exactly two contracts, say
C ∗ = {cL , cH}, where cL = (t L , w L) is optimal given C ∗ for type L workers and
cH = (tH , wH ) is optimal given C ∗ for type H workers. We now characterize
these two contracts.
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Step 3 wX ≤ vX for X =H, L.

Proof. For an employer who offers the contract cX , π(cX ,C ∗) = vX −wX , so
that wX ≤ vX condition II. Ã

Step 4 cL = c ∗L = (0, vL).

Proof. By Step 3, wL ≤ vL . If w L < vL then the contract c = (t L , 1
2
(vL +w L))

is optimal given C ∗∪{c } for (at least) type L workers, so that π(c ,C ∗∪{c })≥
vL −

1
2
(vL +w L) =

1
2
(vL −w L)> 0, violating condition III. Thus w L = vL .

If tL > 0, let c ′ = (t ′L , w ′
L)with t ′L < t L , w ′

L <w L , and w ′
L−βLt ′L >w L−βLt L .

That is, c ′ reduces the education requirement and the wage in such a way
that the income of a type L worker increases. Then c ′ is optimal given
C ∗ ∪ {c ′} for at least type L workers, so that π(c ′,C ∗ ∪ {c ′}) ≥ vL −w ′

L > 0,
violating condition III. Thus t L = 0. Ã

Step 5 wH = vH and c L and cH yield the same income for a type L worker,
so that vH −βLtH = vL.

Proof. By Step 3, wH ≤ vH . Given that cH is optimal given C ∗ only for a
type H worker and cL is optimal only for a type L worker, cH lies in the
green region in Figure 14.4. If cH is not c ∗H (the point at the intersection
of the horizontal line w = vH and the line w − βLt = vL) then any con-
tract c ′H in the interior of the dark green region is better for type H workers
than cH but worse for type L workers than cL . Thus c ′H is optimal given
{cL , cH , c ′H} only for type H workers, so that π(c ′H ,{c L , cH , c ′H})> 0, violating
condition III. Hence wH = vH and vH −βLtH = vL , so that cH = c ∗H . Ã

Whether the set of contracts specified in this result is in fact an equilibrium
depends on the proportions of the types of workers in the population. Let m =
vH −βH tH so that the contract (0, m ) yields type H workers the same income as
does c ∗H .

If the proportion of type L workers is high enough that the average produc-
tivity in the entire population, v , is less than m (as in Figure 14.5a), then C ∗ is an
equilibrium, by the following argument.

• Each c ∗X is optimal for workers of type X .

• Each contract c ∗X yields a payoff of zero to an employer.

• Any contract c = (t , w ) that is optimal given {c ∗L , c ∗H , c } only for type H work-
ers is in the area shaded green in Figure 14.5a, so that w > vH and thus the
contract does not yield a positive profit.
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t →

↑
w L H

c ∗H
c ′H

cH

c ∗L

vH

vL

Figure 14.4 Step 5 of the proof of Proposition 14.1.

• Any contract c = (t , w ) that is optimal given {c ∗L , c ∗H , c } for type L workers has
w > vL , so that if c is optimal only for type L workers it yields a negative
profit.

• Any contract c = (t , w ) that is optimal given {c ∗L , c ∗H , c } for both types of
worker lies above the iso-income curve of a type H worker through c ∗H (the
dark red line in Figure 14.5a), so that w >m ; since m > v we have w > v , so
that c is not profitable.

If, on the other hand, the proportion of workers of type H is large enough
that the average productivity in the population exceeds m , then an employer
who adds the contract (0, m ) (or any other contract in the green triangle in Fig-
ure 14.5b) attracts workers of both types and obtains a positive profit. Thus in
this case the set C ∗ of contracts is not an equilibrium.

Comment

The model is related to the “handicap principle” in biology. This principle pro-
vides an explanation for phenomena like the long horns of male deer. The male
deer signals his unobserved fitness (biological value) by wasting resources on
useless horns. The usefulness of the signal depends on the fact that spending
resources on useless horns is less costly for fitter animals. In the economic story,
a worker signals her unobserved quality by obtaining education, which has no
effect on her productivity but is less costly for workers with high productivity.

Problems

1. Quality certificate. A market contains producers, each of whom can produce
one unit of a good. The quality of the good produced by half of the producers
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t →
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v

(a) In this market, {c ∗H , c ∗L} is a separating
equilibrium.

t →

↑
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c ∗H

c ∗L

vH

vL

m
v

(b) In this market, {c ∗H , c ∗L} is not a separat-
ing equilibrium.

Figure 14.5 Existence or nonexistence of equilibria in labor markets with asymmetric
information.

(type L) is low, and the quality of the good produced by the remaining half
(type H ) is high. Each producer knows the quality of her output and has no
production cost.

The market contains also traders, each of whom can buy a unit of the good
from a producer. If a trader buys a unit, she can sell it for the price 20 if it is
high quality and for the price 10 if it is low quality. No trader can verify the
quality of a good prior to purchasing it.

A producer can obtain a certificate that says that her output has high quality.
The cost of such a certificate is 4 for type H and 12 for type L. (A type L
producer has to bribe the agency who gives the certificate.)

Traders make offers. An offer has either the form (+, p ), a promise to pay p
for a good with a certificate, or the form (−, p ), a promise to pay p for a good
without a certificate. Traders maximize profits.

Each producer has to decide whether to accept one of the offers or to re-
ject all offers (in which case her profit is 0). Producers maximize profits. A
producer who is indifferent between two offers chooses the one without the
certificate.

A candidate for equilibrium is a set of offers. Define a notion of equilibrium
in the spirit of this chapter and characterize all equilibria.

2. Sorting students. Consider a world in which entrepreneurs offer education
services to the students in a city. All students must choose a school (if one
exists). Every student appreciates the closeness of a school to the city. There
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are two styles of schools, A and B . A school is a pair (x , d ), where x is the style
and d is the distance from the city. (The notion of school is analogous to that
of a contract in the body of the chapter.) For any value of d , every student
prefers (A, d ) to (B , d ).

The students are of two types.

• A student of type 1 is willing to travel an extra 10 kilometers to get to an
A-school. That is, (A, d ) ¼1 (B , d ′) if and only if d ≤ d ′+ 10. A student of
this type fits better at an A-school.

• A student of type 2 is willing to travel only an extra 5 kilometers to study
in an A-school. That is, (A, d )¼2 (B , d ′) if and only if d ≤ d ′+5. A student
of this type fits better at a B-school.

If (A, d )∼i (B , d ′), so that d > d ′, then a student of type i chooses school B .

Assume that a new school is established only if it is expected that all the stu-
dents who find it optimal fit its style. An existing school closes if no student
attends it or if all students who find it optimal fit the other style of school.
Note the following asymmetry: an existing school remains open if it attracts
a mixed population whereas to be established, a new school has to expect to
attract only students that fit its style.

Define a notion of equilibrium and characterize it.

Notes

The economic example in this chapter is based on Spence (1973) but the analysis
follows Rothschild and Stiglitz (1976). The handicap principle is due to Zahavi
(1975).
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15 Strategic games

The model of a strategic game is central to game theory. In a strategic game, each
individual chooses an action from a given set and is affected not only by this
action but also by the other individuals’ actions. We study mainly the notion of
Nash equilibrium, according to which a profile of actions is stable if no individual
wants to deviate from her action given the other individuals’ actions.

15.1 Strategic games and Nash equilibrium

A strategic game consists of a set of players, each of whom is characterized by the
set of actions available to her and a preference relation over action profiles (lists
of actions, one for each player). Each player chooses one of her available actions,
so that an outcome of the game is an action profile. We often work with utility
functions that represent the players’ preference relations, rather than explicitly
with preferences, and refer to the utility functions as payoff functions.

Definition 15.1: Strategic game

A strategic game 〈N , (Ai )i∈N , (¼i )i∈N 〉 consists of

players
a set N = {1, . . . , n}

actions
for each player i ∈N , a set Ai of actions

preferences
for each player i ∈ N , a preference relation ¼i over the set A = ×i∈N Ai

of action profiles.

A function u i : A→R that represents ¼i is a payoff function for player i .

This model differs from the models discussed in Part II in two main ways.
First, in a strategic game the set of alternatives of each player is fixed, whereas in
the market models the set of alternatives available to an individual is determined
by the equilibrium. Second, in the market models an individual’s preferences are
defined over her own choices, whereas in a strategic game a player’s preferences
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are defined over the set of action profiles, so that they take into account the effect
of other players’ actions on the player.

The main solution concept we study is Nash equilibrium. A Nash equilibrium
is an action profile with the property that no deviation by any player leads to
an action profile that the player prefers. That is, every player’s action in a Nash
equilibrium is best for her given the other players’ actions.

Definition 15.2: Nash equilibrium of strategic game

In a strategic game 〈N , (Ai )i∈N , (¼i )i∈N 〉, an action profile a = (a i ) ∈ A is a
Nash equilibrium if for every player i ∈N we have

(a i , a−i )¼i (x i , a−i ) for all x i ∈ Ai

where (x i , a−i ) denotes the action profile that differs from a only in that
the action of individual i is x i rather than a i .

Like the other equilibrium concepts we discuss, Nash equilibrium is static:
we do not consider either a dynamic process or a reasoning process that might
lead each player to choose her Nash equilibrium action. Note also that the notion
of Nash equilibrium does not consider the instability that might arise if groups
of players act together. It simply identifies outcomes that are stable against devi-
ations by individuals, without specifying how these outcomes are attained.

We can express the condition for a Nash equilibrium differently using the
notion of a best response.

Definition 15.3: Best response

In a strategic game 〈N , (Ai )i∈N , (¼i )i∈N 〉, the action a i ∈ Ai of player i is a
best response to the list a−i of the other players’ actions if

(a i , a−i )¼i (x i , a−i ) for all x i ∈ Ai .

Denote by BR (a−i ) the set of player i ’s best responses to a−i . Then an action
profile a is a Nash equilibrium if and only if a i ∈ BR (a−i ) for each player i .

15.2 Basic examples

Example 15.1: Traveler’s dilemma

Each of two people chooses a number of dollars between $180 and $300.
Each person receives the lower of the two amounts chosen. In addition, if
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the amounts chosen differ, $5 is transferred from the person who chose the
larger amount to the person who chose the smaller one. (If the amounts
chosen are the same, no transfer is made.)

The name traveler’s dilemma comes from a story used to add color (a
part of the charm of game theory). Each of two travelers takes a suitcase
containing an identical object on a flight. The value of the object is known
to be between $180 and $300. The suitcases are lost and the airline has to
compensate the travelers. The airline asks each traveler to name an inte-
ger between 180 and 300. Each traveler gets (in dollars) the smaller of the
numbers chosen, and, if the numbers differ, in addition $5 is transferred
from the traveler who names the larger number to the one who names the
smaller number.

A strategic game that models this situation has N = {1,2}, Ai =
{180,181, . . . ,300} for i = 1,2, and

u i (a 1, a 2) =







a i +5 if a i < a j

a i if a i = a j

a j −5 if a i > a j ,

where j is the player other than i .

Claim The only Nash equilibrium of the traveler’s dilemma is (180,180).

Proof. First note that (180,180) is indeed a Nash equilibrium. If a player
increases the number she names, her payoff falls by 5.

No other pair (a 1, a 2) is an equilibrium. Without loss of generality, as-
sume a 1 ≥ a 2. If a 1 > a 2, then a deviation of player 1 to a 2 increases her
payoff from a 2 − 5 to a 2. If a 1 = a 2 6= 180, then a deviation of player i to
a i −1 increases her payoff from a i to a i +4. Ã

When people are asked to play the game (without the suitcase inter-
pretation), most say they would choose a number different from 180. For
example, among 21,000 students of courses in game theory around the
world who have responded at https://arielrubinstein.org/gt, only
22% have chosen 180. The most popular choice is 300 (43%). About 8%
chose 299 and 7% chose a number in the range 295–298. The action 298 is
the best action given the distribution of the participants’ choices.

One possible explanation for the difference between these results and
Nash equilibrium is that the participants’ preferences are not those speci-
fied in the game. Most people care not only about the dollar amount they

https://arielrubinstein.org/gt
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receive. Some perceive 300 to be the socially desirable action especially if
they anticipate that most other people would choose 300. Many people
dislike gaining a few dollars at the expense of another person, especially
if they believe the other person is not trying to game the system. Thus,
for example, player 1 may prefer the outcome (300,300) to (299,300), even
though the latter involves a higher monetary reward. In this case, the ex-
perimental results conflict less with Nash equilibrium as (300,300) is an
equilibrium in the game with these modified preferences.

The next few examples are two-player games with a small number of alterna-
tives for each player. Such a game may conveniently be presented in a table with
one row for each action of player 1, one column for each action of player 2, and
two numbers in each cell, that are payoffs representing the players’ preferences.
For example, the following table represents a game in which player 1’s actions are
T and B , and player 2’s are L and R . Each cell corresponds to an action profile.
For example, the top left cell corresponds to (T, L). The preferences of player 1
over the set of action profiles are represented by the numbers at the left of each
cell and those of player 2 are represented by the numbers at the right of each
cell. Thus, for example, the worst action profile for player 1 is (B , R) and the best
action profile for player 2 is (B , L).

L R
T 5,0 −1,1
B 3,7 −2,0

Example 15.2: Prisoner’s dilemma

The Prisoner’s dilemma is the most well-known strategic game. The story
behind it involves two suspects in a robbery who are caught conducting a
lesser crime. The police have evidence regarding only the lesser crime. If
both suspects admit to the robbery, each is sentenced to six years in jail. If
one of them admits to the robbery and implicates the other, who does not
admit to it, then the former is set free and the latter is sentenced to seven
years in jail. If neither admits to the robbery then each is sentenced to one
year in jail. Each person aims to maximize the number of free years within
the next seven years.

The structure of the incentives in this story is shared by many other
situations. The essential elements are that each of two individuals has
to choose between two courses of action, C (like not admitting) and D
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(like admitting), each individual prefers D to C regardless of the other
individual’s action, and both individuals prefer (C ,C ) to (D, D).

We can model the situation as a strategic game in which N = {1,2},
Ai = {C , D} for i = 1, 2, and the players’ preferences are represented by the
payoffs in the following table.

C D
C 6,6 0,7
D 7,0 1,1

Each player’s optimal action is D , independent of the other player’s
action. Thus (D, D) is the only Nash equilibrium of the game.

The action profile (D, D) is not Pareto stable: both players prefer (C ,C ).
This fact sometimes leads people to use the game to argue that rational
behavior by all players may lead to an outcome that is socially undesirable.

Note that in the situation the game is intended to model, some people,
at least, would probably not have the preferences we have assumed: the
guilt from choosing D when the other person chooses C would lead them
to prefer (C ,C ) to the action profile in which they choose D and the other
person chooses C . In the game in which each player has such modified
preferences, (C ,C ) is a Nash equilibrium.

The previous two strategic games, the traveler’s dilemma and the prisoner’s
dilemma, are symmetric: the set of actions of each player is the same and the
payoff of player 1 for any action pair (a 1, a 2) is the same as the payoff of player 2
for the action pair (a 2, a 1).

Definition 15.4: Symmetric two-player game

A two-player strategic game 〈{1,2}, (Ai )i∈{1,2}, (¼i )i∈{1,2}〉 is symmetric if A1 =
A2 and (a 1, a 2)¼1 (b 1,b 2) if and only if (a 2, a 1)¼2 (b 2,b 1).

In other words, if u 1 represents ¼1 then the function u 2 defined by u 2(a 1, a 2) =
u 1(a 2, a 1) represents ¼2. In a symmetric game, a player’s preferences can be
described by using only the terms “the player” and “the other player”, without
referring to the player’s name.

Example 15.3: Where to meet? (Bach or Stravinsky)

Two people can meet at one of two locations, B (perhaps a concert of mu-
sic by Bach) or S (perhaps a concert of music by Stravinsky). One person
prefers to meet at B and the other prefers to meet at S. Each person prefers
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to meet somewhere than not to meet at all and is indifferent between the
outcomes in which she alone shows up at one of the locations.

This situation is modeled by the following game.

B S
B 2,1 0,0
S 0,0 1,2

The game has two Nash equilibria, (B , B ) and (S,S). The first equilib-
rium can be thought of as representing the convention that player 2 yields
to player 1, while the second equilibrium represents the convention that
player 1 yields to player 2. These interpretations are particularly attractive
if the people who engage in the game differ systematically. For example, if
player 1 is older than player 2, then the first equilibrium can be interpreted
as a norm that the younger player yields to the older one.

Note that the situation can be modeled alternatively as a symmetric
game where each player has the two actions F (favorite) and N , as follows.

F N
F 0,0 2,1
N 1,2 0,0

Although this game is symmetric, its two Nash equilibria, (N , F ) and (F, N ),
are not symmetric.

Example 15.4: Odds or evens (matching pennies)

In a two-person game played by children, each player presents between 1
and 5 fingers. One player, say player 1, wins if the sum is odd and the other
player, 2, wins if the sum is even. Each player prefers to win than to lose.

In one strategic game that models this situation, each player has five
actions.

1 2 3 4 5
1 0,1 1,0 0,1 1,0 0, 1
2 1,0 0,1 1,0 0,1 1, 0
3 0,1 1,0 0,1 1,0 0, 1
4 1,0 0,1 1,0 0,1 1, 0
5 0,1 1,0 0,1 1,0 0, 1

Obviously, what matters is only whether a player chooses an odd or
even number of fingers. So in another strategic game that models the
situation, each player’s actions are odd and even.
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odd even
odd 0,1 1,0

even 1,0 0,1

Unlike the previous two examples, these games are strictly competitive:
an outcome is better for player 1 if and only if it is worse for player 2.
Neither game has a Nash equilibrium. That makes sense: no determin-
istic stable mode of behavior is to be expected given that the game is used
to make random choices. We return to the game in Section 15.7, when
discussing a notion of equilibrium that involves randomization.

Note that if each of two players has to choose a side of a coin, Head and
Tail, and player 1 prefers to mismatch player 2’s choice whereas player 2
prefers to match 1’s choice, we get the same payoffs. For this reason, such
an interaction is known also as matching pennies.

Example 15.5: Coordination game

Two people can meet at one of three stadium gates, Yellow, Blue, or Green.
They want to meet and do not care where. This situation is modeled by the
following strategic game.

Y B G
Y 1,1 0,0 0,0
B 0,0 1,1 0,0
G 0,0 0,0 1,1

Each of the three action pairs in which both players choose the same ac-
tion is a Nash equilibrium. An equilibrium, for example (Yellow,Yellow),
makes sense if the Yellow gate is a salient meeting place.

15.3 Economic examples

We start with two examples of auctions. In a sealed-bid auction, n players bid
for an indivisible object. Player i ’s monetary valuation of the object is v i > 0,
i = 1, . . . , n . Assume for simplicity that no two players have the same valuation,
so that without loss of generality v 1 > v 2 > · · ·> v n . Each player’s bid is a nonneg-
ative number, and the object is given to the player whose bid is highest; in case of
a tie, the object is given to the player with the lowest index among those who sub-
mit the highest bid. That is, the winner W (b 1, . . . ,b n ) is the smallest i such that
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b i ≥b j for j = 1, . . . , n . We assume that each player cares only about whether she
wins the object and how much she pays and, for example, does not regret that
she did not bid slightly more if doing so would have caused her to win. The auc-
tions we study differ in the rule determining the amount the players pay. If player
i wins and pays p then her payoff is v i − p and if she does not win and pays p
then her payoff is −p .

Example 15.6: First-price auction

A first-price auction is a sealed-bid auction in which the player who wins
the object (the one with the lowest index among the players whose bids are
highest) pays her bid and the others pay nothing, so that player i ’s payoff
function is

u i (b 1, . . . ,b n ) =

(
v i −b i if W (b 1, . . . ,b n ) = i

0 otherwise.

This game has many Nash equilibria. Here are some of them.

• b 1 = v 2 and b i = v i for all other i . Player 1’s payoff is v 1 − v 2. She
cannot increase her payoff: if she lowers her bid then she is no longer
the winner, so that her payoff falls to 0. Any other player can obtain
the object only if she bids more than v 2, which causes her payoff to be
negative.

• b 1 =b 2 = v 2 and b i = 0 for all other i .

• b i = p for all i , where v 2 ≤ p ≤ v 1.

Claim In all Nash equilibria of a first-price auction, player 1 gets the object
and pays a price in [v 2, v 1].

Proof. Let (b 1, . . . ,b n ) be a Nash equilibrium. Suppose the winner is i 6=
1. We need b i ≤ v i (otherwise player i ’s payoff is negative, and she can
increase it to 0 by bidding 0). Thus player 1 can deviate to a bid between
v 2 and v 1, thereby winning the object and getting a positive payoff.

Now suppose that the winner is 1. We have b 1 ≤ v 1(as before). If b 1 < v 2

then player 2 can raise her bid to a number between b 1 and v 2 and get a
positive payoff. Thus b 1 ∈ [v 2, v 1]. Ã

In fact, (b 1, . . . ,b n ) is a Nash equilibrium of the game if and only if b 1 ∈
[v 2, v 1], b i ≤b 1 for all i 6= 1, and maxi 6=1 b i =b 1.
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Example 15.7: Second-price auction

A second-price auction is a sealed-bid auction in which the player who
wins the object pays the highest of the other bids and the other players
pay nothing, so that player i ’s payoff function is

u i (b 1, . . . ,b n ) =

(
v i −maxj 6=i {b j } if W (b 1, . . . ,b n ) = i

0 otherwise.

To get some intuition about the Nash equilibria of this game, suppose first
that n = 2, v 1 = 10, and v 2 = 5. In this case the Nash equilibria of the game
include (7,7), (8,2), (3,12), and (10,5).

We now show that the auction has a wide range of Nash equilibria.

Claim For every player i and every price p ≤ v i a second-price auction has
a Nash equilibrium in which i obtains the object and pays p .

Proof. Consider the action profile in which player i bids b i > v 1, some
other player j bids p , and every other player bids 0. Player i wins and her
payoff is v i −p . If she changes her bid, her payoff either remains the same
or becomes 0. The payoff of every other player is 0, and remains 0 unless
she increases her bid and becomes the winner, in which case her bid must
be at least b i > v 1, so that her payoff is negative. Ã

The result shows, in particular, that the auction has an equilibrium in
which each player bids her valuation. This equilibrium is attractive be-
cause it has the special property that regardless of the other players’ bids,
i ’s action, to bid her valuation v i , is at least as good for her as any other
action: u i (v i ,b−i ) ≥ u i (b i ,b−i ) for all b−i and b i . We return to this prop-
erty in Chapter 17 (see Problem 2). Although the equilibrium is attractive,
in experiments a majority of subjects do not bid their valuations (see for
example Kagel and Levin 1993).

Example 15.8: Location game

The inhabitants of a town are distributed uniformly along the main street,
modeled as the interval [0,1]. Two sellers choose locations in the interval.
Each inhabitant buys a unit of a good from the seller whose location is
closer to her own location. Thus if the sellers’ locations are a 1 and a 2 with
a 1 < a 2 then all inhabitants with locations less than 1

2
(a 1 + a 2) patronize

seller 1 and all inhabitants with locations greater than 1
2
(a 1+a 2) patronize
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seller 2; the fraction of inhabitants with location exactly 1
2
(a 1+a 2) is zero,

so we can ignore it. Each seller wants to sell to the largest proportion of
inhabitants possible.

We can model this situation as a strategic game in which N = {1,2} and,
for i = 1, 2, Ai = [0,1] and

u i (a 1, a 2) =







1
2
(a 1+a 2) if a i < a j

1
2

if a i = a j

1− 1
2
(a 1+a 2) if a i > a j .

Note that the game is strictly competitive.

Claim The only Nash equilibrium of the location game is ( 1
2

, 1
2
).

Proof. The action pair ( 1
2

, 1
2
) is a Nash equilibrium: any deviation from 1

2
by

a seller reduces the fraction of inhabitants who patronize the seller.
The game has no other equilibria. If the sellers choose different loca-

tions then for each of them a deviation towards the other improves her
market share. If the sellers choose the same location, different from 1

2
,

then a deviation by a seller to 1
2

increases the proportion of inhabitants
who patronize her. Ã

Notice that a player who chooses the location 1
2

guarantees that her payoff
is at least 1

2
, and a player cannot guarantee to herself more than 1

2
. Such

an action, which guarantees a certain payoff and has the property that no
other action guarantees a higher payoff, is called a maxmin action.

Comment The variant of the game with three players has no Nash equi-
librium, by the following argument.

For an action profile in which all players’ locations are the same, either
a move slightly to the right or a move slightly to the left, or possibly both,
increase a player’s payoff to more than 1

3
.

For any other action profile, there is a player who is the only one choos-
ing her location and the locations of both other players are either to the
left or to the right of her location. Such a player can increase her payoff by
moving closer to the other players’ locations.

Example 15.9: Effort game

Two players are involved in a joint project. Each player chooses an effort
level in Ai = [0,∞). A player who chooses the level e bears the quadratic
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0 a 1→

↑
a 2

1
2

c

1
2

c

c

c

BR 1(a 2)

BR 2(a 1)

Figure 15.1 The players’ best response functions for the effort game in Example 15.9.
The game has a unique Nash equilibrium, (c , c ).

cost e 2. The project yields player i the amount a i (c + a j ), where j is the
other player and c is a positive constant. Player i ’s payoff function is given
by u i (a i , a j ) = a i (c +a j )− (a i )2.

A simple calculation shows that each player i ’s unique best response to
a j is 1

2
(c + a j ); the best response functions are shown in Figure 15.1. The

equations a 1 = BR 1(a 2) = 1
2
(c + a 2) and a 2 = BR 2(a 1) = 1

2
(c + a 1) have a

unique solution, (a 1, a 2) = (c , c ) (the intersection of the lines in the figure),
which is thus the unique Nash equilibrium of the game.

Example 15.10: Quantity-setting oligopoly (Cournot)

Two producers of a good compete in a market. Each of them chooses the
quantity of the good to produce. When the total amount they produce is
Q , the price in the market is 1−Q if Q ≤ 1 and 0 otherwise. Each producer
incurs the cost cq when she produces q units, where c ∈ (0,1), and aims to
maximize her profit.

This situation is modeled by a strategic game in which N = {1,2} and
for i = 1, 2, Ai = [0,1] and

u i (q i ,q j ) =

(
(1−q i −q j − c )q i if q i +q j ≤ 1

−cq i if q i +q j > 1

(where j is the other player).
To find the Nash equilibria of the game, we find the best response func-

tion of each player i . If q j > 1−c then for every output of player i the price
is less than c , so that i ’s profit is negative; in this case her optimal output
is 0. Otherwise her optimal output is (1−q j − c )/2.
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0 1−c
3

1−c
2

1− c

1−c
3

1−c
2

1− c

↑
q 2

q 1→

BR 1(q 2)

BR 2(q 1)

(q 1∗,q 2∗)

Figure 15.2 The best response functions in a quantity-setting duopoly game in which
the inverse demand function is P = 1−Q and the cost function of each firm is cq . The
unique Nash equilibrium is (q 1∗,q 2∗) = ( 1

3 (1− c ), 1
3 (1− c )).

The best response functions are shown in Figure 15.2. They intersect at
(q 1,q 2) = ( 1

3
(1− c ), 1

3
(1− c )), which is thus the only Nash equilibrium of the

game.
More generally, with n producers the payoff function of player i is

u i (q 1, . . . ,q n ) =

(�
1−q i −

∑
j 6=i q j − c

�
q i if

∑n
j=1 q j ≤ 1

−cq i if
∑n

j=1 q j > 1.

Thus player i ’s best response function is

BR i (q−i ) =max
�

0, 1
2

�
1− c −

∑
j 6=i q j

�	
.

In equilibrium, 2q i = 1−c−
∑

j 6=i q j for each i , so that q i = 1−c−
∑n

i=1 q j for
each i . Therefore q i is the same for all i , and is thus equal to (1−c )/(n+1).
The price in this equilibrium is 1− (1− c )n/(n + 1). As n →∞ this price
converges to c and each producer’s profit converges to 0.

Example 15.11: Price-setting duopoly (Bertrand)

As in the previous example, two profit-maximizing producers of a good
compete in a market with a mass of consumers of size 1. But now we as-
sume that each of them chooses a price (rather than a quantity). Each con-
sumer buys one unit of the good from the producer whose price is lower if
this price is at most 1 and nothing otherwise; if the prices are the same, the
consumers are split equally between the producers. Each firm produces
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the amount demanded from it and in doing so incurs the cost c ∈ [0, 1) per
unit. Thus, if producer i ’s price p i is lower than producer j ’s price p j , pro-
ducer i ’s payoff is p i − c if p i ≤ 1 and 0 if p i > 1, and producer j ’s payoff is
0; if the prices are the same, equal to p , each producer’s payoff is 1

2
(p − c )

if p ≤ 1 and 0 if p > 1.
In the strategic game that models this situation, for some actions of one

producer the other producer has no best response: if one producer’s price
is between c and 1, the other producer has no optimal action. (A price
slightly lower than the other producer’s price is a good response in this
case, but given that price is modeled as a continuous variable, no price is
optimal.) Nevertheless, the game has a unique Nash equilibrium.

Claim The only Nash equilibrium of a price-setting duopoly is (c , c ).

Proof. The action pair (c , c ) is a Nash equilibrium: if a producer increases
her price her profit remains 0, and if she reduces her price her profit be-
comes negative.

We now argue that (c , c ) is the only Nash equilibrium. Suppose that
(p 1, p 2) is a Nash equilibrium.

We have min{p 1, p 2} ≥ c , since otherwise a producer who charges
min{p 1, p 2} makes a loss, which she can avoid by raising her price to c .
Also min{p 1, p 2} ≤ 1, since otherwise each producer’s payoff is 0 and either
producer can increase her payoff by reducing her price to 1.

Also, p 1 = p 2, because if c ≤ p i < p j (and p i ≤ 1) then i can increase
her payoff by raising her price to any value less than min{1, p j }.

Finally, if c < p 1 = p 2 ≤ 1 then each player’s payoff is positive and either
player can reduce her price slightly and almost double her payoff. Ã

15.4 Existence of Nash equilibrium

As we have seen (Example 15.4) some strategic games do not have a Nash equilib-
rium. We now present two results on the existence of Nash equilibrium in certain
families of games. More general results use mathematical tools above the level of
this book.

