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Preface

This book summarizes about 75 years of the authors’ accumulated experience
within the formulation, development, and practical use of advanced
data-assimilation methods. We realize that no available texts discuss the multitude
of data-assimilation methods and problems in a “unified” manner and with a unified
notation. Thus, we believe this book will serve as an essential resource for anyone
working or planning to work in data assimilation.

We also believe this book is very suitable for an advanced course in data
assimilation. The mathematical level is modest, and we explain all derivations in
quite some detail. Furthermore, the book connects and gives a nearly complete
overview and introduction to today’s most popular data-assimilation methods.

Accompanied with the book, we are hosting a Github repository https://github.
com/geirev/Data-Assimilation-Fundamentals. Here, we will place slides suitable for
teaching the different chapters and include links to any YouTube video lectures. In
addition, the repository allows for commenting and raising issues regarding the
book’s content. Thus, we encourage readers to report any errors in grammar,
equations, or the general discussion, by raising an issue at this repository. It is also
possible to have general discussions on the book’s topics here.

During the work with this text, Geir Evensen received support from the Research
Council of Norway and the companies AkerBP, Wintershall–DEA, Vår Energy,
Petrobras, Equinor, Lundin, and Neptune Energy, through the Petromaks–
2 DIGIRES research project (280473) (http://digires.no). He is grateful to all his
data-assimilation colleagues at NORCE and NERSC in Bergen and his international
collaborators. They have contributed to a long and flourishing journey within the
data-assimilation research field.

Femke Vossepoel was supported by a Delft Technology Fellowship of the Delft
University of Technology. She is thankful to the colleagues in her data-assimilation
group in the Geoscience and Engineering department of the Delft University of
Technology for many fruitful discussions, particularly to Arundhuti Banerjee for
her contribution to Chap. 19. She thanks her international collaborators in data
assimilation for open and inclusive dialogues.

Peter Jan van Leeuwen was supported via an Advanced Investigator Grant from
the European Research Council via the CUNDA project. He is highly grateful for
all teachings from other members of the Data Assimilation Research Center

v
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(DARC) at the University of Reading, UK, his new data-assimilation group at
Colorado State University, and many colleagues from all over the world.

In present-day science, where, unfortunately, harsh competition and favoritism
are gaining ground, the data-assimilation community is mature and open to con-
troversial ideas and reflective discussions, which is a true blessing.

Bergen, Norway Geir Evensen
Delft, The Netherlands

December 2021

Femke C. Vossepoel
Fort Collins, USA Peter Jan van Leeuwen
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1Introduction

Data assimilation combines prior information from numerical model simulations
with observed data to obtain the best possible description of a dynamical system
and its uncertainty. The purpose of using data assimilation is often to compute the
best possible estimate of the model state. Alternatively, we use data assimilation
to estimate the model parameters or infer the best characterization of the model
forcing or controls. In some cases, we would like to find the best descriptions of
combinations of uncertain state variables, parameters, and model controls, or all of
them together.

Data assimilation provides the best tool for optimally combining all available
information whenever one has access to a numerical model and observations of
a dynamical system. The notion of data assimilation finds its origin in numerical
weather prediction and operational oceanography. However, its mathematical formu-
lation originates from Bayesian inference, control theory, and variational calculus.
Data-assimilation methods have evolved over the three previous decades from sim-
plistic and ad-hoc approaches to advanced techniques for sampling the Bayesian
posterior. Furthermore, it is common to use similar data-assimilation methods both
for state and parameter estimation. Data-assimilation practices have also spread from
operational systems in the ocean andweather-prediction communities to awide range
of research fields, particularly within the geosciences and the medical, economic,
transportation, chemical, biological, physical, and general statistical research. There
are currently many different data-assimilation methods to choose from, and there are
several routes of deriving them.

This book’s significant contribution is the unified derivation of data-assimilation
methods from a common fundamental and optimal starting point, namely Bayes’
theorem. And, Bayes’ theorem is indeed the optimal starting point, as Bui-Thanh
(2021) pointed out. By reviewing earlier research, they show how Bayes’ formula
has a firm foundation within optimization. E.g., Bayes’ formula arises from the joint
minimization of the Kullback-Leibler (KL) divergence between a posterior and prior
distribution and the mean-square errors of the data represented by the likelihood. As
stated by Bui-Thanh (2021), “the first-order optimality condition of this optimization
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2 1 Introduction

problem is preciselyBayes’ formula, and its unique updated distribution is theBayes’
posterior.” But perhaps a more compelling argument is that Bayes’ theorem is the
natural learning framework as it elegantly shows how to update prior information
when new information becomes available. One of the strengths of Bayes’ theorem
is that it does not try to solve the ill-defined problem of “inverting observations” but
instead updates prior knowledge. In that sense, it is one of the very foundations of
science.

Unique in this book is the “top-down” derivation of the assimilation methods. We
start from Bayes theorem and gradually introduce the assumptions and approxima-
tions needed to arrive at today’s popular data-assimilation methods. This strategy is
the opposite of most textbooks and reviews on data assimilation that typically take
a bottom-up approach to derive a particular assimilation method. Examples of the
bottom-up approach include, e.g., the derivation of the Kalman filter from linear es-
timation or control theory, the derivation of the ensemble Kalman filter as a low-rank
approximation of the standard Kalman filter, and the derivation of 4DVar from vari-
ational principles. The bottom-up approach derives the assimilation methods from
different mathematical principles, making it difficult to compare them. Thus, it may
be unclear which assumptions we base a data-assimilation formulation on and some-
times even which problem it aspires to solve. Our top-down approach allows us to
categorize data-assimilation methods based on the approximations used. This ap-
proach enables the user to choose the most suitable method for a particular problem
or application. Have you ever wondered about the difference between the ensemble
4DVar and the “ensemble randomized maximum likelihood” (EnRML) methods?
Do you know the differences between the ensemble smoother (ES) and the ensemble
Kalman smoother (EnKS)? Would you like to understand how a particle-flow filter
compares to a particle filter? In this book, we will provide clear answers to several
such questions.

We will show howwe can consistently derive the formulations and solution meth-
ods for recursive model-state and parameter estimation from Bayes’ theorem while
discussing the required assumptions and approximations. We build up towards a fo-
cus on assimilation methods that attempt to sample the Bayes’ posterior pdf. Thus,
we search for ensemble formulations that characterize uncertainty, such as ensemble
4DVar, ensemble Kalman filters, ensemble RML, particle filters, and particle-flow
filters.

This book contains two parts, where Part I covers the theory, and Part II illustrates
several data-assimilation methods applied with a range of simple models.

In Part I, we start from Bayes’ formula and introduce the approximations and
assumptions needed to derive the various assimilation methods. In Chap. 2, we dis-
cuss the general mathematical formulation and notation that we will use throughout
the book. We introduce the concept of an assimilation window and discuss problem
formulations commonly solved in data assimilation. Chapter 2 is fundamental to
understanding the subsequent chapters.

In Chaps. 3–5, we derive and discuss methods that solve for the maximum a
posteriori solution. These are iterative methods, typically derived from a Gauss-
Newton formulation introduced in Chap. 3. After that, Chap. 4 discusses the strong-
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constraint 4DVar approach while Chap. 5 introduces solution methods for the weak-
constraint or so-called “generalized-inverse” formulation, leading to the representer
method and weak-constraint 4DVar.

Chapter 6 discusses simplemethods like 3DVar andKalmanfilters. Thesemethods
apply significant approximations related to either linearizations or an approximate
evolution of error statistics.

Then, in Chap. 7, we introduce the concept of randomized-maximum-likelihood
(RML) sampling that approximately samples the posterior pdf from Bayes’ formula.
In RML, we minimize an ensemble of cost functions, and we derive several popular
data-assimilation methods from the RML formulation. Furthermore, we can use
the assimilation methods described in the previous chapters to minimize the RML
ensemble of cost functions. Thus, although these methods, by design, solve for the
MAP solution, we can also use them to sample the Bayesian posterior approximately.
This chapter illustrates how so-called “hybridmethods” follownaturally fromBayes’
theorem.

Chapter 8 takes theRMLsampling one step further by using the ensemble statistics
to represent the background-error-covariance matrix and propagate error statistics
forward in time. Here we derive popular and highly efficient methods such as en-
semble RML and ensemble Kalman filters and smoothers.

The final methods discussed in Chap. 9, include particle filters and particle-flow
filters, which aspire to solve the fully nonlinear Bayesian problem through an exact
sampling of the posterior pdf. Using proposal densities, we demonstrate that we
can naturally combine all the data-assimilation methods derived in earlier chapters
with the particle-filter techniques, showing that we can derive the hybrid approaches
directly from Bayes’ theorem.

To complete the theoretical discussion in Part I, we discuss localization and in-
flation methods in Chap. 10. After that, Chap. 11 gives an overall assessment of all
the assimilation methods discussed and the approximations used to derive them.

In Part II, we discuss the performance of different assimilation strategies in simple
examples and demonstrate some real applications of data assimilation to illustrate the
methods’ potential.We start with a Kalman filter and extended Kalman filter applica-
tion with the Roessler model in Chap. 12, demonstrating the impact of linearizations
in EKF.

In Chap. 13, we discuss the properties of the linear ensemble Kalman filter update
and assess and demonstrate the “sub-space inversion” method that allows computing
efficient EnKF updates with large data sets and correlated measurement errors. We
follow up this discussion in Chap. 14, wherewe illustrate sequential data assimilation
with a linear advection equation, and in Chap. 15, we use different ensemblemethods
with the chaotic Lorenz’63 model.

In Chap. 16, we switch to apply strong-constraint 4DVar with the Lorenz’63
model. We show how a formulation with multiple data-assimilation windows allows
using 4DVar with a highly nonlinear model.

We then demonstrate using the representer method for solving the weak constraint
4DVar problem in Chap. 17, where we also explain the difference between the weak-
and strong-constraint assumptions.
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Interesting is also the nonlinear scalar example in Chap. 18, where we examine
the convergence of some advanced data-assimilation methods, including iterative
ensemble smoothers. We find that only a particle-flow filter can sample the correct
posterior pdf in the highly nonlinear case.

In the following Chap. 19, we use a particle filter to estimate the state and parame-
ters in a nonlinear seismic-cycle model, followed by a particle-flow implementation
with a quasi-geostrophic ocean model in Chap. 20.

Finally, we present data-assimilation applications for history matching an oil-
reservoir model in Chap. 21, including control-variable estimation, and in Chap. 22,
we consider joint parameter estimation and control-variable estimation for predicting
the Covid-19 epidemic.

This book is complementary to the following previously published books on data
assimilation. Jazwinski (1970) is a masterpiece on linear and nonlinear filtering and
is still relevant today. Daley (1991) focuses on atmospheric data assimilation. Ben-
nett (1992, 2002) explains the representer method for oceanic and atmospheric data
assimilation. Kalnay (2002) discusses data assimilation in meteorology. Tarantola
(2005) provides a fundamental treatment of especially variational methods, empha-
sizing solid-Earth problems. Fichtner (2011) and Nolet (2008) are advanced and
introductory texts on seismic tomography, focusing on variational methods. Lewis
et al. (2006) treat the data-assimilation problem from the least-squares perspective.
Evensen (2009b) gives an extensive introduction to ensemble data assimilation. Bain
and Crisan (2009) provide a mathematical foundation for stochastic filtering. Oliver
et al. (2008) discuss history matching in petroleum applications. Majda and Harlim
(2012) discuss ensemble filtering techniques for turbulent flows, emphasizing on
low-order modeling of the filtering problem. Law et al. (2015) provide a mathemat-
ical description of the probabilistic approach. Reich and Cotter (2015) consider a
general dynamic-systems approach with low-dimensional examples. Van Leeuwen
et al. (2015) introduce nonlinear data assimilation focussing on particle filtering.
Asch et al. (2017) present statistical, variational, and hybrid data-assimilation meth-
ods and their applications. Fletcher (2017) introduces variational and ensemble data
assimilation methods and numerical methods used in meteorology.

Additionally, there are several review papers on data assimilation that discuss
both the methods and their applications. Evensen (2009a) reviews ensemble Kalman
filters and smoothers and introduces the combined parameter and state estimation
problem.

Carrassi et al. (2018) offer a mathematical description that serves as the first
guide for readers relatively new to data assimilation. It provides a comprehensive
overview of data-assimilation methods starting from Bayesian theory and examples
that include data assimilation for chaotic systems and non-Gaussian problems.

Van Leeuwen et al. (2019) provide an overview of particle filters for high-
dimensional geoscience applications. It places the particle filter in the context of other
data-assimilation methods and provides a mathematical description from a proba-
bilistic perspective. The publication includes pseudo-code for several particle-filter
algorithms. Notably, the paper discusses proposal-density particle filters, transporta-
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tion particle filters, and localization in particle filters. It also presents several hybrid
methods that include particle filters.

Stuart (2010) gives a broad mathematical overview and presents a common math-
ematical framework in a Bayesian approach starting from a continuous infinite-
dimensional description. He classifies methods into three categories; maximum a
posteriori probability estimators, filters, and sampling methods. He continues to
discuss a wide range of inverse problems in fluid mechanics, weather prediction,
oceanography (Navier-Stokes), and subsurface geophysics (Darcy).

Vetra-Carvalho et al. (2018) provide a valuable overview of all ensemble Kalman
filter variants in use at that timederived fromaunifying framework, includingpseudo-
code for efficient implementation.

Several review papers address the use of data assimilation in different applications
areas, e.g., for weather prediction (Bannister, 2017; Houtekamer & Zhang, 2016),
history-matching of petroleum reservoir models (Aanonsen et al., 2009; Oliver &
Chen, 2011), or hydrology (Liu et al., 2012; McLaughlin, 1995). This book provides
easy access to these review papers for further reading into specific topics not covered
here.

We are all too well aware that this book will have its shortcomings beyond typos
and other mistakes. It represents our view on the field, which might be controversial
in places. We had to leave out many essential subjects to keep the book focused. E.g.,
we do not cover the extensive literature on preconditioning in variational methods,
and we do not discuss representation errors in any depth (a topic that currently is not
treated well in any book).

Finally, we have not discussed the many “hybrid” methods between variational
approaches and ensemble Kalman filters and between ensemble Kalman filters and
particle filters. Fortunately, the material in this book should be sufficient for under-
standing the pros and cons of these hybrid methods. More important is perhaps our
choice of references. This choice is biased by our knowledge, familiarity, and bias,
and we apologize beforehand for the many omissions. We hope our friendships will
not be affected and encourage colleagues to point us to gross errors.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
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included in the chapter’s Creative Commons license and your intended use is not permitted by
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the copyright holder.
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Part I
Mathematical Formulation

The book’s first part gives a systematic introduction to data-assimilation methods
and formulations starting from Bayes’ theorem.
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2ProblemFormulation

This chapter introduces the model-state- and parameter estimation problem from
basic principles starting with Bayes’ theorem. We define the general problem for-
mulation and introduce the concept of Bayes’ theorem solved recursively over a
sequence of assimilation time windows. We also present different assimilation- and
parameter-estimation problems, including model controls and errors, and show how
they fit into a similar and general framework. Furthermore, this chapter introduces
the notation and problem formulation considered in the following chapters.

2.1 Bayesian Formulation

This section introduces the concept of a data assimilation window, followed by the
dynamical model and its uncertain quantities, the definitions of the model state, and
the state vector. Then we discuss the measurements and the measurement equation
before we formulate the general Bayesian data-assimilation problem.

2.1.1 AssimilationWindows

We typically solve the data-assimilation problem sequentially over a sequence of
assimilation time windows. We adopt a rather general definition for an assimilation
window to allow for various data-assimilation formulations and methods. For some
methods, the assimilation windows are fixed-length intervals in time. E.g., in atmo-
spheric data assimilation, it is common to use assimilation windows of six or twelve
hours in length. In contrast, the assimilation window is the time interval between
available measurements for Kalman-filter-type methods. We will later see that some
assimilationmethods update themodel solution over the whole window, while others
compute it at a particular time. Additionally, some assimilation methods treat each
assimilation window independently, while others propagate information from one
window to the next.

© The Author(s) 2022
G. Evensen et al., Data Assimilation Fundamentals,
Springer Textbooks in Earth Sciences, Geography and Environment,
https://doi.org/10.1007/978-3-030-96709-3_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96709-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-96709-3_2


10 2 Problem Formulation

2.1.2 Model with Uncertain Inputs

We assume a forward model that describes a dynamic process with uncertainty over
an assimilation window

x0 = x̂0 + x′
0, (2.1)

θ = θ̂ + θ ′, (2.2)

u = û + u′, (2.3)

q = 0 + q′, (2.4)

xk = m(xk−1, θ , uk,qk). (2.5)

Here, x0 is a vector containing themodel’s uncertain initial conditions x̂0 with uncer-
tainty represented by x′

0. The vector θ denotes a set of uncertain model parameters

with prior values θ̂ and uncertainty θ ′. We assume parameters θ to be constant in
time. Furthermore, we define the uncertain model errors qT = (qT1 , . . . ,qTK ) with
uncertainty q′. The model errors account for missing physics in the model equa-
tions and numerical discretization errors. Note that we distinguish between the time-
independent parameter uncertainty and time-dependent model errors by defining θ

and q separately. The uncertain model controls uT = (uT1 , . . . ,uTK )with uncertainty
u′ represent various forms of time-dependent but uncertain model forcing. We have
defined K as the number of time steps over the assimilation window. For simplic-
ity, we have ignored any boundary conditions and their potential uncertainty, as this
would add additional constraints to the model system.

2.1.3 Model State

We define xT = (xT0 , . . . , xTK ) as a sequence of model-state vectors over an assimila-
tion window. On some occasions, we will, for short, write x = m(x0, θ ,u, q) where
the model operator predicts the model state over the whole assimilation window. We
differentiate between the model state x and the data-assimilation problem’s more
general state vector, discussed next, although they will be the same in some cases.

2.1.4 StateVector

We define the data-assimilation problem’s state vector z, containing all the uncertain
quantities we wish to estimate. The variables included in z depend on the data-
assimilation problem at hand and its formulation. There are, however, two main
formulations to be aware of.

In the first formulation, z includes the model prediction, or model state, x, or a
subset of x (e.g., xK ). In this case, we update themodel state x directly, andwe denote
it as the model-state formulation, where we can have zT = (xT, θT, uT), excluding
the model error q.
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In the second formulation, we treat the model error as an uncertain variable that
we will estimate. We then write zT = (xT0 , θT, uT,qT) and note that as soon as we
give z, we also determine themodel state x. We denote this formulation as the forcing
formulation because the estimated model errors force the model.

It is important to note that we cannot simultaneously estimate both x and q as
the model equations uniquely connect these variables. We will also see below that
different assimilation methods will use either one or the other formulation.

2.1.5 Formulation Over Multiple AssimilationWindows

To understand which approximations we impose when solving the data-assimilation
problem for a single assimilationwindow,we start by formulating the general or com-
plete problem over multiple assimilation windows. The model state over L assimi-
lation windows is the model-state trajectory XT = (xT1 , . . . , xTL). For the remainder
of the book, we will use an index k denoting a particular time step tk , while an
index l refers to an assimilation window. We also define UT = (uT1 , . . . , uTL) and
QT = (qT1 , . . . ,qTL) as the time sequences of controls and model errors.

We gather the model-state trajectory, X, the parameters θ , the model controls
U, and the model errors Q, into the state vector in either the state formulation
ZT = (XT, θT,UT) or the forcing formulation ZT = (XT

0 , θT,UT,QT) where X0
is the initial condition for the first assimilation window. So Z holds all uncertain
quantities over all the assimilation windows.

2.1.6 Measurements with Errors

We also have a vector of measurementsD of the model predicted stateX represented
by a measurement equation

D = H(X) + E. (2.6)

HereH is the so-called measurement operator, a potentially nonlinear function that
maps the model state vector X into measurement space. The matrix E contains the
measurement errors. Note that we will use the terms “measurement errors” and
“observation errors” interchangeably.