15.4.1 Symmetric games

Our first result is for a family of two-player symmetric games in which each
player’s set of actions is a closed and bounded interval and her best response
function is continuous.
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Proposition 15.1: Existence of Nash equilibrium in symmetric game

Let G = 〈{1,2}, (Ai )i∈{1,2}, (¼i )i∈{1,2}〉 be a two-player symmetric game in
which A1 = A2 = I ⊂ R is a closed and bounded interval for i = 1, 2, and
each player has a unique best response to every action of the other player,
which is a continuous function of the other player’s action. Then there
exists x ∈ I such that (x ,x ) is a Nash equilibrium of G .

Proof

Let I = [l , r ]. Under the assumptions of the result, the function g (x ) =
BR 1(x )−x , where BR 1 is player 1’s best response function, is a continuous
function from [l , r ] toRwith g (l )≥ 0 and g (r )≤ 0. Thus by the intermedi-
ate value theorem there is a number x ∗ such that g (x ∗) = 0, or BR 1(x ∗) = x ∗.
Given that the game is symmetric, also BR 2(x ∗) = x ∗, so that (x ∗,x ∗) is a
Nash equilibrium.

An example in which each player’s best response is increasing in the other
player’s action is shown in Figure 15.3a. In this example the game has more than
one equilibrium. Such a game does not have any asymmetric equilibria: if (x , y )
with x > y were an equilibrium then we would have BR 1(x ) = y and BR 2(y ) = x
and thus also BR 1(y ) = x , contradicting the assumption that the function BR 1 is
increasing.

If each player’s best response is decreasing in the other player’s action then in
addition to symmetric equilibria, the game may have asymmetric equilibria, as
in the following example.

Example 15.12

Consider the two-player symmetric game where N = {1,2} , Ai = [0,1], and
u i (a 1, a 2) =−|1−a 1−a 2| for i = 1, 2. The best response function of player i
is given by BR i (a j ) = 1−a j , which is continuous. Every action pair (x ,1−x )
for x ∈ [0,1] is an equilibrium; only ( 1

2
, 1

2
) is symmetric. The best response

functions, which coincide, are shown in Figure 15.3b.

15.4.2 Supermodular finite games

The next result concerns games in which the players’ best response functions are
nondecreasing; such games are called supermodular.
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l r
l

r

↑
a 2

a 1→

BR 1(a 2)

BR 2(a 1)

(a) The players’ best response functions in
a symmetric two-player game. The three
small black disks indicate the Nash equi-
libria.

0 1
0

1

↑
a 2

a 1→

BR 1(a 2)
BR 2(a 1)

(b) The players’ best response functions
in the game in Example 15.12. Every pair
(x ,1− x ) is a Nash equilibrium. The small
black disk indicates the symmetric equi-
librium.

Figure 15.3

Proposition 15.2: Existence of equilibrium in finite supermodular two-
player game

Consider a two-player strategic game 〈{1,2}, (Ai )i∈{1,2}, (¼i )i∈{1,2}〉 in which
A1 = {1, . . . , K }, A2 = {1, . . . , L}, and all payoffs of each player are distinct,
so that each player has a unique best response to each action of the other
player. If each best response function is nondecreasing then the game has
a Nash equilibrium.

The result assumes that all payoffs of each player are distinct only for sim-
plicity; it remains true without this assumption.

Figure 15.4a shows an example of best response functions satisfying the con-
ditions in the result, with K = 8 and L = 7. The function BR 1 is indicated by the
blue disks and the function BR 2 is indicated by the red disks. The action pair
(6,5), colored both blue and red, is a Nash equilibrium.

Proof

Partition the set A1 into intervals I1, . . . , IM such that for all actions in any
given interval Im the best response of player 2 is the same, equal to bm

(BR 2(x )≡bm for all x ∈ Im ) and bm <bm ′ for m <m ′. (See Figure 15.4b for
an illustration.) For each m = 1, . . . , M , let BR 1(bm ) = a m . If for some value
of m we have a m ∈ Im then (a m ,bm ) is a Nash equilibrium. Otherwise,
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1 2 3 4 5 6 7 8
A1

1
2
3
4
5
6
7

A2

BR 1

BR 2

(a) Best response functions in a game sat-
isfying the conditions of Proposition 15.2.
The action pair (6,5) is a Nash equilibrium
of the game.

I1

a 1

I2 I3

a 2
a 3

I4

a 4
b1

b2

b3

b4

(b) An illustration of the proof of Proposi-
tion 15.2.

Figure 15.4

denote by Im (i ) the interval to which a i belongs. The fact that BR 2 is non-
decreasing implies that m (i + 1) ≥ m (i ) for all i . Now, m (1) > 1 (other-
wise (1,1) is an equilibrium) and thus m (2) ≥ m (1) ≥ 2, which implies
m (2) > 2 (otherwise (2,2) is an equilibrium). Continuing the argument
we get m (M )>M , contradicting m (M )≤M .

15.5 Strictly competitive games

A strategic game is strictly competitive if it has two players and the interests of
the players are completely opposed.

Definition 15.5: Strictly competitive game

A two-player strategic game 〈{1,2}, (Ai )i∈{1,2}, (¼i )i∈{1,2}〉 is strictly competi-
tive if for any action pairs a and b ,

a ¼1 b if and only if b ¼2 a .

Strictly competitive games are often called zero-sum games. The reason is
that if the function u 1 represents ¼1 then ¼2 can be represented by the function
u 2 defined by u 2(a ) = −u 1(a ) for each action pair a , in which case the sum of
the players’ payoffs is zero for every action pair.

Most economic situations have elements of both conflicting and common
interests, and thus cannot be modeled as strictly competitive games. The fam-
ily of strictly competitive games fits situations for which the central ingredient
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of the interaction is conflictual. For example, the game of chess is strictly com-
petitive (assuming that each player prefers to win than to tie than to lose). The
competition between two politicians for votes may also be modeled as a strictly
competitive game.

Consider the following (pessimistic) reasoning by a player: “Whatever action
I take, the outcome will be the worst among all outcomes that might occur, given
my action. Therefore, I will choose an action for which that worst outcome is best
for me.” In a two-player game, this reasoning leads player 1 to choose a solution
to the problem

max
a 1∈A1

[min
a 2∈A2

u 1(a 1, a 2)]

and player 2 to choose a solution to the problem

max
a 2∈A2

[min
a 1∈A1

u 2(a 1, a 2)].

The maximum in each case is the highest payoff that each player can guarantee
for herself.

Consider, for example, the following variant of Bach or Stravinsky.

B S
B 2,1 0.5, 0.5
S 0,0 1,2

The game has two Nash equilibria, (B , B ) and (S,S). Suppose that each player
chooses an action using the pessimistic reasoning we have described. If player 1
chooses B , then the worst outcome for her is (B ,S), and if she chooses S, the
worse outcome is (S, B ). The former is better than the latter for her, so she
chooses B . Similarly, player 2 chooses S. Thus, if the two players reason in this
way, the outcome is (B ,S) (and the players do not meet).

Consider now the location game of Example 15.8. This game, as we noted, is
strictly competitive: whenever the market share of one player increases, the mar-
ket share of the other player decreases. The game has a unique Nash equilibrium,
in which both players choose the middle point, 1

2
. A player who chooses this lo-

cation guarantees that her market share is at least 1
2

. If she chooses any other lo-
cation, then if the other player chooses a point between the middle point and her
point, she gets less than half the market. For example, if a player chooses 0.6 then
she gets less than half the market if the other player chooses 0.55. Thus for this
game, unlike the variant of Bach or Stravinsky, which is not strictly competitive,
Nash equilibrium and the pessimistic reasoning we have described lead to the
same conclusion. We now show that the same is true for any strictly competitive
game, and hence if a strictly competitive game has more than one equilibrium
then each player’s payoff in every equilibrium is the same.
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Proposition 15.3: Maxminimization and Nash equilibrium

Let G = 〈{1,2}, (Ai )i∈{1,2}, (¼i )i∈{1,2}〉 be a strictly competitive game. (i) If
(a 1, a 2) is a Nash equilibrium of G , then for each player i , a i is a solution
of maxx i∈Ai [minx j ∈A j u i (x 1,x 2)], where u i represents ¼i and j is the other
player. (ii) If G has a Nash equilibrium, then each player’s payoff is the
same in all equilibria.

Proof

(i) Assume that (a 1, a 2) is a Nash equilibrium of G . If player 2 chooses an
action different from a 2, her payoff is not higher than u 2(a 1, a 2), so that
player 1’s payoff is not lower than u 1(a 1, a 2). Thus the lowest payoff player
1 obtains if she chooses a 1 is u 1(a 1, a 2):

u 1(a 1, a 2) =min
x 2∈A2

u 1(a 1,x 2).

Hence, by the definition of a maximizer,

u 1(a 1, a 2)≤max
x 1∈A1

min
x 2∈A2

u 1(x 1,x 2).

Now, given that (a 1, a 2) is a Nash equilibrium of G , u 1(a 1, a 2) ≥ u 1(x 1, a 2)
for all x 1 ∈ A1. Thus u 1(a 1, a 2) ≥ minx 2∈A2 u 1(x 1,x 2) for all x 1 ∈ A1, and
hence

u 1(a 1, a 2)≥max
x 1∈A1

min
x 2∈A2

u 1(x 1,x 2).

We conclude that

u 1(a 1, a 2) =max
x 1∈A1

min
x 2∈A2

u 1(x 1,x 2).

(ii) That player 1’s payoff is the same in all equilibria follows from (i).

Note that the result does not claim that a Nash equilibrium exists. Indeed,
we have seen that the game odds or evens, which is strictly competitive, has no
Nash equilibrium.

By Proposition 15.3, a player’s payoff in a Nash equilibrium of a strictly com-
petitive game is the maximum payoff the player can guarantee. We show now
that it is also the lowest payoff the other player can inflict on her. As we noted
earlier, we can take player 2’s payoff function to be the negative of player 1’s,
(u 2(x 1,x 2) =−u 1(x 1,x 2) for all (x 1,x 2)) and thus by Proposition 15.3, if (a 1, a 2) is
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a Nash equilibrium of the game then

−u 1(a 1, a 2) = u 2(a 1, a 2) =max
x 2∈A2

min
x 1∈A1
(−u 1(x 1,x 2))

=max
x 2∈A2
(−max

x 1∈A1
(u 1(x 1,x 2))) =−min

x 2∈A2
max
x 1∈A1

u 1(x 1,x 2),

so that
u 1(a 1, a 2) =max

x 1∈A1
min
x 2∈A2

u 1(x 1,x 2) =min
x 2∈A2

max
x 1∈A1

u 1(x 1,x 2).

That is, if the game has a Nash equilibrium then the maximum payoff a player
can guarantee is the same as the lowest payoff the other player can inflict on her.
For a game that is not strictly competitive, this equality does not generally hold,
but the maximum payoff that a player can guarantee is never higher than the
minimum that the other player can inflict on her (see Problem 12).

15.6 Kantian equilibrium

Nash equilibrium is the most commonly used solution concept for strategic
games, but it is not the only possible solution concept. We now briefly discuss
one alternative concept, Kantian equilibrium.

At a Nash equilibrium, no player wants to deviate under the assumption that
the other players will not change their actions. At a Kantian equilibrium, no
player wants to deviate under the assumption that if she does so, the other play-
ers will change their actions in the same way as she has. To complete the defini-
tion we need to specify the meaning of “the same way”.

We illustrate the concept with a simple example. Consider a two-player game
in which each player i ’s set of actions is (0,1] and her preferences are represented
by u i . Assume that a player who considers deviating from an action pair, in-
creasing or decreasing her action by a certain percentage, imagines that the other
player will change her action in the same direction, by the same percentage. In
equilibrium no player wishes to change her action under this assumption about
the resulting change in the other player’s action. Formally, (a 1, a 2) is a Kantian
equilibrium if u i (a 1, a 2)≥ u i (λa 1,λa 2) for i = 1, 2 and for all λ> 0.

We calculate the Kantian equilibrium for the quantity-setting duopoly in Ex-
ample 15.10 with c = 0. For (a 1, a 2) to be a Kantian equilibrium of this game we
need

u 1(a 1, a 2) = a 1(1−a 1−a 2)≥max
λ>0

λa 1(1−λa 1−λa 2)

and similarly for player 2. The solution of the maximization problem is λ∗ =
1/(2(a 1+a 2)). For equilibrium we need λ∗ = 1, so that a 1+a 2 = 1

2
. The condition
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for player 2 is identical, so any pair (a 1, a 2) for which a 1 + a 2 = 1
2

is a Kantian
equilibrium.

By contrast, the game has a unique Nash equilibrium, ( 1
3

, 1
3
). So the total out-

put produced in a Kantian equilibrium is less than the total output produced in
a Nash equilibrium. The reason that ( 1

4
, 1

4
) is not a Nash equilibrium is that an

increase in output by a single player, assuming the other player does not change
her output, is profitable. It is a Kantian equilibrium because an increase in out-
put by a single player from 1

4
is not profitable if it is accompanied by the same

increase in the other player’s output.

15.7 Mixed strategies

Consider the game matching pennies, specified as follows.

H T
H 0,1 1,0
T 1,0 0,1

As we have seen, this game has no Nash equilibrium.
Imagine that two large populations of individuals play the game, members of

population 1 playing the role of player 1 and members of population 2 playing
the role of player 2. From time to time, an individual is drawn randomly from
each population and these two individuals play the game. Each individual in
each population chooses the same action whenever she plays the game, but the
individuals within each population may choose different actions. When two in-
dividuals are matched to play the game, neither of them knows the identity of the
other player. We are interested in steady states in which each individual’s belief
about the distribution of actions in the other population is correct (perhaps be-
cause of her long experience playing the game) and each individual chooses her
best action given these beliefs.

An implication of the game’s not having a Nash equilibrium is that no con-
figuration of choices in which all members of each population choose the same
action is stable. For example, the configuration in which every individual in pop-
ulation 1 chooses T and every individual in population 2 chooses H is not consis-
tent with a stable steady state because every individual in population 2, believing
that she certainly faces an opponent who will choose T , is better off choosing T .

Now consider the possibility that some individuals in each population choose
H and some choose T . Denote by p H the fraction of individuals in population 1
who choose H . Then an individual in population 2 gets a payoff of 1 with prob-
ability p H if she chooses H and with probability 1− p H if she chooses T . Thus
if p H > 1

2
then every individual in population 2 prefers H to T , in which case
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the individuals in population 1 who choose H are not acting optimally. Hence
the game has no steady state with p H > 1

2
. Similarly, it has no steady state with

p H < 1
2

.
What if p H = 1

2
? Then every individual in population 2 is indifferent between

H and T : both actions yield the payoff 1 with probability 1
2

. Thus any distribu-
tion of actions among the individuals in population 2 is consistent with each of
these individuals acting optimally. In particular, a distribution in which half the
individuals choose each action is consistent. And given that distribution, by the
same argument every individual in population 1 is indifferent between H and
T , so that in particular half of them choosing H and half choosing T is consis-
tent with each individual in population 1 choosing her action optimally, given
the distribution of actions in population 2. In summary, every individual’s action
is optimal given the distribution of actions in the other population if and only if
each action is chosen by half of each population.

In the remainder of the chapter we identify population i with player i and
refer to a distribution of actions in a population as a mixed strategy. (The ter-
minology “mixed strategy” relates to another interpretation of equilibrium, in
which a player chooses a probability distribution over her actions. We do not
discuss this interpretation.)

Definition 15.6: Mixed strategy

Given a strategic game 〈N , (Ai )i∈N , (¼i )i∈N 〉, a mixed strategy for player i is
a probability distribution over Ai . A mixed strategy αi that is concentrated
on one action (i.e. αi (a i ) = 1 for some a i ∈ Ai ) is a pure strategy.

If Ai consists of a finite (or countable) number of actions, a mixed strategy
αi of player i assigns a nonnegative number αi (a i ) to each a i ∈ Ai , and the sum
of these numbers is 1. We interpret αi (a i ) as the proportion of population i that
chooses the action a i .

If some players’ mixed strategies are not pure, players face uncertainty. To
analyze their choices, we therefore need to know their preferences over lotteries
over action profiles, not only over the action profiles themselves. Following con-
vention we adopt the expected utility approach (see Section 3.3) and assume that
the preferences of each player i over lotteries over action profiles are represented
by the expected value of some function u i that assigns a number to each action
profile. Thus in the remainder of this section, in Section 15.9, and in the exercises
for these sections, we specify the preferences of each player i in a strategic game by
giving a Bernoulli function u i whose expected value represents the player’s pref-
erences over lotteries over action profiles (rather than a preference relation over
action profiles).
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We now define a concept of equilibrium in the spirit of Nash equilibrium in
which the behavior of each player is described by a mixed strategy rather than
an action. We give a definition only for games in which the number of actions
of each player is finite or countably infinite. A definition for games with more
general action sets is mathematically more subtle.

Definition 15.7: Mixed strategy equilibrium of strategic game

Let G = 〈N , (Ai )i∈N , (u i )i∈N 〉 be a strategic game for which the set Ai of ac-
tions of each player i is finite or countably infinite. A profile (αi )i∈N of
mixed strategies is a mixed strategy equilibrium of G if for every player
i ∈N and every action a i ∈ Ai for which αi (a i )> 0, i ’s expected payoff (ac-
cording to u i ) from a i given α−i is at least as high as her expected payoff
from x i given α−i for any x i ∈ Ai .

The notion of mixed strategy equilibrium extends the notion of Nash equilib-
rium in the sense that (i) any Nash equilibrium is a mixed strategy equilibrium in
which each player’s mixed strategy is a pure strategy and (ii) if α is a mixed strat-
egy equilibrium in which each player’s mixed strategy is pure, with αi (a i ) = 1 for
every player i , then (a i )i∈N is a Nash equilibrium.

Although not every strategic game has a Nash equilibrium, every game in
which each player’s set of actions is finite has a mixed strategy equilibrium. A
proof of this result is beyond the scope of this book.

Example 15.13: Mixed strategy equilibrium in matching pennies

H T
H 0,1 1,0
T 1,0 0,1

Let (α1,α2) be a pair of mixed strategies. Let p 1 =α1(H ) and p 2 =α2(H ).
The pair is not a mixed strategy equilibrium if αi (a i ) = 1 for some action
a i , for either player i . If p 1 = 1, for example, then the only optimal action
of player 2 is H but if p 2 = 1 then player 1’s action H is not optimal.

For (α1,α2) to be an equilibrium with p 1 ∈ (0,1), both actions of player 1
must yield the same expected payoff, so that 1−p 2 = p 2, and hence p 2 = 1

2
.

The same consideration for player 2 implies that p 1 = 1
2

. Thus the only
mixed strategy equilibrium of the game is the mixed strategy pair in which
half of each population chooses each action.

The next example shows that a game that has a Nash equilibrium may have
also mixed strategy equilibria that are not pure.
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Example 15.14: Mixed strategy equilibria of Bach or Stravinsky

B S
B 2,1 0,0
S 0,0 1,2

The game has two Nash equilibria, (B , B ) and (S,S). Now consider
mixed strategy equilibria (α1,α2) in which at least one of the strategies is
not pure. If one player’s mixed strategy is pure, the other player’s opti-
mal strategy is pure, so in any non-pure equilibrium both players assign
positive probability to both of their actions.

For both actions to be optimal for player 1 we need the expected payoffs
to these actions, given player 2’s mixed strategy, to be equal. Thus we need
2α2(B ) = α2(S), so that α2(B ) = 1

3
and α2(S) = 2

3
. Similarly α1(B ) = 2

3
and

α1(S) = 1
3

.
Hence the game has three mixed strategy equilibria, two that are pure

and one that is not. In the non-pure equilibrium the probability of the
players’ meeting is 4

9
and each player’s expected payoff is 2

3
, less than the

payoff from her worst pure equilibrium.
An interpretation of the non-pure equilibrium is that in each popu-

lation two-thirds of individuals choose the action corresponding to their
favorite outcome and one-third compromise.

We end the discussion of mixed strategies with a somewhat more compli-
cated economic example.

Example 15.15: War of attrition

Two players compete for an indivisible object whose value is 1 for each
player. Time is discrete, starting at period 0. In each period, each player
can either give up or fight. The game ends when a player gives up, in which
case the object is obtained by the other player. If both players give up in
the same period, no one gets the object. For each period that passes before
a player gives up, she incurs the cost c ∈ (0,1). If player 1 plans to give up
in period t and player 2 plans to do so in period s , with s > t , then player 2
gets the object in period t+1, incurring the cost (t+1)c , and player 1 incurs
the cost t c .

We model the situation as a strategic game in which a player’s action
specifies the period in which she plans to give up. We have N = {1,2} and,
for i = 1, 2, Ai = {0,1,2,3, . . . } and
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u i (t i , t j ) =

(
−t i c if t i ≤ t j

1− (t j +1)c if t i > t j .

First consider pure Nash equilibria. For any action pair (t 1, t 2) in which
t 1 > 0 and t 2 > 0, the player who gives up first (or either player, if t 1 =
t 2) can increase her payoff by deviating to give up immediately. Thus any
pure Nash equilibrium has the form (0, t 2) or (t 1,0). In any equilibrium,
t i is large enough that c (t i + 1) ≥ 1, so that player j ’s payoff from giving
up immediately, 0, is at least 1 − (t i + 1)c , her payoff from waiting until
period t i +1.

Let (α,α) be a symmetric mixed strategy equilibrium. (We leave the
asymmetric mixed strategy equilibria for you to investigate.)

Step 1 The set of periods to which α assigns positive probability has no
holes: there are no numbers t 1 and t2 with t1 < t2 for which α(t1) = 0 and
α(t2)> 0.

Proof. Suppose α(t1) = 0 and α(t2) > 0. Then there is a period t such that
α(t ) = 0 andα(t+1)> 0. We show that the action t+1 is not a best response
to α. If the other player plans to give up before t , then t and t +1 yield the
same payoff. If the other player plans to give up at t + 1 or later, which
happens with positive probability given that α(t + 1) > 0, then the player
saves c by deviating from t +1 to t . Ã

Step 2 We have α(t )> 0 for all t .

Proof. Suppose, to the contrary, that T is the last period with α(T ) > 0.
Then T is not a best response to α since T + 1 yields a higher expected
payoff. The two actions yield the same outcome except when the other
player plans to give up at period T, an event with positive probability α(T ).
Therefore the expected payoff of T + 1 exceeds that of T by α(T )(1− c ),
which is positive given our assumption that c < 1. Ã

Step 3 For every value of t we have α(t ) = c (1− c )t .

Proof. From the previous steps, a player’s expected payoff to T and T + 1
is the same for every period T . The following table gives player i ’s payoffs
to these actions for each possible action t j of player j .
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ti = T ti = T +1

t j < T 1− (t j +1)c 1− (t j +1)c
t j = T −T c 1− (T +1)c
t j > T −T c −(T +1)c

The expected payoffs of player i from T and T +1 must be equal, given
the mixed strategy α of player j , so that the difference between her ex-
pected payoffs must be 0:

α(T )
�

1− (T +1)c − (−T c )
�
+

�

1−
T∑

t=0

α(t )

�
�
− (T +1)c − (−T c )

�
= 0

or

α(T )− c

�

1−
T−1∑

t=0

α(t )

�

= 0.

Thus for all T , conditional on not conceding before period T , the strat-
egy α concedes at T with probability c , so that α(T ) = c (1− c )T . Ã

15.8 Interpreting Nash equilibrium

The concept of Nash equilibrium has several interpretations. In this book we in-
terpret an equilibrium to be a stable norm of behavior, or a convention. A Nash
equilibrium is a profile of modes of behavior that is known to all players and is
stable against the possibility that one of them will realize that her action is not
optimal for her given the other players’ behavior. Thus, for example, the equi-
librium (Y , Y ) in the coordination game represents the convention that the play-
ers meet at Y ; the equilibrium (F, N ) in Bach or Stravinsky represents the norm
that player 1 (perhaps the younger player) always insists on meeting at her fa-
vorite concert whereas player 2 (the older player) yields; and the game matching
pennies has no stable norm.

In a related interpretation, we imagine a collection of populations, one for
each player. Whenever the game is played, one individual is drawn randomly
from each population i to play the role of player i in the game. Each individual
bases her decision on her beliefs about the other players’ actions. In equilibrium
these beliefs are correct and the action of each player in each population is op-
timal given the common expectation of the individuals in the population about
the behavior of the individuals in the other populations.

As discussed in Section 15.7, this interpretation is appealing in the context
of mixed strategy equilibrium. In that case, the individuals in each population
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may differ in their behavior. All individuals are anonymous, so that no individ-
ual obtains information about the action chosen by any specific individual. But
every individual holds correct beliefs about the distribution of behavior in each
of the other populations. A Nash equilibrium is a steady state in which every
individual’s belief about the action chosen by the individuals in each popula-
tion is correct and any action assigned positive probability is optimal given the
equilibrium distribution of actions in the other populations. Thus, for example,
the mixed strategy equilibrium in matching pennies represents a steady state in
which half of each population of individuals chooses each action.

Nash equilibrium is sometimes viewed as the outcome of a reasoning process
by each player or as the outcome of an evolutionary process. In this book, we do
not discuss these ideas; we focus on Nash equilibrium as a norm of behavior
or as a steady state in the interaction between populations of individuals that
frequently interact.

15.9 Correlated equilibrium

We have discussed some interpretations of mixed strategy equilibrium. We now
briefly discuss an equilibrium concept that springs from another interpretation
of mixed strategy equilibrium: each player bases her action on the realization of
some private information that is known only to her, does not affect her prefer-
ences, and is independent of the information on which the other players base
their actions.

Consider the game Bach or Stravinsky, reproduced here.

B S
B 2,1 0,0
S 0,0 1,2

Suppose that each player independently wakes up in a good mood with probabil-
ity 1

3
and in a bad mood with probability 2

3
. Then the mixed strategy equilibrium

can be thought of as the result of each player’s choosing the action she likes least
(S for player 1, B for player 2) if and only if she wakes up in a good mood.

We generalize this idea by assuming that the signals on which the players
base their actions may be correlated. Suppose, for example, that the weather has
three equally likely states, x (rainy), y (cloudy), and z (clear), and

player 1 is in a bad mood in {x , y } and in a good mood in z

player 2 is in a bad mood in {y , z } and in a good mood in x .

Assume that each player knows only her own mood, not the other player’s mood.
Suppose that each player chooses her less favored action when her mood is good
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and her favored action when her mood is bad. Over time she accumulates infor-
mation about the other player’s behavior conditional on her mood. Then player 1
concludes that if she is in a bad mood, player 2 chooses B and S with equal prob-
abilities. Given these beliefs she optimally chooses B , yielding expected payoff
1, which is greater than her expected payoff of choosing S, namely 1

2
. When she

is in a good mood, she concludes that player 2 chooses S, making her choice of
S optimal. Analogously, player 2’s plan is optimal whatever she observes. Thus
this behavior is an equilibrium in the sense that for each player, each signal she
can receive, and the statistics about the other player’s behavior given her signal,
a player does not want to revise her rule of behavior.

Generalizing this idea leads to the following definition.

Definition 15.8: Correlated equilibrium of strategic game

Let G = 〈N , (Ai )i∈N , (u i )i∈N 〉 be a strategic game for which the set Ai of
actions of each player i is finite. A candidate for a correlated equilibrium
is a tuple (Ω,µ, (Pi )i∈N , (s i )i∈N ) for which

• Ω is a finite set (of states)

• µ is a probability measure on Ω

• for each player i ∈N , Pi is a partition of Ω (i ’s information partition: if
the state isω ∈Ω then i is informed of the cell of Pi that includesω)

• for each player i ∈ N , s i is a function that assigns an action in Ai to
each state in Ω such that the same action is assigned to all states in the
same cell of Pi .

The tuple (Ω,µ, (Pi ), (s i )) is a correlated equilibrium if for every ω ∈ Ω
and each player i , the action s i (ω) is a best response for i to the distribu-
tion of a−i given the cell in Pi that containsω.

Consider again the game Bach or Stravinsky. The correlated equilibrium that
we have discussed in which the set of states is {x , y , z } yields the distribution of
outcomes that assigns equal probabilities to the three outcomes (B , B ), (B ,S),
and (S, B ):

B S

B 1
3

1
3

S 0 1
3

This distribution can be obtained also by another correlated equilibrium, de-
fined as follows.
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• The set of states is the set of outcomes, {(B , B ), (B ,S), (S, B ), (S,S)}.

• The probability measure on this set assigns probability 1
3

to each of the three
states (B , B ), (B ,S), and (S,S).

• Player 1’s information partition is {{(B , B ), (B ,S)},{(S, B ), (S,S)}} and player 2’s
is {{(B , B ), (S, B )},{(B ,S), (S,S)}}.

• Player 1’s strategy in state (X , Y ) chooses X and player 2’s strategy chooses Y .

In this equilibrium, a state can be interpreted as the profile of actions recom-
mended by nature, with each player being informed only of the action she is
recommended to take.

The construction of this correlated equilibrium illustrates a general result:
for every correlated equilibrium there is another correlated equilibrium with the
same distribution of outcomes in which the set of states is the set of outcomes in
the game.

Definition 15.9: Standard correlated equilibrium

Let G = 〈N , (Ai )i∈N , (u i )i∈N 〉 be a strategic game. A standard correlated
equilibrium is a correlated equilibrium (Ω,µ, (Pi )i∈N , (s i )i∈N ) in which

• the set Ω of states is the set of outcomes (action profiles), A =×i∈N Ai

• the information partition Pi of each player i is the collection of all sets
{(x j )j∈N : x i = a i } for a i ∈ Ai

• the strategy s i of each player i is defined by s i ((x j )j∈N ) = x i .

The next proposition implies that if we are interested only in the distribu-
tion of outcomes in correlated equilibria then we can limit attention to standard
correlated equilibria.

Proposition 15.4: Correlated and standard correlated equilibrium

For any correlated equilibrium there is a standard correlated equilibrium
that induces the same distribution of outcomes.