We note thatZ includes X in the state formulation, and we can equally write

D = G(Z) + E, (2.7)

where G relates the measurements toZ.
In the forcing formulation we can still use Eq. (2.7) but rewrite it as

D = G(Z) + E = H(M(Z)
) + E, (2.8)

where G measures the model prediction from the input state vector, andM(·) is the
model operator that mapsZ to X.

The term E contains the measurement errors, including instrument errors and
possibly a representation error that accounts for different representations of reality
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by the measurements and the model. Representation errors are typically errors due to
unresolved scales and processes, and Hodyss and Nichols (2015) and Van Leeuwen
(2015) provide a further understanding of their origin and how to treat them in the data
assimilation problem.An example of representation error occurs in satellite-altimetry
data measuring the height of the sea surface. Apart from height differences induced
by large-scale ocean currents and eddies, these measurements also contain height
signals resulting from ocean tides. Large-scale ocean models often do not include
these tides for computational reasons, and hence the observations have processes that
the oceanmodels do not resolve. The representation errorsmay also result from using
an erroneous measurement operator or errors introduced during the measurement
preprocessing (Janjić et al., 2018).

2.1.7 Bayesian Inference

It is convenient to formulate the data-assimilation problem as a Bayesian inference
problem. This formulation is entirely general and applies to both the state and forcing
formulations discussed above. The starting point is an initial or prior probability
density, f (Z), of the quantity of interest, Z. In the following, we use the notation
f (·) to describe the argument’s probability density function (pdf), meaning that, for
instance, f (Z) denotes the pdf ofZ, and f (q) denotes the pdf of q.

Themeasurements enter the data-assimilationproblemvia the likelihood f (D|Z).
The likelihood is one of the less well-understood parts of the data-assimilation prob-
lem. To fully grasp its meaning, we should distinguish between the actual mea-
surement process and how we treat measurements in the data-assimilation process.
During the measurement process, the measurements are random variables. We mea-
sure them from the unknown true state of the system, to which nature adds a random
draw from the measurement-error pdf. Once we have collected the measurements,
they are not random but fixed.Of course, the measurements have errors, but that does
not make them random because we know them exactly. This realization means that
the likelihood is not the pdf of the measurements but rather a function of the state,
and the measurements are fixed in that function. Detailed further discussions can be
found in Van Leeuwen (2015, 2020).

To obtain the likelihood, we need to calculate f (D|Z) for each possible Z,
which is the (unnormalized) probability that this specific vector Z would result
in the fixed set of measurements. Note that to obtain the likelihood f (D|Z) =
f (E) = f

(D−G(Z)
)
, we need to prescribe the probability-density function of the

measurement errors E.
Assuming knowledge of the probability density f (Z) of all the uncertain variables

in the state vectorZ and the likelihood f (D|Z), we can define a general form of the
data-assimilation problem through Bayes’ theorem. We can derive Bayes’ theorem
from the definition of conditional pdfs,

f (Z,D) = f (Z|D) f (D) = f (D|Z) f (Z), (2.9)

where we solve for f (Z|D) to get
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f (Z|D) = f (D|Z) f (Z)

f (D)
. (2.10)

This equation becomes Bayes’ theorem when used with the fixed measurement set
D. Lorenc (1988) and Tarantola (1987) introduced the Bayesian formulation for
time-independent problems, and it was extended and generalized for time-dependent
problems by Van Leeuwen and Evensen (1996). The pdf of the state vectorZ given
the measurementsD, i.e., f (Z|D) is the solution to the data-assimilation problem.
We stress that we know the observations in data assimilation, D is not a random
vector, and Bayes’ theorem is a point-wise equation for each vectorZ.

The denominator on the right-hand side is the marginal pdf of the measurements,
f (D). It acts as a normalization constant that ensures that the posterior pdf integrates
to one. Indeed, we can write

f (D) =
∫

f (D,Z) dZ =
∫

f (D|Z) f (Z) dZ, (2.11)

making the normalization explicit. This normalization constant has also given rise to
misunderstandings. Some have argued that f (D) = 1 since we know the measure-
ments, but this is incorrect. Instead, one should evaluate the pdf of the measurements
at the value of the fixed measurements D. This pdf centers on the unknown true
state’s measurement, so the above equation is the proper way to evaluate f (D).

However, this normalization constant is seldom needed explicitly, and we will
not use it in the rest of this book. Actually, f (D) only shows up when evaluating
different numerical models given a set of measurements via the “model evidence,”
which is the normalization constant assessed for each of these models, e.g., the
ECMWF model versus the Met Office model. The model with the highest f (D) is
considered the bestmodel. In contrast, a proper Bayesianwould set up a prior over the
different numerical models and interpret the normalization factor as the likelihood
in this higher-order data-assimilation problem. Since the number of models tested is
finite, this is a discrete data-assimilation problem where the state vectorZ contains
a complete numerical model.

It is essential to realize that Bayes’ theorem describes a forward problem and not
an inverse problem. We start with the prior probability density function and multiply
it with the likelihood to form the posterior probability density function, which is the
solution to the problem. Of course, many practical data-assimilation methods solve
an inverse problem to find an approximation to the posterior, but many others do not.
As such, we can consider inverse problem theory as a subset of Bayesian inference;
see, for instance, the introduction in Van Leeuwen et al. (2015).

2.2 Recursive Bayesian Formulation

The Bayesian formulation above updates the solution over the whole assimilation
period, including multiple assimilation windows, in one go. This formulation is
not always convenient, as, in many data-assimilation problems, the measurements
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become available sequentially. Thus, we will next introduce two approximations to
simplify the process of solving Eq. (2.10).

2.2.1 MarkovModel

Approximation 1 (Model is 1st-orderMarkov process) Weassume the dynamical
model is a 1st-order Markov process. ��

A first-order Markov process denotes that the future is independent of the past if
the present is known. If the model is a 1st-order Markov process, it follows that we
can compute the model solution in one assimilation window from the solution in the
previous window. We can then express mathematically the condition

f (zl |zl−1, zl−2, . . . , z0) = f (zl |zl−1), (2.12)

where we remind the reader that l is the index of an assimilation window.
From Approx. 1, we can use Eq. (2.12) and write f (Z) as a recursion over the

assimilation windows l ∈ (1, . . . , L),

f (Z) = f (z0) f (z1|z0) f (z2|z1) · · · f (zL |zl−1)

= f (z0)
L∏

l=1

f (zl |zl−1).
(2.13)

We notice that the assumption of the model being a Markov process affects the
model-state evolution in time. However, we use the Markov property to formulate
the model prior as a recursion over the assimilation windows.

2.2.2 Independent Measurements

Next, we introduce the following assumption on the measurements.

Approximation 2 (Independent measurements) We assume that measurements
are independent between different assimilation windows.

Independent measurements mean that their errors are uncorrelated, so we now
assume the measurement-error correlations are zero between measurements in dif-
ferent assimilation windows. If we use Approx. 2, we can write the likelihood for
the measurement vector D as a product of independent likelihoods, one for each
assimilation window, as

f (D|Z) =
L∏

l=1

f (dl |zl). (2.14)
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The assumption of independence of measurements collected in different assimilation
windows is the first grave approximation we make, as such correlations often exist,
and we still neglect them. However, we retain the possibility of having correlated
measurement errors for themeasurements collectedwithin each assimilationwindow.

Note that, by “independent measurements,” we do not mean that the measure-
ments’ information is independent. This terminology typically conveys that themea-
surement errors are uncorrelated. E.g., we can measure a temperature at a location
twice using different sensors, so the measurement errors are uncorrelated. But, since
they measure the same quantity, we do not double the information. As Evensen and
Eikrem (2018) discussed, there is redundancy in themeasurement information. Like-
wise, spatial correlations in the measured quantity will also result in measurements
with correlated information. The measurement errors can still be uncorrelated.

2.2.3 Recursive form of Bayes’

The general form of Bayes’ in Eq. (2.10) now becomes

f (Z|D) ∝
L∏

l=1

f (dl |zl) f (zl |zl−1) f (z0). (2.15)

By rearranging the order of the multiplications, it is possible to write Eq. (2.15) as a
recursion, following Evensen & Van Leeuwen, (2000),

f (z1, z0|d1) = f (d1|z1) f (z1|z0) f (z0)
f (d1)

, (2.16)

f (z2, z1, z0|d1,d2) = f (d2|z2) f (z2|z1) f (z1, z0|d1)
f (d2)

, (2.17)

...

f (Z|D) = f (dL |zL) f (zL |zL−1) f (zL−1, . . . , z0|dL−1, . . . ,d1)
f (dL)

.

(2.18)

Thus, we have defined the data-assimilation problem as a recursion in time. We start
in Eq. (2.16), with f (z0) being the prior density for the initial conditions z0. Then,
f (z1|z0) denotes the integration of the model from the initial condition to predict the
pdf of z1 given z0. The multiplication with the likelihood f (d1|z1) conditions the
model prediction on the measurements d1. The posterior estimate is then the joint
pdf for z0 and z1 conditioned on the measurements d1, denoted by f (z1, z0|d1).

The posterior estimate from Eq. (2.16) now becomes the prior in Eq. (2.17),
where we again integrate the model, f (z2|z1), and condition on the data, f (d2|z2),
to obtain the posterior f (z2, z1, z0|d1, d2), which becomes the prior for the following
recursion.
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2.2.4 Marginal Bayes’ for Filtering

When the aim is to make better predictions, we can simplify the recursion in
Eqs. (2.16)–(2.17) by exploiting theMarkovian property of themodel and the sequen-
tial nature of the data-assimilation problem. Thus, by integrating out the model states
of previous assimilation time windows, we can write the recursion in terms of the
marginals as

f (z1|d1) = f (d1|z1)
∫

f (z1|z0) f (z0) dz0
f (d1)

= f (d1|z1) f (z1)
f (d1)

, (2.19)

f (z2|d1,d2) = f (d2|z2)
∫

f (z2|z1) f (z1|d1) dz1
f (d2)

= f (d2|z2) f (z2|d1)
f (d2)

, (2.20)

...

f (zL |D) = f (dL |zL)
∫

f (zL |zL−1) f (zL−1|dL−1, . . . , d1) dzL−1

f (dL)

= f (dL |zL) f (zL |dL−1)

f (dL)
. (2.21)

Note that by solving for the marginals, we are not solving the complete original
problem defined by Bayes’ theorem in Eq. 2.10. We are applying the following
approximation.

Approximation 3 (Filtering assumption) We approximate the full smoother solu-
tionwith a sequential data-assimilation solution.We only update the solution in the
current assimilation window, andwe do not project themeasurement’s information
backward in time from one assimilation window to the previous ones. ��

We recursively accumulate more and more information from the measurements
from time window to time window. Hence, zl contains the information from all the
previous measurements, including those from the l’th assimilation window, and is
the ideal starting point for predicting zl+1 and onwards.

We note that if the assimilationwindow is a singlemodel time step, thenApprox. 3
reduces to the standard filter approximation in, e.g., Kalman-filter methods, which
update the solution at the current time before continuing the integration.

Another attractive property of these equations is their similarity. We are solving
the same computational problem in each update step. We have a state vector for the
current timewindow containing the information from all the previousmeasurements,
and we combine it with the new measurements. Thus, if we define zl to represent the
model prediction at time window l and dl the measurements for this time window,
we can write the general update equation as

f (zl |dl) = f (dl |zl) f (zl)
f (dl)

, (2.22)
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or more generally as

f (z|d) = f (d|z) f (z)
f (d)

, (2.23)

which is again just the Bayes formula in Eq. (2.10) but now for a subset of the state
vector and the measurements.

2.3 Error Propagation

So far, we have considered formulations for updating the model solution over an
assimilation window and assume that we have a prior pdf for the solution. We will
now discuss how to obtain or estimate this prior distribution and propagate it to the
next assimilation window.

2.3.1 Fokker–Planck Equation

Ideally, we know the full pdf at the end of the previous assimilation window or
equivalently at the beginning of the current assimilation window. We can compute
the evolution of the prior pdf from the start of one assimilation window to the next,
f (zl |zl−1), from the Fokker–Planck equation. We start with a stochastic model with
additive Gaussian model errors forming aMarkov process, initialized with the model
state x from zl . We assume that the prior model parameters do not change over the
assimilationwindow, sowe omit them here for ease of notation. The stochasticmodel
equation reads

dx = m(x) dt + dq, (2.24)

giving the increment in the model state dx resulting from a time increment dt and the
stochastic forcing dq. From this model equation, one can derive the standard form
of the Fokker–Planck equation (also named Kolmogorov’s equation),

∂ f (x)
∂t

+
∑

i

∂
(
mi (x) f (x)

)

∂xi
= 1

2
Cqq

∑

i, j

∂2 f (x)
∂xi ∂x j

, (2.25)

which describes the time evolution of the model state vector’s probability density
f (x). For the case with non-additive model errors, it becomes more elaborate to
derive an equation for the probability density’s time evolution, and we will not
discuss that here. In Eq. (2.25), mi is the component number i of the model operator
m, and Cqq is the model-error covariance matrix. This equation is the fundamental
equation for the evolution of error statistics. The equation describes the probability
change in a local volume resulting from themodel dynamics and diffusion terms. The
model-dynamics term is a divergence of the probability flux into the local volume.
In contrast, the diffusion term tends to smooth f (x) due to the stochastic model
forcing. Unfortunately, we cannot solve this equation in high dimensions. We refer
to Jazwinski (1970) for the actual derivation and further discussion.
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2.3.2 Covariance Evolution Equation

By taking moments of the Fokker–Planck equation, we can derive an evolution
equation for statistical moments of the uncertainty in the model state vector x. Alter-
natively, we can derive an evolution equation for the error covariance matrix by
comparing the evolution of the true model state with that of our estimated model
state as

xtk+1 = m(xtk) + qk ≈ m(xk) + Mk(xtk − xk) + qk, (2.26)

xk+1 = m(xk), (2.27)

where we used a first-order Taylor expansion in the first equation, assuming that
xtk − xk is small. The superscript, t, denotes “true.” Note that the linearized model
Mk can include estimates of the model parameters. By subtracting Eq. (2.27) from
Eq. (2.26), multiplying the resulting equation with its transpose, and taking the
expectation, we obtain the error covariance equation used in Kalman filters,

Cxx,k+1 ≈ MkCxx,kMT
k + Cqq,k . (2.28)

HereMk is the model’s tangent-linear operator evaluated at xk and Cqq is the model
error covariance matrix. The extended Kalman filter (EKF) also uses this linearized
error-evolution equation. In addition to an immense computational load for real-size
geoscience models, Evensen (1992) showed that the approximate linear equation
can not saturate unstable modes of the model, and one can experience unbounded
error-variance growth. See also the example in Chap. 12.

2.3.3 Ensemble Predictions

An alternative to the two previous approaches is to use a Monte-Carlo method for
propagating the error statistics. For example, if we have an ensemble of samples from
a pdf at time tk , we can integrate these samples forward until tk+1 by running the
dynamical model for each sample separately. If the model contains model errors, we
can treat these by using a stochastic model description. Ensemble integration is the
approach used in the ensemblemethods. It involves creating a large and finite number
of model realizations or samples that represent our prior understanding of the system
and its uncertainties. EnsembleKalmanfilters, particle filters, and particle-flowfilters
all use this approach. The only approximation of this approach is the limitation of
the ensemble size to a finite number of model realizations or ensemble members.
Thus, ensemble integration is an attractive method for propagating the uncertainty
information over an assimilation window or from one assimilation window to the
next. In Fig. 2.1, the ensemble integration is illustrated by the blue lines indicating
the prior ensemble integration in an ensemble smoother. The figure also shows how
the ensemble prediction (represented by the green lines) captures the uncertainty
through the updated ensemble members’ spread.
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Fig. 2.1 The figure illustrates using a general ensemble smoother (Sect. 2.4.1). The black dots
denote observations with an error of one standard deviation. We first run a full ensemble integration
over the whole assimilation window, indicated by blue lines in the blue envelope. After that, we
update the ensemble simultaneously in space and time, resulting in the green lines in the green
envelope

2.4 Various Problem Formulations

In the current formulation, the state vector z is rather general. We can define z to
contain themodel state over an assimilation timewindowor at a single instant in time.
It is also possible to include other uncertainties, such as model parameters, model
controls, and model errors. We will see below that the specific solution procedure
will be the same in any of these cases.

2.4.1 General Smoother Formulation

A general smoother formulation solves the original Bayes’ formula (2.22) in an
assimilation window. Let’s define the state vector z = x = m(x0, q) as the model
solution over thewhole assimilationwindowwith distributedmeasurements.We also
allow themodel to have errors q but do not include uncertain parameters and controls
in this example. In this case, we will update the model state x, which connects to the
model-predicted measurements y through the functional

y = g(z) = h(x) = h
(
m(x0,q)

)
. (2.29)

Here the vector function g(z) is just the application of the measurement operator
acting on the model prediction to generate the predicted measurements. We then
compare the predicted measurements to the actual measurements in the likelihood.

We illustrate the formulation in an ensemble setting. The general smoother starts
with a prior ensemble integration over the assimilation window as indicated by the
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blue lines in Fig. 2.1. We obtain the ensemble estimate of the posterior pdf by
combining the prior ensemble in space and time with the likelihood. As such, it
updates the prior ensemble and results in an updated ensemble that is closer to the
measurements and has a reduced uncertainty, as illustrated by the green lines in
Fig. 2.1.

For long windows and nonlinear dynamics the prior pdf becomes significantly
non-Gaussian. In this case, methods that assume a Gaussian prior will struggle, as
we illustratewhen applying the ensemble smoother (ES) for the Lorenz (1963)model
in Chap. 15.

2.4.2 Filter Formulation

Let’s define z = xK as the model solution at the end of the assimilation window,
where we assume we have measurements. We can then compute the so-called filter
solution typically solved by particle filters and Kalman filter methods. In this case,
we have the state xK connected to the model-predicted measurements y through the
measurement-functional h(xK ),

y = g(z) = h(xK ). (2.30)

The vector function g(z) now equals the measurement operator h(xK ), which maps
the model solution at the end of the assimilation window to the predicted measure-
ments y. We can then compute the updated solution at the end of the assimilation
window from Bayes’ formula in Eq. (2.23), as illustrated in Fig. 2.2. After that,
we continue the integration through the next assimilation window. Thus, we have

0 2 4 6 8 10 12 14 16 18 20 22 24

General ensemble-filter update

Time (hours)

Fig. 2.2 The figure illustrates the general ensemble-filter update of an ensemble prediction
(Sect. 2.4.2). The filter updates the ensemble at the measurement time before continuing the ensem-
ble integration
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integrated away the model solution from all previous time steps of the assimilation
window to create the marginal pdf at the end of the assimilation window.

The filter approach can alleviate a potential practical disadvantage of the general
smoother discussed in the previous section. The prior covers a large time window
in the smoother-formulation and might be less accurate for measurements later in
the window. Furthermore, if the model is highly nonlinear, strong non-Gaussian
prior pdfs can develop. An advantage of the filter approach is that we can divide an
assimilationwindowwith observations at different time instances into several shorter
windows, each ending at an observation time. This approach results in a sequential
data-assimilation problem that facilitates, e.g., Kalman filters, ensemble Kalman
filters, and particle filters. The more frequent model updating will keep the model
closer to the observations. Furthermore, the prior at each measurement time remains
relatively narrow and more Gaussian than in the smoother formulation, resulting in a
sequence of more accurate updates. Several of the example chapters consider various
filter applications.

2.4.3 Recursive Smoother Formulation

Evensen and Van Leeuwen (2000) introduced a recursive smoother formulation as
an extension of the filtering problem. The state vector is now zT = (. . . , xTl−1, x

T
l )

containing themodel state at all, or several previous and the current assimilation win-
dows. And we have the measurements located at the end of the current assimilation
window. Thus, we have a problem where

y = g(z) = h(xK ), (2.31)

but we compute the update for the whole z.
Instead of solving for the marginal in Eq. (2.20), we solve the recursion in

Eq. (2.17) while processing the measurements sequentially as in the filter formula-
tion. This approach recursively introduces the information from additional measure-
ments in every new assimilation window and “projects” this information at previous
times. The formulation inherits the advantages from the filter formulation discussed
in Sect. 2.4.2. We will discuss this approach when applying the ensemble Kalman
smoother in Chap. 15, and see also the Algorithm 7 in Chap. 6.

Note that the solution at the final assimilation time is identical to the filter solution.
Therefore, the recursive smoother is not adding any value for prediction problems,
but the formulation is an excellent alternative to the general smoother for hindcast
problems (see Fig. 2.3). We can also use this formulation as a “lagged” smoother
where we only update the state vector for a selected number of previous assimilation
windows.We then exploit that themeasurement’s information decorrelates with time
in nonlinearmodels withmodel errors, so, in practice, we apply a form of localization
as discussed in Chap. 10. Thus, the recursive smoother introduces the measurements
sequentially as in the filter, while the general smoother in Sect. 2.4.1 computes one
global update over the whole assimilation window in one go.
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Fig.2.3 The figure illustrates using a recursive ensemble smoother (Sect. 2.4.3). Like in the filter
update, we update the ensemble at the measurement time before continuing the integration, but we
also update the ensemble at all previous times

2.4.4 A Smoother Formulation for Perfect Models

An often used assimilation formulation assumes that the state vector z = x0 only
contains the model state at the beginning of the time window. Hence, we exclude
uncertain parameters and controls, and we assume nomodel errors.We then estimate
the initial model state for the assimilation window and obtain the solution over the
assimilation window by integrating the model from the updated initial conditions.
The equation for the predicted measurements y is

y = g(z) = h
(
m(x0)

)
. (2.32)

Here we start with the solution at the beginning of the time window and integrate the
model x = m(x0) over the time window to make a prediction. Then we apply the
measurement functional on the model prediction h(x) and compare this prediction
and the actual observation in the likelihood, which also propagates this difference
back to the beginning of the time window to perform an update. This formulation
is the basis for deriving the so-called strong-constraint 4DVar schemes widely used
for weather-prediction applications and the iterative ensemble smoothers used to
history-match reservoir models in petroleum-engineering applications. Fig. 2.4 illus-
trates this alternative smoother formulation used by the ensemble version of 4DVar,
En4DVar, and EnRML methods discussed below. This formulation also allows for
measurements distributed over the assimilation window. In Sect. 2.5, we will see that
this problem, and the ones in the following two sections, requires a modified form
of Bayes’ theorem.
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Fig.2.4 The figure illustrates the recursive smoother formulation assuming a perfect model solved
using an ensemble approach. One defines an assimilation time window and updates the initial
conditions of the ensemble realizations at the beginning of the time window. Both the iterative
ensemble smoothers and strong-constraint 4DVar use this approach. We based this graphic on
an illustration from the ECMWF Forecast User Guide https://confluence.ecmwf.int/display/FUG/
Forecast+User+Guide

2.4.5 Parameter Estimation

An analog problem to the smoother problem with a perfect model is the parameter-
estimation problem for a model without uncertain controls and model errors. In this
case, we define z = θ to contain the uncertain model parameters. This formulation
leads to a situation where z = θ , and we write, as usual,

y = g(z) = h
(
m(θ)

)
, (2.33)

where m(θ) shows that we need the forward model to evaluate how the parame-
ters relate to the measurements. For the practical implementation and solution, this
problem is analogous to the “smoother problem for perfect models” solved for each
assimilationwindow in Sect. 2.4.4. This problem formulation is also the onewe solve
in petroleum applications (Evensen et al., 2019; Evensen, 2021) and Chap. 21. Thus,
Fig. 2.4, used to illustrate state estimation, also represents the parameter-estimation
problem. For the Bayesian formulation of the parameter estimation problem,we refer
to Sect. 2.5.

2.4.6 Estimating Initial Conditions, Parameters, Controls, and Errors

In the final formulation, we present the problem of estimating the initial condition for
the time window, together with model parameters, model controls, and model errors.
Evensen (2019) explained how we could solve the recursive smoother problem for a
time window when we include model errors, while Evensen (2021) considered the

https://confluence.ecmwf.int/display/FUG/Forecast+User+Guide
https://confluence.ecmwf.int/display/FUG/Forecast+User+Guide
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case with additional control parameters. The controls can represent, for example, the
imposed production rates or the aquifer strength in a reservoir model (Glegola et al.,
2012; Peters et al., 2010) or the atmospheric forcing in ocean models (Vossepoel et
al., 2004). Furthermore, Evensen (2021) illustrated how to include the model errors
and controls in the state vector and simultaneously estimate the initial conditions x0,
the model errors q, and the model controls u over an assimilation window (see also
the example in Chap. 21).

We define the state vector as zT = (
xT0 , θT,uT, qT

)
, and given an estimate of z,

we compute the resulting model solution over the assimilation window, and hence
the predicted measurements

y = g(z) = h
(
m

(
x0, θ , u, q

))
. (2.34)

Again the practical implementation and solution of this problem, although more
complicated due to the extended state vector, is analogous to the problems solved in
the two previous Sects. 2.4.4 and 2.4.5, and we again refer to the modified form of
Bayes’ theorem in the following section.

2.5 Including the PredictedMeasurements in Bayes Theorem

In Sects. 2.4.4, 2.4.5, and 2.4.6 we solve a problem involving a relation between the
state vector z and the predicted measurements given by

y = g(z) = h
(
m

(
z)

)
. (2.35)

In this case, it is not entirely clear how to evaluate the likelihood f (d|z) in Bayes’
formula in Eq. (2.23). The reason is that we have measurements of the model state
x = m(z), which does not appear explicitly in Eq. (2.23). To solve this issue, we
first write the likelihood to include the model state x explicitly as follows

f (d|z) =
∫

f (d, x|z) dx =
∫

f (d|x, z) f (x|z) dx, (2.36)

where, if z contains the model initial condition x0, we exclude it from x. For a given
model state, themodel inputs zdonot provide extra informationon themeasurements.
Thus, we can write

f (d|x, z) = f (d|x), (2.37)

leading to Bayes’ theorem in the form

f (z|d) = f
(
z
)

f (d)

∫
f (d|x) f (x|z) dx. (2.38)

This problem is costly to compute as we have to integrate the model state over all
possible model inputs as dictated by f

(
x|z). For example, in the pure parameter

estimation problem of Sect. 2.4.5, we would need to evaluate the integral over all
possible model initial conditions and all possible model trajectories in the assimila-
tion window. And we would have to do that for each parameter vector θ . To avoid
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this often intractable problem, one typically estimates both the model state x and
inputs in z.

It is sometimes helpful to rewrite the likelihood of variables in observation space
instead of in state space. Recall that the likelihood f (d|z) is a function of z since we
know the measurements d in the assimilation process. We can transform the variable
z to observation space via the predicted measurements. Hence, we can augment the
likelihood with the predicted measurements via

f (d|z) =
∫

f (d, y|z) dy =
∫

f (d|y, z) f (y|z) dy, (2.39)

where the second equality follows from the definition of a conditional density.
We first note that once we know the predicted measurements, the state vector z

contains no new information on them, and we can write the likelihood

f (d|y, z) = f (d|y). (2.40)

Furthermore, using the relation between the predicted measurements and the state
vector, y = g(z), we can write

f (y|z) = δ
(
y − g(z)

)
, (2.41)

where δ is the Dirac-delta function. We then have that a given state vector z =(
x0, θ ,u, q

)
uniquely defines a set of predicted measurements y. This equation is

valid for predicted measurements over a whole assimilation window, also when we
include model errors and controls as part of the state vector z. Thus, it was a neat
trick in Sect. 2.4.6 to include the model errors and controls in the state vector as a
set of poorly known parameters (Evensen, 2019).

We now have the likelihood

f (d|z) =
∫

f (d|y)δ(y − g(z)
)
dy = f (d|g(z)), (2.42)

allowing us to write Bayes theorem as

Bayes’ theorem related to the predicted measurements

f (z|d) = f
(
d|g(z)) f (z)

f (d)
. (2.43)

To summarize, z is the state vector we try to estimate in the data-assimilation
problem. In the general-smoother in Sect. 2.4.1, z = x is the model state trajectory
over the assimilation window. In contrast, in the filter formulation in Sect. 2.4.2, the
state vector represents the model state at the end of the assimilation window z = xK .
For the recursive smoother in Sect. 2.4.3, z is the whole model state over the current
and previous assimilation windows. Then in the smoother formulation for the perfect
model in Sect. 2.4.4, where we estimate the initial state, the state vector is just the
model initial conditions for the assimilation window z = x0, which we consider as
an input to themodel. The situation is analogous in the parameter estimation problem
in Sect. 2.4.5, where z = θ , and in the final example in Sect. 2.4.6, where the state
vector consists of all the uncertain model inputs zT = (xT0 , θT, qT,uT).
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TheBayes’ formula in Eq. (2.43) applies to all these cases. For the state estimation
examples in Sects. 2.4.1–2.4.3 we define g(z) as the measurement operator, while
in the three last cases in Sects. 2.4.4–2.4.6, g(z) also includes the model integration.
In the following, we will discuss popular data-assimilation methods that solve the
Bayesian estimation problem in Eq. (2.43) under various approximations.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
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The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


3MaximumaPosteriori Solution

We will now introduce a fundamental approximation used in most practical data-
assimilation methods, namely the definition of Gaussian priors. This approximation
simplifies the Bayesian posterior, which allows us to compute the maximum a poste-
riori (MAP) estimate and sample from the posterior pdf. This chapter will introduce
the Gaussian approximation and then discuss the Gauss–Newton method for finding
theMAP estimate. This method is the starting point for many of the data-assimilation
algorithms discussed in the following chapters.

3.1 Maximum a Posteriori (MAP) Estimate

TheMAP solution is the state vector z that maximizes the posterior pdf, and can thus
be seen as the most probable solution for z given the measurements d. We define it
as

zMAP = argmax
z

(
f (z|d)

)
. (3.1)

The variable z is called the control variable or control vector in the inverse modeling
and control literature. Since we can write any smooth posterior pdf as

f (z|d) ∝ exp
{−J(z)

}
, (3.2)

and the logarithm is a monotonically increasing function of its argument, the vector
that maximizes the posterior pdf equals the vector that minimizes the cost function
J(z). Hence, we can write

zMAP = argmin
z

J(z). (3.3)

We can find a function’s minimum by setting its gradient equal to zero. So, at the
minimum, we have

∇zJ(zMAP) = 0. (3.4)
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Furthermore, the second derivative of the cost function, the so-called Hessian, has
information on the cost function’s curvature at the minimum. As we will see, the
inverse of that Hessian provides a first-order estimate of the posterior covariance.

In most geoscience applications of data assimilation that compute the MAP esti-
mate, one assumes that both the prior and observation errors are Gaussian, leading to
a more tractable problem. We will explore such methods in the following sections,
followed by the explicit solutions for linear problems and an extensive treatment of
iterative methods for nonlinear problems.

3.2 Gaussian Prior and Likelihood

Manypopular data-assimilationmethods assume that the prior distributions areGaus-
sian, leading to a simple representation of the data-assimilation problem. Note that
the cost function is not quadratic in z as the measurement operator is still nonlinear.
Hence, we introduce the following approximation.

Approximation 4 (Gaussian prior and likelihood) We assume that the prior dis-
tributions of the state vector’s components z and observation errors ε are both
Gaussian distributed. ��

We will in Chap. 9 discuss methods that do not apply Approx. 4. Now, we define

f (z) = N(
zf ,Czz

)
, (3.5)

f
(
d | g(z)) = f (ε) = N(

0,Cdd
)
, (3.6)

where the superscript f denote “first guess.” Thus, zf is the “first guess” or prior
estimate of the state vector, andCzz is its error covariance. The prior error covariance
includes the covariances between all the uncertain variables in the state vector,

Czz =

⎛

⎜
⎜
⎝

Cx0x0 Cx0θ Cx0u Cx0q

Cθx0 Cθθ Cθu Cθq

Cux0 Cuθ Cuu Cuq

Cqx0 Cqθ Cqu Cqq

⎞

⎟
⎟
⎠ . (3.7)

Note that we formulate z such that it contains the model state at time zero and the
model errors at other times, the so-called forcing formulation. In this case, the Gaus-
sian prior assumption is reasonable and often assumed. However, if we reformulate
the problem so that z contains the model solution, there is no model error in z. A
Gaussian prior for zwould then force us to assume that the model is linear since only
a linear model initialized with a Gaussian initial state would yield a model state that
remainsGaussian over a timewindow. For this reason,we use the forcing formulation
here. In most data-assimilation problems, we would neglect the covariances between
different variables and retain only the covariance matrices on the diagonal. However,
for the derivation of the methods below, we do not need to make this assumption.
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The introduction of Gaussian priors leads to a posterior pdf formulation that we
use in Bayes theorem to find

f (z|d) ∝ exp
{ − J(z)

}
, (3.8)

with the cost function J(z) defined as

Cost function

J(z) = 1

2

(
z − zf

)TC−1
zz

(
z − zf

) + 1

2

(
g(z) − d

)TC−1
dd

(
g(z) − d

)
. (3.9)

Note thatg(z) is the nonlinearmapping from the state vector, i.e., initial conditions,
model errors, and parameters, to the predictedmeasurements. Thus, we have used the
Bayesian formulation fromEq. (2.43). Asmentioned,minimizingJ(z) in Eq. (3.9) is
equivalent tomaximizing the a posteriori probability (MAP) solution of the posterior
pdf in Eq. (3.8) with Approx. 4 on the Gaussian priors.

To find the MAP solution, we start with the cost function’s gradient

∇zJ(z) = C−1
zz

(
z − zf

) + ∇zg(z)C
−1
dd

(
g(z) − d

)
, (3.10)

and by setting it to zero we define the minimizing solution za from

The gradient set to zero

C−1
zz

(
za − zf

) + ∇zg
(
za

)
C−1
dd

(
g
(
za

) − d
)

= 0. (3.11)

Here the superscript a denote “analysis.” This equation forms the implicit, closed-
form solution of our estimation problem that minimizes the cost function in Eq. (3.9).
The model sensitivity ∇zg

(
za

)
is the gradient of the predicted measurements to

the state vector. The following sections will present iterative methods that solve
Eq. (3.11), leading to various 4DVar formulations.

3.3 Iterative Solutions

Even if g is a linear function of its argument and we can write down the explicit
solution to Eq. (3.11), it is not uncommon to solve the problem iteratively. The
reason is that the matrices involved can be of very high dimension and impossible
to store in a computer. Another more practical reason is to avoid inverting matrices.

An important iterative minimization method is the so-called Newton method,
which we can derive from a second-order Taylor expansion of the cost function.
If we have an estimate of the minimum zi , we can improve this estimate by mini-
mizing the expression

J
(
zi + δz

)
≈ J

(
zi

)
+ δzT ∇zJ i + 1

2
δzT ∇z∇zJ i δz, (3.12)
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for δz. Here ∇zJ i denotes the cost function’s gradient evaluated at zi , and ∇z∇zJ i

is the cost function’s Hessian where we use the gradient operator twice. We readily
find the solution for δz as

1

2
∇z∇zJ iδz = −∇zJ i . (3.13)

The solution to this problem leads to a new estimate of the cost function’s minimum,
zi+1 = zi + δz, and we repeat the process with a second-order Taylor expansion
around zi+1.

As mentioned above, although we could multiply this equation by the inverse of
the Hessian to directly find the solution for δz, this is often not the way this equation
is solved. The reason is that the covariance matrices are often so large that they
cannot be stored, not even on the world’s most giant supercomputers. Instead, we
use operators that return the matrix-vector products with these matrices. A beautiful
example of this procedure is the so-called variational methods such as 4DVar, which
replaces matrix-vector products with adjoint and forward model integrations. This
procedure effectively leads to an iterative solution of the form

zi+1 = zi − γ i Bi ∇zJ
(
zi

)
. (3.14)

In Eq. (3.14), i is the iteration index, γ i is a scalar that determines the so-called step
size, and Bi is a matrix we can choose, typically in operator form, as mentioned
above. The simplest choice, Bi = I, leads to the so-called steepest descent method,
where the new iterate is directly downhill of the previous iterate. In many geoscience
applications of data assimilation, this approach turns out to be a poor choice with a
low convergence rate because the cost function often has a very irregular shape in
high-dimensional spaces.

Aswe have seen, in theNewtonmethod, onewould like to chooseBi as the inverse
of the Hessian, and γ i = 1. The advantage of this choice is that if the Hessian is
positive definite, the convergence rate is quadratic, meaning that |zi+1 − za| =
r |zi − za|2, where za denotes the state that minimizes the cost function and r is a
positive constant that depends on details of the Hessian.

Often the Hessian is not available, so it is common to use an approximate Hessian.
For instance, the Gauss–Newtonmethod discussed below ignores part of the Hessian
to ensure that the matrix in front of δz is symmetric positive definite by construc-
tion. Other approaches may start with an approximation to the Hessian and make
this approximation more accurate at each iteration by using new gradient informa-
tion. These are so-called quasi-Newton methods, and a much-used alternative is the
Broyden, Fletcher, Goldfarb, and Shanno (BFGS) method. Because these methods
use information from the Hessian, their convergence rate is faster than methods that
ignore that information, such as steepest descent, but still not quadratic as in the
Newton method. We say their convergence is superlinear.

If the matrix in front of δz is symmetric and positive definite, we can use an
extremely efficientmethod called conjugate gradient. It has the advantage that it only
requires the computation of onematrix-vector product at each iteration. Furthermore,
we do not need to store the matrix. We can often represent it by a code that takes a
vector as input and gives the matrix times that vector as output.
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The Newton method is used in 3DVar and 4DVar, as we will discuss in Chaps. 4,
5, and 6. Primarily used, however, is the Gauss–Newton method, leading to im-
plementations such as incremental 4DVar, which explores the conjugate-gradient
minimization method commonly used in numerical weather and ocean forecasting.
Furthermore, this formalism has led to a general methodology that can effectively be
solved in ensemble space, resulting in iterative ensemble smoothers used in reservoir-
engineering applications, amongst others. We will discuss this method next.

3.4 Gauss–Newton Iterations

A popular choice for finding an iterative solution to the cost function is the so-called
Gauss–Newton method (Lawless et al., 2005). The Gauss–Newton method is an
approximate Newton method where we approximate the Hessian by ignoring the
second-order derivative of the nonlinear measurement operator. Let’s take a deeper
look at this approximation. We can write the full Hessian of the cost function in
Eq. (3.9) as

∇z∇zJ = C−1
zz + ∇zg(z)C

−1
dd

(∇zg(z)
)T + ∇z∇zg(z)C

−1
dd

(
g(z) − d

)
. (3.15)

The Gauss–Newton method ignores the last term, leading to

∇z∇zJ(z) ≈ C−1
zz + ∇zg(z)C

−1
dd

(∇zg(z)
)T

. (3.16)

We can now write a Gauss–Newton iteration similar to Eq. (3.14) as

Gauss–Newton iteration

zi+1 = zi−γ i
(
C−1
zz +GiTC−1

dd G
i
)−1 (

C−1
zz (zi−zf)+GiTC−1

dd

(
g(zi )−d

))
. (3.17)

Here the increment is a steplength γ times the gradient normalized by (C−1
zz +

GiTC−1
dd G

i
)
, the approximate Hessian. In correspondence with Eq. (3.14), we have

chosen Bi =
(
C−1
zz + GiTC−1

dd G
i
)−1

. Furthermore, we have defined the gradient of
g(z) at iteration i as

GiT = ∇zg
(
zi

)
. (3.18)

We can interpret the operator Gi as the tangent-linear-model operator at iteration
i , which provides the linear relation between the state vector and the observations.

Likewise, we can interpret the operator GiT as the tangent-linear model’s adjoint.