Proof

Let (Ω,µ, (Pi ), (s i )) be a correlated equilibrium. For each player i let Qi be
the partition of Ω for which for each action a i ∈ Ai for which s i (ω) = a i for
someω ∈Ω, there is a cell in Qi that is the union of the cells in Pi to which
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s i assigns a i . Then (Ω,µ, (Qi ), (s i )) is a correlated equilibrium. The reason
is a basic property of expected utility: if a i is optimal given a set of cells in
Pi then it is optimal also given the union of the set of cells.

To define the associated standard correlated equilibrium we need only
specify the probability measure µ∗ over the set of states, which is the set
A of outcomes of the game. We define µ∗((a i )i∈N ) = µ({ω ∈ Ω : s i (ω) =
a i for all i ∈ N }. In this standard correlated equilibrium a player’s sig-
nal is the action she is supposed to take. Given that she is supposed to
choose a i , her belief about the other players’ actions is the same as it is in
(Ω,µ, (Qi ), (s i ))when she plays a i , and is thus optimal.

Finally, every mixed strategy equilibrium can be described also as a corre-
lated equilibrium. For example, the game Bach or Stravinsky has a mixed strat-
egy equilibrium (α1,α2) for which α1(B ) = α2(S) = 2

3
. The behavior presented

by this equilibrium is obtained also by a standard correlated equilibrium with
µ(X , Y ) =α1(X )α2(Y ) (see the table).

B S

B 2
9

4
9

S 1
9

2
9

Given µ, whatever recommendation player 1 receives, she believes that player 2
chooses B and S with probabilities α2(B ) and α2(S), so that both actions are
optimal for her given her beliefs. Similarly for player 2.

More generally, if (αi )i∈N is a mixed strategy equilibrium of G then in the
standard correlated equilibrium defined by µ((a i )i∈N ) =

∏
i∈N α

i (a i ), the players’
choices are independent and each player’s distribution of choices is the same as
her choice in the mixed strategy equilibrium.

15.10 S(1) equilibrium

We end the chapter with a discussion of another solution concept for finite strate-
gic games. By doing so we wish to emphasize that Nash equilibrium, with or
without mixed strategies, is not the only possible solution concept for strategic
games.

At the heart of the concept of an S(1) equilibrium lies an assumption about
the procedure a player uses to decide the action to take when she is not familiar
with the consequences of the possible actions. Imagine a large society in which
each individual has to decide between two actions, L and R . Suppose that we
know that an individual’s experience from the action L is with equal probabilities
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Very good or Bad and her experience from the action R is with equal probabilities
Good or Very bad. The outcome is uncertain, so different individuals may have
different experiences from using the actions. A new individual who arrives into
the society does not have any idea about the virtues of the two alternatives, so
she consults one individual who chose L and one who chose R . She compares
their experiences and chooses accordingly: if either (i) the individual who chose
L had a Very good experience or (ii) this individual had a Bad experience and
the individual who chose R had a Very bad experience, then she chooses L, and
otherwise she chooses R . Thus as observers we will find that a newcomer to the
society chooses L with probability 3

4
and R with probability 1

4
.

Let us turn back to games. We consider only two-player symmetric games.
Such a game is characterized by a set Y of actions and a payoff function u :
Y ×Y →R, with the interpretation that u (a ,b ) is a player’s payoff if she chooses
a and the other player chooses b . For any action a and any mixed strategy σ
(interpreted as a distribution of actions in the population), define L(a ,σ) to be
the lottery that yields u (a ,b ) with probability σ(b ) for each action b . We imag-
ine that a player who enters the society samples each action once herself, or, for
each possible action, asks an individual who chose that action about her experi-
ence. This information leads her to associate a payoff with each action, and she
chooses the action with the highest payoff. Thus she selects the action a when-
ever L(a ,σ) yields a higher payoff than do all lotteries L(x ,σ) for x ∈ Y \ {a }.
If more than one lottery yields the highest payoff, she chooses each of the tied
actions with equal probabilities. Denote the probability that she chooses a by
W (a ,σ). We define an S(1) equilibrium to be a mixed strategy σ for which the
probability W (a ,σ) is equal to σ(a ) for all a ∈ Y .

Definition 15.10: S(1) equilibrium

Let G = 〈{1,2}, (Ai )i∈N , (u i )i∈N 〉 with A1 = A2 = Y and, for all a ∈ Y and
b ∈ Y , u 1(a ,b ) = u (a ,b ) and u 2(a ,b ) = u (b , a ), be a two-player symmetric
strategic game. An S(1) equilibrium of G is a mixed strategy σ for which
the probability W (a ,σ) is equal to σ(a ) for all a ∈ Y .

Thus an S(1) equilibrium is a stable distribution of play in the population: the
distribution of the actions chosen by new entrants is equal to the equilibrium
distribution.

Obviously, every strict symmetric Nash equilibrium, where all players choose
some action a ∗, is an S(1) equilibrium: when she samples a ∗, a new individual
has a better experience than she does when she samples any other action, given
that the other player chooses a ∗.
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Every finite symmetric strategic game has an S(1) equilibrium. The proof of
this result is above the level of this book, but we present it for readers who are
familiar with Brouwer’s fixed point theorem.

Proposition 15.5: Existence of S(1) equilibrium

Every symmetric finite strategic game has an S(1) equilibrium.

Proof

Assume that Y = {a 1, . . . , a K } and let ∆ be the set of all probability distri-
butions over Y . The set ∆ can be identified with the set of all K -vectors
of nonnegative numbers that sum to 1, and is convex and compact. De-
fine the function F : ∆ → ∆ by F (σ) = (W (a k ,σ))k=1...K . This function is
continuous and so by Brouwer’s fixed point theorem has at least one fixed
point, namely a point σ∗ for which F (σ∗) = σ∗. Any fixed point of F is an
S(1) equilibrium.

The next example demonstrates that the notion of S(1) equilibrium, unlike
that of mixed strategy equilibrium, depends only on the players’ ordinal prefer-
ences over the set of action profiles.

Example 15.16: S(1) equilibrium in simple game

Consider the following symmetric strategic game for M > 3.

a b
a 2 M
b 3 0

The game has no pure symmetric Nash equilibrium and has one sym-
metric mixed strategy equilibrium, (α,α) with α(a ) = M/(M + 1). This
equilibrium depends on the value of M .

To calculate the S(1) equilibrium note that a player concludes that a
is the better action if (i) the other player chooses a when she samples
a (payoff 2) and b when she samples b (payoff 0) or (ii) the other player
chooses b when she samples a (payoff M ). Thus for σ to be an S(1) equi-
librium we need p = p (1−p )+(1−p ), where p =σ(a ). This equation has a
unique solution p ∗ = (

p
5− 1)/2≈ 0.62. Thus independently of M , as long

as M > 3, the game has a unique S(1) equilibrium, in which a is chosen
with probability p ∗.

The next example demonstrates that unlike a mixed strategy Nash equilib-
rium, an S(1) equilibrium may assign positive probability to an action that is
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strictly dominated in the sense that another action yields a higher payoff regard-
less of the other player’s action.

Example 15.17: Dominated action in support of S(1) equilibrium

Consider the following game.

a b c
a 2 5 8
b 1 4 7
c 0 3 6

A story behind this game is that each of two players holds 2 indivisible
units that are worth 1 to her and 3 to the other player. Each player has to
decide how many units she gives voluntarily to the other player: none (a ),
one (b ), or two (c ). Thus, for example, if a player keeps her two units and
gets one unit from the other player her payoff is 2 ·1+1 ·3= 5.

The action a strictly dominates the other two, and the game has a
unique Nash equilibrium, in which each player chooses a . To calculate the
S(1) equilibria, let (α,β ,γ) = (σ(a ),σ(b ),σ(c )). Then an S(1) equilibrium is
characterized by the following set of equations:

α=α3+β (1−γ)2+γ

β = βα(1−γ)+γ(1−γ)

α+β +γ= 1.

This set of equations has two solutions, (α,β ,γ) = (1,0,0) and (α,β ,γ) ≈
(0.52,0.28,0.20). The first solution corresponds to the (strict) Nash equi-
librium. The other solution assigns positive probabilities to b and c , even
though these actions are strictly dominated.

If an action in a game is duplicated, the analysis of the Nash equilibria of the
game is unaffected. The same is not true for the S(1) equilibria, as the following
example shows.

Example 15.18: Duplication of actions affects S(1) equilibria

Consider the following games.

a b
a 1 4
b 3 2

a 1 a 2 b
a 1 1 1 4
a 2 1 1 4
b 3 3 2
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In the game on the right, the actions a 1 and a 2 are duplicates of a . The
only S(1) equilibrium of the game on the left assigns probability 1

2
to each

action. Denote by β the probability assigned to b . In an S(1) equilibrium
of the game on the right, β = (1−β )2, which has a single solution, β ≈ 0.38.

More generally, if the action a is replicated m times then the only S(1)
equilibrium assigns to b the probability β that is the solution of the equa-
tionβ = (1−β )m . As m increases without bound, this probability goes to 0.
Thus, duplicating strategies has a significant affect on the S(1) equilibrium.

Problems

Examples of games

1. Centipede game. Two players, 1 and 2, alternate turns in being able to stop
interacting or to continue doing so. Player 1 starts the game. Initially each
player has 0 in her account. Any decision by a player to continue reduces
the player’s account by 1 and adds 2 to the other player’s account. After 100
actions to continue, the game stops. Thus, each player has at most 50 oppor-
tunities to stop the game. Each player wants the amount in her account at
the end of the game to be as large as possible.

Model this situation as a strategic game and show that the game has a unique
Nash equilibrium.

2. Demand game. Two players can allocate ten indivisible desirable identical
objects among themselves. Find the Nash equilibria of the following two
games.

a. The players simultaneously submit demands, members of {0,1, . . . ,10}.
If the sum of the demands is at most 10, each player gets what she de-
mands. Otherwise both get 0.

b. As in part a, except that if the sum of the demands exceeds 10, then (i) if
the demands differ then the player who demands less gets her demand
and the other player gets the rest, and (ii) if the demands are the same
then each player gets 5.

3. War of attrition. Two individuals, 1 and 2, compete for an object. Individual
i ’s valuation of the object is v i for i = 1, 2. Time is a continuous variable
that starts at 0 and continues forever. The object is assigned to one of the
individuals once the other one gives up. If both of them give up at the same
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time, the object is divided equally (half the object is worth 1
2

v i to i ). As long
as neither individual gives up, each individual loses 1 unit of payoff per unit
of time.

Model the situation as a strategic game and show that in every Nash equilib-
rium the game ends immediately.

4. Extended Prisoner’s dilemma. Each of n tenants in a large building has to
decide whether to keep her property clean, C , or not, D . Assume that each
player’s preferences can be represented by a payoff function in which she
loses B > 0 if she keeps her property clean and loses L > 0 for every other
tenant who chooses D . Model the situation as a strategic game and find the
Nash equilibria for any parameters n ≥ 2, B , and L.

5. Guessing two-thirds of the average. Each of n players has to name a member
of {1, . . . ,100}. A player gets a prize if the number she names is the integer
closest to two-thirds of the average number named by all players (or one of
the two closest integers, if two integers are equally close). Notice that it is
possible that nobody gets a prize or that several players get prizes.

Model the situation as a strategic game and find its Nash equilibria.

6. Cheap talk. Two players are about to play Bach or Stravinsky (BoS, Exam-
ple 15.3). Before doing so, player 1 sends one of the following messages to
player 2: “I will choose B”, or “I will choose S”. Construct a strategic game
in which an action of player 1 is a combination of the message to send and
an action in BoS (a total of four possible actions) and an action for player 2
is a specification of the action in BoS to take for each possible message of
player 1 (a total of four possible actions). Assume that both players care only
about the payoff in BoS (not about the content of the message). Find the
Nash equilibria of this game.

Economic games

7. War. Two players, 1 and 2, fight over a single indivisible object worth V > 0
to each of them. Each player invests in becoming more powerful; denote
by e i , a nonnegative number, the investment of player i . Given investments
(e 1, e 2), player i ’s probability p i (e 1, e 2) of winning the object is e i/(e i + e j )
if e 1 + e 2 > 0, and 1

2
if e 1 = e 2 = 0. The preferences of each player i are

represented by the payoff function p i (e 1, e 2)V − e i .

Model the situation as a strategic game, show that in all Nash equilibria the
two players choose the same investment, and characterize this investment
level.
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8. All-pay auction. An all-pay auction is a sealed-bid auction in which every
bidder (not only the winner) pays her bid. Assume that there are two play-
ers, and that if their bids are the same each gets half of her value of the
object.

Model the situation as a strategic game and show that it does not have a Nash
equilibrium.

9. Another version of the location game. Consider a variant of the location game
in which the two players are candidates for a post and the set of positions is
the interval [0,1]. A population of voters has favorite positions distributed
uniformly over this interval; each voter endorses the candidate whose posi-
tion is closer to her favorite position. (The fraction of citizens with favorite
positions equidistant from the candidates’ positions is zero, so we can ignore
these citizens.) A candidate cares only about whether she receives more, the
same number, or fewer votes than the other candidate.

Model the situation as a strategic game and show that it has a unique Nash
equilibrium.

10. Nash demand game. Two players bargain over one divisible unit of a good.
Each player submits a demand, a number in [0,1]. For the pair of demands
(t 1, t 2), the probability that agreement is reached is g (t 1+ t 2) ∈ [0,1], where
g is differentiable, nonincreasing, positive when the sum of the demands is
less than 1, and 0 when the sum of the demand exceeds 1. If agreement is
reached on (t 1, t 2) then player i (= 1, 2) gets t i and her utility is αi t i , with
αi > 0. Each player maximizes her expected utility.

a. Model the situation as a strategic game and show that in any Nash equi-
librium the two players make the same demand.

b. For any ε > 0, let Gε be a game with g ε(t 1+ t 2) = 1 if t 1+ t 2 ≤ 1− ε. What
can you say about the limit of the Nash equilibria of Gε as ε→ 0?

11. Contribution game. Two players contribute to a joint project. The payoff
function of player i has the form v i (c 1 + c 2)− c i , where c i is i ’s contribu-
tion and v i is an increasing, differentiable, and concave function satisfying
v i (0) = 0. Assume that for each player i there is a number x i > 0 for which
(v i )′(x i ) = 1 (so that (v i )′(0)> 1 and hence each player optimally contributes
a positive amount if the other player contributes zero). Finally assume that
player 2 is interested in the project more than player 1 in the sense that
(v 2)′(x )> (v 1)′(x ) for all x .

Model the situation as a strategic game and show that in any Nash equilib-
rium only player 2’s contribution is positive.
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Strictly competitive games

12. max min versus min max. Show that in any two-player strategic game the
maximum payoff a player can guarantee for herself is at most the minimum
payoff that the other player can inflict on her.

13. Comparative statics. Consider two games G1 and G2 that differ only in that
one of the payoffs for player 1 is higher in G1 than it is in G2.

a. Show that if the games are strictly competitive then for any Nash equi-
libria of G1 and G2, player 1’s payoff in the equilibrium of G1 is at least as
high as her payoff in the equilibrium of G2.

b. Give an example to show that the same is not necessarily true for games
that are not strictly competitive.

Kantian equilibrium

14. Kantian equilibrium. Find the Kantian equilibrium (Section 15.6) for the
price-setting duopoly in Example 15.11 with no production costs.

Mixed strategy equilibrium

15. Mixed strategy equilibrium. Find the mixed strategy equilibria of the follow-
ing game.

L M R
T 2,2 0,3 2,2
B 3,0 1,1 2,2

16. Hawk or dove. A population of individuals is frequently matched in pairs to
fight over an object worth 1. Each individual can choose either Hawk (H ) or
Dove (D). If one individual chooses H and the other chooses D then the first
individual gets the object. If both choose D then the object is split equally
between the individuals. If both choose H then neither of them gets the ob-
ject and each player i suffers a loss of c i > 0. The situation is modeled by the
following strategic game.

H D
H −c 1,−c 2 1,0
D 0,1 0.5,0.5

The game has two Nash equilibria, (H , D) and (D, H ). Prove that it has only
one other mixed strategy equilibrium. Show that the higher is a player’s loss
when both players choose H the higher is her payoff in this equilibrium.
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17. Attack and defend. Army 1 has one missile, which it can use to attack one
of three targets of army 2. The significance of the three targets is given by
the numbers v (1) > v (2) > v (3) > 0. The missile hits a target only if it is not
protected by an anti-missile battery. Army 2 has one such battery. Army 1
has to decide which target to attack and army 2 has to decide which target
to defend. If target t is hit then army 1’s payoff is v (t ) and army 2’s payoff is
−v (t ); if no target is hit, each army’s payoff is zero.

a. Model this situation as a strategic game.

b. Show that in any mixed strategy equilibrium, army 1 attacks both target
1 and target 2 with positive probability.

c. Show that if v (3) ≤ v (2)v (1)/(v (1) + v (2)) then the game has an equilib-
rium in which target 3 is not attacked and not defended.

18. A committee. The three members of a committee disagree about the best
option. Members 1 and 2 favor option A, whereas member 3 favors option B .
Each member decides whether to attend a meeting; if she attends, she votes
for her favorite option. The option chosen is the one that receives a majority
of the votes. If the vote is a tie (including the case in which nobody attends
the meeting), each option is chosen with probability 1

2
. Each player’s payoff

depends on whether she attends the meeting and whether the outcome is
the one she favors, as given in the following table.

favored not
participate 1− c −c

not 1 0

Assume that c < 1
2

. Find the mixed strategy equilibria of the strategic game
that models this situation in which players 1 and 2 (who both favor A) use
the same strategy. Show that in such a mixed strategy equilibrium, A may be
chosen with probability less than 1 and study how the equilibrium expected
payoffs depend on c .

19. O’Neill’s game. Each of two players chooses one of four cards labeled 2, 3, 4,
and J . Player 1 wins if

• the players choose different numbered cards (2, 3, or 4) or

• both players choose J ,

and otherwise player 2 wins. Model the situation as a strategic game and find
the mixed strategy equilibria of the game.
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20. All-pay auction. An item worth 10 is offered in an all-pay auction. Two play-
ers participate in the auction. Each player submits a monetary bid that is
an integer between 0 and 10 and pays that amount regardless of the other
player’s bid. If one player’s bid is higher than the other’s, she receives the
item. If the players’ bids are the same, neither player receives the item. The
players are risk neutral.

a. Show that the game has no Nash equilibrium in pure strategies.

b. Prove that the expected payoff for each player in any symmetric mixed
strategy equilibrium is 0.

c. Characterize the symmetric mixed strategy equilibria.

d. Find an asymmetric mixed strategy equilibrium.

Correlated equilibrium

21. Aumann’s game. Consider the following game.

A B
A 6,6 2,7
B 7,2 0,0

Show that the game has a correlated equilibrium with a payoff profile that is
not a convex combination of the payoff profiles of the three Nash equilibria
(with and without mixed strategies).

22. Convexity of the set of payoff vectors. Show that the set of correlated equilib-
rium payoff profiles is convex. That is, if there are correlated equilibria that
yield the payoff profiles (u i )i∈N and (v i )i∈N then for every λ ∈ [0,1] there is
also a correlated equilibrium with payoff profile (λu i +(1−λ)v i )i∈N .

S(1) equilibrium

23. S(1) equilibrium of a 2 × 2 game. Consider a symmetric two-player game
in which the set of actions is {a ,b}. Assume that a strictly dominates b :
u (a ,x ) > u (b ,x ) for x = a , b . Show that the only S(1) equilibrium of the
game is its unique Nash equilibrium.

24. S(1) equilibrium in price-setting duopoly. Each of two sellers holds an in-
divisible unit of a good. Each seller chooses one of the K possible prices
p1, . . . , p K with 0 < p1 < · · · < pK . The seller whose price is lower obtains a
payoff equal to her price and the other seller obtains a payoff of 0. If the
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prices are the same, each seller’s payoff is half of the common price. As-
sume that pk−1 >

1
2

pk for all k > 1. Show that the game has a unique S(1)
equilibrium.

25. S(2) equilibrium. The concept of S(2) equilibrium is a variant of S(1) equi-
librium in which each player samples each action twice, rather than once,
and chooses the action for which the average payoff for her two samples
is highest. Compare the S(1) and S(2) equilibria of the following symmetric
game.

a b
a 2 5
b 3 0

Notes

The model of a strategic game was developed by Borel (1921) and von Neumann
(1928). The notion of Nash equilibrium is due to Nash (1950). (Cournot 1838,
Chapter 7 is a precursor.)

Proposition 15.2 is a simple example of a result of Topkis (1979). The theory
of strictly competitive games was developed by von Neumann and Morgenstern
(1944). The notion of Kantian equilibrium is due to Roemer (2010). The notion
of a mixed strategy was developed by Borel (1921, 1924, 1927). The notion of cor-
related equilibrium is due to Aumann (1974). Section 15.10, on S(1) equilibrium,
follows Osborne and Rubinstein (1998).

The Traveler’s Dilemma (Example 15.1) is due to Basu (1994). The Prisoner’s
dilemma (Example 15.2) seems to have been first studied, in 1950, by Melvin
Dresher and Merrill Flood (see Flood 1958/59). The game-theoretic study of auc-
tions (Examples 15.6 and 15.7) was initiated by Vickrey (1961). The location game
(Example 15.8) is due to Hotelling (1929). The model of quantity-setting pro-
ducers (Example 15.10) is due to Cournot (1838) and the model of price-setting
producers (Example 15.11) is named for Bertrand (1883). The war of attrition
(Example 15.15) is due to Maynard Smith (1974).

The centipede game (Problem 1) is due to Rosenthal (1981), the game in
Problem 5 is taken from Moulin (1986, 72), and the game in Problem 19 is due
to O’Neill (1987). The game in Problem 21 is taken from Aumann (1974); it is the
game he uses to demonstrate the concept of correlated equilibrium.





16 Extensive games

A market is currently served by a single incumbent. A competitor is considering
entering the market. The incumbent wants to remain alone in the market and
thus wishes to deter the competitor from entering. If the competitor enters, the
incumbent can start a price war or can act cooperatively. A price war is the worst
outcome for both parties; cooperative behavior by the incumbent is best for the
competitor, and for the incumbent is better than a price war but worse than the
competitor’s staying out of the market.

We can model this situation as a strategic game. The competitor (player 1) de-
cides whether to enter the market (In) or not (Out). If the competitor enters, the
incumbent (player 2) decides whether to Fight the competitor or to Cooperate
with it. The following table shows the game.

Fight Cooperate
In 0,0 2,2

Out 1,5 1,5

The game has two pure Nash equilibria, (In, Cooperate) and (Out, Fight). In the
second equilibrium the incumbent plans to fight the competitor if she enters, a
decision that deters the competitor from entering.

The formulation of the situation as this strategic game makes sense if the in-
cumbent can decide initially to fight a competitor who enters the market and
cannot reconsider this decision if the competitor does in fact enter. If the in-
cumbent can reconsider her decision, the analysis is less reasonable: after the
competitor enters, the incumbent is better off being cooperative than waging a
price war. In this case, a model in which the timing of the decisions is described
explicitly is more suitable for analyzing the situation. One such model is illus-
trated in Figure 16.1. Play starts at the initial node, indicated in the figure by a
small circle. The label above this node indicates the player whose move starts
the game (player 1, the competitor). The branches emanating from the node, la-
beled In and Out, represent the actions available to the competitor at the start
of the game. If she chooses Out, the game is over. If she chooses In, player 2,
the incumbent, chooses between Cooperate and Fight. The payoffs at the end-
points represent the players’ preferences: player 1 (whose payoff is listed first in
each pair) prefers (In, Cooperate) to Out to (In, Fight), and player 2 prefers Out to
(In, Cooperate) to (In, Fight).

Chapter of Models in Microeconomic Theory by Martin J. Osborne and Ariel Rubinstein. Version 2023.5.30 (s).
c© 2023 Martin J. Osborne and Ariel Rubinstein CC BY-NC-ND 4.0. https://doi.org/10.11647/OBP.0361.16
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2

Figure 16.1 The entry game described in the introduction to the chapter.

We refer to each sequence of actions as a history. In Figure 16.1 there are five
histories. The initial node represents the null history: no action has yet been
chosen. The node shown by a small disk represents the history (In). Each of the
three other histories, (In, Cooperate), (In, Fight), and (Out), leads to an endpoint
of the game. We refer to these histories as terminal, and to the other histories,
after which a player has to choose an action, as nonterminal.

16.1 Extensive games and subgame perfect equilibrium

An extensive game is specified by a set of players, a set of possible histories, a
player function, which assigns a player to each nonterminal history, and the play-
ers’ preferences over the terminal histories. We focus on games in which every
history is finite.

Definition 16.1: Finite horizon extensive game

A (finite horizon) extensive game 〈N , H , P, (¼i )i∈N 〉 has the following com-
ponents.

Players
A set of players N = {1, . . . , n}.

Histories
A set H of histories, each of which is a finite sequence of actions.
The empty history, ∅, is in H , and if (a 1, a 2, . . . , a t ) ∈ H then also
(a 1, a 2, . . . , a t−1)∈H .

A history h ∈H is terminal if there is no x such that (h,x )∈H . The set of
terminal histories is denoted Z . (We use the notation (h, a 1, . . . , a t ) for
the history that starts with the history h and continues with the actions
a 1, . . . , a t ).

Player function
A function P : H \Z →N , the player function, which assigns a player to
each nonterminal history (the player who moves after the history).
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Preferences
For each player i ∈N , a preference relation ¼i over Z .

We interpret this model as capturing a situation in which every player, when
choosing an action, knows all actions previously chosen. For this reason, the
model is usually called an extensive game with perfect information. A more gen-
eral model, which we do not discuss, allows the players to be imperfectly in-
formed about the actions previously chosen.

The example in the introduction, represented in Figure 16.1, is the extensive
game 〈N , H , P, (¼i )i∈N 〉 in which

• N = {1,2}

• H = {∅, (Out), (In), (In, Cooperate), (In, Fight)} (with Z = {(Out), (In, Cooperate),
(In, Fight)})

• P(∅) = 1 and P(In) = 2

• (In, Cooperate) �1 (Out) �1 (In, Fight) and (Out) �2 (In, Cooperate) �2

(In, Fight).

Notice that we use the notation P(In) instead of P((In)); later we similarly
write P(a 1, . . . , a t ) instead of P((a 1, . . . , a t )).

A key concept in the analysis of an extensive game is that of a strategy. A
player’s strategy is a specification of an action for every history after which the
player has to move.

Definition 16.2: Strategy in extensive game

A strategy of player i ∈N in the extensive game 〈N , H , P, (¼i )i∈N 〉 is a func-
tion that assigns to every history h ∈H \Z for which P(h) = i an action in
{x : (h,x )∈H}, the set of actions available to her after h.

A key word in this definition is “every”: a player’s strategy specifies the action
she chooses for every history after which she moves, even histories that do not
occur if she follows her strategy. For example, in the game in Figure 16.2, one
strategy of player 1 is s 1 with s 1(∅) = A and s 1(B ,G ) = I . This strategy specifies
the action of player 1 after the history (B ,G ) although this history does not occur
if player 1 uses s 1 and hence chooses A at the start of the game. Thus the notion
of a strategy does not correspond to the notion of a strategy in everyday language.
We discuss this issue further in Section 16.2.
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Figure 16.2 An example of an extensive game.

Each strategy profile generates a unique terminal history (a 1 . . . , a T ) as the
players carry out their strategies. The first component of this history, a 1, is the
action s P(∅)(∅) specified by the strategy s P(∅) of player P(∅), who moves at the
start of the game. This action determines the player who moves next, P((a 1)); her
strategy s P(a 1) determines the next action, a 2 = s P(a 1)(a 1), and so forth.

Definition 16.3: Terminal history generated by strategy profile

Let s be a strategy profile for the extensive game 〈N , H , P, (¼i )i∈N 〉. The
terminal history generated by s is (a 1, . . . , a T ) where a 1 = s P(∅)(∅) and
a t+1 = s P(a 1,...,a t )(a 1, . . . , a t ) for t = 1, . . . , T −1.

The main solution concept we use for extensive games is subgame perfect
equilibrium. Before defining this notion, we define a Nash equilibrium of an
extensive game: a strategy profile with the property that no player can induce a
more desirable outcome for herself by deviating to a different strategy, given the
other players’ strategies.

Definition 16.4: Nash equilibrium of extensive game

Let Γ = 〈N , H , P, (¼i )i∈N 〉 be an extensive game. A strategy profile s is a
Nash equilibrium of Γ if for every player i ∈N we have

z (s )¼i z (s−i , r i ) for every strategy r i of player i ,

where, for any strategy profile σ, z (σ) is the terminal history generated
byσ.

The entry game, given in Figure 16.1, has two Nash equilibria: (In, Cooperate)
and (Out, Fight). The latter strategy pair is a Nash equilibrium because given
the incumbent’s strategy Fight, the strategy Out is optimal for the competitor,
and given the competitor’s strategy Out, the strategy Fight is optimal for the



16.1 Extensive games and subgame perfect equilibrium 261

incumbent. In fact, if the competitor chooses Out, then any strategy for the
incumbent is optimal.

The non-optimality of Fight for the incumbent if the competitor chooses In
does not interfere with the status of (Out, Fight) as a Nash equilibrium: the notion
of Nash equilibrium considers the optimality of a player’s strategy only at the
start of the game, before any actions have been taken.

The notion of subgame perfect equilibrium, by contrast, requires that each
player’s strategy is optimal, given the other players’ strategies, after every possi-
ble history, whether or not the history occurs if the players follow their strategies.
To define this notion, we first define, for any strategy profile s and nonterminal
history h, the outcome (terminal history) that is reached if h occurs and then the
players choose the actions specified by s .

Definition 16.5: Terminal history extending history

Let s be a strategy profile for the extensive game 〈N , H , P, (¼i )i∈N 〉 and
let h be a nonterminal history. The terminal history extending h gener-
ated by s , denoted z (h, s ), is (h, a 1, . . . , a T ) where a 1 = s P(h)(h) and a t+1 =
s P(h,a 1,...,a t )(h, a 1, . . . , a t ) for t = 1, . . . , T −1.