3.5 Incremental Form of Gauss–Newton Iterations

As mentioned earlier, the storage of the approximate Hessian would require sub-
stantial memory if we use the direct Gauss–Newton method for high-dimensional
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problems, and the Hessian’s inversion can be rather expensive. We will present
two solutions to solve this problem. In Chap 7, we will use Eq. (3.17) to develop
the ensemble-random-maximum-likelihood (EnRML) method, which is commonly
used in the petroleum industry.

An alternative is to write Eq. (3.17) with γ i = 1 as
(
C−1
zz +GiTC−1

dd G
i
)(
zi+1 − zi

) = −
(
C−1
zz (zi − zf)+GiTC−1

dd

(
g(zi )−d

))
. (3.19)

When we define, as before,
δz = zi+1 − zi , (3.20)

this equation also arises as the minimum of the following quadratic cost function
for δz

J(δz) = 1

2

(
δz + zi − z f )TC−1

zz

(
δz + zi − z f )

+ 1

2

(
Giδz + g(zi ) − d

)TC−1
dd

(
Giδz + g(zi ) − d

)
.

(3.21)

This cost function linearizes the model and observation operators around the model
trajectory for each Gauss–Newton iteration starting from the initial condition zi .
Because δz is small, we can approximate g

(
zi + δz

) ≈ g
(
zi

) + Giδz in which Gi is
the transpose of the gradient of g

(
zi

)
from Eq. (3.18). For convenience, we define

the innovation vector
ηi = d − g

(
zi

)
, (3.22)

and the residual
ξ i = zf − zi . (3.23)

With η and ξ , we can now write the cost function in Eq. (3.21) for the increments δz
as

Quadratic cost function for the increments

J(δz) = 1

2

(
δz − ξ i

)T C−1
zz

(
δz − ξ i

) + 1

2

(
Giδz − ηi

)T C−1
dd

(
Giδz − ηi

)
. (3.24)

The solution for the increments becomes, from Eq. (3.19),
(
C−1
zz + GiTC−1

dd G
i
)
δz = C−1

zz ξ i + GiTC−1
dd ηi . (3.25)

We can solve this linear set of equations iteratively, and we usually implement the
approximate Hessian as a set of operations working on the vector δz. Quasi-Newton
methods like BFGS and conjugate gradient are highly efficient for minimizing this
cost function.

Thus, the incremental form of the Gauss–Newton method corresponds to an iter-
ative scheme where we find the minimum of a quadratic cost function for δz in each
iteration. After that, we update zi+1 = zi + δz from (3.20), integrate the nonlinear
model with the updated state vector, and recompute the variables ηi and ξ i from
Eqs. (3.22) and (3.23) before we solve the quadratic minimization problem again.
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Gauss–Newton has a special status among minimization methods. It turns non-
quadratic minimization problems into a sequence of quadratic minimization prob-
lems. We can solve each of these quadratic problems iteratively, leading to one
iteration within another. We will explore this approach in the methods discussed in
the following chapters.
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4Strong-Constraint 4DVar

This chapter introduces the strong-constraint 4-dimensional variational (SC-4DVar)
method. By strong constraint, we refer to the dynamical model having no model
errors.Hence, themodel solution over the assimilationwindow is entirely determined
by the model as soon as we give the initial conditions. In SC-4DVar, we solve a
4-dimensional problem by including the three space dimensions and time as the
fourth dimension, using a variational approach. The method is a gradient-based
minimization method but makes use of an adjoint model to calculate the gradient.
The chapter covers theSC-4DVar’s standard form for estimating initial conditions and
uncertain parameters. After that, it discusses amore efficient incremental formulation
before presenting the state-transform variant of the method.

4.1 Standard Strong-Constraint 4DVar Method

Sasaki (1970a) introduced the concept of a strong-constraint formulation for a min-
imization problem when imposing a dynamical model without errors as a strong
constraint. The iterative SC-4DVar method for solving the strong-constraint prob-
lem has its origin in several publications in the atmosphere and ocean modeling
communities, e.g., (Lewis & Derber, 1985; Le Dimet & Talagrand, 1986; Talagrand
& Courtier, 1987; Thacker, 1988; Thacker & Long, 1988). Later, in Chap. 5, we will
extend this formulation to the weak-constraint case where we allow the model to
contain errors leading to the so-called weak-constraint variational inverse problem
and the weak-constraint 4DVar (WC-4DVar) method.
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4.1.1 Data-Assimilation Problem

We now assume the model system to include Eqs. (2.1, 2.2, and 2.5) and write it as

x0 = xf0 + x′
0, (4.1)

θ = θ f + θ ′, (4.2)

xk+1 = m(xk, θ), (4.3)

where there are no model errors or uncertainty in the model-state evolution, but we
allow for uncertain model initial conditions and parameters. Additional constraints
come from the measurements with errors

d = h(x) + e. (4.4)

Thus, we wish to estimate the model’s uncertain initial conditions at the start of the
assimilation window and the poorly known parameters to find a model prediction
close to the measurements. At the same time, the estimated initial conditions and
parameters should remain close to their first-guess values while respecting the pre-
scribed uncertainties in both. The state vector z contains the initial state and model
parameters,

z =
(
x0
θ

)
. (4.5)

We start from the cost function in Eq. (3.9). The operator g(z) is the composite
function including themodel recursion fromEq. (4.3) that predicts themodel solution
at all time steps over the assimilation window followed by a measurement operator
that maps the prediction to the measurements.

From the definition of the predicted measurements in Eq. (2.32), g(z) = h
(
m(z)

)
,

we canwriteg(z) = h(x), and it is then convenient to reformulate the problemdefined
by the cost function in Eq. (3.9) as

SC-4DVar costfunction

J(z) = 1

2

(
z − zf

)T C−1
zz

(
z − zf

) + 1

2

(
h(x) − d

)T C−1
dd

(
h(x) − d

)
, (4.6)

subject to the “perfect-model” constraint in Eq. (4.3), which defines the model
solution x over the assimilation window.

In SC-4DVar, we commonly refer to the state-covariance matrix

Czz =
(
Cx0x0 0
0 Cθθ

)
, (4.7)

as the background-error-covariance matrix, which characterizes the error covari-
ances of the prior initial conditions and the parameters. We specify the background-
error-covariance matrix using time-independent numerical representations of pre-
scribed relationships between variables (Weaver et al., 2003, 2005). We would typi-
cally not assume correlations between model parameters and the initial conditions.
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4.1.2 Lagrangian Formulation

Minimizing the cost function in Eq. (4.6), subject to the additional constraint of
the model Eq. (4.3), allows us to formulate a Lagrangian minimization problem
with the model constraint introduced via Lagrangian multipliers λk . Note that we
already have included the prior initial condition and parameters in the first term of
the cost function. By introducing the Lagrangianmultipliers, we increase the number
of unknowns in the optimization problem, but the formulation allows for an efficient
solution method. The Lagrangian cost function for the constrained minimization
problem becomes

L(x0, . . . , xK+1, θ ,λ1, . . . ,λK+1) = 1

2

(
x0 − xf0

)T C−1
x0x0

(
x0 − xf0

)

+ 1

2

(
θ − θ f

)T C−1
θθ

(
θ − θ f

)

+ 1

2

(
h(x) − d

)T C−1
dd

(
h(x) − d

)

+
K∑

k=0

λT
k+1

(
xk+1 − m(xk, θ)

)
.

(4.8)

The last expression in this Lagrangian introduces the Lagrange multipliers and the
perfect-model constraints. In the summation, we include an extra time step for xK+1
and λK+1, leading to a more straightforward form of the Euler–Lagrange equations
below.

We now define the gradients of the nonlinear measurement operator h and model
m as

H =∇xh(x)
∣∣
x

, (4.9)

Mx,k =∇xkm(x, θ)
∣∣
xk ,θ

, (4.10)

Mθ,k =∇θm(x, θ)
∣∣
xk ,θ

, (4.11)

and simplify the notation (x0, . . . , xK+1, θ ,λ1, . . . ,λK+1) by the more compact
notation (x, θ , λ). The time index on Mθ,k denotes that we evaluate the gradient to
θ at different times tk .

4.1.3 Explaining theMeasurement Operator

We assume that H consists of matrices Hk , each with size m × n, with m being the
number of measurements within an assimilation window, and n the size of the state
vector at the time tk . We then define one matrixHk for each time step tk , that relates
the predicted measurements at tk to the state vector at xk . Thus,

H = (
H0 · · · Hk · · · HK+1

)
. (4.12)

The rows in H correspond to the m measurements distributed over the assimilation
window, and Hk corresponds to measurements available at the time step k within
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this window. Thus, for a time, tk , we can have a set of measurements, and a sub-
block Hk will relate these measurements to the model state at that time. If there
are no measurements at a time tk , then Hk = 0. Because of this construction, each
matrixHk is very sparse. All rows are zero except for the rows corresponding to the
measurements at time tk and the measurement location.

ThematrixH can take care of interpolation between themeasurement location and
the model discretization. In contrast, suppose the measurement is taken precisely at a
model gridpoint. In that case, the corresponding row inH will have a single element
that connects themodel variable to themeasurement. In this manner, y = Hx denotes
the vector of all predicted measurements over the assimilation window. Likewise,
yk = Hkxk is the vector y with zeros except for the predicted measurements at time
tk at the measurement location. Note that we have defined H0 = HK+1 = 0. We
have used this definition for H to allow for a compact and straightforward notation
in the following and at the same time allow for measurement errors correlated over
time.

4.1.4 Euler–Lagrange Equations

We now find for the gradient of the Lagrangian to xk , for k = 1, . . . , K ,

∇xkL(x, θ , λ) = HT
k C

−1
dd

(
h(x) − d

) + λk − MT
x,kλk+1. (4.13)

The transpose of the linearized model Mx,k , known as the adjoint of the model,
deserves some specific attention. The linearized model Mx,k maps a vector from
time tk to time tk+1. Its adjoint, MT

x,k , does the reverse, it maps a vector from time
tk+1 backwards in time to tk . Hence, Eq. (4.13) refers to a backward integration of
the linearized model equations’ adjoint model.

The gradient of the Lagrangian to xK+1 becomes simply

∇xK+1L(z, x,λ) = λK+1. (4.14)

For the initial time, we obtain the gradient of the cost function to x0 as

∇x0L(x, θ ,λ) = C−1
zz

(
x0 − xf0

)
− MT

x,0λ1

= C−1
zz

(
x0 − xf0

)
− λ0,

(4.15)

where we have defined an additional “pseudo-variable” λ0 for convenience. The
derivative of the Lagrangian to the parameters θ gives

∇θL(x, θ , λ) = C−1
θθ

(
θ − θ f

) −
K∑

k=0

MT
θ,kλk+1. (4.16)

Finally, the derivative of L(x, θ ,λ) to the Lagrange multiplier λk returns the model
equation

∇λkL(x, θ ,λ) = xk+1 − m(xk, θ). (4.17)
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Algorithm 1 Standard SC-4DVar algorithm with parameter estimation
1: Input: zf ∈ �n ; d ∈ �m � Prior initial conditions and observations

2: x0 = xf0 � Initialization of x0
3: θ = θ f � Initialization of θ

4: repeat � Iteration loop

5: for k = 0 : K do � Integrate forward model

6: xk+1 = m(xk , θ)

7: end for
8: λK+1 = 0

9: for k = K : 0 do � Integrate backward adjoint model

10: λk = MT
x,kλk+1 − HT

kC
−1
dd

(
h(x) − d

)
11: end for
12: x0 ← x0 − γB∇x0L(x, θ ,λ) � Update x0 using Eq. (4.15)

13: θ ← θ − γB∇θL(x, θ ,λ) � Update θ using Eq. (4.16)

14: until convergence

Setting the derivatives in Eqs. (4.13–4.17) to zero results in a coupled system of
Euler–Lagrange equations consisting of a forward model

x0 = xf0 + Cx0x0λ0, (4.18)

θ = θ f + Cθθ

K∑
k=0

MT
θ,kλk+1, (4.19)

xk+1 = m(xk, θ), (4.20)

and a backward model for the adjoint variable

λK+1 = 0, (4.21)

λk = MT
x,k λk+1 − HT

k C
−1
dd

(
h(x) − d

)
. (4.22)

In this manner, we must solve a coupled two-point boundary-value problem in time.
The last term of the right-hand side of Eq. (4.22) is often referred to as the weighted
observational forcing (Daley, 1991; Talagrand & Courtier, 1987) and introduces the
observation information, which is brought backward from an observation time to the
start of the time window.

In the standard form of SC-4DVar, we use the gradients in Eqs. (4.15) and (4.16)
in a Gauss–Newton method to iteratively update the initial conditions of the forward
model. Thus, starting from the first-guess solution of themodelwithλ = 0,we obtain
a solution for x from the forward model Eqs. (4.18–4.20). We can then use this x to
solve the adjoint model in Eqs. (4.21) and (4.22) for λ. When we have an estimate
of λ, we can evaluate the gradients in Eqs. (4.15) and (4.16) to update the initial
condition and estimate the parameters and repeat the procedure. We typically use a
conjugate-gradient or a quasi-Newton method for this iterative procedure (Navon &
Legler, 1987). The linearization points for the observation operator and the model,
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defined by the states at different times in the forward model integration, differ in
each iteration, such that MT

x,k and Mθ,k , and in some cases, H will differ between
iterations. In Algorithm 1, we illustrate the practical implementation of the standard
SC-4DVar method.

4.2 Incremental Strong-Constraint 4DVar

In the cost function in Eq. (4.6), both the model and the measurement operators
are often nonlinear. Minimizing a non-quadratic cost function can be challenging
as the most efficient minimization methods, such as conjugate gradient, assume a
quadratic cost function. Therefore, an approach based on the incremental Gauss–
Newton formulation can lead to a more straightforward minimization problem and
more efficient solvers. Thus, to practically implement SC-4DVar, one often uses the
more efficient incremental form of theGauss–Newtonmethod fromSect. 3.5, leading
to the so-called incremental 4DVar (see, e.g., Weaver et al. 2005).

4.2.1 Incremental Formulation

Incremental 4DVar is particularly suitable for estimating initial conditions. If we
want to estimate model parameters using the incremental approach, we need to
update them in the outer iterations. The inner iterations perform a linearized model
integration for the increments utilizing the model’s tangent-linear operator evaluated
at the current model solution xi and parameters θ i . Before addressing the parameter-
estimation problem, let us focus on estimating the initial model state only. In this
case, the state vector is z = x0, and the dynamical model with an uncertain initial
condition is now

x0 = xf0 + x′
0, (4.23)

xk+1 = m(xk). (4.24)

In incremental SC-4DVar, we compute updates

zi+1 = zi + δz, (4.25)

where the increments δz are solutions that minimize the cost function in Eq. (3.24)
for iteration i .

As in Sect. 4.1, g(z) is the composite function of the recursive time stepping of the
model (seeEq. 2.32). Thus,wefind themodel solutionx over the assimilationwindow
from Eq. (4.24) and apply the measurement operator h(x) to obtain the predicted
measurements. The linearization of m now gives the tangent-linear operator of the
nonlinear model evaluated at the model solution xi , from the i th outer iteration

Mi
k = ∇xkm(x)

∣∣
xik

, (4.26)

similar to the definition in Eq. (4.10).



4.2 Incremental Strong-Constraint 4DVar 41

Wewill now minimize the cost function in Eq. (3.24) iteratively. We can compute
themodel solution’s i th increment δx = δx1, ..., δxK+1 over the assimilationwindow
from the tangent-linear model with initial conditions

δx0 = δzi , (4.27)

δxk+1 = Mi
kδxk . (4.28)

For the predicted measurements of the increments, we can write Hδx, using the
linearizedmeasurement operatorH from Eq. (4.9). Additionally, for the i th iteration,
we define the prior increment

ξ i = xf0 − xi0, (4.29)

and the innovation
ηi = d − h(xi ). (4.30)

For each iteration i , the problem reduces to minimizing the cost function

Inner incremental SC-4DVar costfunction

J(δz) = 1

2

(
δz − ξ i

)TC−1
zz

(
δz − ξ i

) + 1

2

(
Hiδx − ηi

)T C−1
dd

(
Hiδx − ηi

)
, (4.31)

for δz, subject to the model constraint in Eq. (4.28). Note the similarity to
Eq. (3.24).

4.2.2 Lagrangian Formulation for the Inner Iterations

We again introduce Lagrange multipliers to form the extended cost function that
incorporates the strong constraint of the perfect model, similar to Eq. (4.8). We also
define the additional control variables δλ = δλ1, ..., δλK+1. The Lagrangian cost
function for the problem defined by Eqs. (4.28) and (4.31) now becomes

L(δz, δx, δλ) = 1

2

(
δz − ξ i

)T
C−1
zz

(
δz − ξ i

)
+ 1

2

(
Hiδx − ηi

)T
C−1
dd

(
Hiδx − ηi

)

+
K∑

k=0

δλT
k+1

(
δxk+1 − Mi

kδxk
)
.

(4.32)

The gradient of the Lagrangian for the incremental problem at time k becomes

∇δxkL(δz, δx, δλ) = Hi
k
T
C−1
dd

(
Hiδx − ηi

)
+ δλk − Mi

k
T

δλk+1. (4.33)

Similarly, we have for the final time tK+1,

∇δxKL(δz, δx, δλ) = δλK+1, (4.34)
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and for t0 we find

∇δzL(δz, δx, δλ) = C−1
zz

(
δz − ξ i

)
− Mi

0
T
δλ1

= C−1
zz

(
δz − ξ i

)
− δλ0,

(4.35)

using δz = δx0. Finally, the derivatives of the Lagrangian to the Lagrange multipliers
give the linearized forward model Eq. (4.28) in a similar way as how we arrived at
Eq. (4.17) for the non-incremental 4DVar formulation.

4.2.3 Euler–Lagrange Equations for the Inner Iterations

Setting the derivatives in Eqs. (4.33), (4.34), and (4.35), and also the derivatives of
the Lagrangian to δλk , all equal to zero, gives the following set of coupled Euler–
Lagrange equations consisting of the linear forward model

δx0 = ξ i + Czz δλ0, (4.36)

δxk+1 − Mi
kδxk = 0, (4.37)

the adjoint model with a final condition

δλK+1 = 0, (4.38)

δλk − Mi
k
T
δλk+1 = Hi

k
T
C−1
dd

(
Hiδx − ηi

)
. (4.39)

We can now solve this coupled system efficiently using the incremental SC-4DVar
(Algorithm 2).

The solution technique is similar to the one described in Sect. 4.1. We first run
the nonlinear model with a first guess, zf , to compute the model state over the whole
window. This model state provides the linearization points for the tangent-linear
model and observation operators and defines ηi and ξ i . Thus, we can evaluate the
full quadratic cost function in Eq. (3.24).

After that, we compute the increment δz from the inner iterations of the linear
forward model and its adjoint. We start with a first guess δx0 = δz, which we
propagate forward in time with the linear model in Eq. (4.37). This solution defines
the forcing field for the backward integration of the adjoint model in Eq. (4.39). The
backward integration to time k = 0 provides us with the gradient of the cost function
in Eq. (4.35). We can then use this gradient to find a new estimate for δz by applying
methods like a conjugate gradient or a quasi-Newton technique, which feeds back
into the linearized forward model in Eq. (4.37).