In the game in Figure 16.2, for example, if h = B and the players’ strategies specify
s 1(∅) = A, s 1(B ,G ) = H , s 2(A) = C , and s 3(B ) = G , then the terminal history
extending h generated by s is (B ,G , H ).

Definition 16.6: Subgame perfect equilibrium of extensive game

Let Γ= 〈N , H , P, (¼i )i∈N 〉 be an extensive game. A strategy profile s = (s i )i∈N

is a subgame perfect equilibrium of Γ if for every player i ∈ N and every
nonterminal history h for which P(h) = i we have

z (h, s )¼i z (h, (s−i , r i )) for every strategy r i of player i ,

where, for any history h and strategy profile σ, z (h,σ) is the terminal
history extending h generated by σ.

The difference between this definition and that of a Nash equilibrium is the
phrase “and every nonterminal history h for which P(h) = i ”. The notion of Nash
equilibrium requires that each player’s strategy is optimal at the beginning of the
game (given the other players’ strategies) whereas the notion of subgame perfect
equilibrium requires that it is optimal after every history (given the other players’
strategies), even ones that are not consistent with the strategy profile.
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Every subgame perfect equilibrium is a Nash equilibrium, but some Nash
equilibria are not subgame perfect equilibria. In a subgame perfect equilibrium
of the entry game (Figure 16.1), the incumbent’s strategy must specify Coop-
erate after the history In, because the incumbent prefers the terminal history
(In, Cooperate) to the terminal history (In, Fight). Given this strategy of the in-
cumbent, the competitor’s best strategy is In. The Nash equilibrium (Out, Fight)
is not a subgame perfect equilibrium because Fight is not optimal for the incum-
bent after the history In.

Example 16.1: Ultimatum game

Two players have to agree how to allocate two indivisible units of a good
between themselves. If they do not agree then each of them gets noth-
ing. They use the take-it-or-leave-it protocol: Player 1 proposes one of the
three partitions of the two units, which player 2 either accepts or rejects.
Each player cares only about the number of units of the good she gets (the
more the better) and not about the number of units the other player gets.

Denote by (x 1,x 2) the proposal in which i gets x i , with x 1+x 2 = 2. The
situation is modeled by the following extensive game. At the start of the
game (the null history, ∅), player 1 makes one of the three proposals, (2,0),
(1,1), and (0,2), and after each of these proposals player 2 either agrees (Y )
or disagrees (N ).

(2,0)(0,2)
(1, 1)

1

N

0,0

Y

0,2

2
N

0,0

Y

1,1

2
N

0,0

Y

2,0

2

Player 1 has three strategies and player 2 has eight. Each of player 2’s
strategies specifies her reaction to each possible proposal of player 1; ex-
amples are (Y , Y , Y ), in which she accepts all proposals, and (Y , N , N ), in
which she accepts the proposal (0,2) and rejects the two other proposals.

The game has several Nash equilibria. In particular, for any allocation
the game has a Nash equilibrium with that outcome: player 1 proposes
the allocation and player 2 accepts that allocation and rejects the other
two. The strategy pair ((2,0), (N , N , N )) is also a Nash equilibrium, which
yields disagreement.

Consider the Nash equilibrium ((0,2), (Y , N , N )). Player 2’s strategy ac-
cepts only the offer (0,2), which gives her both units. However, her threat
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to reject (1,1) is not credible, because if player 1 proposes that alloca-
tion, player 2 prefers to accept it and get one unit than to reject it and get
nothing.

In any subgame perfect equilibrium, player 2’s action after every pro-
posal of player 1 must be optimal, so that she accepts the proposals (0, 2)
and (1,1). She is indifferent between accepting and rejecting the proposal
(2,0), so either action is possible in a subgame perfect equilibrium. Thus
the only strategies of player 2 consistent with subgame perfect equilibrium
are (Y , Y , Y ) and (Y , Y , N ). Player 1 optimally proposes (2,0) if player 2 uses
the first strategy, and (1,1) if she uses the second strategy. Hence the game
has two subgame perfect equilibria, ((2,0), (Y , Y , Y )) and ((1,1), (Y , Y , N )).

If there are K units of the good to allocate, rather than two, then
also the game has two subgame perfect equilibria, ((K ,0), (Y , . . . , Y )) and
((K −1,1), (Y , . . . , Y , N )). In the first equilibrium player 1 proposes that she
gets all K units and player 2 agrees to all proposals. In the second equilib-
rium player 2 plans to reject only the proposal that gives him no units and
player 1 proposes that player 2 gets exactly one unit.

Example 16.2: Centipede game

Two players, 1 and 2, alternately have the opportunity to stop their inter-
action, starting with player 1; each player has T opportunities to do so.
Whenever a player chooses to continue (C ), she loses $1 and the other
player gains $2. Each player aims to maximize the amount of money she
has at the end of the game.

This situation may be modeled as an extensive game in which the set of
histories consists of 2T nonterminal histories of the form Ct = (C , . . . ,C ),
where t ∈ {0, . . . ,2T − 1} is the number of occurrences of C (C0 = ∅, the
null history), and T +1 terminal histories, C2T (both players always choose
C ) and St = (C , . . . ,C ,S) for t ∈ {0, . . . ,2T − 1}, where t is the number of
occurrences of C (the players choose C in the first t periods and then one
of them chooses S).

After the history Ct , player 1 moves if t is even (including 0) and player
2 moves if t is odd. Each player’s payoff is calculated by starting at 0,
subtracting 1 whenever the player chooses C , and adding 2 whenever the
other player chooses C . The diagram on the next page shows the game for
T = 3. (The shape of the tree is the reason for the name “centipede”.)

Any pair of strategies in which each player plans to stop the game at the
first opportunity is a Nash equilibrium. Given player 2’s plan, player 1 can
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only lose by changing her strategy, and given that player 1 intends to stop
the game immediately, player 2 is indifferent between all her strategies.

In fact, we now show that in every Nash equilibrium player 1 stops the
game immediately. That is, the only terminal history generated by a Nash
equilibrium is S0. For any pair of strategies that generates the terminal his-
tory St with t ≥ 1, the player who moves after the history Ct−1 can increase
her payoff by changing her strategy to one that stops after this history, sav-
ing her the loss of continuing at this history. The terminal history C2T oc-
curs only if each player uses the strategy in which she plays C at every
opportunity, in which case player 2 can increase her payoff by deviating to
the strategy of stopping only at C2T−1.

Although the outcome of every Nash equilibrium is S0, the game has
many Nash equilibria. In every equilibrium player 1 chooses S at the start
of the game and player 2 chooses S after the history (C ), but after longer
histories each player’s strategy may choose either C or S.

However, the game has a unique subgame perfect equilibrium, in
which each player chooses S whenever she moves. The argument is by
induction, starting at the end of the game: after the history C2T−1, player 2
optimally stops the game, and if the player who moves after the history Ct

for t ≥ 1 stops the game, then the player who moves after Ct−1 optimally
does so.

When people play the game in experiments, they tend not to stop it
immediately. There seem to be two reasons for the divergence from equi-
librium. First, many people appear to be embarrassed by stopping the
game to gain $1 while causing the other player to lose $2 when there is an
opportunity for a large mutual gain. Second, people seem to continue at
least for a while because they are not sure of their opponent’s strategic rea-
soning, and given the potential gain they are ready to sacrifice $1 to check
her intentions.

16.2 What is a strategy?

Consider player 1’s strategy (S,C ,C ) in the centipede game with T = 3. Accord-
ing to this strategy, player 1 plans to stop the game immediately, but plans to
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continue at her later moves (after the histories (C ,C ) and (C ,C ,C ,C )). To be
a complete plan of action, player 1’s strategy has to specify a response to ev-
ery possible action of player 2. But a strategy in an extensive game does more
than that. Under the strategy (S,C ,C ) player 1 plans to stop the game immedi-
ately, but specifies also her action in the event she has a second opportunity to
stop the game, an opportunity that does not occur if she follows her own strat-
egy and stops the game immediately. That is, the strategy specifies plans after
contingencies that are inconsistent with the strategy.

In this respect the notion of a strategy in an extensive game does not cor-
respond to a plan of action, which naturally includes actions only after histories
consistent with the plan. In the centipede game with T = 3, player 1 has four nat-
ural plans of action: always continue, and stop at the t th opportunity for t = 1,
2, and 3.

Why do we define a strategy more elaborately than a plan of action? When
player 2 plans her action after the history (C ) she needs to think about what will
happen if she does not stop the game. That is, she needs to think about the action
player 1 will take after the history (C ,C ). The second component of player 1’s
strategy (S,C ,C ), which specifies an action after the history (C ,C ), can be thought
of as player 2’s belief about the action that player 1 will take after (C ,C ) if player
1 does not stop the game. Thus a pair of strategies in the centipede game, and
in other extensive games in which players move more than once, is more than a
pair of plans of action; it embodies also an analysis of the game that contains the
beliefs of the players about what would happen after any history.

16.3 Backward induction

Backward induction is a procedure for selecting strategy profiles in an extensive
game. It is based on the assumption that whenever a player moves and has a
clear conjecture about what will happen subsequently, she chooses an action
that leads to her highest payoff. The procedure starts by considering histories
that are one action away from being terminal, and then works back one step at a
time to the start of the game.

To describe the procedure, we first define the diameter of a history h to be
the number of steps remaining until the end of the game in the longest history
that starts with h.

Definition 16.7: Diameter of history

The diameter of the history h in an extensive game is the largest number K
for which there are actions a 1, . . . , a K such that (h, a 1, . . . , a K ) is a history.

Note that the diameter of a history is zero if and only if the history is terminal, and
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the diameter of the null history is the number of actions in the longest history in
the game.

The backward induction procedure starts by specifying the action chosen by
each player who moves after a history with diameter 1, and then works back in
steps to the start of the game. As it does so, it associates with every history h the
terminal history z (h) that occurs if the game reaches h and then the players take
the actions specified in the previous steps.

In the first step we define z (h) = h for every terminal history h.
In the second step we consider histories with diameter 1. Let h be such a

history, so that one action remains to be taken after h, by player P(h). (In the
game in Figure 16.3, the two such histories are A and (B ,G ), with P(A) = 3 and
P(B ,G ) = 1.) For every action a of P(h) after h, the history (h, a ) has diameter
0 (i.e. it is terminal), and hence z (h, a ) is defined from the first step (it is equal
to (h, a )). From among these actions, let a = a ∗(h) be one that maximizes P(h)’s
payoff over all terminal histories z (h, a ), and set s P(h)(h) = a ∗(h). Note that if
there is more than one such action, we select one of them arbitrarily. (In the
game in Figure 16.3, C is such an action for the history (A), and both H and I
are such actions for the history (B ,G ). Either of these actions can be chosen at
this step.) Define z (h) = z (h, a ∗(h)), the terminal history that occurs if the game
reaches h and then player P(h) chooses a ∗(h).

The procedure continues working backwards until the start of the game. After
step k , for every history h with diameter at most k an action for the player who
moves after h is defined, together with the resulting terminal history z (h), so that
at step k +1, for every history with diameter k +1, we can find an optimal action
for the player who moves after this history. At the end of the process, a strategy
for each player in the game is defined.

Procedure: Backward induction

The backward induction procedure for an extensive game 〈N , H , P, (¼i )i∈N 〉
generates a strategy profile s as follows. For any history h ∈H , denote the
diameter of h by d (h).

Initialization
For each history h with d (h) = 0 (that is, each terminal history), let
z (h) = h.

Inductive step
Assume that the terminal history z (h) is defined for all h ∈ H with
d (h) ∈ {0, . . . , k } and s P(h)(h) is defined for all h ∈ H with d (h) ∈
{1, . . . , k }, where k < d (∅). For each history h with d (h) = k+1, let a ∗(h)
be an action a that is best according to P(h)’s preferences over terminal
histories z (h, a ), and set s P(h)(h) = a ∗(h) and z (h) = z (h, a ∗(h)).
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Step 1: Choosing optimal actions for the player who moves after each history
with diameter 1. The action C is optimal after the history (A). Both H and I are
optimal after the history (B ,G ). The diagrams show the resulting two possible
outcomes of the step.
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Step 2: Choosing optimal actions for the player who moves after the single his-
tory with diameter 2.
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Step 3: Choosing optimal actions for the player who moves after the single his-
tory with diameter 3 (the initial history).

Figure 16.3 An example of backward induction. For this game, the procedure selects one
of two strategy profiles, which yield one of the two terminal histories (A,C ) and (B ,G , I ).
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We say that the strategy profile s is generated by backward induction if
for some choice of an optimal action after each history, this procedure
generates s .

The procedure is well-defined only if an optimal action exists whenever the
procedure calls for such an action. In particular it is well-defined for any game
with a finite number of histories. If the number of actions after some history is
not finite, an optimal action may not exist, in which case the procedure is not
well-defined.

We now show that any strategy profile generated by the backward induction
procedure is a subgame perfect equilibrium. To do so, we first give an alternative
characterization of a subgame perfect equilibrium of an extensive game.

Recall that a strategy profile s is a subgame perfect equilibrium if after no his-
tory h does any player have a strategy that leads to a terminal history she prefers
to the terminal history generated by s after h. In particular, for any history, the
player who moves cannot induce an outcome better for her by changing only her
action after that history, keeping the remainder of her strategy fixed. We say that
a strategy profile with this property satisfies the one-deviation property.

Definition 16.8: One-deviation property of strategy profile

Let Γ = 〈N , H , P, (¼i )i∈N 〉 be an extensive game. A strategy profile s for
Γ satisfies the one-deviation property if for every player i ∈ N and every
nonterminal history h ∈H \Z for which P(h) = i we have

z (h, s ) ¼i z (h, (s−i , r i )) for every strategy r i of player i

that differs from s i only in the action it specifies after h.

A profile of strategies that is a subgame perfect equilibrium satisfies the one-
deviation property. The reason is that a subgame perfect equilibrium requires,
for any history and any player, that the player’s strategy is optimal at that history
among all strategies, whereas the one deviation property requires the optimal-
ity to hold only among the strategies that differ in the action planned after that
history.

We now show that the converse is true: any strategy profile satisfying the one-
deviation property is a subgame perfect equilibrium. To illustrate the argument
suppose, to the contrary, that the strategy profile s satisfies the one-deviation
property, generating the payoff u i for some player i , but that after some history h
at which i moves, i can obtain the payoff v i > u i by changing the action specified
by her strategy at both h, from say a to a ′, and at some history h ′ that extends h,
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Figure 16.4 An illustration of the argument that a strategy profile that satisfies the
one-deviation property is a subgame perfect equilibrium.

from say b to b ′ (given the other players’ strategies). (See Figure 16.4.) Because
s satisfies the one-deviation property, the payoff s generates for i starting at h ′

(after i changes her action only at h), say w i , is at most u i . But then v i > w i

and hence at h ′ player i can induce a higher payoff than w i by changing only her
action at h ′ from b to b ′ holding the rest of her strategy fixed, contradicting the
assumption that s satisfies the one-deviation property.

Proposition 16.1: One-deviation property and SPE

For an extensive game (in which every terminal history is finite) a strategy
profile satisfies the one-deviation property if and only if it is a subgame
perfect equilibrium.

Proof

As we explained earlier, if a strategy profile is a subgame perfect equilib-
rium then it satisfies the one-deviation property.

Now let s be a strategy profile that satisfies the one-deviation property.
Assume, contrary to the claim, that s is not a subgame perfect equilibrium.
Then for some player i there is a history h with P(h) = i and at least one
strategy of player i that differs from s i only for histories that start with
h and generates a terminal history that i prefers to z (h, s ) (the terminal
history extending h generated by s ). Among these strategies let r i be one
for which the number of histories after which the action it specifies differs
from the action that s i specifies is minimal. Then z (h, (s−i , r i )) �i z (h, s ).
Let h∗ be a longest history for which r i (h∗) 6= s i (h∗) and let q i differ from r i

only in that q i (h∗) = s i (h∗), so that q i and s i are identical after any history
that extends h∗ and q i differs from s i after fewer histories than does r i . By
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the one-deviation property z (h∗, (s−i ,q i ))¼i z (h∗, (s−i , r i )). Therefore

z (h, (s−i ,q i )) = z (h∗, (s−i ,q i ))¼i z (h∗, (s−i , r i )) = z (h, (s−i , r i ))�i z (h, s ),

contradicting the definition of r i .

Note that the proof uses the assumption that all histories are finite, and in-
deed if not all histories are finite, a strategy profile may satisfy the one deviation
property and not be a subgame perfect equilibrium (see Problem 9).

In many games, this result greatly simplifies the verification that a strategy
profile is a subgame perfect equilibrium, because it says that we need to check
only whether, for each history, the player who moves can increase her payoff by
switching to a different action after that history.

We now show that any strategy profile generated by the procedure of back-
ward induction is a subgame perfect equilibrium, by arguing that it satisfies the
one-deviation property.

Proposition 16.2: Backward induction and SPE

For an extensive game (in which every terminal history is finite), a strategy
profile is generated by the backward induction procedure if and only if it
is a subgame perfect equilibrium.

Proof

A strategy profile generated by the backward induction procedure by con-
struction satisfies the one-deviation property. Thus by Proposition 16.1 it
is a subgame perfect equilibrium.

Conversely, if a strategy profile is a subgame perfect equilibrium then it
satisfies the one-deviation property, and hence is generated by the back-
ward induction procedure where at each step we choose the actions given
by the strategy profile.

An immediate implication of this result is that every extensive game with a
finite number of histories has a subgame perfect equilibrium, because for every
such game the backward induction procedure is well-defined.

Proposition 16.3: Existence of SPE in finite game

Every extensive game with a finite number of histories has a subgame
perfect equilibrium.
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Chess is an example of a finite extensive game. In the game, two players
move alternately. The terminal histories are of three types: player 1 wins, player
2 wins, and the players draw. Each player prefers to win than to draw than to
lose. The game is finite because once a position is repeated three times, a draw is
declared. Although the number of histories is finite, it is huge, and currently no
computer can carry out the backward induction procedure for the game. How-
ever, we know from Proposition 16.3 that chess has a subgame perfect equilib-
rium. Modeled as a strategic game, chess is strictly competitive, so we know also
(Proposition 15.3) that the payoffs in all Nash equilibria are the same and the
Nash equilibrium strategies are maxmin strategies: either one of the players has
a strategy that guarantees she wins, or each player has a strategy that guarantees
the outcome is at least a draw.

Ticktacktoe is another example of a finite extensive game that is strictly com-
petitive. For ticktacktoe, we know that each player can guarantee a draw. Chess
is more interesting than ticktacktoe because whether a player can guarantee a
win or a draw in chess is not known; the outcome of a play of chess depends on
the player’s cognitive abilities more than the outcome of a play of ticktacktoe.
Models of bounded rationality, which we do not discuss in this book, attempt to
explore the implications of such differences in ability.

16.4 Bargaining

This section presents several models of bargaining, and in doing so illustrates
how an extensive game may be used to analyze an economic situation. Bargain-
ing is a typical economic situation, as it involves a mixture of common and con-
flicting interests. The parties have a common interest in reaching an agreement,
but differ in their evaluations of the possible agreements. Bargaining models
are key components of economic models of markets in which exchange occurs
through pairwise matches and the terms of exchange are negotiated. These mar-
ket models differ from the market models presented in Part II of the book in that
the individuals do not perceive prices as given.

For simplicity we confine ourselves to the case in which two parties, 1 and
2, bargain over the partition of a desirable pie of size 1. The set of possible
agreements is

X = {(x 1,x 2) : x 1+x 2 = 1 and x i ≥ 0 for i = 1,2}.

The outcome of bargaining is either one of these agreements or disagreement.
We assume that the players care only about the agreement they reach and pos-
sibly the time at which they reach it, not about the path of the negotiations that
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precede agreement. In particular, a player does not suffer if she agrees to an of-
fer that is worse than one she previously rejected. Further, we assume that each
party regards a failure to reach an agreement as equivalent to obtaining none of
the pie.

We study several models of bargaining. They differ in the specification of the
order of moves and the options available to each player whenever she moves. As
we will see, the details of the bargaining procedure critically affect the outcome
of bargaining.

16.4.1 Take it or leave it (ultimatum game)

Player 1 proposes a division of the pie (a member of X ), which player 2 then
either accepts or rejects. (Example 16.1 is a version of this game in which the set
of possible agreements is finite.)

Definition 16.9: Ultimatum game

The ultimatum game is the extensive game 〈{1,2}, H , P, (¼i )i∈{1,2}〉 with the
following components.

Histories
The set H of histories consists of

• ∅ (the initial history)

• (x ) for any x ∈ X (player 1 makes the proposal x )

• (x , Y ) for any x ∈ X (player 1 makes the proposal x , which player 2
accepts)

• (x , N ) for any x ∈ X (player 1 makes the proposal x , which player 2
rejects).

Player function
P(∅) = 1 (player 1 moves at the start of the game) and P(x ) = 2 for all
x ∈ X (player 2 moves after player 1 makes a proposal).

Preferences
The preference relation ¼i of each player i is represented by the payoff
function u i with u i (x , Y ) = x i and u i (x , N ) = 0 for all x ∈ X .

The game is illustrated in Figure 16.5. Note that this diagram (unlike the dia-
grams of previous games) does not show all the histories. It represents player 1’s
set of (infinitely many) actions by a shaded triangle, and shows only one of her
actions, x , and the actions available to player 2 after the history (x ).
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Figure 16.5 An illustration of the ultimatum game.

Player 1’s set of strategies in the ultimatum game is X , and each strategy of
player 2 is a function that for each x ∈ X specifies either Y or N . The game has
a unique subgame perfect equilibrium, in which player 1 proposes that she gets
the entire pie and player 2 accepts all proposals.

Proposition 16.4: SPE of ultimatum game

The ultimatum game has a unique subgame perfect equilibrium, in which
player 1 proposes (1,0) and player 2 accepts all proposals.

Proof

The strategy pair is a subgame perfect equilibrium: given that player 2 ac-
cepts all proposals, the proposal (1, 0) is optimal for player 1, and after any
proposal, acceptance (Y ) is optimal for player 2.

Now let s be a subgame perfect equilibrium. The only optimal response
of player 2 to a proposal x with x 2 > 0 is acceptance, so s 2(x ) = Y for any
x with x 2 > 0. Thus if s 1(∅) = (1− ε,ε) with ε > 0 (which player 2 accepts),
then player 1 can do better by proposing (1− 1

2
ε, 1

2
ε), which player 2 also

accepts. Hence s 1(∅) = (1,0). Finally, s 2(1, 0) = Y because if player 2 rejects
(1,0) then player 1 gets 0 and can do better by making any other proposal,
which player 2 accepts.

Notice that after the proposal (1,0), player 2 is indifferent between Y and
N . Nevertheless, the game has only one subgame perfect equilibrium, in which
player 2 accepts (1,0). In contrast, in Example 16.1, where the number of possible
agreements is finite, the game has also a subgame perfect equilibrium in which
player 2 rejects the proposal (1, 0).

A long history of experiments has demonstrated that the unique subgame
perfect equilibrium is inconsistent with human behavior. For example, a pop-
ulation of 19,000 students from around the world similar to the readership of
this book have responded to a question on http://arielrubinstein.org/gt

http://arielrubinstein.org/gt
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asking them to imagine they have to divide $100 between themselves and an-
other person. The most common proposal, chosen by about 50% of subjects, is
the division ($50,$50). Only about 11% choose to offer the other person $0 or $1,
as in the subgame perfect equilibrium.

Rather than necessarily calling into question the concept of subgame per-
fect equilibrium, these results point to the unrealistic nature of the players’ pref-
erences in the game. First, some people have preferences for fairness, which
lead them to most prefer an equal division of the pie. Second, many people
are insulted by low offers, and hence reject them. When players’ preferences
involve such considerations, the (modified) game may have a subgame perfect
equilibrium in which the proposer receives significantly less than the entire pie.

16.4.2 Finite horizon with alternating offers

Now assume that after player 2 rejects player 1’s offer, she can make a counterof-
fer, which player 1 can accept or reject, and that the players can continue to al-
ternate proposals in this way for up to T periods. If the offer made in period T is
rejected, the game ends with disagreement.

Definition 16.10: Finite-horizon bargaining game with alternating offers

A finite-horizon bargaining game with alternating offers is an extensive
game 〈{1,2}, H , P, (¼i )i∈{1,2}〉with the following components.

Histories
The set H of histories consists, for some positive integer T , of

• ∅ (the initial history)

• (x1, N ,x2, N , . . . ,xt ) for any x1, . . . ,xt ∈ X and 1 ≤ t ≤ T (proposals
through period t −1 are rejected, and the proposal in period t is xt )

• (x1, N ,x2, N , . . . ,xt , N ) for any x1, . . . ,xt ∈ X and 1≤ t ≤ T (proposals
through period t are rejected)

• (x1, N ,x2, N , . . . ,xt−1, N ,xt , Y ) for any x1, . . . ,xt ∈ X and 1 ≤ t ≤ T
(proposals through period t − 1 are rejected, and the proposal in
period t is accepted).

Player function
Let i τ = 1 if τ is odd and i τ = 2 if τ is even. Then

• P(∅) = 1 (player 1 makes the first proposal)

• P(x1, N ,x2, N , . . . ,xt ) = i t+1 for t = 1, . . . , T (player i t+1 responds to
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the offer made by i t )

• P(x1, N ,x2, N , . . . ,xt , N ) = i t+1 for t = 1, . . . , T − 1 (player i t+1 makes
the proposal at the beginning of period t +1).

Preferences
The preference relation ¼i of each player i is represented by
the payoff function u i with u i (x1, N ,x2, N , . . . ,xt , Y ) = x i

t and
u i (x1, N ,x2, N , . . . , xT , N ) = 0.

We show that in this game all the bargaining power belongs to the player who
makes the proposal in the last period: in every subgame perfect equilibrium this
player receives the whole pie.

Proposition 16.5: SPE of finite-horizon game with alternating offers

In every subgame perfect equilibrium of a finite-horizon bargaining game
with alternating offers, the payoff of the player who makes a proposal in
the last period is 1 and the payoff of the other player is 0.

Proof

Let i be the player who proposes in period T , let j be the other player,
and let e (i ) be the partition in which i gets the whole pie. The game has
a subgame perfect equilibrium in which player i proposes e (i ) whenever
she makes a proposal and accepts only e (i ) whenever she responds to a
proposal, and player j always proposes e (i ) and accepts all proposals.

The game has many subgame perfect equilibria but all of them end with
i getting all the pie. Let s be a subgame perfect equilibrium. Consider
a history h = (x1, N ,x2, N , . . . ,xT−1, N ) in which T − 1 proposals are made
and rejected. The argument in the proof of Proposition 16.4 implies that
s i (h) = e (i ) and that player j accepts any proposal of player i in period T .

Now if i does not get the whole pie in the outcome of s , she can deviate
profitably to the strategy r i in which she rejects any proposal in any period
and always proposes e (i ). The outcome of the pair of strategies r i and s j

is agreement on e (i ) in period T at the latest.

16.4.3 Infinite horizon with one-sided offers

The result in the previous section demonstrates the significance of the existence
of a final period in which a proposal can be made. We now study a model in
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which no such final period exists: the players believe that after any rejection
there will be another opportunity to agree. For now, we assume that only player
1 makes proposals. Since we do not limit the number of bargaining periods,
we need to use a natural extension of the model of an extensive game in which
terminal histories can be infinite.

Definition 16.11: Infinite-horizon bargaining game with one-sided offers

The infinite-horizon bargaining game with one-sided offers is the extensive
game 〈{1,2}, H , P, (¼i )i∈{1,2}〉with the following components.

Histories
The set H of histories consists of

• ∅ (the initial history)

• (x1, N ,x2, N , . . . ,xt−1, N ,xt ) for any x1, . . . ,xt ∈ X and t ≥ 1 (propos-
als through period t − 1 are rejected, and player 1 proposes xt in
period t )

• (x1, N ,x2, N , . . . ,xt , N ) for any x1, . . . ,xt ∈ X and t ≥ 1 (proposals
through period t are rejected)

• (x1, N ,x2, N , . . . ,xt−1, N ,xt , Y ) for any x1, . . . ,xt ∈ X and t ≥ 1 (pro-
posals through period t − 1 are rejected, and player 1’s proposal in
period t is accepted).

• (x1, N ,x2, N , . . . ,xt , N , . . . ) for any infinite sequence of proposals
x1, . . . ,xt , . . . (all proposals are rejected).

Player function
P(∅) = P(x1, N ,x2, N , . . . , xt , N ) = 1 and P(x1, N ,x2, N , . . . ,xt ) = 2 .

Preferences
The preference relation ¼i of each player i is represented by the payoff
function u i with

u i (x1, N ,x2, N , . . . , xt , Y ) = x i
t and u i (x1, N ,x2, N , . . . ,xt , N , . . .) = 0.

In this game, every partition of the pie is the outcome of some subgame per-
fect equilibrium. In fact, for every partition of the pie, the game has a subgame
perfect equilibrium in which agreement is reached immediately on that parti-
tion. Thus when the horizon is infinite, the fact that only player 1 makes offers
does not give her more bargaining power than player 2.
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Proposition 16.6: SPE of infinite-horizon game with one-sided offers

For every partition x∗ ∈ X , the infinite-horizon bargaining game with one-
sided offers has a subgame perfect equilibrium in which the outcome is
immediate agreement on x∗. The game has also a subgame perfect equi-
librium in which the players never reach agreement.

Proof

We first show that the following strategy pair is a subgame perfect equilib-
rium in which the players reach agreement in period 1 on x∗.

Player 1
Always propose x∗.

Player 2
Accept an offer y if and only if y 2 ≥ x 2

∗ .

After the initial history or any history ending with rejection, player 1
can do no better than follow her strategy, because player 2 never accepts
less than x 2

∗ . After any history ending with an offer y for which y 2 < x 2
∗ ,

player 2 can do no better than follow her strategy, because if she rejects
the proposal then player 1 subsequently continues to propose x∗. After
any history ending with an offer y for which y 2 ≥ x 2

∗ , player 2 can do no
better than follow her strategy and accept the proposal, because player 1
never proposes that player 2 gets more than x 2

∗ . Thus the strategy pair is a
subgame perfect equilibrium.

We now show that the following strategy pair is a subgame perfect equi-
librium in which the players never reach agreement.