After minimizing the linearized cost function, we add δz to the previous estimate
xi = xi+1 + δz and reevaluate ηi and ξ i . This update defines a new quadratic cost
function and a newly updated model trajectory over the assimilation window. We
thenminimize this new cost function to find the next δz. Thus, there are two iterations
in play, one from the Gauss–Newton process, the so-called outer loop, and one set of
so-called inner iterations to solve the quadratic cost function in Eq. (3.24) for each
increment δz. In the algorithm, γ and B depend on the minimization method used to
solve the inner-loop problem, which can be a conjugate gradient method, BFGS, or
any other minimization method.
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Algorithm 2 Incremental SC-4DVar algorithm

1: Input: xf0 ∈ �n ; d ∈ �m ; Cdd ∈ �m×m ; Czz ∈ �n×n � Prior inputs

2: x00 = xf0 � Initialization of x0
3: δz = 0 � Initialization of δz
4: i = 1

5: repeat � Iteration loop

6: xi0 = xi−1
0 + δz � Update initial condition

7: ξ i = xf0 − xi0 � Current increment

8: for k = 0 : K do � Integrate forward model

9: xik+1 = m(xik) � Nonlinear model prediction

10: end for
11: ηi = d − h(xi ) � Current innovation vector

12: repeat � Iteration loop

13: δx0 = δz
14: for k = 0 : K do � Integrate forward model

15: δxk+1 = Mi
kδxk

16: end for
17: δλK+1 = 0

18: for k = K : 0 do � Integrate backward adjoint model

19: δλk = Mi
k
T
δλk+1 − Hi

k
T
C−1
dd

(
Hi δx − ηi

)
20: end for
21: δz ← δz − γB

(
δz − ξ i − Czzδλ0

)
� Update δz using gradient in Eq. (4.35)

22: until convergence
23: i = i + 1

24: until convergence

4.3 Preconditioning in Incremental SC-4DVar

As explained in Sect. 3.4, we use a Gauss–Newton method to minimize the cost
function of the increments in Eq. (4.31). We can use preconditioning for fast con-
vergence when minimizing the cost function. The most used preconditioner is a
control-variable transform (Bannister, 2008, Fisher et al., 2011,Weaver et al., 2005).
Remember that we define the Gauss–Newton method’s i th estimate of the initial
model state as zi and define the new iterate as zi+1 = zi + δzi . The preconditioning
transforms the variable δz (= δx0) into w according to1

δz − ξ i = δx0 − ξ i = Vwi , (4.40)

where V ∈ �n×nw with nw ≥ n. V is of full rank and defined such that Czz =
VVT and C−1

zz = (V†)TV†. The superscript † denotes the generalized or pseudo

1 An equivalent and often used transformation is to define δz = Vwi . This alternative only slightly
modifies the algorithm and leads to the same solution.
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inverse. The matrix V typically represents the physical laws of the system, such as
geostrophic balance for oceanographic simulations. We can construct V similarly to
howwe generate the backgroundmatrix in Eq.4.7 using time-independent numerical
representations of prescribed relationships between variables. For example,wemight
want to impose hydrostatic balance in atmospheric and ocean models, balancing the
relationship between gravity and the vertical pressure gradient. The matrixV is then
constructed such that the physical variables will follow this relation.

The transformation in Eq. (4.40) will make it possible to compute the cost func-
tion’s gradients to the transformed variable w ∈ �nw without evaluating large ma-
trices. With this formulation, the cost function Eq. (4.31) for the increments now
becomes

Inner incremental SC-4DVar cost function with preconditioning

J(wi ) = 1

2
wiTwi + +1

2

(
Hiδx − ηi

)T C−1
dd

(
Hiδx − ηi

)
. (4.41)

It is easy to see that this control-variable transform is a form of preconditioning.
If we write down the Hessian of this cost function, we find, omitting the i index for
clarity,

∇w∇wJ(w) = I + VTGTR−1GV, (4.42)

while the Hessian of the original problem is

∇δz∇δzJ(δz) = C−1
zz + GTR−1G. (4.43)

We immediately see that

∇w∇wJ(w) = VT∇δz∇δzJ(δz)V. (4.44)

For minimizing the cost function in Eq.4.41, it is straightforward to define a
constrained minimization problem using the model definition in Eq. (4.28). We can
then write the Lagrangian for this problem as

L(w, δx, δλ) = 1

2
wiTwi

+ 1

2

(
Hiδx − ηi

)T
C−1
dd

(
Hiδx − ηi

)

+
K∑

k=1

δλT
k+1

(
δxik+1 − Mi

kδx
i
k

)

+
(
δxi1 − Mi

0

(
ξ i + Vwi ))Tδλ1,

(4.45)
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Algorithm 3 Incremental SC-4DVar algorithm for the state-transform space
1: Input: zf ∈ �n ; d ∈ �m ; Cdd ∈ �m×m ; V ∈ �n×nw � Prior inputs

2: w = 0 � Initialization

3: z0 = zf � Initialization

4: i = 1 � Loop initialization

5: repeat � Outer loop in i

6: zi = zf + Vw � Update initial condition

7: ξ i = zf − zi � Current increment

8: for k = 0 : K do � Integrate forward model

9: xik+1 = m(xik) � Nonlinear model prediction

10: end for
11: ηi = d − h(xi ) � Current innovation vector

12: repeat � Start inner loop

13: δx0 = ξ i + Vw
14: for k = 0 : K do � Integrate forward linear model

15: δxk+1 = Mkδxk
16: end for
17: δλK+1 = 0

18: for k = K : 0 do � Integrate backward adjoint model

19: δλk = MT
k δλk+1 − HT

kC
−1
dd

(
Hδx − η

)
20: end for
21: w ← w − γ iBiVTδλ0 � Update w
22: until convergence
23: i = i + 1

24: until convergence

where the last line is just the contribution corresponding to k = 0 in the summation
from the line above. In this transformed form, the gradient of the Lagrangian to the
transformed variable w becomes

∇wL(w, δx, δλ) = wi −
(
Mi

0V
)T

δλ1

= wi − VTMi
0
T
δλ1

= wi − VTδλ0

= V†
(
δx0 − ξ i ) − VTδλ0,

(4.46)

while the gradients with respect to δxk and δxK+1 are still the ones from Eqs. (4.33)
and (4.34). Note that, by choosing xf0 to be the initial guess for x0, we do not need to
transform from δx0 tow, which would require computation ofV†. Thus, the gradient
of the Lagrangian to w at time t = 0 becomes

∇wL(w, δλ) = −VTδλ0. (4.47)
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Assimilation window 1 Assimilation window 2 Forecast

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hours)

Fig.4.1 The figure illustrates the use of incremental SC-4DVar for a case where the control vector
equals the initial condition. The algorithm first integrates the model over the first assimilation
window to produce the prior solution (solid blue line). After that, the SC-4DVar’s inner iterations
incrementally update the windows’ initial condition, resulting in a sequence of updated model
trajectories (dashed green lines) until convergence (solid green line), which also serves as an initial
condition for the second assimilation window, and we repeat the iteration procedure

The iteration of the above equations minimizes the cost function for the linearized
model system in Eq. (4.41), and we can update the state vector, i.e., the initial
conditions of the nonlinear model from

zi+1 = zi + δz = zi + ξ i + Vw = zf + Vw. (4.48)

We can then update ξ i+1, run the nonlinear model from zi+1 to obtain the model
solution, which we measure to compute ηi+1, and start a new set of inner iterations
to calculate an updated estimate of w. Typically, we only need a few outer itera-
tions, but we run several inner-loop iterations for each outer iteration. We provide
a pseudo-code in Algorithm 3, and Fig. 4.1 illustrates the process. For more infor-
mation regarding the implementation of a typical 4DVar system, see, e.g., Bannister
(2017) and Weaver et al. (2005).

4.4 Summary of SC-4DVar

We have seen that the SC-4DVar method solves for the minimum of a cost function.
Thisminimumcorresponds to themaximuma posteriori (MAP) probability estimate.
SC-4DVar is a gradient-based method and is thus limited to weakly nonlinear prob-
lems, as for highly nonlinear problems, the descent methods are likely to get trapped
in local minima. A significant obstacle for this method is the need for a tangent linear
and adjoint model, which may require a considerable if not overwhelming effort in
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some cases. However, so-called adjoint compilers exist and have been helpful in
some cases (Marotzke et al., 1999). As one needs access to the model’s code to gen-
erate the adjoint model, SC-4DVAR is not applicable with commercial “black-box”
models.

The method has formed a basis for operational weather forecasting at most inter-
national weather services. The weather community has invested a massive effort in
developing, maintaining, and calibrating their SC-4DVar data-assimilation systems.
A particular issue with the method is that it does not provide a simple means for
computing error estimates of the analysis update or propagating updated error statis-
tics to the next assimilation window. Thus, common in the SC-4DVar systems is the
use of a stationary background matrix that one designs to represent the dynamics of
the model equations (Bannister, 2008).

One of the reasons for introducing the method here, except for the historical one,
is that it will serve as an essential component of an ensemble SC-4DVar configuration
discussed below. Finally, we have shown that it is also possible to use SC-4DVar for
pure parameter estimation.
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5WeakConstraint 4DVar

It is also possible to formulate the 4DVar problem with the model acting as a weak
constraint. We then search for a model solution close to the measurements that
“almost” satisfies the dynamical model and its initial and boundary conditions. The
concept of the model being a “weak constraint” as opposed to “strong constraint”
was introduced by Sasaki (1970b). An early weak-constraint assimilation study is
the one by Bennett and McIntosh (1982) who solved the weak-constraint variational
inverse problem for an ocean tidal model. The two books by Bennett (1992, 2002)
give a detailed presentation of the generalized weak-constraint inverse formulation
and introduce a solution method known as the representer method. Below, we will
discuss two approaches for including themodel as a soft constraint. Thefirst approach
treats the model errors as an additional model forcing that we estimate. The second
approach treats themodel state over the assimilationwindow as the unknown variable
“while allowing formodel errors.” It turns out that this second alternative is the easiest
to solve. In the case of a nonlinear model, we follow the procedure from Sect. 3.5
where we define outer Gauss–Newton iterations and use the representer method to
solve a linear inner problem for each iteration, an approach introduced by Bennett
et al. (1997) and Egbert et al. (1994).

5.1 Forcing Formulation

We now assume the model system to include Eqs. (2.1, 2.4, and 2.5) and write the
model as

xk = m(xk−1, qk). (5.1)
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The state vector contains both initial conditions x0 and the time dependent model
errors q1, . . . ,qK

z =

⎛
⎜⎜⎜⎝

x0
q1
...

qK

⎞
⎟⎟⎟⎠ , (5.2)

and the weak constraint cost function is again the cost function in Eq. (3.9)

The weak-constraint cost function (Forcing formulation)

J(z) = 1

2

(
z − zf

)TC−1
zz

(
z − zf

) + 1

2

(
g(z) − d

)T C−1
dd

(
g(z) − d

)
, (5.3)

subject to the model constraint from Eq. (5.1).
Note that Czz now also includes the error covariances in space and time of the

model errors

Czz =

⎛
⎜⎜⎜⎝

Cx0x0 0 · · · 0
0 Cq1q1 · · · Cq1qK
...

...
. . .

...

0 CqKq1 · · · CqK qK

⎞
⎟⎟⎟⎠ , (5.4)

and we naturally assume zero correlation between errors in the initial conditions and
the model errors.

The operator g(z) is the composite function including the model recursion as
defined in Eq. (5.1), where we apply the measurement operator to the model solution
over the assimilation window. This measurement operator maps the prediction to the
measurement space.

As in Sect. 4.2, we define an increment vector as

δz =
(

δx0
δq

)
=

(
xi+1
0 − xi0

qi+1 − qi

)
. (5.5)

Furthermore, we use the residual ξ i = zf − zi from Eq. (3.23), and write the in-
novations ηi = d − h(zi ) from Eq. (3.22), but with the state vector z as defined in
Eq. (5.2).

In incremental WC-4DVar, we minimize the cost function in Eq. (3.24), written
as

J(δz) = 1

2

(
δz − ξ i

)T C−1
zz

(
δz − ξ i

) + (
Giδz − ηi

)T C−1
dd

(
Giδz − ηi

)
, (5.6)

but now δz and ξ i also include the model error perturbations at every time step in
the assimilation window. This formulation is the so-called forcing formulation (Der-
ber, 1989; Zupanski, 1993), where we apply the model errors as a forcing of the
deterministic model. It is not easy to solve the resulting Euler-Lagrange equations
because of the vast dimension of δz that equals the state dimension times the number
of time steps in the assimilation window. Furthermore, since any iteration method is
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sequential by design, there is little room for parallel computations. There have been
attempts to parallelize the algorithm in the time domain. Since the cost function is
quadratic in the unknowns, this is possible. However, solving this equation stands
or falls by efficient preconditioning. It turns out that standard preconditioning tech-
niques conflict with time-wise parallel computations of the problem. However, in
some cases, it may be possible to represent the model errors by a lower-dimensional
projection that makes the problem solvable.

5.2 State-Space Formulation

Analternative to the solving forcing formulation above is towrite theweak-constraint
inverse problem in Eq. (5.3) as a state-space problem. It is then required to define
the model in Eq. (5.1) with additive errors

xk = m(xk−1) + qk . (5.7)

We can now replace qk in Eq. (5.3) using the model definition in Eq. (5.7) to obtain

The weak-constraint cost function (generalized inverse formulation)

J(x) = 1

2

(
x0 − xf0

)TC−1
x0x0

(
x0 − xf0

)

+ 1

2

(
h(x) − d

)T C−1
dd

(
h(x) − d

)

+ 1

2

K∑
r=1

K∑
s=1

(
xr − m(xr−1)

)TCqq(r, s)
(
xs − m(xs−1)

)
.

(5.8)

Note the double sum in the last term, which accounts for model-error correlations in
time. The state vector nowcontains the initial conditions and the entiremodel solution
as a discrete function of time over the data-assimilation window. In Eq. (5.8) and the
following derivation, we use the notation z = x with

x =
⎛
⎜⎝

x0
...

xK

⎞
⎟⎠ , (5.9)

and we have eliminated the explicit appearance of the model errors q from the cost
function.

The model-error covariance matrix is now

Cqq =
⎛
⎜⎝
Cq1q1 · · · Cq1qK

...
. . .

...

CqK q1 · · · CqK qK

⎞
⎟⎠ , (5.10)
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and it allows for correlated errors in time, consistent with the double summation
in Eq. (5.8). We note that the cost functions in Eqs. (5.3) and (5.8) are equivalent
besides the assumption of additive model errors in Eq. (5.8).

5.3 Incremental Form of the Generalized Inverse

Based on the formulation in Sect. 5.2, we can formulate the incremental form of the
generalized inverse, verymuch as inSect. 4.2. The linearizedmodel andmeasurement
operators over an outer Gauss–Newton iteration increment are

m
(
xi+1
k

) = m
(
xik + δxk

)

≈ m
(
xik

) + Mkδxk,
(5.11)

and
h
(
xi+1

)
= h

(
xi + δx

)
≈ h

(
xi

)
+ Hδx,

(5.12)

where H follows the definition from Eq. (4.12) and

xi+1 = xi + δx. (5.13)

With this, we can write the model residual in Eq. (5.8) as

xi+1
k − m

(
xi+1
k−1

) ≈ xi+1
k − m

(
xik−1

) − Mk−1δxk−1

= xi+1
k − xik + xik − m

(
xik−1

) − Mk−1δxk−1

= δxk − Mk−1δxk−1 + ξ ik,

(5.14)

where for the time steps k = 1, . . . , K

ξ ik = xik − m
(
xik−1

)
, (5.15)

is the deviation of the model trajectory from the exact model solution. For the incre-
ment’s initial-condition term we define as before ξ i0 = xi0 − xf0. The innovations are

ηi = d − h
(
xi

)
. (5.16)

We insert these definitions into the cost function for the generalized inverse in
Eq. (5.8) to get the inner cost function as

The weak-constraint incremental cost function

J(δx) = 1

2

(
δx0 − ξ i0

)TC−1
x0x0

(
δx0 − ξ i0

)

+ 1

2

(
Hiδx − ηi

)T C−1
dd

(
Hiδx − ηi

)
(5.17)

+ 1

2

K∑
r=1

K∑
s=1

(
δxr − Mr−1δxr−1 + ξ ir

)TC−1
qq (r, s)

(
δxs − Ms−1δxs−1 + ξ is

)
.
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Since the model is linear in the inner loop, a Gaussian prior for the initial condition
leads to a Gaussian prior on the model states in the whole time window. Hence, we
can again assume aGaussian prior for the unknown state increment δx = xi+1−xi for
the model’s initial condition and the model solution at all instants in the assimilation
window.

5.4 Minimizing the Cost Function for the Increment

Taking the gradient of the cost function in Eq. (5.17) to the model state δxk gives,
for k �= 0

∇δxkJ(δx) = Hi
k
T
C−1
dd

(
Hiδx − ηi

)

+
K∑
s=1

C−1
qq (k, s)

(
δxs − Mi

s−1δxs−1 + ξ is
)

− Mi
k
T

K∑
s=1

C−1
qq (k + 1, s)

(
δxs − Mi

s−1δxs−1 + ξ is
)
.

(5.18)

From this equation, we can define an adjoint vector for each time step as

δλk =
K∑
s=1

C−1
qq (k, s)

(
δxs − Mi

s−1δxs−1 + ξ is
)
, (5.19)

such that we can write Eq. (5.18) as

∇δxkJ(δx) = Hi
k
T
C−1
dd

(
Hiδx − ηi

) + δλk − Mi
k
T
δλk+1. (5.20)

For the initial time k = 0 we find for the gradient

∇δx0J(δx) = C−1
x0x0

(
δx0 − ξ i0

) − Mi
0
T
δλ1

= C−1
x0x0

(
δx0 − ξ i0

) − δλ0,
(5.21)

where we used the definition of the adjoint variable (5.19).
If we now set all gradients of the cost function to zero, we find the Euler-Lagrange

equations, which comprise a two-point boundary value problem in time consisting
of the forward model with the initial condition for the increments δx

Forward model

δx0 = ξ i0 + Cx0x0δλ0, (5.22)

δxk − Mi
k−1δxk−1 = −ξ ik +

K∑
s=1

Cqq(k, s)δλs, (5.23)

and the backward model for the adjoint variable δλ



54 5 Weak Constraint 4DVar

Backward model

δλK+1 = 0, (5.24)

δλk − Mi
k
T
δλk+1 = −Hi

k
T
C−1
dd

(
Hiδx − ηi

)
. (5.25)

The Eqs. (5.22)–(5.25) define the minimizing solution of the variational problem
defined by the incremental cost function in Eq. (5.17). Due to the coupling of these
equations, an iterative solution procedure is a natural choice. Note that by setting
Cqq = 0, we decouple the forward model integration from the adjoint variable,
leading to the SC-4DVar method discussed above. In this case, we restrict ourselves
to iteratively solving for the initial conditions as the only unknown. As an alternative
to iterative solution methods, the representer method decouples the forward and
backward models. We will discuss this approach in the following section.

5.5 Observation Space Formulation

In the following, we explore that the observation space is typically much smaller
than the state space, which is even more true for the weak-constraint case due to the
larger state vector.While the problem size grows dramatically in the state-space from
the strong-constraint formulation to the weak-constraint 4DVar, it does not grow in
the observation space. Hence, solving the weak-constraint problem in observation
space is likely more efficient, as was realized and discussed by Bennett (1992). He
formulated a solution method for the weak-constraint problem called the representer
method. While the original representer method is illustrative, it is not efficient with
many observations, as the method requires a backward (adjoint) and forward model
integration for each measurement. A later variant by Egbert et al. (1994) avoids this
problem. We will discuss the representer method below as it is highly efficient for
linear inverse problems and provides for further insight into the data assimilation
problem.

5.5.1 Original Representer Method

The representer method by Bennett (1992) exploits the “weak coupling” in the Euler-
Lagrange Eqs. (5.22)–(5.25) through the measurement term in Eq. (5.24). Let’s
assume a solution of the form

δx = δxf +
m∑
p=1

bprp = δxf + Rb, (5.26)

δλ = δλf +
m∑
p=1

bpsp = δλf + Sb. (5.27)
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Here we assume δxf �= 0 and δλf = 0 to be a first-guess solution which would
result from the case with no “observations”, i.e., no forcing term in Eq. (5.24). In
Eqs. (5.26) and (5.27) we assume the solution to equal the first guess plus a linear
combination of m representers or influence functions rp and their adjoints sp. There
is one representer function for each of the m measurements, and we store them in
the m columns of the matrix R. Bennett (1992) showed that this linear combination
of representer functions exactly represents the minimizing solution.