Player 1
After the initial history and any history in which all proposals are (1,0),
propose (1,0). After any other history, propose (0,1).

Player 2
After any history in which all proposals are (1,0), reject the proposal.
After any other history, accept the proposal only if it is (0,1).

Consider first player 1. After each history, if player 1 follows her strategy
the outcome is either agreement on (0,1) or disagreement, both of which
yield the payoff 0. Any change in player 1’s strategy after any history also
generates disagreement or agreement on (0,1), and thus does not make
her better off.
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Now consider player 2. After a history in which player 1 has proposed
only (1,0), player 2’s following her strategy leads to the players’ never
reaching agreement, and any change in her strategy leads either to the
same outcome or to agreement on (1,0), which is no better for her. After
a history in which player 1 has proposed a partition different from (1,0),
player 2’s following her strategy leads to her favorite agreement, (0,1).

The equilibrium in which the players never reach agreement may be inter-
preted as follows. Initially, player 2 expects player 1 to insist on getting the whole
pie and she plans to reject such a proposal. When player 1 makes any other pro-
posal, player 2 interprets the move as a sign of weakness on the part of player 1
and expects player 1 to yield and offer her the whole pie. This interpretation of an
attempt by player 1 to reach an agreement by offering player 2 a positive amount
of the pie deters player 1 from doing so.

16.4.4 Infinite horizon with one-sided offers and discounting

We now modify the model in the previous section by assuming that each player
prefers to receive pie earlier than later. Specifically, we assume that the payoff of
each player i at a terminal history in which agreement on x is reached at time t
is (δi )t x i , where δi ∈ (0,1).

Definition 16.12: Infinite-horizon bargaining game with one-sided offers
and discounting

An infinite-horizon bargaining game with one-sided offers and discounting
is an extensive game that differs from an infinite-horizon bargaining game
with one-sided offers only in that the payoff of player i to an agreement
on x in period t is (δi )t x i for i = 1, 2, where δi ∈ (0,1). For notational
economy we write δ1 =α and δ2 = β .

The first strategy pair in the proof of Proposition 16.6, in which player 1 al-
ways proposes x∗ and player 2 accepts only proposals in which she receives at
least x 2

∗ , is not a subgame perfect equilibrium of this game unless x 2
∗ = 0. If

x 2
∗ > 0, consider the history in which at the beginning of the game player 1 pro-

poses (x 1
∗ + ε,x 2

∗ − ε) with ε > 0 small enough that x 2
∗ − ε > βx 2

∗ . Given player 1’s
strategy, player 2’s strategy (which in particular rejects the proposal) gives her x 2

∗

at a later period; accepting x 2
∗ − ε is better for player 2.

We now show that the introduction of discounting makes a huge difference
to the set of subgame perfect equilibria: it restores the bargaining power of the
player who makes all offers, even if player 2’s discount factor is close to 1.
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Proposition 16.7: SPE of infinite-horizon game with one-sided offers
and discounting

For any values of the discount factors α andβ , an infinite-horizon bargain-
ing game with one-sided offers and discounting has a unique subgame
perfect equilibrium, in which player 1 gets all the pie immediately.

Proof

First note that the strategy pair in which player 1 always proposes (1,0) and
player 2 accepts all proposals is a subgame perfect equilibrium.

Now let M be the supremum of player 2’s payoffs over all subgame per-
fect equilibria. Consider a history (x ) (player 1 proposes x ). If player 2 re-
jects x , the remainder of the game is identical to the whole game. Thus in
any subgame perfect equilibrium any strategy that rejects x yields player 2
at most M with one period of delay. Hence in a subgame perfect equilib-
rium player 2 accepts x if x 2 > βM . So the infimum of player 1’s payoffs
over all subgame perfect equilibria is at least 1−βM . Therefore the supre-
mum of player 2’s payoffs M does not exceed βM , which is possible only
if M = 0 (given β < 1).

Given that player 2’s payoff in every subgame perfect equilibrium is 0,
she accepts all offers x in which x 2 > 0. Player 1’s payoff in every subgame
perfect equilibrium is 1 because for any strategy pair in which her payoff
is u < 1 she can deviate and propose (u +ε,1−u −ε) with ε < 1−u , which
player 2 accepts. Thus in any subgame perfect equilibrium player 1 offers
(1,0) and player 2 accepts all offers.

16.4.5 Infinite horizon with alternating offers and discounting

Finally consider a model in which the horizon is infinite, the players alternate
offers, and payoffs obtained after period 1 are discounted.

Definition 16.13: Infinite-horizon bargaining game with alternating
offers and discounting

An infinite-horizon bargaining game with alternating offers and discount-
ing is an extensive game 〈{1,2}, H , P, (¼i )i∈{1,2}〉 with the following compo-
nents, where i t = 1 if t is odd and i t = 2 if t is even.

Histories
The set H of histories consists of



280 Chapter 16. Extensive games

• ∅ (the initial history)

• (x1, N ,x2, N , . . . ,xt ) for any x1, . . . ,xt ∈ X and t ≥ 1 (proposals
through period t − 1 are rejected, and the proposal in period t is
xt )

• (x1, N ,x2, N , . . . ,xt , N ) for any x1, . . . ,xt ∈ X and t ≥ 1 (proposals
through period t are rejected)

• (x1, N ,x2, N , . . . ,xt−1, N ,xt , Y ) for any x1, . . . ,xt ∈ X and t ≥ 1 (pro-
posals through period t −1 are rejected and the proposal in period t
is accepted)

• (x1, N ,x2, N , . . . ,xt , N , . . . ) for any infinite sequence of proposals
x1, . . . ,xt , . . . (all proposals are rejected).

Player function
The player function is defined as follows

• P(∅) = 1 (player 1 makes the first proposal)

• P(x1, N ,x2, N , . . . ,xt ) = i t+1 for t ≥ 1 (player i t+1 responds to the
offer made by i t )

• P(x1, N ,x2, N , . . . ,xt , N ) = i t+1 for t ≥ 1 (player i t+1 makes the pro-
posal at the beginning of period t +1).

Preferences
The preference relation ¼i of each player i is represented by the pay-
off function u i with u i (x1, N ,x2, N , . . . ,xt , Y ) = (δi )t x i

t for t ≥ 1 and
u i (x1, N ,x2, N , . . . , xt , N , . . .) = 0 for i = 1, 2, where δi ∈ (0,1). For no-
tational economy we write δ1 =α and δ2 = β .

Giving player 2 the opportunity to make offers restores her bargaining power.
We now show that the game has a unique subgame perfect equilibrium, in which
the players’ payoffs depend on their discount factors.

Proposition 16.8: SPE of infinite-horizon game with alternating offers
and discounting

An infinite-horizon bargaining game with alternating offers and discount-
ing has a unique subgame perfect equilibrium, in which

• player 1 always proposes x∗ and accepts a proposal x if and only if
x 1 ≥ y 1

∗
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• player 2 always proposes y∗ and accepts a proposal y if and only if y 2 ≥
x 2
∗

where

x∗ =

�
1−β

1−αβ
,
β (1−α)

1−αβ

�

and y∗ =

�
α(1−β )

1−αβ
,

1−α

1−αβ

�

.

Proof

Note that the pair of proposals x∗ and y∗ is the unique solution of the pair
of equations αx 1 = y 1 and βy 2 = x 2.

Step 1 The strategy pair is a subgame perfect equilibrium.

Proof. First consider a history after which player 1 makes a proposal. If
player 1 follows her strategy, she proposes x∗, which player 2 accepts,
resulting in player 1’s getting x 1

∗ immediately. Given player 2’s strategy,
player 1 can, by changing her strategy, either obtain an agreement not bet-
ter than x∗ in a later period or induce perpetual disagreement. Thus she
has no profitable deviation.

Now consider a history after which player 1 responds to a proposal y .
If y 1 ≥ y 1

∗ , player 1’s strategy calls for her to accept the proposal, result-
ing in her getting y 1 immediately. If she deviates (and in particular rejects
the proposal), then the outcome is not better for her than getting x∗ at least
one period later. Thus any deviation generates for her a payoff of at most
αx 1
∗ = y 1

∗ ≤ y 1, so that she is not better off deviating from her strategy.
If y1 < y 1

∗ , player 1’s strategy calls for her to reject the proposal, in which
case she proposes x∗, which player 2 accepts, resulting in x∗ one period
later. Any deviation leads her to either accept the proposal or to obtain
offers not better than x∗ at least one period later. Given αx 1

∗ = y 1
∗ , she is

thus not better off accepting the proposal.
The argument for player 2 is similar. Ã

Step 2 No other strategy pair is a subgame perfect equilibrium.

Proof. Let G i be the game following a history after which player i makes
a proposal. (All such games are identical.) Let M i be the supremum of
player i ’s payoffs in subgame perfect equilibria of G i and let m i be the
infimum of these payoffs.
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We first argue that m 2 ≥ 1− αM 1. If player 1 rejects player 2’s initial
proposal in G 2, play continues to G 1, in which player 1’s payoff is at most
M 1. Thus in any subgame perfect equilibrium player 1 optimally accepts
any proposal that gives her more than αM 1, so that player 2’s payoff in any
equilibrium of G 2 is not less than 1−αM 1. Hence m 2 ≥ 1−αM 1.

We now argue that M 1 ≤ 1− βm 2. If player 2 rejects player 1’s initial
proposal in G 1, play continues to G 2, in which player 2’s payoff is at least
m 2. Thus player 2 optimally rejects any proposal that gives her less than
βm 2, so that in no subgame perfect equilibrium of G 1 is player 1’s payoff
higher than 1−βm 2. Hence M 1 ≤ 1−βm 2.

These two inequalities imply that 1−αM 1 ≤m 2 ≤ (1−M 1)/β and hence
M 1 ≤ (1− β )/(1− αβ ) = x 1

∗ . By Step 1, M 1 ≥ x 1
∗ . Thus M 1 = x 1

∗ . Since
1−αx 1

∗ = (1−x 1
∗ )/β = y 2

∗ we have m 2 = y 2
∗ .

Repeating these arguments with the roles of players 1 and 2 reversed
yields M 2 = y 2

∗ and m 1 = x 1
∗ , so that in every subgame perfect equilibrium

of G 1 the payoff of player 1 is x 1
∗ and in every subgame perfect equilibrium

of G 2 the payoff of player 2 is y 2
∗ .

Now, in G 1 player 2, by rejecting player 1’s proposal, can get at least
βy 2
∗ = x 2

∗ . Thus in every subgame perfect equilibrium of G 1 her payoff
is x 2

∗ . Payoffs of x 1
∗ for player 1 and x 2

∗ for player 2 are possible only if
agreement is reached immediately on x∗, so that in every subgame perfect
equilibrium of G 1 player 1 proposes x∗ and player 2 accepts this proposal.
Similarly, in every subgame perfect equilibrium of G 2 player 2 proposes
y ∗ and player 1 accepts this proposal. Thus the strategy pair given in the
proposition is the only subgame perfect equilibrium of the game. Ã

Notice that as a player values future payoffs more (becomes more patient),
given the discount factor of the other player, the share of the pie that she re-
ceives increases. As her discount factor approaches 1, her equilibrium share
approaches 1, regardless of the other player 2’s (given) discount factor.

If the players are equally patient, with α = β = δ, the equilibrium payoff of
player 1 is 1/(1+δ) and that of player 2 is δ/(1+δ). Thus the fact that player 1
makes the first proposal confers on her an advantage, but one that diminishes as
both players become more patient. When δ is close to 1, the equilibrium payoff
of each player is close to 1

2
. That is, when the players are equally patient and

value future payoffs almost as much as they value current payoffs, the unique
subgame perfect equilibrium involves an almost equal split of the pie.

In the subgame perfect equilibrium, agreement is reached immediately. In
Problem 11 you are asked to analyze the game with different preferences: the
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payoff of each player i for an agreement on x in period t is x i − c i t for some c 1,
c 2 > 0 (rather than (δi )t x i ). When c 1 6= c 2 this game also has a unique subgame
perfect equilibrium in which agreement is reached immediately. However, as you
are asked to show in Problem 12b, when c 1 = c 2 the game has subgame perfect
equilibria in which agreement is reached after a delay.

16.5 Repeated games

We end the chapter with an introduction to the family of repeated games. In a
repeated game, the same set of players engages repeatedly in a fixed strategic
game. We model a repeated game using an extension of the notion of an exten-
sive game that allows players to move simultaneously, and apply to the model
the solution concepts of Nash equilibrium and subgame perfect equilibrium.

To motivate the main idea, consider the Prisoner’s dilemma. In this game,
the pair of actions (C ,C ), which we can think of as a cooperative outcome, is not
a Nash equilibrium. But if the players repeatedly play the game, the outcome in
which (C ,C ) occurs in every period may be a Nash equilibrium. If each player
plans to choose C as long as the other player does so, and plans to switch to D
for long enough to erase the other player’s one-period gain if she ever deviates to
D , then neither player has an incentive to deviate from her plan.

We distinguish between repeated games with a finite horizon and those with
an infinite horizon. As for bargaining games, the distinction reflects two types of
long term interaction. A game with a finite horizon fits a situation where the play-
ers are fully aware of the last period; one with an infinite horizon captures a sit-
uation in which every player believes that after each period there will be another
one.

To analyze a repeated game, we need to specify the players’ preferences over
sequences of action profiles. We derive these preferences from payoff functions
that represent the players’ preferences in the underlying strategic game. For con-
venience, in the remainder of this section we refer to a tuple 〈N ,{Ai }i∈N ,{u i }i∈N 〉,
where N is a set of players, for each player i ∈ N the set Ai is the set of actions of
player i , and for each i ∈N the function u i : A→R represents player i ’s preferences
over the set A of outcomes, simply as a strategic game.

A key concept in the analysis of the repeated games derived from a strategic
game G = 〈N ,{Ai }i∈N ,{u i }i∈N 〉 is the profile (v i (G ))i∈N of numbers given by

v i (G ) = min
a−i∈A−i

max
a i∈Ai

u i (a i , a−i ) for all i ∈N . (16.1)

The number v i (G ) is the lowest payoff in G that the other players can inflict on
player i . That is, (i) whatever the other players do, player i can respond by ob-
taining at least v i (G ) and (ii) there is a list of actions for N \{i }, which we denote
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by p (i ), that guarantees that i ’s payoff is no higher than v i (G ). A profile (w i )i∈N

of numbers is individually rational if w i ≥ v i (G ) for all i ∈ N . Note that if a is a
Nash equilibrium of G then u i (a )≥ v i (G ) for every player i .

16.5.1 Finitely repeated games

We start with the definition of the game in which for some positive integer T
the strategic game G is played in each period t = 1, . . . , T . In this game, in every
period t each player is fully informed about the action chosen by each player in
the previous t −1 periods, and each player’s payoff is the sum of her payoffs in G
in the T periods.

Definition 16.14: Finitely repeated game

Let G = 〈N ,{Ai }i∈N ,{u i }i∈N 〉 be a strategic game and let T be a positive
integer. The T-period repeated game of G is the tuple 〈G , T, H , P, (¼i )i∈N 〉
where

Histories
H consists of ∅ (the initial history) and all sequences (a 1, . . . , a t ) for t =
1, . . . , T and a k ∈ A =×i∈N Ai for k = 1, . . . , t (the outcomes in the first t
plays of the game)

Player function
P is a function that assigns to each nonterminal history h (that is, mem-
ber of H with length less than T ) the set N (all players move after every
nonterminal history)

Preferences
for each i ∈ N , ¼i is a preference relation over the terminal histories
(player i ’s preferences over sequences (a 1, . . . , a T ) of outcomes of G )
that is represented by the function

∑T
t=1 u i (a t ).

A strategy for player i in a T -period repeated game is a function that attaches
to each nonterminal history an action in Ai . Given a profile (s i )i∈N of strate-
gies, the outcome O((s i )i∈N ) of the game is the terminal history (a t )t=1,...,T with
a i

1 = s i (∅) and a i
t = s i (a 1, . . . , a t−1) for all i ∈ N and t = 2, . . . , T . A Nash equilib-

rium is a strategy profile for which no player can increase her payoff by changing
her strategy. A subgame perfect equilibrium is a strategy profile (s i )i∈N for which
there is no history h and player i such that by changing her strategy after histo-
ries that extend h, player i can induce a terminal history that extends h that she
prefers to the one that extends h generated by (s i )i∈N .
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We first show that for a strategic game that has a unique Nash equilibrium,
like the Prisoner’s dilemma, repetition does not lead to any new outcomes in a
subgame perfect equilibrium.

Proposition 16.9: SPE of finitely repeated game of game with unique
Nash equilibrium

Let G be a strategic game and let T be a positive integer. If G has a
unique Nash equilibrium (a i

∗)i∈N then the T -period repeated game of G
has a unique subgame perfect equilibrium (s i

∗)i∈N , with s i
∗(h) = a i

∗ for every
history h and every player i .

Proof

The strategy profile (s i
∗)i∈N is a subgame perfect equilibrium because a de-

viation by any player in any period does not increase the player’s payoff in
the period and has no effect on the other players’ future actions.

To show that there is no other subgame perfect equilibrium, let (s i )i∈N

be a subgame perfect equilibrium and let h be a longest history after which
the outcome (b i )i∈N of G generated by (s i )i∈N is not (a i

∗)i∈N . Given that
(b i )i∈N is not a Nash equilibrium of G , some player j can increase her pay-
off by deviating from b j . This deviation does not affect the outcome in any
future period because these outcomes occur after histories longer than h
and hence are all equal to (a i

∗)i∈N . Thus j ’s deviation increases her payoff.

For the T -period repeated game of the Prisoner’s dilemma, the outcome in
which D is chosen by each player in each period is not merely the only subgame
perfect equilibrium outcome, but is also the only Nash equilibrium outcome. To
see why, let (s 1, s 2) be a Nash equilibrium and let t be the last period for which
the outcome Ot (s 1, s 2) 6= (D, D). Suppose that according to s i , player i chooses C
after the history h = (O1(s 1, s 2), . . . ,Ot−1(s 1, s 2)). Then by deviating to D in period t
following the history h and continuing to play D from period t + 1 on, player i
increases the sum of her payoffs.

This argument can be extended to the T -period repeated game of any strate-
gic game G that has a unique Nash equilibrium (a i

∗) and the payoff of each
player i in this equilibrium is the number v i (G ) defined in (16.1). Let (s i ) be
a Nash equilibrium of the repeated game. Suppose that t is the last period for
which the outcome of (s i ) is not (a i

∗) and denote the action profile chosen in this
period by xt . Let b i be an action of player i for which u i (b i ,x−i

t ) > u i (xt ). Then
the strategy of player i that differs from s i in that it chooses b i after Ot−1((s i )i∈N )
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and in each subsequent period chooses an action that yields i a payoff of at least
v i (G ), given the other players’ actions, increases the sum of her payoffs.

Contrast this observation with the analysis of the following strategic game G .

C D E
C 6,6 0,7 0,0
D 7,0 1,1 0,0
E 0,0 0,0 −1,−1

This game has a unique Nash equilibrium (D, D), but each player’s payoff in this
equilibrium, which is 1, is greater than v i (G ), which is 0. For T ≥ 2, the T -period
repeated game of G has a Nash equilibrium for which the outcome is not a con-
stant repetition of the Nash equilibrium of G . In one such equilibrium, each
player’s strategy selects C after any history up to period T − 1, with two excep-
tions: (i) after the history in which the outcome is (C ,C ) in periods 1, . . . , T −1 it
selects D , and (ii) after any history in which the other player chose D in some pe-
riod before T , it selects E . The outcome of this strategy pair is (C ,C ) in periods 1
through T −1 and (D, D) in period T . The strategy pair is a Nash equilibrium: de-
viating in the last period is not profitable; deviating in an earlier period increases
a player’s payoff by 1 in that period, but induces the other player to choose E
in every subsequent period, reducing the player’s payoff by at least 1 in each of
those periods.

More generally, let G be a strategic game with a unique Nash equilibrium a ∗
for which u i (a ∗) > v i (G ) for each player i . Let a be an action profile in G for
which u i (a )> u i (a ∗) for each player i . Then for some number K and any num-
ber T > K , the T -period repeated game of G has a Nash equilibrium in which
the outcome has two phases: each player i chooses a i through period T −K and
then a i

∗. If a single player, say j , deviates in the first phase, every other player i
subsequently chooses the action p i (j ), where p (j ) is a solution of (16.1) (that is,
a list of actions of the players other than j that hold j ’s payoff down to at most
v j (G )). If player j deviates from a in the first phase, she subsequently obtains a
payoff of at most v j (G ) in each subsequent period, so that if K is large enough
her gain is offset by her loss of at least u j (a ∗)−v j (G ) in each of at least K periods.

16.5.2 Infinitely repeated games with limit of the means payoffs

We now study a game in which a strategic game is played in each of an infinite
sequence of periods, 1, 2, 3, . . . . As for a finitely repeated game, each player is
fully informed in each period of the sequence of action profiles chosen in the
previous periods. There are several ways of specifying the players’ payoffs in the
infinitely-repeated game. We focus on a criterion called the limit of the means:
each player assesses a sequence of payoffs by the limit, as T →∞, of the mean of
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these payoffs in the first T periods. Thus, for example, the payoff in the repeated
game for the sequence of payoffs 0,0,0, . . . ,0,1,3,1,3, . . . in which 0 occurs a finite
number of times and subsequently the payoff alternates between 1 and 3 is 2.

Definition 16.15: Infinitely repeated game with limit of means payoffs

Let G = 〈N ,{Ai }i∈N ,{u i }i∈N 〉 be a strategic game. The infinitely repeated
game of G is the tuple 〈G , H , P, (¼i )i∈N 〉where

Histories
H consists of ∅ (the initial history) and all finite and infinite sequences
of members of A = ×i∈N Ai (the infinite sequences are the terminal
histories)

Player function
P is a function that assigns to each nonterminal history (that is, any
finite sequence of members of A) the set N (all players move after every
nonterminal history)

Preferences
for each i ∈N ,¼i is a preference relation over infinite sequences (a t )∞t=1

of members of A (player i ’s preferences over the set of terminal histo-
ries) that is represented by the function limT→∞

∑T
t=1 u i (a t )/T .

This definition glosses over one issue: the limit of the means is not well
defined for every sequence of numbers (even for sequences in which all the
numbers are 0 or 1). However, the definition suffices for our purposes because
we restrict attention to strategy profiles that yield streams of outcomes of the
type (b1, . . . ,b K , c1, . . . , c L , c1, . . . , c L , . . . ), in which there is an initial block of finite
length (which is possibly empty) followed by a perpetual repetition of a sequence
(c1, . . . , cL). The limit of the means payoff for player i for such a sequence is the
average of i ’s payoff in (c1, . . . , c L), namely

∑L
t=1 u i (ct )/L. If you are especially in-

terested in repeated games, we suggest Osborne and Rubinstein (1994, Chapter
8) for a detailed description of strategies that are executed by finite automata. A
profile of such strategies induces such an outcome in a repeated game.

If the payoff of any player j in the repeated game is less than v j (G ) (see (16.1))
then she can deviate to a strategy that guarantees her at least v i (G ) in every pe-
riod, so that in every Nash equilibrium of the repeated game her payoff is at least
v j (G ).

The next result shows that the unending repetition of any finite sequence
of outcomes that yields every player i an average payoff greater than v i (G ) is
the outcome of some subgame perfect equilibrium of the repeated game. In
particular, the infinite repetition of the Prisoner’s dilemma
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C D
C 3,3 0,4
D 4,0 1,1

has subgame perfect equilibria in which the payoff profiles are, for example, (3,3)
((C ,C ) in every period), (2,2) (alternating between (C , D) and (D,C )), and ( 11

4
, 7

4
)

(cycling through (C ,C ), (C ,C ), (D,C ), (D, D)).

Proposition 16.10: SPE of infinitely repeated game with limit of means
payoffs

Let G be a strategic game and let c1, . . . , c L be outcomes of G with w i =∑L
t=1 u i (ct )/L > v i (G ) for all i ∈N , where v i (G ) is given in (16.1). Then the

infinitely repeated game of G has a subgame perfect equilibrium for which
the outcome is an unending repetition of (c1, . . . , c L).

Proof

Recall that v i (G ) = mina−i maxa i u i (a i , a−i ) and p (i ) is a combination of
actions for the players other than i that guarantees that i ’s payoff in G is
no more than v i (G ).

To construct a subgame perfect equilibrium of the infinitely repeated
game, think of the players as being in one of n + 1 phases. In the phase
Regular, the players choose their actions so that the outcome consists of
repetitions of the sequence (c1, . . . , cL). At the end of every L periods in this
phase, the players conduct a review. If no player or more than one player
has deviated, they stay in the phase and start the sequence again. If ex-
actly one player i has deviated, the players move to a phase Pi in which
all of them other than i punish player i by choosing p (i ) for T i periods,
where T i is large enough that player i ’s average payoff over the L+T i pe-
riods is less than w i . This is possible because w i > v i (G ) and whatever
player i does when she is punished she cannot obtain a payoff higher than
v i (G ). At the end of the T i periods all players move back to the Regular
phase.

To see that this profile of strategies is a subgame perfect equilibrium,
consider any history h. For this profile of strategies, the average payoff
of each player’ i following h is exactly w i (the players return to the Reg-
ular phase if they leave it). Whatever alternative strategy a player i uses,
her stream of payoffs is a sequence consisting of blocks each with an av-
erage payoff of at most w i . Thus, the limit of her average payoffs does not
exceed w i .
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Problems

1. Trust game. Player 1 starts with $10. She has to decide how much to keep and
how much to transfer to player 2. Player 2 triples the amount of money she
gets from player 1 and then decides how much, from that total amount, to
transfer to player 1. Assume that each player is interested only in the amount
of money she has at the end of the process.

Model the situation as an extensive game and find its subgame perfect equi-
libria.

Does the game have a Nash equilibrium outcome that is not a subgame per-
fect equilibrium outcome?

What are the subgame perfect equilibria of the game in which the process is
repeated three times?

2. Multiple subgame perfect equilibria. Construct an extensive game with two
players that has two subgame perfect equilibria, one better for both players
than the other.

3. Nash equilibrium and subgame perfect equilibrium. Construct an extensive
game with two players that has a unique subgame perfect equilibrium and
a Nash equilibrium that both players prefer to the subgame perfect equilib-
rium.

4. Comparative statics. Construct two extensive games that differ only in the
payoff of one player, say player 1, regarding one outcome, such that each
game has a unique subgame perfect equilibrium and the subgame perfect
equilibrium payoff of player 1 is lower in the game in which her payoff is
higher.

5. Auction. Two potential buyers compete for an indivisible item worth $12.
Buyer 1 has $9 and buyer 2 has $6. The seller will not accept any offer less
than $3.

The buyers take turns bidding, starting with buyer 1. All bids are whole dol-
lars and cannot exceed $12. A player can bid more than the amount of cash
she holds, but if she wins she is punished severely, an outcome worse for her
than any other. When one of the bidders does not raise the bid, the auction
is over and the other player gets the item for the amount of her last bid.

a. Show that in all subgame perfect equilibria of the extensive game that
models this situation player 1 gets the item.
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b. Show that the game has a subgame perfect equilibrium in which the item
is sold for $3.

c. Show that the game has a subgame perfect equilibrium in which the item
is sold for $8.

6. Solomon’s mechanism. An object belongs to one of two people, each of whom
claims ownership. The value of the object is H to the owner and L to the other
individual, where H > L > 0. King Solomon orders the two people to play the
following game. Randomly, the people are assigned to be player 1 and player
2. Player 1 starts and has to declare either mine or hers. If she says hers, the
game is over and player 2 gets the object. If she says mine, player 2 has to say
either hers, in which case the object is given to player 1, or mine, in which
case player 2 gets the object and pays M to King Solomon, with H >M > L,
and player 1 pays a small amount ε > 0 to King Solomon.

Explain why the outcome of this procedure is that the owner gets the object
without paying anything.

7. Communication. Consider a group of n people, with n ≥ 3, living in sepa-
rate locations, who need to share information that is received initially only
by player 1. Assume that the information is beneficial only if all the players
receive it. (The group may be a number of related families, the information
may be instructions on how to get to a family gathering, and the gathering
may be a success only if everyone attends.) When a player receives the in-
formation, she is informed of the path the information took. She then de-
cides whether to pass the information to one of the players who has not yet
received it. If every player receives the information, then every player who
passed it on receives a payoff of 1− c , where c ∈ (0,1), and the single player
who got it last receives a payoff of 1. Otherwise, every player receives a payoff
of −c if she passed on the information and 0 otherwise.

a. Draw the game tree for the case of n = 3.

b. Characterize the subgame perfect equilibria of the game for each value
of n .

8. Race. Two players, 1 and 2, start at distances A and B steps from a target. The
player who reaches the target first gets a prize of P (and the other player gets
no prize). The players alternate turns, starting with player 1. On her turn, a
player can stay where she is, at a cost of 0, advance one step, at a cost of 2,
or advance two steps, at a cost of 4.5. If for two successive turns both players
stay where they are then the game ends (and neither player receives a prize).
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Each player aims to maximize her net gain (prize, if any, minus cost). For
any values of A, B , and P with 6 ≤ P ≤ 8, find the unique subgame perfect
equilibrium of the extensive game that models this situation.

9. One-deviation property. Show that a strategy pair that satisfies the one-
deviation property is not necessarily a subgame perfect equilibrium of a
game that does not have a finite horizon by contemplating the one-player
game illustrated below. In each period 1, 2, . . . the player can stop or con-
tinue. If in any period she chooses stop then the game ends and her payoff
is 0, whereas if she chooses continue she has another opportunity to stop. If
she never chooses stop then her payoff is 1.

C1

S

0

C1

S

0

C1

S

0

C1

S

0

1

10. Implementation. You are a mediator in a case in which two neighbors can-
not agree how to split the $100 cost of hiring a gardener for their common
property. Denote by v i the value of hiring the gardener for neighbor i . Each
neighbor knows both v 1 and v 2.

Your aim is to ensure that the gardener is hired if the sum of the neighbors’
values is greater than $100 and is not hired if the sum is less than $100.