Inserting the expressions for δx and δλ in the Euler-Lagrange Eqs. (5.22)–(5.25)
gives for the first-guess solution

δxf0 = ξ i0, (5.28)

δxfk − Mi
k−1δx

f
k−1 = −ξ ik, (5.29)

δλf
K+1 = 0, (5.30)

δλf
k − Mi

k
T
δλf

k+1 = 0. (5.31)

For the representers and their adjoints we obtain

R0b = Cx0x0M
i
0
T
S1b, (5.32)

(
Rkb − Mi

k−1Rk−1b
)

=
K∑
s=1

Cqq(k, s)Ssb, (5.33)

SK+1b = 0, (5.34)

Skb − Mi
k
T
Sk+1b = Hi

k
T
C−1
dd

(
ηi − Hi (δxf + Rb)

)
. (5.35)

The decomposition in Eqs.(5.26) and (5.27) enforce that R and S are not functions
of b. This can be achieved by defining b as

b = C−1
dd

(
ηi − Hi (δxf + Rb)

)
, (5.36)

such that Eq. (5.35) simplifies to

Skb − Mi
k
T
Sk+1b = Hi

k
T
b. (5.37)

Since b �= 0 and acts as a common multiplier in all the Eqs. (5.32, 5.33, 5.34, and
5.37) we can write the following uncoupled system of equations for the representers
and their adjoints,

R0 = Cx0x0M
i
0
T
S1, (5.38)

Rk − Mi
k−1Rk−1 =

K∑
s=1

Cqq(k, s)Ss, (5.39)

SK+1 = 0, (5.40)

Sk − Mi
k
T
Sk+1 = Hi

k
T
. (5.41)

HereHi
k is the columns ofHi inEq. (4.12) corresponding to the time k. ThematrixR’s

columns contain the influence functions rs , and the matrix S contains their adjoints.
Thus, a backward-in-time integration of Eqs. (5.40) and (5.41) determines S and

we can then solve for R by a forward integration of Eqs. (5.38) and (5.39). What
remains is then to determine b from Eq. (5.36), i.e.,
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Linear system for the representer coefficients b(
HiR + Cdd

)
b = ηi − Hiδxf . (5.42)

Bennett (2002) gives a detailed explanation of how to solve for the representer solu-
tion efficiently. First, note that as soon as we have computed b by solving Eq. (5.42),
we can use the definition of b from Eq. (5.36) and write the adjoint Eq. (5.25) as

Adjoint equation forced by b

δλk − Mi
k
T
δλk+1 = Hi

k
T
b. (5.43)

Thus, knowing b allows us to compute the solution by one backward integration
of Eq. (5.43) subject to the final condition in Eq. (5.24), followed by one forward
integration of the model with initial condition in Eqs. (5.22) and (5.23).

Notice that we do not need to store all the representers and their adjoints. Wemust
only construct the “representer matrix”

R = HR (5.44)

that enables us to solve the system in Eq. (5.42).
The representermethod has a beautiful property. It shows via its basic construction

in Eq. (5.26) that the solution to the linear data-assimilation problem is the first-guess
solution plus a linear combination of the representers. Furthermore, we can interpret
any representer rp as the influence function for measurement p. We construct it as
column p of thematrix Eqs. (5.38)–(5.41). Specifically, eachmeasurement generates
a forcing field for the adjoint representer at the observation time. This forcing field
is propagated back to the initial time via the adjoint representer equations. After
that, the adjoint representers sp force the forward integration when computing the
representers rp. In this way, we spread out the influence of measurement p over the
whole space-time domain. And, as mentioned, the complete solution to the linear
problem is the first guess plus a linear combination of these space-time influence
functions, one for each measurement.

The solution method outlined above is inefficient as it needs a full adjoint and for-
ward model integration for each observation. On the other hand, the solution method
illustrates well the nature of the weak-constraint estimation problem. Note also that
the representer solution is the unique minimizing solution of the Euler-Lagrange
equations, as first noticed by Bennett (1992). The following section discusses a
much more efficient implementation of the representer method. For an application
that illustrates some of the representer method’s properties, we refer to the example
in Chap. 17.
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5.5.2 EfficientWeak-Constraint Solution in Observation Space

In the previous section, we saw that we need to solve for the vector b from Eq. (5.42),
which we write as (

R + Cdd

)
b = ηi − Hiδxf , (5.45)

using the definition of the representer matrix in Eq. (5.44).
Recall that, as soon as b is known, we can find the final solution via one back-

ward integration of Eq. (5.43) subject to the condition in Eq. (5.24), followed by an
integration of the model in Eqs. (5.22) and (5.23).

Apparently, the definition in Eq. (5.44) requires us to form the representer matrix
R to solve the linear system in Eq. (5.45), for which we need to compute all the
representers. However, suppose we use an iterative method for solving Eq. (5.45).
In that case we only need to calculate products (R + Cdd)v for arbitrary vectors v.
As Cdd is known, the problem is reduced to computing the product Rv = HRv.

But, if we write the Eqs. (5.32), (5.33), (5.34), and (5.37) as

(R0v) = Cx0x0M
i
0
T
(S1v), (5.46)

(Rkv) = Mi
k−1(Rk−1v) +

K∑
s=1

Cqq(k, s)(Ssv), (5.47)

(SK+1v) = 0, (5.48)

(Skv) = Mi
k
T
(Sk+1v) + Hi

k
T
v, (5.49)

we can compute the product c = Rv by one backward integration of Eq. (5.49)
subject to the final condition (5.48) to obtain the field ψ = Sv, followed by a
forward integration of the Eq. (5.47) from the initial condition in Eq. (5.46). Thus,
we rewrite these equations as

c0 = Cx0x0M
i
0
T
ψ1, (5.50)

ck = Mi
k−1ck−1 +

K∑
s=1

Cqq(k, s)ψ s, (5.51)

ψK+1 = 0, (5.52)

ψk = Mi
k
T
ψk+1 + Hi

k
T
v. (5.53)

By measuring this solution, we find for any nonzero vector v

Hc = HRv = Rv, (5.54)

which is precisely the matrix-vector product we need to compute.
This algorithm by Egbert et al. (1994) calculates the productRvwithout knowing

Rbyperformingonebackward andone forwardmodel integration.Thus, it is possible
to solve Eq. (5.45) iteratively for b, using only two model integrations per iteration.
Isn’t that an astonishing result? In the following two sections, we introduce an
iterative solver to illustrate the methodology. We also discuss an efficient approach
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for computing the convolutions of the model- and initial-error covariances with the
adjoint variable.

We present an example algorithm for solving the weak-constraint inverse problem
in Algorithm 4. Here we combine the outer incremental Gauss–Newton iterations
with the representer method for solving the linear inverse problems for the incre-
ments. Note that it is also possible to use theAlgorithm4 to solve the strong constraint
variational problem by setting Cqq ≡ 0.

5.5.2.1 Iterative Equation Solver
We can illustrate the iterative procedure for solving Eq. (5.45) by using a steepest
descent method. Let’s write the linear system in Eq. (5.45) as

Cb = η. (5.55)

Solving Eq. (5.55) is equivalent to minimizing the functional

φ(b) = 1

2
bTCb − bTη, (5.56)

which has a gradient
∇bφ(b) = ρ = Cb − η. (5.57)

We can then minimize the cost function in Eq. (5.56) iteratively by using an iterative
approach, .e.g.,

bi+1 = bi − γρ, (5.58)

where γ = ρTρ/ρTCρ is the optimal steepest-descent steplength. Of course, in real
problems we should introduce preconditioning or use a conjugate gradient method
to speed up the convergence.

5.5.2.2 Fast Computation of the Error Terms
The final issue of using the representer method for real-sized problems, is how to
compute the discrete convolutions in the model error term in Eqs. (5.23) and (5.51),
and in Algorithm 4. The direct computation of matrix-vector multiplications in these
terms becomes too computationally demanding for real problems. Even for the initial
conditions, the multiplication Cx0x0δλ0 requires n2 operations, with n being the size
of the model state vector.

The approach taken byBennett (1992) was to use aGaussian covariancewhere the
Fourier transform is known and diagonal and use fast Fourier transforms to compute
the multiplication efficiently in Fourier space at a cost proportional to n ln n. Bennett
(2002) pointed out that with certain assumptions on the “shape” of the covariance
matrix Cqq(k, s), even more efficient methods exist.

Let’s assume the covariance to be isotropic and separable in space and time with
Gaussian covariance in space and exponential covariance in time, i.e.,

Cqq(xi , x j , tr , ts) ∝ exp
(
−|xi − x j |2/r2x

)
exp

(
−|tr − ts |/τ

)
, (5.59)
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Algorithm 4 Incremental WC-4DVar using the representer method

1: Input: xf0 ∈ �n ; d ∈ �m ; Cdd ∈ �m×m ; Cx0x0 ∈ �n×n ; Cqq(r, s) ∈ �n×n 	 Prior inputs

	 Forward integration of nonlinear model to get prior solution x for the window

2: for k = 0 : K do
3: xfk+1 = m(xfk) 	 Eq. (5.7) with qk = 0

4: end for

	 Outer incremental GN iterations

5: i = 1; xi = xf ; b = 0

6: repeat
7: ξ i0 = xf0 − xi0
8: for k = 1 : K do
9: ξ ik = xik − m(xik−1) 	 Eq. (5.15)

10: end for
11: ηi = d − h(xi ) 	 Eq. (5.16)

	 Inner iterative representer solution solving for b:
(
R + Cdd

)
b = ηi − Hi δx

12: repeat
13: ψK+1 = 0 	 Eq. (5.52)

14: for k = K : 0 do
15: ψk = Mi

k
T
ψk+1 + Hi

k
T
b 	 Eq. (5.53)

16: end for
17: ci0 = Cx0x0ψ0 	 Eq. (5.50)

18: for k = 1 : K do
19: ck = m(ck−1) + ∑K

s=1 Cqq(k, s)ψs 	 Eq. (5.51)

20: end for
21: ρ = Hic + Cddb − Hi δxfg + ηi 	 Eq. (5.57)

22: b = b − γρ 	 Eq. (5.58)

23: until ρ ≈ 0

	 Backward integration to obtain solution given estimate of b
24: δλK+1 = 0 	 Eq. (5.24)

25: for k = K : 0 do
26: δλk = Mi

k
T
δλk+1 + Hi

k
T
b 	 Eq. (5.43)

27: end for

	 Forward integration to obtain solution given estimate of b
28: δx0 = ξ i0 + Cx0x0δλ0 	 Eq. (5.22)

29: for k = 0 : K do
30: δxk+1 = Mi

kδxk − ξ ik + ∑K
s=1 Cqq(k, s)δλs 	 Eq. (5.23)

31: end for

32: i = i + 1

33: xi = xi−1 + δx 	 Eq. (5.13)

34: until δx ≈ 0
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where xi and x j are two spatial model gridpoints, and tr and ts are two time steps.
We also define the decorrelation lengths rx in space and τ in time. Then, for a model
with spatial dimension d we must compute the following

δλxt(i, r) =
n∑
j=1

K∑
s=1

exp
(
−|xi − x j |2/r2x

)
exp

(−|tr − ts |/τ
)
δλ( j, s) (5.60)

=
n∑
j=1

exp
(
−|xi − x j |2/r2x

) K∑
s=1

exp
(−|tr − ts |/τ

)
δλ( j, s) (5.61)

=
n∑
j=1

exp
(
−|xi − x j |2/r2x

)
δλt( j, r), (5.62)

where we defined

δλt( j, r) =
K∑
s=1

exp
(−|tr − ts |/τ

)
δλ( j, s). (5.63)

The solution procedure proposed by Bennett (2002) uses that the expression in
Eq. (5.63) when written in the continuous form in time

δλt(x j , t) =
∫ T

0
exp

(−|t − t ′|/τ)
δλ

(
x j , t

′) dt′, (5.64)

for each value of x j , is the solution of a two-point boundary value problem in time
(Bennett 2002, see pages 65–66),

∂2δλt

∂t2
− 1

τ 2
δλt = −2δλ(x j , τ )

τ
(5.65)

∂δλt

∂t
− 1

τ
δλt = 0 for t = 0 (5.66)

∂δλt

∂t
+ 1

τ
δλt = 0 for t = T . (5.67)

We can solve this one-dimensional boundary value problem for each of the j = 1, n
functions δλ(x j , τ ) to obtain δλt( j, r).

Furthermore, as soon as we have δλt(x, t), or in discrete form δλt( j, r), then the
expression in Eq. (5.62), becomes in continous form

δλxt(x, t) =
∫ ∞

−∞
exp

(
−|x − x ′|2/r2x

)
δλt

(
x ′, t

)
dx′. (5.68)

We will now use that the variable θ(x, s) defined as

θ(x, s) = (4πs)−
d
2

∫ ∞

−∞
exp

(
−|x − x ′|2/(4s)

)
δλt

(
x ′, s

)
dx′. (5.69)

is the solution of the heat equation

∂θ

∂s
= ∇2θ, (5.70)
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subject to the initial condition

θ(x, s = 0) = δλt(x, t), (5.71)

(Bennett, 2002; Wikipedia, 2022). Thus, δλxt(x, t) becomes

δλxt(x, t) =
(
πr2x

) d
2 θ

(
x, s = r2x /4

)
, (5.72)

so, we just need to integrate Eq. (5.70) from s = 0 to s = r2x /4 to get θ(s) and hence
δλxt(x, t) from Eq. (5.72).

For the initial conditions, we can compute the convolution in Eq. (5.68) at a cost
proportional to n, or precisely n times the required number of pseudo time-steps
needed when solving the diffusion Eq. (5.70) from s = 0 to s = r2x /4. We need to
solve the diffusion Eq. (5.70) for each time step for the model error term. Thus the
computational cost becomes proportional to nK . Additionally, we need to solve the
boundary value problem in Eqs. (5.65)–(5.67) nK times, one time for each model
gridpoint in space and time.

Bennett (2002) provides a detailed description of this algorithm, and we note that
Courtier (1997) also discusses the incrementalweak constraintmethod in conjunction
withWC-4DVar. TheUSNavy uses an operational implementation of the representer
method with an ocean model (Souopgui et al., 2017). They also have a dormant
representer implementation for their atmospheric model.
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This chapter discusss solutionmethods for particular cases of theminimization prob-
lem defined by the cost function in Eq. (3.9). We start by looking for a closed-form
solution that minimizes the cost function, and then we continue discussing how
specific cases lead to several well-known methods. The first case assumes that the
measurements are all located at the initial time of the assimilation window. Thus,
there is no need for any model integrations during the minimization. The problem
then reduces to the classical 3-dimensional variational (3DVar) formulation. The
second case assumes that the model and the measurement operator are linear, allow-
ing us to find an explicit gradient solution in Eq. (3.11). This particular case leads to
theKalman filter (KF) update equations. And, additionally, if we havemeasurements
located at the initial time of the assimilation window, we obtain the standard form of
the KF. To further simplify the KF, we get the simplified optimal interpolation (OI)
algorithm by ignoring the time evolution of error statistics. In addition to these spe-
cific methods, we consider the weakly nonlinear case where we can sometimes still
use the Kalman filter equations with its linearized model and measurement operator
in the extended Kalman filter (EKF).

6.1 Linear Update from PredictedMeasurements

To explore possible linear solutions to the estimation problem, let’s start from a
closed-form solution of the estimation problem in Eq. (3.11) in the trivial case when
g(z) = Gz is linear.We assume that the state vector is themodel solution at the initial
time of the assimilation window z = x0, and we have the measurements distributed
over the assimilation window. In this case, Eq. (3.11) becomes

C−1
zz

(
za − zf

) + GTC−1
dd

(
Gza − d

)
= 0, (6.1)
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which has an explicit solution

za = zf +
(
C−1
zz + GTC−1

dd G
)−1

GTC−1
dd

(
d − Gzf

)
. (6.2)

Here y = Gz is the linear prediction of the measurements, which we can write as

y = Gz = H

⎛

⎜
⎜
⎜
⎝

z
x1
...

xK

⎞

⎟
⎟
⎟
⎠

= H

⎛

⎜
⎜
⎜
⎝

z
M1z

...

MK . . .M1z

⎞

⎟
⎟
⎟
⎠

= H

⎛

⎜
⎜
⎜
⎝

I
M1
...

MK . . .M1

⎞

⎟
⎟
⎟
⎠
z = HMz, (6.3)

which defines G, and where we introduce M for later use. Thus, if the model is
linear, we can compute the update at the initial time of the assimilation window from
measurements located throughout the assimilation window by solving Eq. (6.2). We
include a time-step index on M so that the equation will also apply in the nonlinear
case where Mk is the tangent-linear model at time tk .

To find an explicit solution of the estimation problem in Eq. (3.11) in the nonlinear
case, we introduce the following approximation

Approximation 5 (Linearization) Linearize g(z) around the prior estimate zf ,

g
(
z
) ≈ g

(
zf

) + G
(
z − zf

)
, (6.4)

and approximate the gradient in Eq. (6.1) with the gradient evaluated at the prior
estimate

∇zg
(
z
) ≈ GT, (6.5)

where we have defined
GT = ∇zg

(
z
)∣∣
z=zf . (6.6)

Here,G is the tangent-linear operator of g(z) evaluated at zf , andGT is its adjoint.
Note that the Eq. (6.6) implies the following

MT
k = ∇zm

(
z
)∣∣
z=zk

and HT = ∇m(z)h
(
m(z)

)∣∣
z=zk

. (6.7)

The linearization in Eq. (6.4) and approximation in Eq. (6.5) allow us to rewrite
Eq. (3.11) in terms of g(zf) and G, with an explicit solution

za = zf +
(
C−1
zz + GTC−1

dd G
)−1

GTC−1
dd

(
d − g

(
zf

))
. (6.8)

We can write this equation in an alternative form by using the corollaries

Woodbury corollaries
(
C−1 + GTD−1G

)−1= C − CGT(GCGT + D)−1GC, (6.9)
(
GTD−1G + C−1)−1GTD−1 = CGT(

GCGT + D
)−1

, (6.10)
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which we derive from the Woodbury identity. We then obtain

za = zf + CzzGT
(
GCzzGT + Cdd

)−1(
d − g

(
zf

))
, (6.11)

wherewe solve for the update inmeasurement space. Due toApprox. 5, the Eqs. (6.8)
and (6.11) are only valid for small updates.

Using Eq. (6.11), we can compute an approximate update of the state vector z from
measurements distributed over the assimilation window. Thus, the method solves a
similar problem to the SC-4DVar discussed in Chap. 4 without using iterations.

Interestingly, from Eq. (6.3), the products GCzz and GCzzGT include a forward
propagation of the background-error-covariance matrix Czz leading to a covariance
matrix for the model state over the whole data assimilation window. When we mea-
sure the resulting covariances, we obtain the covariances between the predicted
measurements and the state vector, i.e., Cyz = GCzz and Cyy = GCzzGT. With this,
we can write Eq. (6.11) as

za = zf + Czy

(
Cyy + Cdd

)−1(
d − g

(
zf

))
. (6.12)

In a prediction system, we would like to initialize the prediction for the next
assimilation window. A question is whether it is possible to update the solution at
the end of the assimilation window. Below, we will see that this is possible with
the Kalman filter that provides an update and optimal solution at the end of the
assimilation window by sequentially assimilating the measurements while evolving
the model solution and its error statistics forward in time.

Let’s revert to Eq. (6.11) and multiply the equation with M defined in Eq. (6.3)
to obtain

Mza = Mzf + MCzzMTHT
(
GCzzGT + Cdd

)−1(
d − g

(
zf

))
. (6.13)

We can write this equation as
⎛

⎜⎜
⎜
⎝

za

xa1
...

xaK

⎞

⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜
⎝

zf

xf1
...

xfK

⎞

⎟⎟
⎟
⎠

+

⎛

⎜⎜
⎜
⎝

Czz . . . CzxK
Cx1z . . . Cx1xK

...
. . .

...