You suggest that the neighbors participate in the following procedure. First
neighbor 1 names an amount. Neighbor 2 observes this amount and names
an amount herself. (Each amount can be any nonnegative number.) If the
sum of the amounts is less than $100, the gardener is not hired. If the sum
exceeds $100, the gardener is hired and each neighbor pays the gardener the
amount she named.

a. Show that for any values of v 1 and v 2, the outcome of the subgame per-
fect equilibrium of the game that models this procedure is that the gar-
dener is hired if v 1+ v 2 > 100 and is not hired if v 1+ v 2 < 100.

b. Suppose that the neighbors are asked to report amounts simultaneously
and the gardener is hired if and only if the sum of the reports is at least
100. Show that if 100 < v 1 + v 2 < 200 and v i ≤ 100 for i = 1, 2 then
the strategic game that models the procedure has a Nash equilibrium in
which the gardener is not hired.
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Bargaining

11. Alternating offers with fixed bargaining costs. Analyze the variant of the
infinite-horizon bargaining game with alternating offers and discounting in
which each player i values an amount x received in period t by x−c i t (rather
than (δi )t x ). (That is, she bears a fixed cost of c i for each period that passes
before agreement is reached.) Assume that 0 < c 1 < c 2. Show that the game
has a unique subgame perfect equilibrium and in this equilibrium player 1
gets the entire pie.

12. Alternating offers with equal fixed costs. Consider the variant of the game in
Problem 11 in which c 1 = c 2 = c .

a. Show that each partition in which player 1 gets at least c is an outcome
of a subgame perfect equilibrium.

b. Show that if c ≤ 1
3

then the game has a subgame perfect equilibrium in
which agreement is not reached in period 1.

13. Alternating offers with a discrete set of agreements.

Two indivisible items, each valued at $1, are to be split between two bar-
gainers if they agree how to share them. Assume that they use the infinite-
horizon alternating offers procedure to reach agreement and that they have
the same discount factor δ, with 1

2
<δ< 1.

a. Show that for any positive integer K , the game has a subgame perfect
equilibrium in which the players reach agreement only in period K .

b. Is it possible that in a subgame perfect equilibrium the players never
reach agreement?

c. What are the subgame perfect equilibria if 0 <δ< 1
2

?

Repeated games

14. Infinitely repeated game with the overtaking criterion. Recall that the limit
of the means criterion is not sensitive to the payoffs in a finite number of
periods. The overtaking criterion is more sensitive. We say that an individ-
ual prefers the sequence of payoffs (xt ) to the sequence (yt ) if there exists
ε > 0 such that eventually (for all T larger than some T ∗) we have

∑T
t=1 xt −∑T

t=1 yt > ε.

a. Compare the following sequences by the limit of the means and over-
taking criteria: a = (4,1,3,1,3, . . . ), b = (3,1,3,1, . . . ), c = (2,2, . . . ), and
d = (10,−10, 10,−10, . . . ).
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b. Consider the following game G .

C D
C 6,6 1,0
D 7,4 2,0

Why is the strategy pair described in the proof of Proposition 16.10 with
the outcome (C ,C ) in every period not a subgame perfect equilibrium of
the infinitely repeated game with the overtaking criterion?

c. Suggest a subgame perfect equilibrium of the repeated game of G with
the overtaking criterion for which the outcome is (C ,C ) in every period.

15. Infinitely repeated game of exchange of favors. Consider the following variant
G of Bach or Stravinsky in which player 1 prefers to coordinate on B , player 2
prefers to coordinate on S, and if they do not coordinate then each player
prefers to choose her favorite action.

B S
B 7,2 4,4
S 0,0 2,7

Consider the infinitely repeated game of G (with limit of the means payoffs).

a. Construct a subgame perfect equilibrium of the repeated game in which
the outcome alternates between (B , B ) and (S,S).

b. The players consider a partition of the week into days on which the play-
ers choose the action pair (B , B ) and days on which they choose the ac-
tion pair (S,S). Which combinations of the seven days can be an outcome
of a subgame perfect equilibrium of the repeated game?

Notes

The notion of an extensive game originated with von Neumann and Morgenstern
(1944); Kuhn (1950, 1953) suggested the model we describe. The notion of sub-
game perfect equilibrium is due to Selten (1965). Proposition 16.3 is due to Kuhn
(1953).

The centipede game (Example 16.2) is due to Rosenthal (1981). Proposi-
tion 16.8 is due to Rubinstein (1982).

The idea that cooperative outcomes may be sustained in equilibria of re-
peated games is due to Nash (see Flood 1958/59, note 11 on page 16) and was
elaborated by Luce and Raiffa (1957) (pages 97–105 and Appendix 8) and Shubik
(1959) (Chapter 10, especially page 226). The result on finitely repeated games
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discussed at the end of Section 16.5.1 is due to Benoît and Krishna (1987). Propo-
sition 16.10 was established by Robert J. Aumann and Lloyd S. Shapley and by
Ariel Rubinstein in the mid 1970’s; see Aumann and Shapley (1994) and Rubin-
stein (1977).

The game in Problem 6 is taken from Glazer and Ma (1989). The game in
Problem 8 is a simplification due to Vijay Krishna of the model in Harris and
Vickers (1985). Repeated games with the overtaking criterion (Problem 14) are
studied by Rubinstein (1979).
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17 Mechanism design

The models in Parts II and III analyze the behavior of individuals given a specific
structure for their interaction. In this chapter, we turn this methodology on its
head. That is, we seek a set of rules for the interaction between the individuals
that generates specific outcomes. Analyses of this type are called “mechanism
design”. This field is huge; we demonstrate some of the basic ideas through a
simple model.

17.1 Deciding on a public project

A community of individuals has to decide whether to carry out a joint project.
For example, the inhabitants of a city consider building a new subway, or the
tenants in a neighborhood consider adding a bench to their community garden.
The action to be taken is public in the sense that all individuals are affected by it.
The community can either undertake the project or not.

Definition 17.1: Public project problem

A public project problem 〈N , D〉 consists of a set N = {1, . . . , n} of individu-
als and a set D = {0,1} of public decisions (1 means a project is executed
and 0 means it is not).

The individuals may differ in their attitudes to the project: some may support
it and some may oppose it. We look for mechanisms that balance these interests.
The mechanism is allowed to require the agents to make and receive payments,
which are used to induce a desirable outcome. The presence of payments means
that the individuals’ preferences have to be defined not on the set D but on pairs
of the type (d , t ) where d is the public decision and t is the transfer (positive,
zero, or negative) to the individual.

Each individual i is characterized by a number v i , which may be positive or
negative, with the interpretation that she is indifferent between (i) the project’s
not being carried out and her not making or receiving any payment and (ii) the
project’s being carried out and her paying v i (when v i > 0) or receiving −v i

(when v i < 0). Thus if v i > 0 then i benefits from the project and is willing to pay
up to v i to have it realized; if v i < 0 then i is hurt by the project and is willing to

Chapter of Models in Microeconomic Theory by Martin J. Osborne and Ariel Rubinstein. Version 2023.5.30 (s).
c© 2023 Martin J. Osborne and Ariel Rubinstein CC BY-NC-ND 4.0. https://doi.org/10.11647/OBP.0361.17

297

https://doi.org/10.11647/OBP.0361.17
http://arielrubinstein.tau.ac.il/
https://www.economics.utoronto.ca/osborne


298 Chapter 17. Mechanism design

pay up to−v i to stop its being realized. If v i = 0 then i is indifferent between the
project’s being executed and not. Note that the interests of an individual depend
only on her own valuation of the project.

Definition 17.2: Valuation profile

A valuation profile (v i )i∈N for a public project problem 〈N , D〉 consists of a
number v i for each individual i ∈N . The number v i determines i ’s prefer-
ences over pairs (d , t i ) consisting of a public decision d ∈D and a number
t i , the amount of money transferred to (if t i > 0) or from (if t i < 0) indi-
vidual i . Specifically, the preferences of each individual i ∈ N over pairs
(d , t i )with d ∈D and t i ∈R are represented by the utility function

(
v i + t i if d = 1

t i if d = 0.

17.2 Strategy-proof mechanisms

We assume that the valuation v i of each individual i is known only to her. So if
the community wants to base its decision on these valuations, it needs to query
the individuals. A direct mechanism with transfers asks each individual to re-
port a number and interprets this number as her valuation. The mechanism
then specifies the public decision and the monetary transfers to or from the
individuals, as a function of their reports.

Definition 17.3: Direct mechanism with transfers

For a public project problem 〈N , D〉, a direct mechanism with transfers is a
collection (δ,τ1, . . . ,τn ) of functions that assign to each profile (x 1, . . . ,x n )
of numbers (the individuals’ reports) a public decision δ(x 1, . . . ,x n ) ∈ D
and a monetary transfer τi (x 1, . . . ,x n ) for each i ∈N .

Each individual can report any number she wishes, so we need to consider
the possibility that individuals may benefit from reporting numbers different
from their valuations. Intuitively, an individual may benefit from exaggerating
her valuation of the project positively if she supports it and negatively if she op-
poses it. We say that a mechanism is strategy-proof if every individual, whatever
her valuation, optimally reports this valuation, regardless of the other individu-
als’ reports. That is, given any reports of the other individuals, no individual can
do better than reporting her valuation.
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Definition 17.4: Strategy-proof mechanism

For a public project problem 〈N , D〉, a direct mechanism with transfers
(δ,τ1, . . . ,τn ) is strategy-proof if for every valuation profile (v i )i∈N , every
individual i ∈N , every list (x 1, . . . ,x i−1,x i+1, . . . ,x n ) of numbers (reports of
the other individuals), and every number z i (report of i ) we have

δ(x 1, . . . , v i , . . . , x n )v i +τi (x 1, . . . , v i , . . . ,x n )

≥δ(x 1, . . . , z i , . . . ,x n )v i +τi (x 1, . . . , z i , . . . ,x n ).

That is, i optimally reports her valuation, whatever it is, regardless of the
other individuals’ reports.

Notice that the definition does not require that an individual’s true valuation
is the only optimal report for her regardless of the other individuals’ reports.

An example of a strategy-proof mechanism is majority rule.

Example 17.1: Majority rule

Majority rule is the direct mechanism in which the project is executed
if and only if a majority of individuals report a positive number, and no
monetary transfers are made. That is,

δ(x 1, . . . ,x n ) = 1 if and only if |{i ∈N : x i > 0}|> n/2

and τi (x 1, . . . , x n ) = 0 for all i ∈N and for all profiles (x 1, . . . ,x n ).
This mechanism is strategy-proof. Take an individual with a positive

valuation. Her changing her report from one positive number to another
has no effect on the outcome. Her switching from a positive report to a
nonpositive one might affect the outcome, but if it does so then it changes
the outcome from one in which the project is carried out to one in which
the project is not carried out. Such a change makes the individual worse
off (given that her valuation is positive). Thus for any reports of the other
individuals, an individual with a positive valuation can do no better than
report that valuation. A similar argument applies to an individual with a
negative valuation.

Although the majority rule mechanism is strategy-proof, the condition it uses
to determine whether the project is carried out has the disadvantage that it ig-
nores the magnitudes of the individuals’ valuations. If, for example, a few in-
dividuals would benefit hugely from the project and the remaining majority of
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individuals would be made slightly worse off, then majority rule leads to the
project’s not being carried out.

An alternative mechanism, which takes into account the magnitudes of the
individuals’ valuations, carries out the project if the sum of the reported val-
uations is positive and, like majority rule, makes no monetary transfers. This
mechanism, however, is not strategy-proof.

Example 17.2: Summing reports

Consider the direct mechanism in which the project is executed if and only
if the sum of the individuals’ reports is positive, and no monetary transfers
are made. That is,

δ(x 1, . . . ,x n ) = 1 if and only if
∑

j∈N

x j > 0

and τi (x 1, . . . , x n ) = 0 for all i ∈N and for all profiles (x 1, . . . ,x n ).
This mechanism is not strategy-proof. Consider an individual whose

valuation is positive. If, when she reports her valuation, the sum of all
reports is negative, so that the project is not carried out, then she is better
off reporting a number high enough that the project is carried out.

We now describe a variant of the mechanism in this example that adds mon-
etary transfers in such a way that the resulting mechanism is strategy-proof.

17.3 Vickrey-Clarke-Groves mechanism

The Vickrey-Clarke-Groves (VCG) mechanism is a direct mechanism with trans-
fers that executes the project if and only if the sum of the individuals’ valuations
is positive. The transfers in the mechanism are designed to make it strategy-
proof: no individual benefits by reporting a number different from her true val-
uation. All transfers are nonpositive: under some circumstances an individual
pays a penalty.

Suppose that, given the other individuals’ reports, individual i ’s report is piv-
otal in the sense that given all the reports the project is executed, but in the ab-
sence of i ’s report it would not be. That is, the sum of all the reports is positive,
but the sum of the reports of the individuals other than i is nonpositive. Then
the monetary transfer for individual i in the VCG mechanism is equal to the sum
of the other individuals’ reports: i pays a penalty for causing the project to be
executed when the other individuals’ reports point to non-execution.

Now suppose that i ’s report is pivotal in the other direction: given all the
reports the project is not executed, but in the absence of i ’s report it would be. (In
particular, i ’s report is negative.) Then the monetary transfer for individual i is
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the negative of the sum of the other individuals’ reports. That is, i pays a penalty
for causing the project not to be executed when the other individuals’ reports
point to execution.

Individual i pays a penalty only if her report makes a difference to the out-
come. The penalty does not change when her report changes as long as the
change does not affect the sign of the sum of the reports. If i ’s report is not pivotal
in either sense, she pays no penalty.

Definition 17.5: VCG mechanism

For a public project problem 〈N , D〉, the VCG mechanism is the direct
mechanism with transfers (δ,τ1, . . . ,τn ) defined by

δ(x 1, . . . ,x n ) = 1 if and only if
∑

j∈N

x j > 0

and

τi (x 1, . . . , x n ) =







∑
j∈N \{i }x

j if
∑

j∈N \{i }x
j ≤ 0 and

∑
j∈N x j > 0

−
∑

j∈N \{i }x
j if

∑
j∈N \{i }x

j > 0 and
∑

j∈N x j ≤ 0

0 otherwise.

Notice that for some profiles of reports, the operator of the mechanism re-
ceives a positive amount of money from the individuals. It can be shown that for
no strategy-proof direct mechanism do the transfers sum to zero for all possible
profiles of reports (see Problem 1).

Here is a numerical example that illustrates the VCG mechanism.

Example 17.3: VCG mechanism

Consider the public project problem with n = 5. The following table shows
the decision and transfers specified by the VCG mechanism for four pro-
files of reports.

x 1 x 2 x 3 x 4 x 5 δ τ1 τ2 τ3 τ4 τ5

5 −1 −1 −1 −1 1 −4 0 0 0 0
−5 1 1 1 1 0 −4 0 0 0 0
−7 1 1 3 4 1 0 0 0 −1 −2
−5 2 2 2 2 1 0 0 0 0 0

Proposition 17.1: VCG mechanism is strategy-proof

For any public project problem the VCG mechanism is strategy-proof.
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Proof

Let 〈N , D〉 be a public project problem and let (δ,τ1, . . . ,τn ) be the VCG
mechanism for this problem. Let (v i )i∈N be a valuation profile.

Consider an individual i ∈ N with v i > 0, let (x 1, . . . ,x i−1,x i+1, . . . ,x n )
be the reports of the other individuals, and let S be the sum of these other
reports.

If S > 0 then if i reports v i , the project is executed (δ(x 1, . . . ,x n ) = 1) and
her transfer is 0 (τi (x 1, . . . , x n ) = 0). Thus her utility is v i . No outcome is
better for her.

If −v i < S ≤ 0 then if i reports v i or any other number greater than −S
the project is executed and her transfer is S, so that her utility is S+v i > 0.
If instead she reports a number at most −S the project is not executed and
her transfer is 0, so that her utility is only 0.

If S ≤ −v i ≤ 0 then if i reports v i or any other number at most −S the
project is not executed and her transfer is 0, so that her utility is 0. If in-
stead she reports a number greater than −S the project is executed and her
transfer is S, so that her utility is v i +S ≤ 0.

Similar arguments apply if v i ≤ 0.
We conclude that for any reports of the other individuals and any valu-

ation v i , i ’s reporting v i is not worse than her reporting any other number.

Discussion The VCG mechanism specifies that the project is carried out if and
only if the sum of the individuals’ valuations is positive. It is fairly simple, and
relies only on the fact that no individual, regardless of her beliefs about the other
individuals’ reports, has any reason not to truthfully report her valuation. How-
ever, the following points diminish its appeal.

1. The outcome of the mechanism may require some individuals to make pay-
ments even if the project is not executed. For example, if the valuation profile
is (−5,1,1,1,1), then the project is not carried out and individual 1 makes a
payment of 4. People may regard the requirement to pay money if the project
is not carried out as unacceptable.

2. The mechanism is not very transparent; it takes time or experience to be per-
suaded that reporting one’s valuation is indeed optimal independent of the
other individuals’ reports.

3. The payments are not distributed back to the individuals. If we change the
mechanism so that the total payments collected are returned to the indi-
viduals then an individual’s reporting her valuation is no longer necessarily
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optimal for her regardless of the other individuals’ reports. Consider, for ex-
ample, a problem with two individuals, and assume that the total amount
paid is distributed equally between the individuals. Suppose that v 1 = 1 and
individual 2 reports 10. If individual 1 reports 1 the project is carried out
and individual 1’s utility is 1 (no payment is made). If individual 1 reports
−8, however, the project is also carried out and individual 2 makes a pay-
ment of 8, half of which goes to individual 1, so that her utility is 1 + 4 =
5. Thus individual 1 is better off reporting −8 than reporting her valuation
of 1.

4. Using the sign of the sum of the valuations as the criterion for carrying out
the project is not necessarily desirable, especially in a society in which the
individuals differ widely in their wealths. Suppose that two individuals ben-
efit slightly from the project, but due to their high wealth have valuations
of 100 each. The other 99 individuals are hurt significantly by the project
but are impoverished and have valuations of only −1. In this case the crite-
rion requires that the project is carried out, even though it may seem unjust.
The VCG mechanism not only requires that it is carried out but also that the
wealthy make no payments. Their willingness to pay is enough to require the
project to be carried out.

Problems

1. Balanced budget. A direct mechanism with transfers is balanced if, for all
profiles of reports, the sum of the transfers is 0. A result that we do not prove
states that there exists no strategy-proof balanced direct mechanism with
transfers that carries out the project if and only if the sum of the valuations is
positive. To illustrate this result, consider a public project problem with two
individuals and assume that each individual’s valuation is 4, −1, or −5.

a. Find the outcome specified by the VCG mechanism for each report pro-
file under the assumption that each individual is restricted to report only
one of the three possible valuations, and verify that the mechanism is
strategy-proof.

b. Show that there exists no strategy-proof balanced direct mechanism with
transfers for which the project is carried out only if the sum of the val-
uations is positive and the transfers are symmetric in the sense that the
transfer for individual 1 when she reports x and individual 2 reports y is
the same as the transfer for individual 2 when she reports x and individ-
ual 1 reports y .
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2. Vickrey auction. One unit of a good is to be transferred to one of the indi-
viduals 1, . . . , n . Each individual i ’s valuation of the good is a nonnegative
number v i . Consider the following direct mechanism with transfers. Each
individual reports a nonnegative number; the good is transferred to the in-
dividual, the winner, who reports the highest number. (In case of a tie, the
good is transferred to the individual with the smallest index i among the in-
dividuals reporting the highest number.) The winner makes a payment equal
to the highest of the other individuals’ reports. (Thus if the reports are dis-
tinct, the winner’s payment is the second highest report.) The winner’s utility
is her valuation minus her payment, and the utility of every other individual
is 0. We can interpret this mechanism as a second-price auction, in which in-
dividuals submit bids and the good is transferred to the individual with the
highest bid, who pays only the second highest bid (see Example 15.7).

a. Show that the mechanism is strategy-proof.

b. Explain why the direct mechanism with transfers that differs from the
above only in that the winner makes a payment equal to her report is not
strategy-proof.

3. A project with a cost. A group of n individuals has to decide whether to ex-
ecute a project that costs C . If the project is executed, each individual pays
c = C/n to cover the costs. Individual i ’s utility from (α, t i ) is α(v i − c ) + t i

where α is 1 if the project is carried out and 0 if it is not, and t i is a transfer.

Design a VCG-like mechanism for this situation that is strategy-proof.

Notes

The idea behind the VCG mechanism is due to Clarke (1971) and Groves (1973),
and has its origins in Vickrey (1961). Proposition 17.1 is established in Groves
and Loeb (1975). The auction in Problem 2 was first studied by Vickrey (1961).
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Consider the following problem. Some individuals in a society are X ’s and others
are Y ’s. Every individual of each type has to be matched with one and only one
individual of the other type. For example, managers have to be matched with
assistants, or pilots have to be matched with copilots. Each X has preferences
over the Y ’s and each Y has preferences over the X ’s. Every individual prefers
to be matched than to remain unmatched. We look for matching methods that
result in sensible outcomes given any preferences.

18.1 The matching problem

We denote the set of X ’s by X and the set of Y ’s by Y and assume that they have
the same number of members. Each x ∈ X has a preference relation over the set
Y and each y ∈ Y has a preference relation over the set X . We assume that all
preferences are strict (no individual is indifferent between any two options).

Definition 18.1: Society and preference profile

A society (X , Y ) consists of finite sets X and Y (of individuals) with the same
number of members. A preference profile (¼i )i∈X∪Y for the society (X , Y )
consists of a strict preference relation ¼i over Y for each i ∈ X and a strict
preference relation ¼i over X for each i ∈ Y .

A matching describes the pairs that are formed. Its definition captures the
assumption that each individual has to be matched with exactly one individual
of the other type.

Definition 18.2: Matching

A matching for a society (X , Y ) is a one-to-one function from X to Y . For a
matching µ and x ∈ X we refer to (x ,µ(x )) as a match.

We discuss matching methods, which map preference profiles into match-
ings. That is, a matching method specifies, for each preference profile, who is
matched with whom.
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Definition 18.3: Matching method

A matching method for a society is a function that assigns a matching to
each preference profile for the society.

The following example treats one side (the Y ’s), like the houses in the models
of Chapter 8, and takes into account only the preferences of the X ’s.

Example 18.1: Serial dictatorship

The X ’s, in a pre-determined order, choose Y ’s, as in the serial dictatorship
procedure. Each X chooses from the Y ’s who were not chosen by previ-
ous X ’s. This procedure always results in a matching, and thus defines a
matching method.

Here are two more examples of matching methods.

Example 18.2: Minimizing aggregate rank

For any pair (x , y ) consisting of an X and a Y , let n x (y ) be y ’s rank in x ’s
preferences and let n y (x ) be x ’s rank in y ’s preferences. Attach to each pair
(x , y ) a number I (x , y ) = α(n x (y ), n y (x )), where α is a function increas-
ing in both its arguments (for example α(n 1, n 2) = n 1 + n 2). The number
α(n x (y ), n y (x )) is a measure of the dissatisfaction of individuals x and y
with their match. The matching method chooses the matching that mini-
mizes the sum of I (x , y ) over all pairs (x , y ) (or one such matching if more
than one exists).

Example 18.3: Iterative selection of the best match

Start by choosing a pair for which the value of I (x , y ) defined in Exam-
ple 18.2 is minimal over all pairs (x , y ). Remove the members of the cho-
sen pair from X and Y and choose a pair for which the value of I (x , y ) is
minimal over the smaller sets. Continue iteratively in the same way.

18.2 Gale-Shapley algorithm

We now consider a matching method that has an interesting description and
some attractive properties. The algorithm that defines it has two versions, one
in which the X ’s initiate matches, and one in which the Y ’s do so. We describe
the former.
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Stage 1

1
2
3
4

1
2
3
4

(a) Each X chooses
her favorite Y .

1
2
3
4

1
2
3
4

(b) Each Y chosen
by more than one
X chooses her
favorite X among
those who chose
her.

1
2
3
4

1
2
3
4

(c) X ’s chosen by
Y ’s are tentatively
matched with
them; remaining
individuals are
unmatched.

Stage 2

1
2
3
4

1
2
3
4

(d) Unmatched X ’s
choose their
favorite Y ’s among
the Y ’s who haven’t
rejected them.

Figure 18.1 An example of the first stages of the Gale-Shapley matching method. The
X ’s are indicated by a green background and theY ’s by an orange background.

The algorithm proceeds in a series of stages. At the end of each stage, some
pairs are tentatively matched; at the end of the procedure, the existing tentative
matches become final.

Stage 1
Each X chooses her favorite Y . If every Y is chosen by exactly one X then the
algorithm ends with that matching. If some Y is chosen by more than one X ,
then every such Y chooses her favorite X from among those who chose her
and is tentatively matched with this X . She rejects the other X ’s who chose
her. All X ’s who were not chosen by a Y are left unmatched. (See Figure 18.1
for an illustration of the start of the algorithm in the case that 1 is the favorite
of 1 and 2 and 4 is the second best of 1; 4 is the favorite of 3 and 4 and 2 is the
second best of 3; and 1 prefers 2 to 1 and 4 prefers 4 to 3.)

Stage t +1 for t ≥ 1
At the start of stage t + 1, tentative matches exist from stage t , and some in-
dividuals are unmatched. Each unmatched X chooses her favorite Y among
those who have not rejected her in the past. Some of the Y ’s thus chosen may
already be tentatively matched with X ’s. (In the example in Figure 18.1, that
is the case in Stage 2 for 4.) Each Y chooses her favorite X from the set con-
sisting of the X with whom she was tentatively matched at the end of stage t
and the unmatched X ’s who chose her, resulting in new tentative matches.

Stopping rule
The process ends when every X is tentatively matched with a Y , in which case
the tentative matches become final.

The following definition specifies the algorithm formally, but if you find the
previous description clear you may not need to refer to it.
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Procedure: Gale-Shapley algorithm

Given a society (X , Y ), the Gale-Shapley algorithm for (X , Y ) in which X ’s
initiate matches, denoted GSX , has as input a preference profile (¼i )i∈X∪Y

for (X , Y ) and generates a sequence (g t , Rt )t=0,1,... where

• g t : X → Y ∪ {unmatched} is a function such that no two X ’s are
mapped to the same Y

• Rt is a function from X to subsets of Y .

A pair (g t , Rt ) is the state of the algorithm at the end of stage t . If g t (x )∈ Y
then g t (x ) is the Y with whom x is tentatively matched and Rt (x ) is the set
of all Y ’s who rejected x through stage t .

Definition of (g 0, R0)
Every X is unmatched and every set R0(x ) is empty:

g 0(x ) = unmatched for all x ∈ X

R0(x ) =∅ for all x ∈ X .

Definition of (g t+1, Rt+1) given (g t , Rt )
For each y ∈ Y let

At+1(y ) = {x ∈ X : y is best in Y \Rt (x ) according to ¼x }.

That is, At+1(y ) is the set of the X ’s who choose y in stage t + 1. (Note
that if g t (x ) = y then x ∈ At+1(y ).)

Now

g t+1(x ) =

(
y if x is best in At+1(y ) according to ¼y

unmatched otherwise

and

Rt+1(x ) =

(
Rt (x ) if g t+1(x )∈ Y

Rt (x )∪{y ∈ Y : x ∈ At+1(y )} if g t+1(x ) = unmatched.

Thus Rt+1(x ) is equal to Rt (x ) unless x is rejected at stage t by some
y ∈ Y , in which case that y (and only her) is added to Rt (x ).

Stopping rule
The process ends at stage T if g T (x )∈ Y for all x ∈ X .
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The description of the algorithm talks of individuals choosing matches. But
that language should not be taken literally. We use it simply to describe the algo-
rithm attractively (as we did for serial dictatorship). The Gale-Shapley algorithm
simply defines a function that attaches a matching to every preference profile.
Soon we prove that the algorithm indeed always ends with a matching, but first
we give an example.

Example 18.4

Consider the society with four X ’s and four Y ’s and the following prefer-
ence profiles, where X ’s are shown in green and Y ’s in orange.

1: 1� 4� 2� 3
2: 2� 3� 1� 4
3: 4� 2� 3� 1
4: 4� 3� 1� 2

1: 3� 1� 2� 4
2: 3� 2� 4� 1
3: 4� 3� 2� 1
4: 1� 4� 3� 2

X ’s initiate matches We first apply GSX (where X ’s initiate matches) to this
preference profile.

Stage 1: 1 chooses 1, 2 chooses 2, and both 3 and 4 choose 4. 4 prefers
4 to 3 and thus rejects 3 and keeps 4. That is, g 1(1) = 1, g 1(2) = 2,
g 1(3) = unmatched, and g 1(4) = 4, and R1(1) = ∅, R1(2) = ∅, R1(3) = {4},
and R1(4) =∅.

1
2
3
4

1
2
3
4

Stage 2: 3 chooses 2, who is tentatively matched with 2. 2 prefers 3 to
2 and so rejects 2. That is, g 2(1) = 1, g 2(2) = unmatched, g 2(3) = 2, and
g 2(4) = 4, and R2(1) =∅, R2(2) = {2}, R2(3) = {4}, and R2(4) =∅.

1
2
3
4

1
2
3
4

Stage 3: 2 chooses 3. Every Y is now matched with a unique X , and the
process ends. We have g 3(1) = 1, g 3(2) = 3, g 3(3) = 2 and g 4(4) = 4.

1
2
3
4

1
2
3
4
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Y ’s initiate matches Now we apply GSY to the profile.
Stage 1: 1 and 2 choose 3, 3 chooses 4, and 4 chooses 1. 3 prefers 2 to 1

and so rejects 1.

1
2
3
4

1
2
3
4

Stage 2: 1 chooses 1, who prefers 1 to 4 and so rejects 4.

1
2
3
4

1
2
3
4

Stage 3: 4 chooses 4, who prefers 4 to 3 and so rejects 3.

1
2
3
4

1
2
3
4

Stage 4: 3 chooses 3, who prefers 2 to 3 and so rejects 3.

1
2
3
4

1
2
3
4

Stage 5: 3 chooses 2. Every X is now matched with a unique Y , and the
process ends.

1
2
3
4

1
2
3
4

Note that the matchings in these two examples are the same. But don’t jump
to conclusions: for many preference profiles the matchings generated by GSX

and GSY differ.
We now show that for every profile of preferences the algorithm is well de-

fined and eventually terminates in a matching.

Proposition 18.1: Gale-Shapley algorithm yields a matching

For any society and any preference profile for the society, the Gale-Shapley
algorithm is well defined and generates a matching.
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Proof

We consider the algorithm GSX , in which X ’s initiate matches. The argu-
ment for GSY is analogous.

We first show that the algorithm is always well defined. That is, we ar-
gue that for no preference profile does GSX have a stage t at which some
x ∈ X has been rejected by all Y ’s (that is, Rt (x ) = Y ). Note that when a
Y rejects an X , she remains tentatively matched with some other X . Thus
if some x ∈ X has been rejected after stage t by every Y , then every Y is
tentatively matched with an X . But the number of members of X is the
same as the number of members of Y , so it must be that x is tentatively
matched (that is g t (x ) ∈ Y ), and in particular has not been rejected by
g t (x ), a contradiction.

We now show that the algorithm terminates. At each stage at which the
algorithm continues, at least one X is rejected. Thus if the algorithm did
not stop, we would reach a stage at which one of the X ’s would have been
rejected by every Y , which we have shown is not possible.

Finally, the algorithm terminates when no X is unmatched, so that the
outcome is a matching.

18.3 Gale-Shapley algorithm and stability

We now consider properties of the matching generated by the Gale-Shapley al-
gorithm. We classify a matching as unstable if there are two individuals who
prefer to be matched with each other than with the individuals with whom they
are matched. That is, matching µ is unstable if for some x ∈ X and y ∈ Y with
y 6= µ(x ), x prefers y to µ(x ) (the Y with whom x is matched) and y prefers x to
µ−1(y ) (the X with whom y is matched). In this case both x and y want to break
the matches assigned by µ and match with each other. A matching is stable if no
such pair exists.

Definition 18.4: Stable matching

For a society (X , Y ) and preference profile (¼i )i∈X∪Y , a matching µ is stable
if there is no pair (x , y )∈ X ×Y such that y �x µ(x ) and x �y µ−1(y ).

To illustrate the concept of stable matching we give an example showing that
the serial dictatorship algorithm, in which the members of X sequentially choose
members of Y from those who were not chosen previously, may generate an
unstable match.
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Example 18.5

Consider a society ({1,2,3},{1,2,3})with the following preferences.

1: 1� 2� 3
2: 1� 2� 3
3: 1� 2� 3

1: 2� 3� 1
2: 3� 2� 1
3: 1� 3� 2

Apply the serial dictatorship algorithm in which the X ’s choose Y ’s in the
order 1, 2, 3. The algorithm yields the matching in which each i ∈ X is
matched to i ∈ Y . This matching is unstable because 2 ∈ X and 1 ∈ Y both
prefer each other to the individual with whom they are matched.

We now show that the Gale-Shapley algorithm generates a stable matching.

Proposition 18.2: Gale-Shapley algorithm yields a stable matching

For any society and any preference profile for the society, the Gale-Shapley
algorithm generates a stable matching.

Proof

Consider a society (X , Y ) and preference profile (¼i )i∈X∪Y . Denote by µ
the matching generated by the algorithm GSX . Assume that for x ∈ X and
y ∈ Y , individual x prefers y to µ(x ) (y �x µ(x )). Then at some stage be-
fore x chose µ(x ), she must have chosen y and have been rejected by her
in favor of another X . Subsequently, y rejects an X only in favor of a pre-
ferred X . Thus it follows that y prefers µ−1(y ), the X with whom she is
eventually matched, to x . We conclude that no pair prefers each other to
the individual with whom she is assigned by µ, so that µ is stable.

Many matchings may be stable. The GSX algorithm finds one stable matching
and GSY finds another, possibly the same and possibly not. Is it better to be on
the side that initiates matches? Is any stable matching better for one of the X ’s
than the matching generated by GSX ? The next result answers these questions:
for each x ∈ X the matching generated by GSX is at least as good for x as any other
stable matching, and in particular is at least as good as the matching generated
by GSY .

Proposition 18.3: GSX algorithm yields best stable matching for X ’s

For any society and any preference profile for the society, no stable match-
ing is better for any X than the matching generated by the GSX algorithm.
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Proof

Let µ be the (stable) matching generated by GSX for the society (X , Y ) and
preference profile (¼i )i∈X∪Y . Suppose that ψ is another stable matching
and ψ(x ) �x µ(x ) for some x ∈ X . Let X ∗ be the set of all x ∈ X for whom
ψ(x )�x µ(x ). For each x ∈ X ∗ denote by t (x ) the stage in the GSX algorithm
at which x choosesψ(x ) and is rejected by her. Let x0 ∈ X ∗ for whom t (x0)
is minimal among the x ∈ X ∗. Let y0 =ψ(x0) and let x1 ∈ X be the individual
y0 chose when she rejected x0 in the GSX algorithm. That is, at stage t (x0)
individuals x0 and x1 choose y0, who rejects x0 in favor of x1 (x1 �y0 x0). Let
ψ(x1) = y1.

x0

x1

y0 =ψ(x0)
y1 =ψ(x1)

t (x0)

If y0 �x1 y1 then each member of the pair (x1, y0) prefers the other mem-
ber to the individual assigned her by ψ, contradicting the stability of ψ.
Therefore y1 �x1 y0. But then in the GSX algorithm x1 must choose y1

and be rejected before stage t (x0), so that t (x1) < t (x0), contradicting the
minimality of t (x0).

We complement this result with the observation that for each Y no stable
matching is worse than the matching generated by the GSX algorithm.

Proposition 18.4: GSX algorithm yields worst stable matching for Y ’s

For any society and any preference profile for the society, no stable match-
ing is worse for any Y than the matching generated by the GSX algorithm.

Proof

Consider a society (X , Y ) and suppose that for the preference profile
(¼i )i∈X∪Y the algorithm GSX leads to the (stable) matching µ. Suppose an-
other stable matching ψ is worse for some y ∈ Y : x2 =ψ−1(y )≺y µ−1(y ) =
x1. Let y1 =ψ(x1).

µ ψ

y ↔ x1 y ↔ x2

y1↔ x1

By Proposition 18.3, y = µ(x1) �x1 ψ(x1) = y1. Given x1 �y ψ−1(y ) = x2,
x1 and y prefer each other to the individuals with whom they are matched
inψ, contrary to the assumption that ψ is stable.
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Problems

1. Stable matching and Pareto stability.

a. Show that any stable matching is Pareto stable. That is, for no preference
profile is another matching (stable or not) better for one individual and
not worse for every other.

b. Give an example of a Pareto stable matching that is not stable.

2. Pareto stability for the X ’s. Show that the outcome of the GSX algorithm is
weakly Pareto stable for the X ’s. That is, no other matching is better for
every X .

3. All X ’s have the same preferences. Assume that all X ’s have the same prefer-
ences over the Y ’s.

a. How many stages does the GSX algorithm take?

b. Which serial dictatorship procedure yields the same final matching as the
GSX procedure?

c. Show that in this case GSX and GSY lead to the same matching.

4. Matching with unequal groups. Group A has m members and group B has n
members, with m < n . Each individual has strict preferences over the mem-
bers of the other group. Let GSA be the Gale-Shapley algorithm in which the
A’s initiate the matches and let GSB be the algorithm in which the B ’s initiate
the matches.

a. Show that if m = 1 then GSA and GSB yield the same matching.

b. Explain why GSA and GSB do not necessarily yield the same matching if
m = 2.

c. Show that in both GSA and GSB every individual in A is matched with one
of her m most preferred members of B .

5. Clubs. Assume that 3n students have to be allocated to three programs, each
with capacity n . Each student has strict preferences over the set of programs
and each of the programs has strict preferences over the students. Describe
an algorithm similar to the Gale-Shapley algorithm, define a notion of sta-
bility, and show that for any preference profile your algorithm ends with a
stable matching.

6. Manipulation. The Gale-Shapley algorithm is not strategy-proof and thus
is not immune to manipulation. Specifically, if each individual is asked to
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report preferences and the GSX algorithm is run using the reported prefer-
ences, then for some preference profiles some individual is better off, ac-
cording to her true preferences, if she reports preferences different from her
true preferences.

To see this possibility, consider the following preference profile for a society
with three X ’s and three Y ’s.

1: 1� 2� 3
2: 2� 1� 3
3: 1� 2� 3

1: 2� 1� 3
2: 1� 2� 3
3: 1� 2� 3

Show that 1 can benefit by reporting preferences different from her true
preferences.

7. The roommate problem. A society contains 2n individuals. The individuals
have to be partitioned into pairs. Each individual has a (strict) preference
over the other individuals. An assignment µ is a one-to-one function from
the set of individuals to itself such that if µ(i ) = j then µ(j ) = i . An assign-
ment is stable if for no pair of individuals does each individual prefer the
other member of the pair to her assigned partner. Construct an example of a
preference profile (with four individuals) for which no assignment is stable.

Notes

The chapter is based on Gale and Shapley (1962).





19 Socialism

Consider a society in which each individual can produce the same consumption
good, like food, using a single input, like land. Each individual is characterized
by her productivity. The higher an individual’s productivity, the more output she
produces with any given amount of the input.

An economic system can be thought of as a rule that specifies the output pro-
duced by the entire society and the allocation of this output among the individ-
uals as a function of the individuals’ productivities. Should individuals with high
productivity get more output than ones with low productivity? Should two indi-
viduals with the same productivity receive the same amount of output? Should
an increase in an individual’s productivity result in her receiving more output?
The design of an economic system requires an answer to such questions.

The approach in this chapter (like those in Chapters 3 and 20) is axiomatic.
The central result specifies conditions capturing efficiency and fairness that are
satisfied only by an economic system that resembles the socialist ideal.

19.1 Model

A society contains n individuals, denoted 1, . . . , n . A fixed amount of a single
good, referred to as input (like land), is available for division among the individ-
uals. For convenience, we take this amount to be 1. Each individual uses input to
produce output, which we refer to as wealth. Each individual i is characterized
by her productivity λi ≥ 0; using an amount αi of the input, she produces the
amount αiλi of wealth.

Definition 19.1: Society and productivity profile

A society consists of a set of individuals N = {1, . . . , n} and a total amount
of input available, which we assume to be 1.

A productivity profile is a vector (λ1, . . . ,λn ) of nonnegative numbers.
For any nonnegative number αi , individual i transforms the amount αi of
input into the amount αiλi of wealth.

Note that in this formulation an individual does not choose how much ef-
fort to exert. If she is assigned αi of the input then she produces αiλi of wealth
independently of the share of the output she gets.
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A distribution of the input is a vector (α1, . . . ,αn ) of nonnegative numbers with
sum 1:

∑n
i=1α

i = 1. If each individual i is assigned the amount αi of the input,
then the total wealth of the society is

∑n
i=1α

iλi , which has to be divided among
the individuals.

Definition 19.2: Feasible wealth profile

For any productivity profile (λ1, . . . ,λn ), a profile (w 1, . . . , w n ) of nonneg-
ative numbers is a feasible wealth profile if for some profile (α1, . . . ,αn ) of
nonnegative numbers with

∑n
i=1α

i = 1 we have
∑n

i=1 w i =
∑n

i=1α
iλi .

We model an economic system as a rule that specifies for each productiv-
ity profile a feasible wealth profile. Note that this notion of an economic sys-
tem does not specify the amount of wealth each individual produces; the same
wealth profile may be achieved by different distributions of the input among the
individuals.

Definition 19.3: Economic system

An economic system is a function F that assigns to every productivity pro-
file (λ1, . . . ,λn ) a feasible wealth profile F (λ1, . . . ,λn ).

If F (λ1, . . . ,λn ) = (w 1, . . . , w n ) then we write F i (λ1, . . . ,λn ) = w i , the wealth
assigned to individual i by the rule F given the productivity profile (λ1, . . . ,λn ) .
Notice that an economic system is a rule that specifies how wealth is distributed
for every possible productivity profile, not only for a specific profile. (The follow-
ing analogy might help you. When we talk about the rule for converting Celsius
to Fahrenheit we specify the formula F = 32+1.6C and not simply that 0 Celsius
is equivalent to 32 Fahrenheit.)

Although this formalization of an economic system specifies only the total
wealth produced and its distribution among the individuals, the rationale for
some of the examples we discuss subsequently involves principles for the alloca-
tion of the input among the individuals and the dependence of the individuals’
outputs on the wealth distribution.

Regarding the distribution of the input, one leading principle is that it should
maximize the total wealth, which occurs if all the input is assigned to the individ-
uals with the highest productivity. (If no two individuals have the same produc-
tivity, that means that all the input is assigned to the most productive individual.)
Another leading principle is that the input should be distributed equally among
all individuals, which is typically inefficient.

Regarding the distribution of wealth, one leading principle is that we allow
each individual to keep the amount she produces. At the other extreme, the
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total amount of wealth produced is distributed equally among the individuals.
If we combine each of these two rules with each of the two rules for assigning
input discussed in the previous paragraph, we get the following four examples of
economic systems.

Example 19.1: Equality of input, no redistribution

The input is divided equally among the individuals and each individual
receives the wealth she produces. That is, for any productivity profile
(λ1, . . . ,λn )we have F i (λ1, . . . ,λn ) = λi/n for each individual i .

Example 19.2: Input to most productive, no redistribution

The input is divided equally among the individuals with the highest pro-
ductivity and each individual receives the wealth she produces. That is, for
any productivity profile (λ1, . . . ,λn )we have

F i (λ1, . . . ,λn ) =







λi

|{j ∈N :λj ≥λk for all k ∈N }|
if λi ≥λk for all k ∈N

0 otherwise.

Example 19.3: Equality of input, equality of wealth

The input is divided equally among the individuals and the total wealth
is also divided equally among the individuals. That is, for any productiv-
ity profile (λ1, . . . ,λn ) we have F i (λ1, . . . ,λn ) =

∑n
j=1λ

j /n 2 for each individ-
ual i .

The last of the four combinations of input and wealth allocation rules assigns
the input to the most productive individuals and divides the resulting wealth
equally among all individuals. It is one possible formalization of the socialist
principle “from each according to his ability, to each according to his needs”
(Marx 1971, Section I.3) in the case that every individual has the same needs.

Example 19.4: Input to most productive, equality of wealth (socialism)

The input is divided equally among the individuals with the highest
productivity and the wealth is divided equally among all individuals.
That is, for any productivity profile (λ1, . . . ,λn ) we have F i (λ1, . . . ,λn ) =
max{λ1, . . . ,λn}/n for each individual i .
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Of the many other possible economic systems, we mention two.

Example 19.5: One worker, one beneficiary

For some individuals j1 and j2, individual j1 is assigned all the input
and individual j2 gets all the wealth. That is, for any productivity profile
(λ1, . . . ,λn )we have

F i (λ1, . . . ,λn ) =

(
λj1 if i = j2

0 otherwise.

This economic system can be thought of as a reflection of an extreme
power relation in which one individual is a master and the other is a slave.

Example 19.6: Input to most productive, wealth relative to productivity

The input is divided equally among the individuals with the highest pro-
ductivity and each individual receives an amount of wealth proportional
to her productivity. That is, for any productivity profile (λ1, . . . ,λn )we have
F i (λ1, . . . ,λn ) =max{λ1, . . . ,λn}λi/

∑n
j=1λ

j for each individual i .

19.2 Properties of economic systems

Here are some properties that an economic system might satisfy. The first prop-
erty is similar to Pareto stability.

Efficiency An economic system is efficient if, for every productivity profile, no
feasible wealth profile different from the one generated by the system is better
for some individuals and not worse for any individual.

Definition 19.4: Efficient economic system

An economic system F is efficient if for every productivity profile
(λ1, . . . ,λn ) there is no feasible wealth profile (w 1, . . . , w n ) for which w i ≥
F i (λ1, . . . ,λn ) for all i = 1, . . . , n , with at least one strict inequality.

An economic system is efficient if and only if, for every productivity profile,
the sum of the wealths the system assigns to the individuals is equal to the maxi-
mum total wealth that can be produced. The maximum total wealth is produced
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only if the input is distributed among the individuals with the highest productiv-
ity, so among the examples in the previous section, only the economic systems
in Examples 19.2, 19.4, and 19.6 are efficient. An economic system is not efficient
if for at least one profile the total production is not maximal. To illustrate, Exam-
ple 19.5 with n = 2, i 1 = 1, and i 2 = 2 is not efficient since F (2,3) = (0,2)with total
wealth 2, which is less than the potential maximum of 3.

Symmetry An economic system is symmetric if for any productivity profile in
which two individuals have the same productivity, they are assigned the same
wealth.

Definition 19.5: Symmetric economic system

An economic system F is symmetric if for any individuals i and j and any
productivity profile (λ1, . . . ,λn ),

λi =λj ⇒ F i (λ1, . . . ,λn ) = F j (λ1, . . . ,λn ).

Note that this property does not constrain the wealths assigned by the economic
system to productivity profiles in which all individuals’ productivities differ. The
property is satisfied by all the examples of economic systems in the previous
section except Example 19.5 (one worker, one beneficiary).

Relative monotonicity An economic system is relatively monotonic if whenever
individual i has higher productivity than j , the amount of wealth assigned to i is
at least as high as the amount assigned to j .

Definition 19.6: Relatively monotonic economic system

An economic system F is relatively monotonic if for every productivity
profile (λ1, . . . ,λn ),

λi ≥λj ⇒ F i (λ1, . . . ,λn )≥ F j (λ1, . . . ,λn ).

All the examples in the previous section except Example 19.5 (one worker,
one beneficiary) satisfy this property.

The properties we have defined, efficiency, symmetry, and relative mono-
tonicity, require that for each productivity profile, the wealths assigned by the
economic system satisfy certain conditions. The properties we now define have
a different logical structure: they impose conditions on the relation between the
wealth distributions assigned by the economic system to different productivity
profiles.
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Anonymity An economic system is anonymous if it does not discriminate
among individuals on the basis of their names. (It may still discriminate among
individuals according to their productivity.) Recall that a permutation of the set
of individuals N is a one-to-one function from N to N . For example, there are six
permutations of N = {1,2,3}; one of them is the function σ defined by σ(1) = 3,
σ(2) = 2, and σ(3) = 1.

Consider a productivity profile (λ1, . . . ,λn ). Given a permutation σ of N , we
consider the new productivity profile in which each individual σ(i ) has the pro-
ductivity of individual i in (λ1, . . . ,λn ). That is, we consider the productivity pro-
file (λ̂1, . . . , λ̂n )where λ̂σ(i ) =λi . The anonymity condition requires that the wealth
ofσ(i ) for the new productivity profile is the same as the wealth of i in the origi-
nal profile: Fσ(i )(λ̂1, . . . , λ̂n ) = F i (λ1, . . . ,λn ). For example, consider the productiv-
ity profile (7,3, 13) and the permutation σ with σ(1) = 3, σ(2) = 1, and σ(3) = 2.
Then F 2(3,13,7) = F 3(7,3,13).

Definition 19.7: Anonymous economic system

An economic system F is anonymous if for all productivity profiles
(λ1, . . . ,λn ) and (λ̂1, . . . , λ̂n ) for which there is a permutation σ of N such
that λ̂σ(i ) =λi for all i , we have

Fσ(i )(λ̂1, . . . , λ̂n ) = F i (λ1, . . . ,λn ) for all i = 1, . . . , n .

All the examples in the previous section except Example 19.5 (one worker,
one beneficiary) satisfy this property.

If an economic system is anonymous then it is symmetric (Problem 1a). But
anonymity is stronger than symmetry. Symmetry relates only to the way that the
economic system assigns wealth to a productivity profile in which some indi-
viduals have the same productivity. Anonymity requires also consistency in the
wealths assigned for pairs of productivity profiles that are permutations of each
other. Suppose, for example, that N = {1,2} and consider the economic system
that for any productivity profile (λ1,λ2)with λ1 =λ2 assigns each individual i the
wealth 1

2
λi and for any other productivity profile assigns individual 1 the wealth

max{λ1,λ2} and individual 2 the wealth 0. This economic system is symmetric
but not anonymous.

Monotonicity in own productivity An economic system is monotone in own
productivity if, when an individual’s productivity increases, her wealth does not
decrease. Notice the difference between this property and relative monotonicity,
which requires that if one individual’s productivity is at least as high as another’s
then her wealth is also at least as high.
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Definition 19.8: Monotonicity in own productivity

An economic system F is monotone in own productivity if for every pro-
ductivity profile (λ1, . . . ,λn ), every individual i , and every number ∆ > 0,
we have F i (λ1, . . . ,λi +∆, . . . ,λn )≥ F i (λ1, . . . ,λi , . . . ,λn ).

All the examples in the previous section satisfy this property. The economic
system in which the input is divided equally among the individuals with the
lowest productivity and each individual receives the wealth she produces does
not satisfy the property since, for example, F 1(2, 3) = 2 > 0 = F 1(5,3). If an
economic system is monotone in own productivity and symmetric then it is
relatively monotonic (Problem 1b).

Monotonicity in others’ productivities An economic system is monotone in oth-
ers’ productivities if any increase in the productivity of one individual does not
hurt another individual.

Definition 19.9: Monotonicity in others’ productivities

An economic system F is monotone in others’ productivities if for every
productivity profile (λ1, . . . ,λn ), any two individuals i and j , and every
number∆> 0, we have F j (λ1, . . . ,λi +∆, . . . ,λn )≥ F j (λ1, . . . ,λi , . . . ,λn ).

All examples in the previous section except Examples 19.2 (input to most pro-
ductive, no redistribution) and 19.6 (input to most productive, wealth relative to
productivity) satisfy this property. To see that Example 19.2 does not satisfy the
property, notice, for example, that F 1(3,2) = 3> 0= F 1(3,4).

19.3 Characterization of socialism

We now show that socialism is the only economic system that satisfies four of the
properties defined in the previous section.

Proposition 19.1: Characterization of socialist economic system

The only economic system that is efficient, symmetric, monotone in
own productivity, and monotone in others’ productivities is socialism,
according to which all wealth is produced by the individuals with the
highest productivity and the total wealth is divided equally among all
individuals.



324 Chapter 19. Socialism

Proof

Problem 1c asks you to verify that the socialist economic system satisfies
the four properties. We now show that it is the only economic system that
does so.

Let F be an economic system satisfying the four properties. We first
show that for every productivity profile (λ1, . . . ,λn ) and every individ-
ual j , the wealth F j (λ1, . . . ,λn ) assigned by F to j is at most M/n , where
M = max{λ1, . . . ,λn}. Suppose to the contrary that for some productiv-
ity profile (λ1, . . . ,λn ), we have F i (λ1, . . . ,λn ) >M/n for some individual i .
Given that M ≥ λj for every individual j , the repeated application of the
monotonicity of F in others’ productivities yields

F i (M , . . . , M ,λi , M , . . . , M )≥ F i (λ1, . . . ,λn ).

Now use the monotonicity of F in own productivity to conclude that

F i (M , . . . , M )≥ F i (λ1, . . . ,λn ).

Let F i (M , . . . , M ) = H . By symmetry, F j (M , . . . , M ) = H for every indi-
vidual j . But F i (λ1, . . . ,λn ) > M/n , so H > M/n , and hence the wealth
distribution (H , . . . , H ) is not feasible. Thus F i (λ1, . . . ,λn ) ≤M/n for every
individual i .

By efficiency, the input is distributed among the individuals with the
highest productivity, so that for every productivity profile (λ1, . . . ,λn ) we
have

∑n
i=1 F i (λ1, . . . ,λn ) = M and hence F i (λ1, . . . ,λn ) = M/n for every

individual i .

We close the chapter by showing that the four properties are independent
in the sense that none of them is implied by the other three. For each prop-
erty we find an economic system that does not satisfy that property but satisfies
the other three. Thus all four properties are required to reach the conclusion of
Proposition 19.1.

Proposition 19.2: Independence of properties

The properties of efficiency, symmetry, monotonicity in own productiv-
ity, and monotonicity in others’ productivities are independent. That is,
for each property there is an economic system that does not satisfy that
property but satisfies the other three.
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Proof

Efficiency
The economic system defined by F i (λ1, . . . ,λn ) =min{λ1, . . . ,λn}/n sat-
isfies all axioms but efficiency. (For any productivity profile (λ1, . . . ,λn )
that is not constant, (w , . . . , w ) with w =max{λ1, . . . ,λn}/n is a feasible
wealth profile, and w >min{λ1, . . . ,λn}/n = F i (λ1, . . . ,λn ).)

Symmetry
The economic system defined by F 1(λ1, . . . ,λn ) = max{λ1, . . . ,λn} and
F i (λ1, . . . ,λn ) = 0 for i 6= 1 for every productivity profile (λ1, . . . ,λn ) (all
wealth goes to individual 1) satisfies all the axioms except symmetry.

Monotonicity in own productivity
The economic system according to which the individuals with the low-
est productivity share max{λ1, . . . ,λn} equally and the wealth of every
other individual is zero satisfies all the axioms except monotonicity in
own productivity. (If the productivity of an individual increases from
min{λ1, . . . ,λn} to a larger number, the wealth assigned to her decreases
to zero.)

Monotonicity in others’ productivities
The economic system according to which the individuals with the high-
est productivity share max{λ1, . . . ,λn} equally and the wealth of every
other individual is zero satisfies all the axioms except monotonicity in
others’ productivities. (If the productivity of an individual i increases
from less than max{λ1, . . . ,λn} to more than this number, the wealth
of every individual whose productivity was formerly max{λ1, . . . ,λn}
decreases to zero.)

Comments

This chapter is not an argument for or against socialism. Its main aim is to
demonstrate that some economists are interested in economic systems with a
centralized component and consider fairness to be a criterion by which a sys-
tem should be judged. The main result shows that a system we label “social-
ism” is characterized by four properties. Of course other economic systems are
characterized by other sets of properties. Those characterizations can help us
normatively evaluate economic systems.

In the model the distribution of output depends only on the profile of pro-
ductivities. No other factors are taken into account; in particular, information
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about the individuals’ needs is ignored. The model also does not touch upon the
issue of incentives, which is central to most economic models. Each individual
produces an output proportional to her productivity even if she does not obtain
the output.

Problems

1. Relations between properties. Show the following results.

a. Anonymity implies symmetry.

b. For n = 2, find an economic system that satisfies monotonicity in own
productivity and symmetry but not relative monotonicity.

c. The socialist economic system satisfies the properties of efficiency, sym-
metry, monotonicity in own productivity, and monotonicity in others’
productivities.

2. Input and wealth to most productive. Consider the economic system F in
which the input is divided equally among the individuals with the highest
productivity and the wealth is divided equally among these individuals.

a. Show that F satisfies the following strong monotonicity in own produc-
tivity property. For any productivity profile (λ1, . . . ,λn ) and any number
∆> 0,

F i (λ1, . . . ,λn )> 0 ⇒ F i (λ1, . . . ,λi +∆, . . . ,λn )> F i (λ1, . . . ,λn ).

b. Show that F is not the only economic system that satisfies strong mono-
tonicity in own productivity, symmetry, and efficiency.

3. Shapley value. Consider economic systems that are efficient and symmetric
and satisfy the following two conditions.

Zero contribution
For every productivity profile (λ1, . . . ,λn ) with λi = 0, we have
F i (λ1, . . . ,λn ) = 0.

Marginal contribution
Let (λ1, . . . ,λn ) be a profile and S be a subset of the most productive indi-
viduals (those with productivity max{λ1, . . . ,λn}). Suppose that the pro-
ductivity profile µ= (µ1, . . . ,µn ) is obtained from the profile (λ1, . . . ,λn ) by
adding δ > 0 to the productivity of each member of S. Then the wealth
of each individual j ∈S is F i (λ1, . . . ,λn ) plus the wealth she would receive
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if the productivity of every individual in S were δ and the productivity of
every other individual were 0. Formally, if

(µ1, . . . ,µn ) = (λ1, . . . ,λn )+ (∆1, . . . ,∆n )

where (i)∆i ∈ {0,δ} and (ii) if∆i > 0 then λi =max{λ1, . . . ,λn}, then

F i (µ1, . . . ,µn ) = F i (λ1, . . . ,λn )+ F i (∆1, . . . ,∆n ).

(Thus, for example, F 1(8,8,7, 6,4) = F 1(7,7,7,6,4)+ F 1(1,1,0,0,0).)

a. For such an economic system F find the wealths assigned when n = 2
and the productivity profile is (1,3).

b. For such an economic system F , find the wealths assigned when n = 4
and the productivity profile is (1,3,6,10).

c. Imagine that the four individuals with productivity profile (1,3,6,10) ar-
rive on the scene one after the other in one of the 24 possible orders.
Consider the marginal contribution of each individual: the increase in
the wealth that can be produced due to her arrival. For example, if the
order in which the individuals arrive is (1,3,2,4) then the marginal con-
tribution of individual 1 is 1, that of individual 3 is 6 − 1 = 5, that of in-
dividual 2 is zero (because individual 3, with productivity 6, has already
arrived), and that of agent 4 is 10−6= 4.

Show that the averages of the marginal contributions are exactly the
wealths you found in the previous part. For example, individual 1 makes
a positive contribution, and that contribution is 1, only if she is the first
in the list. She is first in a quarter of the orders, so the average of her
marginal contributions is 1

4
.

d. For each of the four properties (efficiency, symmetry, zero contribution,
and marginal contribution) find an economic system that does not sat-
isfy the property but satisfies the other three.

Notes

This chapter is inspired by the work of John Roemer (for example Roemer 1986).





20 Aggregating preferences

When we discuss public decisions, we often talk about the preferences of a group
of people, like a nation, a class, or a family. We do so even though the members of
the group have different preferences; we say that “the group prefers one option to
another” even though the meaning of such a statement is unclear. In this chapter
we discuss one model of the aggregation of individuals’ preferences into a social
preference relation.

20.1 Social preferences

Society consists of a set of individuals, each of whom has preferences over a set of
social alternatives X , which is fixed throughout our discussion. The information
we have about each individual’s preferences is purely ordinal, in the sense that
it tells us only that the individual prefers one alternative to another, or regards
two alternatives as indifferent. In particular, it does not specify the intensity of
an individual’s preferences. On the basis of the information, we cannot say, for
example, that an individual “prefers a to b more than she prefers c to d ” or that
“individual i prefers a to b more than individual j prefers b to a ”.