CxK z . . . CxK xK

⎞

⎟⎟
⎟
⎠
HT

(
GCzzGT+Cdd

)−1(
d−g

(
zf

))
. (6.14)

It is clear that this formulation gives a smoother update of themodel solution over the
whole assimilation window, processing all the measurements in one go, as discussed
in Sect. 2.4.1. If we are only interested in the solution at the time tK , we can compute
the following

xaK = xfK + (
CxK z . . . CxK xK

)
HT

(
GCzzGT + Cdd

)−1(
d − g

(
zf

))
(6.15)

= xfK + CxK y

(
Cyy + Cdd

)−1(
d − g

(
zf

))
. (6.16)

As for the case where we updated the initial model state of the assimilation window,
we now use the covariance matrix CxK y to update the final model state of the assim-
ilation window. Using Eq. (6.14), we can update the model-state vector at any time
within the assimilation window.
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In Eq. (6.14), wemust integrate the model to predict xfK and the covariance matrix
through MCzzMT, where the equation to update MCzzMT is similar to the error
covariance equation from Eq. (2.28) without explicit model errors.

From the above, we learn that it is possible to update the model state at a particu-
lar time using measurements distributed in time by exploiting the time correlations.
Sakov et al. (2010) discussed this “asynchronous” data assimilation in the ensemble
Kalman filter. They showed how to assimilate batches of multiple measurements dis-
tributed in time to avoid stopping and restarting the model integration too frequently.

The above computations are not convenient, but the approach becomes practical
with the ensemble data-assimilation methods. Finally, note that in this linear case,
without model errors, updating x0 and propagating this solution forward to time tK
to find xK gives the same result for xK as if we first run the model to obtain a forecast
of xK and then compute its update.

6.2 3DVar

3DVar used to be a popular approach to minimize the cost function from Eq. (3.9),
assuming that the prior and the measurements are both available at the initial time of
the assimilation window. This “time-independence” implies that the possibly non-
linear function g(z) represents only the measurement operator and not the model
operator. In this case, the state vector z includes the model state at the initial time of
the assimilation window and may contain model parameters. We then start from the
cost function

3DVar costfunction

J(z) = 1

2

(
z − zf

)T C−1
zz

(
z − zf

) + 1

2

(
h(z) − d

)T C−1
dd

(
h(z) − d

)
. (6.17)

The 3DVar method refers specifically to a sequential data-assimilation approach
where we use a constant-in-time background or prior error covariance Czz for each
subsequent update step. Thus, themethod does not propagate error statistics from one
update time till the next, and there is no updating of the analysis error covariance. This
3DVar update scheme solves a Gauss–Newton iteration like in Eqs. (3.14) or (3.17).
Thus, 3DVar is a computationally efficient, although approximate method.

The gradient of the cost function is still the one in Eq. (3.10) but with g(z) replaced
by h(z), i.e.,

∇zJ(z) = C−1
zz

(
z − zf

) + HT C−1
dd

(
h(z) − d

)
, (6.18)

where we have used
HT = ∇zh

(
z
)∣∣
z=z. (6.19)

No explicit solution solves Eq. (6.18) being equal to zero since the gradient includes
the nonlinear measurement operator h(z). Thus, to compute the 3DVar solution, we
must use an iterative solver. Another reason for using an iterative approach is that
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we avoid forming the explicit model state covariance matrix and invert it, as in the
4DVar methods.

Typically, we initialize a Gauss–Newton iteration with the prior estimate

z0 = zf , (6.20)

and iterate
zi+1 = zi − γ iBi∇zJ

(
zi

)
, (6.21)

until convergence. In this expression, Bi is the inverse of the Hessian given by

C−1
zz + HiTC−1

dd H
i . (6.22)

If we use the gradient from Eq. (6.18), we can write the iteration in Eq. (6.21) as

zi+1 = zi − γ i
(
C−1
zz + HiTC−1

dd H
i
)−1(

C−1
zz

(
zi − zf

) + HiT C−1
dd

(
h(zi ) − d

))

(6.23)

= zi − γ i (zi − zf)

+ γ iCzzHT
(
HCzzHT + Cdd

)−1(
H(zi − zf) − (

h(zi ) − d
))

, (6.24)

where we again used the corollaries from Eqs. (6.9) and (6.10).
Instead of forming theHessian and inverting, it is common to introduce the control-

variable transform as in strong-constraint 4Dvar. It is then possible to apply iterative
methods like conjugate-gradient to solve the linearized problem.

An advantage of 3DVar is that it minimizes the cost function with a nonlinear
measurement operator. The method is highly efficient as it does not update or evolve
error statistics in time. Still, the approximation of a constant-in-time background-
error-covariance matrix can be an essential drawback of 3DVar. Furthermore, while
3DVar solves for the update with a nonlinear measurement functional, we can com-
pute the update evenmore efficiently in the casewith a linearmeasurement functional
using the Kalman-filter update equations. With the assumptions on linearity, this ap-
proach avoids iterations and leads to the Optimal Interpolation method in the case
of stationary error statistics.

6.3 Kalman Filter

Generally, it is only possible to write a closed-form solution of the Eq. (3.11) in the
trivial case when g(z) is linear. In the case with a linear measurement functional, and
when the measurements are available at the initial time of the assimilation window,
Eq. (3.11) reduces to Eq. (6.17). With a linear measurement operator, h(z) becomes
Hz, and we write the cost function in Eq. (6.17) as

J(z) = 1

2

(
z − zf

)T C−1
zz

(
z − zf

) + 1

2

(
Hz − d

)T C−1
dd

(
Hz − d

)
. (6.25)
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By setting the gradient of the cost function to zero,

C−1
zz

(
za − zf

) + HT C−1
dd

(
Hza − d

) = 0, (6.26)

we find the Kalman filter update equation

za = zf +
(
C−1
zz + HTC−1

dd H
)−1

HTC−1
dd

(
d − Hzf

)
, (6.27)

We solve the analysis za in the state space because we define the matrices we invert
in the state space. By using the matrix identity from Eq. (6.10), we can rewrite
Eq. (6.27) to obtain the standard form of the Kalman filter update equation

The Kalman filter state update

za = zf + CzzHT
(
HCzzHT + Cdd

)−1(
d − Hzf

)
, (6.28)

which solves for the solution in the measurement space just like the formulation in
Eq. (6.11). Indeed, the matrix we have to invert is defined in the measurement space.

We can find the Hessian of the cost function in Eq. (6.25) by taking the second
derivative, leading to

∇z∇zJ(z) = C−1
zz + HC−1

ddH
T . (6.29)

Note that the Hessian is not dependent on the state z but only on the prior and the
measurement covariances. We know that the posterior is Gaussian, with covariance
matrix Ca

zz . Hence, we can write the cost function as

J(z) = 1

2

(
z − za

)T (
Ca
zz

)−1 (
z − za

) + constant (6.30)

in which the constant depends on the measurement d, but not on z. Taking the second
derivative of this version of the cost function gives

∇z∇zJ(za) = (
Ca
zz

)−1
. (6.31)

Since the two expressions for the Hessian must be the same, we find for the posterior
covariance (

Ca
zz

)−1 = C−1
zz + HC−1

ddH
T . (6.32)

With this expression, we have proven that in the linear case, the inverse of theHessian
is the posterior error-covariance matrix. Eq. (6.32) is the equation for computing
the error-covariance matrix in the state space, and we can rewrite it using the matrix
identity (6.9) to find

The Kalman filter error-covariance update

Czza = Czz − CzzHT
(
HCzzHT + Cdd

)−1
HCzz. (6.33)
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In contrast to using a stationary background-error-covariancematrix in 3DVar, the
Kalman filter updates and evolves the error statistics in time, using Eq. (2.28). The
standard form for the Kalman filter is a recursion over measurement times where we
evolve the state vector and its covariance from one measurement time till the next by
solving the following model and error covariance equations, starting from the update
zk = za and Czz,k = Czza at the time tk

zk+1 = Mzk, (6.34)

Czz,k+1 = MCzz,kM
T + Cqq. (6.35)

We integrate these equations until the next time tk when we update the model with
newmeasurements.We then set zf = zk andCzz = Czz,k , andwe compute the update
from Eqs. (6.28) and (6.33), before we continue the integration of Eqs. (6.34) and
(6.35).

Thus, we define the assimilation windows in the KF to cover the time intervals
between two consecutive measurement times. We integrate the model solution and
the error covariance matrix from the start of an assimilation window till the next. We
then update the predicted model state vector and its error covariance matrix at the
initial time of the next assimilation window. We repeat this recursion as we progress
from one assimilation window to the next.

In the case of a linear measurement operator and Gaussian priors, Eqs. (6.28) and
(6.33) provide the variance minimizing solution of

f (z|d) ∝ exp

(
−1

2
J(z)

)
, (6.36)

with cost function J defined in Eq. (6.25). We note that the variance-minimizing
solution is equal to the MAP solution for a purely Gaussian problem. Thus, the
Eqs. (6.28) and (6.33) exactly represent the posterior pdf for the Gauss-linear case
as described in the cost function in Eq. (3.9).

One of the main issues with the KF is the storage of the vast error-covariance
matrix Czz and the computational cost of its evolution in time. For an example of
using the KF and its properties, we refer to Chaps. 12 and 13.

We observe that we can also write the KF update in Eq. (6.28) using the notation

za = zf + K
(
d − h

(
zf

))
, (6.37)

Czza =
(
I − KH

)
Czz, (6.38)

where K ∈ �n×m defines the Kalman gain matrix of the Kalman filter (Kalman,
1960),

K = CzzHT
(
HCzzHT + Cdd

)−1
, (6.39)

and Eqs. (6.37)–(6.39) represent the update step of the Kalman filter.
This section showed that the solution of Eq. (3.11) is defined in the state space,

i.e., we solve for za. However, we have transformed the update computation to the
measurement space using the Woodbury identity, identifiable by the matrix that we
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must invert in the Kalman filter. Bennett (1992) showed that it is possible to write
the exact solution of Eq. (6.28) as

za = zf + Czyb. (6.40)

which is a linear combination of “representer functions”

Czy = CzzHT, (6.41)

with coefficients b found by solving the linear system
(
HCzzHT + Cdd

)
b = d − Hzf . (6.42)

The update to zf resides in an m-dimensional space in this formulation, hence the
notationmeasurement space. The notation state spacemakes sense as the state vector
belongs to it. On the other hand, the notation measurement space refers to the fact
that we first find the solution in the measurement space, and then transform it to the
state space via the Czy matrix. We are still computing the solution in the state space,
but the update is a linear combination of m representer functions Czy. Hence, as we
calculate the update to zf in the space spanned by the m representer functions, we
could also have used a name like “representer space.” The critical point is that we
reduce the inverse calculations from an n-dimensional problem to anm-dimensional
one.

6.4 Optimal Interpolation

From the KF formulation, we obtain an even more straightforward sequential up-
dating algorithm named optimal interpolation (OI) by applying the approximation
of time-invariant error statistics. In OI, we only solve for the model prediction in
Eq. (6.34) and update the model state according to Eq. (6.28), with Czz being a
constant-in-time prior error-covariance matrix. In the linear case, optimal interpola-
tion is equivalent to the 3DVar method. However, the iterative solution method used
in 3DVar allows for solving the update with a nonlinear measurement functional.
Avoiding a matrix inversion can be much more efficient, even in the linear case.

6.5 Extended Kalman Filter

The extended Kalman filter (EKF) allows applying the KF with a nonlinear model
and measurement operator. To derive the equations for the update step, we again
start with the 3DVar cost function in Eq. (6.17) and its gradient Eq. (6.18). To find
an explicit but approximate solution z of the gradient in Eq. (6.18) equal to zero, we
use the Approx. 5, which allows us to write

C−1
zz

(
za − zf

) + HT C−1
dd

(
h(zf) + H(za − zf) − d

)
. (6.43)
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Like for the KF, we find an explicit solution of this equation as

za = zf + CzzHT
(
HCzzHT + Cdd

)−1(
d − h

(
zf

))
. (6.44)

The update equation becomes identical to the Eq. (6.33) used in the Kalman filter but
now uses h instead ofHwhen comparing the measurements to the model prediction.
To derive an equation for the error covariance evolution, we need to linearize the
model equations. By introducing the linearization from Eq. (6.7) in Approx. 5, we
can compute the time evolution of the model state and its error covariance from

zk+1 = m
(
zk

)
(6.45)

Czz,k+1 = MkCzz,kM
T
k + Cqq, (6.46)

where Eq. (6.46) was derived in Sect. 2.3.2.
Note that the EKF applies linear versions of the model and measurement op-

erators. The state vector zf contains the predicted model state at an update time
originating from the nonlinear model Eq. (2.5). However, an approximate linearized
equation (2.28) describes the time evolution of the state-error-covariance matrix.
Evensen (1992 found that using a linearized error-covariance equation led to linear
instabilities, which would cause the predicted error covariance to blow up for many
nonlinear models with unstable dynamics such as ocean and atmospheric models.
We will discuss the EKF further in the example in Chap. 12.
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7Randomized-Maximum-Likelihood
Sampling

In the following, we derive some methods for sampling the posterior conditional pdf
in Eq. (3.8). We aim to estimate the full pdf, not only finding its maximum. We will,
in this chapter, use an approach named randomized maximum likelihood (RML)
sampling. Note that the name is not precise as the method attempts to sample the
posterior pdf and not just the likelihood. However, we will continue using the name
RML when we refer to the technique. RML provides a highly efficient approach for
approximate sampling of the posterior pdf and lays the ground for developing many
popular ensemble methods.

7.1 RML Sampling

To introduce randomized-maximum-likelihood sampling, let’s define an ensemble of
cost functions where the prior vectors zfj are samples from the Gaussian distribution
in Eq. (3.5), and we introduce the perturbed measurements d j = d + ε j where the
perturbations ε j are samples from (3.6),

Ensemble of cost functions

J(z j ) = 1

2

(
z j − zfj

)TC−1
zz

(
z j − zfj

) + 1

2

(
g(z j ) − d j

)TC−1
dd

(
g(z j ) − d j

)
, (7.1)

as proposed by Kitanidis, (1995) and Oliver et al., (1996). These cost functions are
independent of each other and differ from the cost function (3.9) by the introduction
of the random samples zfj ∼ N(zf ,Czz) and d j ∼ N(d,Cdd).

One might ask why we need to perturb the measurements when Bayes theo-
rem tells us that we are already given the measurements in the data-assimilation
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problem. Indeed, Van Leeuwen (2020) contains a detailed discussion on why it is
more consistent to perturbing the predicted measurements g(z j ) with a draw from
the measurement error pdf. There is no practical advantage for either choice. The
reason is that the cost function in Eq. (7.1) only contains the difference between the
predicted and actual measurements, and the Gaussian is symmetric in its arguments.
In this chapter, we will use the conventional “perturbed measurements” formalism.

Approximation 6 (RML sampling) In the weakly nonlinear case, we can ap-
proximately sample the posterior pdf in Eq. (3.8) by minimizing the ensemble of
cost functions defined by Eq. (7.1). ��

In the Gauss-linear case, the minimizing solutions of these cost functions precisely
sample the posterior conditional pdf in Eq. (3.8). Furthermore, with an infinite num-
ber of samples, the sample mean and covariance will converge to the KF solution
given by Eqs. (6.28) and (6.33). When we introduce nonlinearity into the problem,
the samples will deviate from the pdf in Eq. (3.8). But in many cases with only weak
nonlinearity, this approximation is acceptable. The fun fact is that nobody knows
precisely which distribution the method samples in the nonlinear case. Note also that
we can minimize each of the cost functions independently of the others using the
Gauss–Newton method described in Chap. 3.

Similarly to Eq. (3.11), we now have an ensemble of gradients that we set to zero
to minimize the ensemble of cost functions in Eq. (7.1),

Ensemble of gradients set to zero

C−1
zz

(
z j − zfj

) + ∇zg
(
z j

)
C−1
dd

(
g(z j ) − d j

) = 0. (7.2)

7.2 Approximate EKF Sampling

The simplest way to solve Eq. (7.2) for an ensemble of realizations is to use the
Kalman filter update Eq. (6.44) to solve for each sample, j = 1, . . . , Nens ,

Ensemble of Kalman-filter updates

zaj = zfj + CzzGT
j

(
G jCzzGT

j + Cdd

)−1(
d j − g

(
zfj

))
. (7.3)

However, as we noted in the previous chapter, these equations are only valid in the
linear case or for modest updates in the nonlinear case.
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7.3 Approximate Gauss–Newton Sampling

As an alternative to the EKF solution from Sect. 6.5, we can minimize the cost
function in Eq. (7.1) without introducing the Approx. 5. We do this by using the
Gauss–Newton method as in Sect. 3.4 for each of the cost functions in the ensem-
ble. Taking the derivative of Eq. (3.10) while neglecting terms including second
derivatives, we obtain an approximation to the Hessian

∇z∇zJ(z j ) ≈ C−1
zz + ∇zg(z j )C

−1
dd

(∇zg(z j )
)T

. (7.4)

We can then write a Gauss–Newton iteration for z as

Ensemble of GN iterations

zi+1
j = zij −γ

(
C−1
zz +Gi

j
T
C−1
dd G

i
j

)−1(
C−1
zz

(
zij −zfj

)
+Gi

j
T
C−1
dd

(
g
(
zij

)
−d j

))
,

(7.5)

where we have defined the gradient of the observation operator at iteration i and for
ensemble member j as

Gi
j
T = ∇zg

(
zij

)
. (7.6)

In this formulation, each realization uses the tangent-linearmodelGi
j evaluated at the

solution for realization j at iteration i . Thus, each realization has a model sensitivity
that is independent of the other realizations. This approach and any other method
that minimizes the cost functions in Eq. (7.1) will correctly sample the posterior
distribution in the Gauss-linear case. Still, for a posterior non-Gaussian distribution,
Approx. 6 applies. Thus, we can use any of the methods discussed in Chaps. 3, 4,
and 5 to solve for the minimizing solution of each cost-function realization.

7.4 Least-Squares Best-Fit Model Sensitivity

There are two aspects of the solutions defined in Eqs. (7.3) and (7.5) that require our

attention. First, we assumeweknow the tangent-linearmodelGi
j and its adjoint,G

i
j
T
,

which is not always the case. The other aspect relates to the storage and inversion of
Czz, a huge matrix.

In cases when we do not have access to a tangent-linear model or the adjoint
operator, we can use a statistical representation of the model sensitivity. Rather than
computing different tangent linear operatorsGi

j for each sample, we represent them

by a statistical least-squares best-fit model sensitivityGi common for all realizations
(Chen & Oliver, 2013; Evensen, 2019; Reynolds et al., 2006), and we introduce the
following approximation.
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Approximation 7 (Best-fit ensemble-averaged model sensitivity) Interpret G j

in Eq. (7.3) and Gi
j in Eq. (7.5) as the sensitivity matrix in linear regression and

represent them using the definition

G j ≈ G � CyzC−1
zz . (7.7)

Note that we have dropped the superscript j for the realizations. Hence, we ap-
proximate the individual model sensitivities with a common averaged sensitivity
used for all realizations.

A consequence of this approximation is that we slightly alter the gradient in Eq. (7.2)
and thus also the minimizing solution that the Kalman filter updates or the Gauss–
Newton iterations would provide.

By introducing the averaged model-sensitivity from Eq. (7.7), we can rewrite the
Gauss–Newton iteration in Eq. (7.5) as

zi+1
j = zij − γ

(
C−1
zz + GiTC−1

dd G
i
)−1(

C−1
zz

(
zij − zfj

) + GiTC−1
dd

(
g(zi ) − d j

))

(7.8)

= zij − γ
(
zij − zfj

)

+ γCzzGiT
(
GiCzzGiT + Cdd

)−1(
Gi

(
zij − zfj

)
−

(
g(zij ) − d j

))
, (7.9)

where we have used the corollaries from Eqs. (6.9) and (6.10).
A rather tricky issue with Eq. (7.9) is the appearance of products between the

averagedmodel sensitivityGi evaluated at iteration i with the prior covariancematrix
Czz. Chen and Oliver (2013) provided an alternative approach by evaluating the state
covariance in the Hessian at the current iterate. This modification does not impact
the final solution, but it alters the update step. They introduced various strategies for
solving Eqs. (7.8) and (7.9) using ensemble representations for the state covariances.
The next chapter will present a recent and efficient algorithm that searches for the
solution in the ensemble subspace.