We want to aggregate the individuals’ preferences into a social preference. A
voting procedure is sometimes used to do so. An example is the method used
in the Eurovision song contest. In this case X is the set of songs performed in
the contest. Each country submits an ordered list of the members of X that ex-
presses its preference ordering (which itself is an aggregation of the orderings
of the listeners in that country). The countries’ rankings are aggregated by as-
signing points to the songs according to their positions in each country’s ranking
(12 for the top song, 10 for the second, 8, 7, . . . , 1 for the next 8 songs, and 0 for
all others) and then summing the points across countries to give the European
ranking. This method is a special case of a family of aggregation methods called
scoring rules, which we define later.

Majority rule is a simpler, and natural, principle for determining a social pref-
erence. According to this rule, the society prefers alternative a to alternative b if a
majority of individuals prefer a to b . A major difficulty with this rule is that when
X contains more than two alternatives, the resulting binary relation may not be
transitive, so that it is not a preference relation. Recall the Condorcet paradox
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discussed in Chapter 1. A society contains three individuals, 1, 2, and 3, and
three social alternatives, a , b , and c . The individuals’ preferences are given in
the following table, where each column lists the alternatives in the order of one
individual’s preferences.

1 2 3

a b c
b c a
c a b

Individuals 1 and 3, a majority, prefer a to b , individuals 1 and 2 prefer b to c , and
individuals 2 and 3 prefer c to a . Thus the binary relation ¼ defined by majority
rule satisfies a �b � c � a , and hence is not transitive.

20.2 Preference aggregation functions

The central concept in this chapter is a preference aggregation function (PAF),
which maps the preferences of the individuals in a society into a single “social”
preference relation. A PAF is usually called a social welfare function. We avoid
this term because the concept is not related to the individuals’ welfare in the
everyday sense of that word.

Definition 20.1: Society

A society consists of a finite set N (the set of individuals) and a finite set X
(the set of alternatives).

We assume that every individual in N has a preference relation over X . For
simplicity we assume that each of these preference relations is strict (no individ-
ual is indifferent between any two alternatives). A profile of preferences specifies
a (strict) preference relation for every individual.

The domain of a PAF is the set of all preference profiles. That is, we do not
impose any restrictions on the set of preference profiles. Problem 2 illustrates
the significance of this assumption. To each preference profile, a PAF assigns
a single preference relation. We do not assume that this preference relation is
strict: the social preference may have indifferences.

Definition 20.2: Preference aggregation function

A preference aggregation function (PAF) for a society 〈N , X 〉 is a function
that assigns a (“social”) preference relation over X to every profile of strict
preference relations over X .
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Note that a preference aggregation function is not a single preference rela-
tion. Rather, it is a rule for aggregating the individuals’ preference relations into
a single preference relation. Here are a few examples.

Example 20.1: Counting favorites

The alternative x is ranked above y if the number of individuals for whom
x is the best alternative is greater than the number of individuals for whom
y is the best alternative. Formally, for any preference profile (¼i )i∈N , the
social preference relation ¼ is defined by

x ¼ y if |{i ∈N : x ¼i a for all a ∈ X }| ≥ |{i ∈N : y ¼i a for all a ∈ X }|.

(Note that every alternative that is not any individual’s favorite is indiffer-
ent to any other such alternative in the social preferences, and is ranked
below all other alternatives.)

Example 20.2: Scoring rules

Given a preference relation ¼i , the position K (¼i ,x ) of alternative x in ¼i

is the number of alternatives that are at least as good as x according to
¼i : K (¼i ,x ) = |{a ∈ X : a ¼i x }|. Thus the position of the best alternative
according to¼i is 1, the position of the second-ranked alternative is 2, and
so on. A scoring rule is characterized by a function p that gives the number
of points p (k ) credited to an alternative for being ranked in each position
k . Assume p (1) ≥ · · · ≥ p (|X |). Alternatives are compared according to
the sum of the points they accumulate across the individuals’ preferences.
Precisely, the scoring rule defined by p maps the preference profile (¼i )i∈N

into the social preference relation ¼ defined by

x ¼ y if
∑

i∈N

p (K (¼i ,x ))≥
∑

i∈N

p (K (¼i , y )).

Note that the previous example (Example 20.1) is the scoring rule for
which p is given by p (1) = 1 and p (k ) = 0 for all k ≥ 2.

Example 20.3: Pairwise contests

For every pair (x , y ) of distinct alternatives, say that x beats y if a majority
of individuals prefer x to y , and x and y tie if the number of individuals
who prefer x to y is the same as the number of individuals who prefer y
to x . Assign to each alternative one point for every alternative it beats and
half a point for every alternative with which it ties. Rank the alternatives
by the total number of points received.
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1 2 3 · · · n −1 n

a b d · · · a b
b a a · · · d d
c c b · · · c a
d d c · · · b c

⇓
b � c � a � d

⇒

1 2 3 · · · n −1 n

b a d · · · b a
a b b · · · d d
c c a · · · c b
d d c · · · a c

⇓
a � c �b � d

Figure 20.1 An illustration of the neutrality property. Each column shows the preference
ordering of the individual whose name heads the column, from best at the top to worst
at the bottom. When the alternatives a and b are interchanged in every individual’s
preferences, they are interchanged also in the social preferences.

The last two examples are extreme.

Example 20.4: External preferences

The social preference relation is some fixed given preference relation re-
gardless of the individuals’ preferences. That is, for some preference rela-
tion ¼∗ we have x ¼ y if and only if x ¼∗ y .

Example 20.5: Dictatorship

The social preference relation coincides with the preference relation of one
of the individuals, called the dictator. That is, for some individual i ∗ we
have x ¼ y if and only if x ¼i ∗ y .

20.3 Properties of preference aggregation functions

How do we evaluate a preference aggregation function? We proceed by speci-
fying properties that seem appealing, and then look for preference aggregation
functions that satisfy them.

Neutrality A PAF is neutral if it treats the alternatives symmetrically. That is, for
any preference profile, if we interchange the positions of any pair of alternatives
in every individual’s preference relation then the PAF responds to the change by
interchanging the positions of these alternatives in the social preference relation.
The property is illustrated in Figure 20.1.
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1 2 3 · · · n −1 n

a b d · · · a b
b a a · · · d d
c c b · · · c a
d d c · · · b c

⇓
b � c � a � d

⇒

1 2 3 · · · n −1 n

d b a · · · a b
a a b · · · d d
b c c · · · c a
c d d · · · b c

⇓
b � c � a � d

Figure 20.2 An illustration of the anonymity property. When the preferences of two
individuals are interchanged, the social preferences remain the same.

Definition 20.3: Neutrality

A preference aggregation function F for a society 〈N , X 〉 is neutral if for
any profiles (¼i )i∈N and (Äi )i∈N of preference relations over X such that
for some alternatives x and y the preference relation Äi for each i ∈ N is
obtained from¼i by interchanging the positions of x and y, then the social
preference relation F ((Äi )i∈N ) is obtained from F ((¼i )i∈N )by interchanging
the positions of x and y as well.

For X = {a ,b}, an example of a PAF that is not neutral is the one that ranks a
above b only if at least 2

3
of the individuals prefer a to b . All the examples in the

previous section except Example 20.4 (external preferences) are neutral.

Anonymity A PAF is anonymous if it does not discriminate between individ-
uals. Consider two profiles in which all preference relations are the same ex-
cept those of i and j , which are interchanged. An anonymous PAF generates the
same social preference relation for these two profiles. The property is illustrated
in Figure 20.2. All the examples in the previous section except dictatorship are
anonymous.

Definition 20.4: Anonymity

A preference aggregation function F for a society 〈N , X 〉 is anonymous if
whenever (¼i )i∈N and (Äi )i∈N are profiles of preference relations over X
with¼j =Äk ,¼k =Äj , and¼i =Äi for all i ∈N \{j , k }, we have F ((¼i )i∈N ) =
F ((Äi )i∈N ).

Positive responsiveness A PAF is positively responsive if whenever an alterna-
tive x rises one step in one individual’s preferences and all other individuals’
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preferences remain the same, any alternative z that was originally ranked no
higher than x in the social preferences is now ranked below x in these prefer-
ences. The examples in the previous section are positively responsive except for
Example 20.4 when the external preference relation has indifferences.

Definition 20.5: Positive responsiveness

A preference aggregation function F for a society 〈N , X 〉 is positively re-
sponsive if for any profile (¼i )i∈N of preference relations over X and any
profile (Äi )i∈N that differs from (¼i )i∈N only in that there exist j ∈N , x ∈ X ,
and y ∈ X such that y �j x and x Âj y (i.e. x rises one step in j ’s ranking),
then for any z ∈ X with x ¼ z we have x Â z , where ¼ = F ((¼i )i∈N ) and
Ä= F ((Äi )i∈N ) (and Â is the strict relation derived from Ä).

Pareto A PAF satisfies the Pareto property if for any preference profile in which
all individuals rank x above y the social ranking ranks x above y .

Definition 20.6: Pareto property

A preference aggregation function F for a society 〈N , X 〉 satisfies the Pareto
property if whenever x �i y for all i ∈N for a profile (¼i )i∈N of preference
relations over X we have x � y , where ¼= F ((¼i )i∈N ).

A scoring rule (Example 20.2) satisfies this property if the weighting func-
tion p is decreasing (rather than merely nonincreasing). Example 20.4 (external
preferences) does not satisfy the property.

Independence of irrelevant alternatives The last property we define is indepen-
dence of irrelevant alternatives (IIA). This property says that the social ranking of
any alternatives a relative to b depends only on the individuals’ rankings of a rel-
ative to b and not on their rankings of any other alternatives or on their rankings
of a or b relative to any other alternative.

Definition 20.7: Independence of irrelevant alternatives

A preference aggregation function F for a society 〈N , X 〉 is independent of
irrelevant alternatives (IIA) if for any profiles (¼i )i∈N and (Äi )i∈N of prefer-
ence relations over X for which there are alternatives x and y with

x �i y if and only if x Âi y for every i

we have
x ¼ y if and only if x Ä y



20.4 Arrow’s impossibility theorem 335

where ¼= F ((¼i )i∈N ) and Ä= F ((Äi )i∈N ).

Dictatorship (Example 20.5) satisfies this property: the dictator’s ranking of
any two alternatives determines the social ranking of these alternatives. Some
scoring rules (Example 20.2) do not satisfy the property. For example, consider
a society with three individuals and three alternatives. Assume that the weight-
ing function p for the scoring rule satisfies p (1)− p (2) > 2(p (2)− p (3)) > 0 and
consider the following two preference profiles.

1 2 3

c c c
b a a
a b b

1 2 3

b c c
c a a
a b b

The relative rankings of a and b in the two profiles are the same, but the scoring
rule ranks a above b for the left profile and b above a for the right profile.

20.4 Arrow’s impossibility theorem

The central result of this chapter says that the only PAFs that satisfy the Pareto
property and IIA are dictatorships. That is, the requirements that the social com-
parison of any two alternatives depends only on the individuals’ binary compar-
isons of these two alternatives, and not on their preferences over other pairs, and
that one alternative is socially preferred to another whenever there is consensus,
do not leave room for real aggregation of the individuals’ preferences.

Proposition 20.1: Arrow’s impossibility theorem

Let 〈N , X 〉 be a society for which X contains at least three alternatives. A
preference aggregation function F satisfies the Pareto property and IIA if
and only if it is dictatorial: there is an individual i ∗ ∈N such that for every
profile (¼i )i∈N of preference relations over X we have x ¼ y if and only if
x ¼i ∗ y , where ¼ is the social preference relation F ((¼i )i∈N ).

Proof

If F is dictatorial then it satisfies the Pareto property and IIA. We now show
the converse.

Let F be a PAF that satisfies the Pareto property and IIA. Fix b ∈ X .
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Step 1 Consider a preference profile for which b is either at the top or the
bottom of each individual’s ranking and let ¼ be the social preferences at-
tached to the profile by F . For such a profile, b is either the unique ¼-
maximal alternative or the unique ¼-minimal alternative.

Proof. Assume to the contrary that for two other alternatives a and c we
have a ¼ b ¼ c . Consider a preference profile that is obtained from the
original profile by moving c just above a for every individual who origi-
nally prefers a to c (so that it remains below b for all individuals for whom
b is best), as illustrated below.

1 2 3 · · · n −1 n

b b · · · a b
a a · · ·

c c · · · c a
c · · · c

a b · · · b

→

1 2 3 · · · n −1 n

b b · · · c b
c c · · · a

c a a · · · c
· · · a

a b · · · b

Denote by Ä the social preference relation that F generates for the new
preference profile. By the Pareto property, c Â a . By IIA, the rankings of
a and b remain unchanged, so a Ä b , and the rankings of b and c remain
unchanged, so b Ä c . Thus a Ä c by transitivity, contradicting c Â a . Ã

Step 2 Consider two preference profiles in which b is either at the top or the
bottom of each individual’s ranking and in which the set of individuals who
rank b at the top is the same. Let ¼ andÄ be the social preferences attached
by F to the profiles. Then either b is the unique maximal alternative for
both ¼ and Ä or is the unique minimal alternative for both ¼ and Ä.

Proof. Consider one of the profiles. By Step 1, ¼ either ranks b uniquely at
the top or uniquely at the bottom. Suppose that it ranks it at the top. The
ranking of b relative to any other alternative x is the same in both profiles
and hence by IIA b and x are ranked in the same way by both ¼ and Ä.
Thus b is ranked at the top of Ä. If b is ranked at the bottom of ¼ the
argument is analogous. Ã

Step 3 For some individual i ∗,

i. for every preference profile for which 1, . . . , i ∗ − 1 rank b at the top and
i ∗, . . . , n rank it at the bottom, the preference relation attached by F to
the profile ranks b uniquely at the bottom
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ii. for every preference profile for which 1, . . . , i ∗ rank b at the top and
i ∗+1, . . . , n rank it at the bottom, the preference relation attached by
F to the profile ranks b uniquely at the top.

Proof. Take a preference profile in which b is at the bottom of all individ-
uals’ preferences. By the Pareto property, b is the unique minimal alterna-
tive for the attached social preferences. Now, for each individual in turn,
starting with individual 1, move b from the bottom to the top of that indi-
vidual’s preferences. By Step 1, b is always either the unique maximal or
unique minimal alternative in the social preferences. By the Pareto prop-
erty, it is the unique maximal alternative of the attached social preferences
after it moves to the top of all individuals’ preferences. Thus for some in-
dividual i ∗ the change in her preferences moves b from the bottom to the
top of the social preferences. By Step 2 the identity of i ∗ does not depend
on the individuals’ rankings of the other alternatives. Ã

Step 4 For all alternatives a and c different from b we have a ¼ c if and
only if a ¼i ∗ c .

Proof. Assume to the contrary that for some preference profile we have
a �i ∗ c and c ¼ a . Modify the profile by raising b to the top of the prefer-
ences of individuals 1, . . . , i ∗−1, lowering it to the bottom of the preferences
of individuals i ∗+1, . . . , n , and moving it between a and c for individual i ∗,
as in the following illustration.

1 2 · · · i ∗ · · · n −1 n

c · · · a b
b · · · a · · ·
a · · · · · · c c

a · · · c · · · b a
c b b · · ·

→

1 2 · · · i ∗ · · · n −1 n

b b · · · · · · a
c a · · · c

a · · · b · · · c a
· · · · · ·

c a c · · · b b

Denote byÄ the social preference that F attaches to the new preference
profile. The relative positions of a and c are the same in the two profiles,
so c Ä a by IIA. In the new profile, the individuals’ rankings of a relative
to b are the same as they are in any profile in which b is ranked at the top
by 1, . . . , i ∗ − 1 and at the bottom by the remaining individuals, so that by
Step 3 and IIA we have a Â b . Similarly, b Â c . Thus by transitivity a Â c , a
contradiction. Ã
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Step 4 states that i ∗ is the dictator regarding any two alternatives other
than b . It remains to show that i ∗ is also the dictator regarding the com-
parison of b with any other alternative.

Step 5 For every alternative a we have a ¼b if and only if a �i ∗ b .

Proof. Consider a preference profile for which a �i ∗ b . Let c be an arbi-
trary third alternative. Modify the profile by moving c in i ∗’s ranking to
between b and a (if it is not already there) and raising c to the top of all the
other individuals’ rankings, as in the following illustration.

1 · · · i ∗ · · · n −1 n

c · · · a b
b · · · a · · ·
a · · · b · · · c c
· · · · · · b a

c · · ·

→

1 · · · i ∗ · · · n −1 n

c · · · c c
b · · · a · · · a b
a · · · c · · ·

b · · · b a
· · · · · ·

Denote by Ä the social preference attached by F to the new profile. By
the Pareto property, c Â b . By Step 4, i ∗ determines the social preference
between a and c , so that a Â c , and hence a Â b by transitivity. Since the
relative preferences of a and b are the same in the two profiles, we have
also a �b by IIA. Ã

Comments

1. So far we have interpreted a PAF as a method of generating a social prefer-
ence relation from the profile of the individuals’ preferences. We can alterna-
tively think of a PAF as a method for an individual to form preferences over a
set of objects on the basis of several criteria. For example, an individual may
base her preferences over cars on their relative price, their ranking by a car
magazine, and their fuel consumption. In this context, Proposition 20.1 says
that if the preference-formation process satisfies the Pareto property and the
preference between any two alternatives is a function only of the way the cri-
teria rank them, then the generated preference relation is intransitive unless
it coincides with the ranking by one of the criteria.

2. Proposition 20.1 is interpreted by some as a proof of the impossibility of ag-
gregating the preferences of the members of a group. This interpretation
is incorrect. At most the result says that aggregating preferences in such a
way that the social ranking of any two alternatives depends only on their
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relative rankings by the individuals is not possible. This requirement can be
viewed as a simplicity constraint on the aggregation process. Scoring rules
with decreasing weighting functions satisfy all the properties discussed in
this chapter except IIA.

3. The requirement that a PAF is defined for all possible preference profiles
is very demanding. In many contexts only some preference profiles make
sense. In fact, for some meaningful restrictions on the set of preference pro-
files, majority rule induces a transitive relation. Suppose that the alterna-
tives are ordered along a line (from left to right on the political spectrum,
for example) each individual has a favorite alternative, and each individual’s
ranking falls away on each side of this favorite, so that her preferences are
single-peaked. In this case, majority rule induces a social preference relation
(see Problem 2).

4. As we mentioned earlier, a preference aggregation function uses information
only about the individuals’ ordinal rankings; it does not take into account the
individuals’ intensities of preference and does not compare these intensities
across individuals. Consider a society with two individuals and two alterna-
tives. If one individual prefers a to b while the other prefers b to a , then a
reasonable assessment of the individuals’ aggregated preference would com-
pare the degree to which individual 1 likes a better than b with the degree to
which individual 2 likes b better than a . Such information is missing from
the model.

20.5 Gibbard-Satterthwaite theorem

We close the chapter with another classical result, the Gibbard-Satterthwaite the-
orem. This result involves the concept of a social choice rule, which is related
to, but different from, a preference aggregation function. Whereas a preference
aggregation function assigns a preference relation to each preference profile, a
social choice rule assigns an alternative to each preference profile, interpreted
as the alternative to be chosen given the individuals’ preferences.

Definition 20.8: Social choice rule

A social choice rule for a society 〈N , X 〉 is a function that assigns a member
of X (an alternative) to every profile of strict preference relations over X .

We are interested in social choice rules that satisfy two properties. The first
one requires that a social choice rule selects an alternative if there is a consensus
that it is the best alternative.
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Definition 20.9: Unanimous social choice rule

A social choice rule f for a society 〈N , X 〉 is unanimous if for every profile
(¼i )i∈N of preference relations over X , f ((¼i )i∈N ) = x if x is ¼i -optimal for
all i ∈N .

The second property is central to the result. Imagine that the social planner
asks the individuals about their preferences. The property requires that for each
individual, whatever her true preference relation, reporting this preference rela-
tion is optimal regardless of the other individuals’ reports. This property, called
strategy-proofness, is discussed in Chapter 17 (Definition 17.4).

Definition 20.10: Strategy-proof social choice rule

The social choice rule f for a society 〈N , X 〉 is strategy-proof if for every
individual j ∈ N and every profile (¼i )i∈N of preference relations over X ,
we have f ((¼i )i∈N ) ¼j f ((Äi )i∈N ) for any preference relation Äj of individ-
ual j , where Äi =¼i for all i ∈N \ {j }. That is, j optimally reports her true
preference relation regardless of the other individuals’ reports.

Which social choice rules are unanimous and strategy-proof? The striking
answer is that if X contains at least three alternatives then the only such rules are
dictatorships, for which there is an individual (the dictator) whose top reported
alternative is always chosen. Any dictatorship is strategy-proof because the dic-
tator cannot gain by misreporting her preferences, given that her top reported
alternative is chosen, and no other individual can do better than tell the truth
since the outcome is independent of her report. We now show that no other so-
cial choice rule is unanimous and strategy-proof. The following proposition has
several proofs; the one we present uses Arrow’s impossibility theorem.

Proposition 20.2: Gibbard-Satterthwaite theorem

For any society 〈N , X 〉 for which X contains at least three alternatives, any
social choice rule f that is unanimous and strategy-proof is a dictatorship:
for some individual i ∗ ∈N , for every profile (¼i )i∈N of preference relations
over X we have f ((¼i )i∈N )¼i ∗ x for all x ∈ X .

Proof

Let f be a strategy-proof and unanimous social choice rule.

Step 1 If f ((¼i )i∈N ) = x and (Äi )i∈N differs from (¼i )i∈N only in that for
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some individual j the rank of some alternative y is higher in Äj than it is
in ¼j , then f ((Äi )i∈N )∈ {x , y }.

Proof. Suppose to the contrary that f ((Äi )i∈N ) = z for some z /∈ {x , y }.
If z �j x then f is not strategy-proof because when j ’s preference rela-

tion is¼j , if every other individual i reports¼i then j is better off reporting
Äj .

If x �j z then also x Âj z , and f is not strategy-proof because when j ’s
preference relation is Äj and every other individual i reports ¼i =Äi then
j is better off reporting ¼j (and obtaining the outcome x ) than reporting
Äj (and obtaining the outcome z ). Ã

Step 2 For any two alternatives x and y and any preference profile in which
x and y are the top two alternatives for all individuals, the social choice rule
f chooses either x or y .

Proof. Assume that there are profiles in which x and y are the top two
alternatives for every individual but some other alternative is chosen by f .
Let (¼i )i∈N be such a profile with the maximal number of individuals who
rank x above y . The maximal number is not |N | since by unanimity if all
individuals rank x at the top then f selects x . Let f ((¼i )i∈N ) = z and let
j be an individual for whom y ¼j x . If j reports a preference relation in
which x is at the top and y is ranked second then either x or y is chosen by
f , and both are better than z , contradicting the strategy-proofness of f . Ã

Step 3 If (¼i )i∈N and (Äi )i∈N are two preference profiles for which x and y
are the two top alternatives for every individual and x �i y if and only if
x Âi y then f ((¼i )i∈N ) = f ((Äi )i∈N ).

Proof. By Step 2, f ((¼i )i∈N ) ∈ {x , y }. Without loss of generality assume
that f ((¼i )i∈N ) = x . We can transform (¼i )i∈N into (Äi )i∈N by a sequence of
moves, at each of which we raise one alternative, other than x or y , for one
individual while keeping x and y at the top for all individuals. By Step 1 the
chosen alternative after each move is either the raised alternative or the
alternative chosen by f before the move. By Step 2 the chosen alternative
after every move is either x or y . Thus the chosen alternative after each
move is x . We conclude that f ((Äi )i∈N ) = x . Ã

Step 4 Given a preference profile (¼i )i∈N define a social binary relation¼ by
x ¼ y if f ((¦i )i∈N ) = x , where for all i the preference relation ¦i is obtained
from ¼i by moving x and y to the top in their original order. The relation ¼
is complete and transitive.
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Proof. Completeness follows from Step 2. By Step 3 the relation is anti-
symmetric (for no two alternatives a ¼ b and b ¼ a ). To verify transitivity,
assume that a ¼ b ¼ c ¼ a . Consider the profile (Äi )i∈N obtained from
(¼i )i∈N by moving the three alternatives to the top, preserving their order,
in the preference relation of every individual. By an argument analogous
to Step 2, f ((Äi )i∈N ) ∈ {a ,b , c }. Without loss of generality let f ((Äi )i∈N ) =
a . Now, let (§i )i∈N be the profile obtained from (Äi )i∈N by downgrading
b to the third position in all preferences. By Steps 1 and 2, f ((§i )i∈N ) =
a . For each individual the relative order of a and c in the profiles (§i )i∈N

and (¼i )i∈N is the same and thus by Step 3 (given c ¼ a ) f ((§i )i∈N ) = c , a
contradiction. Ã

Step 5 The preference aggregation function F defined in Step 4 is dictato-
rial.

Proof. Step 3 implies that F satisfies IIA, and the unanimity of f implies
that F satisfies the Pareto property. The existence of a dictator follows from
Arrow’s impossibility theorem. Ã

Step 6 There exists an individual i ∗ such that f ((¼i )i∈N ) is ¼i ∗-maximal.

Proof. By Step 5 there is an individual i ∗ such that F ((¼i )i∈N ) =¼i ∗ for any
preference profile (¼i )i∈N . Let f ((¼i )i∈N ) = x and let y be another alter-
native. By Step 1 we have f ((Äi )i∈N ) = x , where Äi is obtained from ¼i by
moving all alternatives except x and y to below these two alternatives (re-
taining the order of x and y ). By the definition of F at Step 4, F ((¼i )i∈N )
ranks x above y . Since i ∗ is the dictator x �i ∗ y . Ã

Note that the assumption that X contains three alternatives is crucial for this
proof. If X contains only two alternatives a and b , then for any K the rule that
chooses the alternative a unless K individuals prefer the outcome b is strategy-
proof.

Problems

1. Two alternatives. Let X = {a ,b} and assume, as in the body of the chapter,
that each individual has strict preferences over the alternatives (she either
prefers a to b or b to a ). Assume that the number of individuals is odd.

Consider the properties neutrality, anonymity, and positive responsiveness.
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a. For each of the properties give an example of a PAF not satisfying that
property but satisfying the other two.

b. Show that majority rule is the unique PAF satisfying all three properties.

2. Single-peaked preferences. Society consists of an odd number of individuals
and the set X consists of three political positions. All individuals agree that
one of the positions is on the left of the political spectrum, one is in the mid-
dle, and one is on the right, so we call the positions L, M , and R . Position M
is not at the bottom of any individual’s ranking, so that no individual has the
preference L � R �M or the preference R � L �M .

Show that for any preference profile in this restricted domain, majority rule
induces a preference relation over X .

3. A. group of n individuals has to choose an alternative from a set X . Each
individual has a favorite alternative. A decision method is a function F that
attaches a member of X to each profile (x1, . . . ,xn ) of favorite alternatives.

a. Define formally the property of neutrality, which requires that a deci-
sion method treats all alternatives equally. Give two different examples
of decision methods that satisfy this property.

b. Define formally the Pareto property, which requires that for any x ∈ X a
decision method chooses x if all individuals choose x . Give an example
of a decision method that does not satisfy this property.

c. Define formally the notion of a dictatorial decision method.

Say that a decision method F satisfies property I if whenever (x1, . . . ,xn ) and
(y1, . . . , yn ) satisfy the condition

• for some a the set of individuals who choose a in (x1, . . . ,xn ) is equal to
the set of individuals who choose a in (y1, . . . , yn )

then F (x1, . . . , xn ) = a if and only if F (y1, . . . , yn ) = a .

For example, F (a ,b , c , a ) = a if and only if F (a , c , d , a ) = a .

d. Show that if X contains only two alternatives and n is odd then there
exists a decision method that is neutral, satisfies the Pareto property and
property I , and is not dictatorial.

e. Assume that X contains n elements and that n ≥ 3. Show that the only
methods that are neutral and satisfy property I are dictatorial.
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4. Classification. A group N of individuals discusses a group X of objects. Each
individual is associated with a partition of the objects into classes. For exam-
ple, if X = {a ,b , c } then each individual is associated with one of the five pos-
sible partitions (i) each object is in a distinct class, (ii) all objects are in one
class, and (iii) one of the objects (a , b , or c ) is in its own class and the other
two are in the same class. An aggregation method attaches one partition of
X to each profile of partitions of X .

a. Show that the rule that puts two objects in the same class if a major-
ity of the individuals’ partitions put them in the same class is not an
aggregation method.

b. Show that the rule that puts two objects in the same class if the partitions
of all members of a certain group G ⊆N put them in the same class is an
aggregation method.

5. Ranking participants in a tournament. A group of n players compete in a
round-robin tournament. Each match ends with one of the players winning
the match (a tie is not possible). A ranking method attaches to each possible
set of results a ranking of the players (possibly with indifferences).

Consider the following three properties of ranking methods.

Anonymity The method treats all players equally.

Monotonicity Let R1 be a set of results for which the method ranks player i at
least as high as player j . Let R2 be a set of results identical to R1 except that
some player wins against i in R1 and loses against i in R2. Then i is ranked
(strictly) above j in R2.

Independence The relative ranking of any two players is independent of the
results for the matches in which they do not participate.

a. A familiar method ranks players by their number of victories. Verify that
this method satisfies the three properties.

b. For each of the three properties give an example of a method that does
not satisfy the property although it satisfies the other two.

6. Median. When the space of preferences is restricted, there exist nondictato-
rial strategy-proof social choice rules. Assume that the number of individ-
uals is 2m + 1 (for some positive integer m ), X = [0,1], and each individual
i has single-peaked preferences (there is z i ∈ X such that if z i < a < b or
b < a < z i then z i �i a �i b ). Show that the social choice rule that attaches
to every preference profile the median of the peaks is strategy-proof.
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Notes

Proposition 20.1 is due to Arrow (1951). The proof we give is due to Geanakop-
los (2005). Proposition 20.2 appears in Gibbard (1973) and Satterthwaite (1975).
Problem 1 is based on May (1952) and Problem 5 is based on Rubinstein (1980).
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