Recall that y = g(z) is the model equivalent of the observed state and Cyz is
the covariance between the state vector z and the predicted measurements y. The
operator G, defined in Eq. (7.7), is the linear regression between y and z, and we
have

GCzz = Cyz, (7.10)

and
GCzzGT = CyzC−1

zz Czy . (7.11)

We will use these expressions further in the following chapter. For now, we note
that we can use the EKF update Eq. (7.3) to formulate an ensemble of Kalman-filter
updates without using the tangent-linear operator, as

z j = zfj + Czy

(
CyzC−1

zz Czy + Cdd

)−1(
d j − g

(
zfj

))
. (7.12)

It is common to replace the term GCzzGT = CyzC−1
zz Czy with Cyy . However, most

data-assimilation practitioners are unaware that this replacement introduces another
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approximation if g(z) is nonlinear. In the following chapter, wewill come back to this
issue when discussing a low-rank ensemble approximation of the prior covariance
matrix that leads to efficient ensemble-data-assimilation methods.
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8Low-RankEnsembleMethods

This chapter will introduce another approximation where we represent all state error
covariances using a finite ensemble of the state. This approximation allows us to
search for the solution in the ensemble subspace, leading to very efficient ensemble
data-assimilation methods. The most well-known is the ensemble Kalman filter, but
we also have newer advanced schemes like the ensemble-randomized-maximum-
likelihood method. In this chapter, we introduce the ensemble approximation and
derive these ensemble subspace methods. We also illustrate using a single algorithm,
i.e., an ensemble-subspace RML formulation, to compute the update in several tra-
ditional ensemble methods.

8.1 Ensemble Approximation

To ease the computational aspects of the methods discussed in the previous chapter,
let’s introduce a new approximation

Approximation 8 (Ensemble approximation) It is possible to approximately rep-
resent a covariancematrix by a low-rank ensemble of states with fewer realizations
than the state dimension. ��

Ensemble data-assimilation methods (Evensen, 1994) use a finite ensemble of state
vectors to approximate the prior error covariancematrixCzz. It is easy to show thatwe
restrict the data-assimilation estimate to the ensemble spacewhen representingCzz by
an ensemble of state vectors. This approach significantly simplifies the computational
problem. In the following, we will introduce the ensemble covariance matrices into
the Kalman-filter update and Gauss–Newton methods described in Chaps. 3 and 6.

© The Author(s) 2022
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8.2 Definition of Ensemble Matrices

We start by defining the prior ensemble of N model realizations, z j ∈ �n , stored in
the ensemble matrix Z ∈ �n×N ,

Z =
(
zf1, zf2, . . . , zfN

)
. (8.1)

Furthermore, we define the projection � ∈ �N×N as

� =
(
I − 1

N
11T

)/√
N − 1, (8.2)

where 1 ∈ �N is a vector with all elements equal to one and IN is the N -dimensional
identity matrix. If we multiply an ensemble matrix with the orthogonal projection
�, this subtracts the mean from the ensemble and scales the result with 1/

√
N − 1.

We can then define the zero-mean and scaled ensemble-anomaly matrix as

A = Z�. (8.3)

Thus, the ensemble covariance is

Czz = AAT, (8.4)

where the “overbar” denotes that we have an ensemble-covariance matrix.
Correspondingly, we can define an ensemble of perturbed measurements, D ∈

�m×N , when given the real measurement vector, d ∈ �m , as

D = d1T + √
N − 1E, (8.5)

where E ∈ �m×N is the centered measurement-perturbation matrix whose columns
are sampled fromN(0,Cdd) and divided by

√
N − 1. Thus, we define the ensemble

covariance matrix for the measurement perturbations as

Cdd = EET. (8.6)

The ensemble algorithms derived below work both with a full-rank Cdd or the en-
semble version represented by the perturbations in E.

Finally, we define the ensemble of model-predicted measurements

ϒ = g(Z), (8.7)

with anomalies
Y = ϒ�, (8.8)

where we have multiplied the model prediction by the projection � to subtract the
ensemble mean and dividing the resulting anomalies by

√
N − 1.
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8.3 Cost Function in the Ensemble Subspace

We now introduce the ensemble representation from Eq. (8.4) into the approximate
EnKF sampling in Eq. (7.3) or the RML sampling in Eqs. (7.8) or (7.9). It is then
easy to show that the updated samples are confined to the space spanned by the prior
ensemble since the leftmost matrix in the gradient is the ensemble anomaly matrix.

Thus, we will search for the solution in the ensemble subspace spanned by the
prior ensemble by assuming that an updated ensemble realization, zaj , is equal to the

prior realization, zfj , plus a linear combination of the ensemble anomalies,

zaj = zfj + Aw j . (8.9)

In matrix form, we can rewrite Eq. (8.9) as

Za = Zf + AW, (8.10)

where column j of W ∈ �N×N is just w j from Eq. (8.9).
Following Hunt et al. (2007) we write the cost function (7.1) in terms of w j as

Cost function in ensemble subspace

J(w j ) = 1

2
wT

jw j + 1

2

(
g
(
zfj + Aw j

) − d j

)T
C

−1
dd

(
g
(
zfj + Aw j

) − d j

)
, (8.11)

where we have used that

wT
jA

TC−1
zz Aw j ≈ wT

jA
TC

−1
zz Aw j

= wT
jA

T(
AAT)†Aw j

= wT
j

(
A†A

)
w j

= wT
j

(
A†A

)(
A†A

)
w j

= w̃T
j w̃ j .

(8.12)

in which we defined w̃ j = (
A†A

)
w j . The superscript † denotes the pseudo inverse.

The expression A†A is the orthogonal projection onto the range of AT. Also, we
have the projection property

(
A†A

) (
A†A

) = A†A. Thus, w̃ j is just the projection
of w onto ensemble perturbation space, and from

Aw j = A
(
A†A

)
w j = Aw̃ j , (8.13)

we see that it does not matter whether we solve for w j or w̃ j .
Note that we have used an ensemble representation for the measurement-error-

covariance matrix. We could have retained the complete Cdd, but in many cases,
this matrix is too large for practical computations, and it is therefore commonly
approximated by a diagonal matrix. Thus, one typically neglects all measurement
error correlations, which can have dire consequences. Evensen (2021) proposed
using the ensemble representation in Eq. (8.6), but with an increased ensemble size
to mitigate additional sampling errors. We will discuss this issue further in Chap. 13.
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Minimizing the cost functions in Eq. (8.11) implies solving for the minima of
the original cost functions in Eq. (7.1), but restricted to the ensemble subspace and
with Czz in place of Czz, as explained by Bocquet et al. (2015). The ensemble of
cost functions in Eq. (8.11) does not refer to the high-dimensional state-covariance
matrix, Czz. In the original formulation, we searched for the solution in the state
space. We now have a simpler problem where we search for the ensemble sub-space
solution. Thus, we solve for the N vectors w j ∈ �N , one for each realization.

8.4 Ensemble Subspace RML

We will formulate a Gauss–Newton method for minimizing the cost function in
Eq. (8.11) and the following algorithm comes from Evensen et al. (2019). The Jaco-
bian (gradient) of the cost function ∇wJ(w j ) ∈ �N×1 is

∇wJ(w j ) = w j + (
G jA

)TC
−1
dd

(
g
(
zfj + Aw j

) − d j
)
, (8.14)

and an approximate Hessian (gradient of the Jacobian) ∇w∇wJ(W) ∈ �N×N be-
comes

∇w∇wJ
(
w j

) ≈ I + (
G jA

)TC
−1
dd

(
G jA

)
. (8.15)

We have defined the tangent-linear model

G j =
(
∇wg|zfj+Aw j

)T ∈ �m×n, (8.16)

and in the Hessian we have neglected the second-order derivatives.
The iterative Gauss–Newton scheme for minimizing the cost function in

Eq. (8.11), analogous to (7.5), is then

wi+1
j = wi

j − γ

(
I +

(
Gi

jA
)T
C

−1
dd

(
Gi

jA
))−1

×
(
wi

j +
(
Gi

jA
)T
C

−1
dd

(
g
(
zfj + Awi

j

)
− d j

))
,

(8.17)

where we introduce γ ∈ (0, 1] as a step-length parameter, and we have the tangent-
linear operator evaluated for realization j at the current iteration i as

Gi
j =

(
∇wg|zfj+Awi

j

)T
. (8.18)

Nowusing the corollaries fromEqs. (6.9) and (6.10), we canwrite theGauss–Newton
iteration in Eq. (8.17) as

wi+1
j = wi

j − γ

{
wi

j −
(
Gi

jA
)T((

Gi
jA

)(
Gi

jA
)T + Cdd

)−1

×
((
Gi

jA
)
wi

j + d j − g
(
zfj + Awi

j

))}
.

(8.19)
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By introducing the ensemble representation for the covariances in the linear re-
gression we obtain

Gi
j ≈ G

i � C
i
yzC

i
zz

† = YiAi †, (8.20)

where Yi is defined from Eq. (8.21) and evaluated at iteration i , i.e.,

Yi = g
(
Zi

)
�. (8.21)

The tricky term in Eq. (8.19), which correponds to the one mentioned in relation
to Eq. (7.9), is the product Gi

jA. Evensen et al. (2019) showed that we can write

Si = G
i
A = YiAi †A (8.22)

= YiAi †Ai�i−1
(8.23)

= Yi�i−1
if n ≥ N − 1 or if g is linear. (8.24)

In this expression, we have defined the quadratic matrix

�i = I + Wi�, (8.25)

that relates the ensemble anomalies at iteration i to the initial anomaliesA = Ai�−1.
Note that we cannot use Eq. (8.24) when n < N−1, i.e., when the state dimension

is less that the ensemble sizeminus one.We, then, need to retain the projectionAi †Ai

and use Eq. (8.23) rather than Eq. (8.24). Evensen et al. (2019) derived the proofs of
this result and we refer to this paper for the details. This result is also complementary
to Eq. (7.11) which was derived by Evensen (2019).

We can now write the iteration of Eq. (8.19) in matrix form as

Wi+1 = Wi − γ
(
Wi − Si

T(
SiSi

T + Cdd
)−1D̃i

)
, (8.26)

where we have defined the “innovation” term

D̃i = SiWi + D − g
(
Zi ). (8.27)

The update for iteration i is

Zi = Z + AWi

= Z
(
I + �Wi/

√
N − 1

)

= Z
(
I + Wi/

√
N − 1

)
,

(8.28)

where we have used Wi = �Wi , which we get from Eq. (8.26) using ST = �ST.
Thus, we can compute the final update to a cost of nN 2 operations. The updated
ensemble is a linear combination of the prior ensemble members, and the prior en-
semble space contains the updated ensemble of solutions. Algorithm 5 details the
implementation of the ensemble subspace RML algorithm. The algorithm takes as
inputs the prior ensemble and the perturbed measurements, and runs an ensemble
of model simulations to evaluate g

(
Zi

)
. Thus, the algorithm is generic and we can

use it for any model or problem configuration. In Sect. 8.9 we discuss a practical

and efficient implementation for inverting the expression
(
SiSi

T + Cdd

)−1
where

we replace the full measurement error covariance matrix with the ensemble repre-
sentation, Cdd ≈ Cdd = EET. We have used this subspace EnRML method in the
petroleum example in Chap. 21.
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Algorithm 5 Subspace EnRML algorithm for one assimilation window

1: Input: Z ∈ �n×N 
 Prior state-vector ensemble

2: Input: D ∈ �m×N 
 Perturbed measurements

3: W(0) = 0 
 W ∈ �N×N

4: � =
(
I − 1

N 11T
)/√

N − 1 
 � ∈ �N×N

5: E = D� 
 E ∈ �m×N

6: i = 0

7: repeat
8: Yi = g(Zi )� 
 Y ∈ �m×N

9: if n < N − 1 then
10: Yi = YiAi †Ai

11: end if
12: �i = I + Wi� 
 � ∈ �N×N

13: Si = Yi�i−1 
 S ∈ �m×N

14: D̃i = SiWi + D − g(Zi ) 
 D̃ ∈ �m×N

15: Wi+1 = Wi − γ
(
Wi − Si

T(
SiSi

T + EET
)−1

D̃i
)

16: Ti =
(
I + Wi+1

/√
N − 1

)

 T ∈ �N×N

17: Zi+1 = ZTi

18: i = i + 1

19: until convergence

8.5 Ensemble Kalman Filter (EnKF) Update

We can derive the EnKF update as a minimizer of the ensemble of cost functions in
Eq. (7.1). For this, we compute the solution from Eq. (7.12), but using the ensemble
of realizations in Eq. (8.1) to represent the error covariance matrix. Thus, we can
write

zaj = zfj + Czy

(
CyzC

†
zzCzy + Cdd

)−1(
d j − g

(
zfj

))
. (8.29)

Equation (8.29) represents the EnKF update equation of Evensen (1994) with the
perturbed observations proposed by Burgers et al. (1998).

It is straightforward to show that

CyzC
†
zzCzy = YAT

(
AAT

)†
AYT

= Y
(
A†A

)(
Y

(
A†A

))T

= Cyy for n ≥ N − 1,

(8.30)

by using the following result from Sakov et al. (2012),

A†A = IN − 1

N
11T for n > N − 1. (8.31)

However, only in the low-rank case, when n > N − 1, is A†A a projection that
removes the ensemble mean as defined in Eq. (8.12). But, since in Eq. (8.30), the
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Algorithm 6 Subspace EnKF update
1: subroutine EnKF_update

(
Z,D,ϒ

)

2: Input: Z ∈ �n×N 
 Prior state-vector ensemble

3: Input: D ∈ �m×N 
 Perturbed measurements

4: Input: ϒ ∈ �m×N 
 Predicted measurements

5: � =
(
I − 1

N 11T
)/√

N − 1 
 � ∈ �N×N

6: E = D� 
 E ∈ �m×N

7: Y = ϒ� 
 Y ∈ �m×N

8: if n < N − 1 then
9: Y = YA†A
10: end if
11: S = Y 
 S ∈ �m×N

12: D̃ = D − ϒ 
 D̃ ∈ �m×N

13: W = ST
(
SST + EET

)−1
D̃ 
 W ∈ �N×N

14: T =
(
I + W

/√
N − 1

)

 T ∈ �N×N

15: Z ← ZT 
 Update returned in Z

mean ofY is already zero by the definition in Eq. (8.8), the additional multiplication
with A†A has no effect.

Evensen (2003) reformulated theEnKFupdateEq. (8.29) in terms of the ensemble,
as

Za = Zf + AYT
(
YYT + EET

)−1(
D − g

(
Zf))

= Zf + AW,
(8.32)

with
W = YT

(
YYT + EET

)−1(
D − g

(
Zf)), (8.33)

but he did not realize the limitation in Eq. (8.30). Thus, for the Eq. (8.32) to be
generally valid, we need to redefine Y as follows

Y =
{
Y for n ≥ N − 1

YA†A for n < N − 1.
(8.34)

Interestingly, it is possible to compute the EnKF solution from the first ensemble-
subspace RML iteration. The prior value of W is W(0) = 0, and if we set the
step-length γ = 1.0, then the first Gauss–Newton iteration of (8.26) becomes just
the EnKF update equation. Hence, the EnKF solution is also confined to the prior
ensemble subspace.Moreover, ifwe implementAlgorithm5,we canuse it to compute
both the EnRML and the EnKF solutions. We have presented a simplified EnKF
computation in Algorithm 6.

Let us defineXwhere each column stores an ensemble realization for all of the K
time steps of the window. This notation allows us to writeXk to represent the rows in
X holding the solution corresponding to time step k. But more importantly, we can
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Algorithm 7 Recursive EnKF updates using various filter and smoother configura-
tions
1: Input: Z ∈ �n×N 
 Initial model state-vector ensemble

2: Input: Dl ∈ �m×N 
 Perturbed measurements for each assimilation window

3: Input: analysis 
 Analysis method

4: for l = 1, . . . do 
 Loop over assimilation windows

5: X0 = Z
6: for k = 1, K do 
 Ensemble integration

7: Xk = m(Xk−1)

8: end for
9: X = [X0, . . . ,XK ]
10: ϒ = h(X) 
 Predicted measurments

11: select case (analysis)
12: case (EnKF) 
 Recursive EnKF updates at end of assimilation window

13: call EnKF_update
(
XK ,Dl ,ϒ

)

14: case (EnKF0) 
 Recursive EnKF updates at start of assimilation window

15: call EnKF_update
(
X0,Dl ,ϒ

)

16: for k = 1, K do 
 Rerun ensemble integration

17: Xk = m(Xk−1)

18: end for

19: case (ES) 
 Recursive updates over the whole window

20: call EnKF_update
(
X,Dl ,ϒ

)

21: case (EnKS) 
 Recursive smoother updates over all previous windows

22: Xl = [Xl−1,X]
23: call EnKF_update

(Xl ,Dl ,ϒ
)

24: X = Xl (l)

25: case (EnKS_lagged) 
 Recursive smoother updates over λ previous windows

26: Xl = [Xl−1(l − λ : l − 1),X]
27: call EnKF_update

(Xl ,Dl ,ϒ
)

28: X = Xl (l)

29: end select case
30: Z = XK 
 Define state vector for next assimilation window

31: end for

have measurements distributed over the assimilation window, and we can compute
the predicted measurements just by measuring X, i.e., ϒ = h(X).

Note that by using this formulation of the EnKF, we have complete flexibility in
defining what the state vector is (see Algorithm 7). It allows us to update the model
state at the end of the assimilation window, as is common in sequential data assim-
ilation using EnKF (see also the filter solution in Fig. 2.2). And it also allows us to
usemeasurements distributed over the assimilation interval in the update calculation.
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But, this formulation also allows us to compute the solution at the initial time of the
assimilation window and then integrate the posterior ensemble over the assimilation
window to obtain the prior for the next window as in Fig. 2.4. Or we can update the
model stateX over the whole assimilation window, which corresponds to the ensem-
ble smoother (ES) solution in Fig. 2.1 as introduced in Van Leeuwen and Evensen
(1996) and first applied to a real oceanographic applications in Van Leeuwen (1999,
2001). Finally, the formulation is flexible enough to augment the updates from the
previous windows to the state vector and recursively update the model state in the
current and some previous windows. This last approach corresponds to the (lagged)
ensemble Kalman smoother (EnKS), as introduced in Evensen and Van Leeuwen
(2000). We illustrate all these alternatives in Algorithm 7, where the main difference
between them is the definition of the state vector we are updating.

A final remark is that the original Kalman filter usuallywrites the update equations
using the Kalman gain matrix K. However, it only makes sense to compute K when
one has a full-rank error covariance matrix Czz. In the ensemble methods, the use
of low-rank representation Czz implies that K is also of low rank as we compute an
ensemble representation, K, from an outer product of low-rank ensemble matrices.
In other words, one should never compute the Kalman gain matrix using ensemble
methods unless maybe when the number of measurements is less than the ensemble
size.

8.6 Ensemble DAwithMultiple Updating (ESMDA)

For some non-linear problems, the Gauss–Newton method may not converge if the
normalizingHessian is of low rank.We can then use an alternative formulation named
ensemble smoother with multiple data assimilation (ESMDA) proposed by Emerick
and Reynolds (2013). ESMDA approximately samples from f

(
z|d)

by gradually
introducing measurements using the so-called tapering of the likelihood function
(Neal, 1996).

When requiring that
Nmda∑

i=1

1

αi
= 1, (8.35)

we can write the following

f
(
z|d) ∝ f

(
d|g(z)) f

(
z
)

= f
(
d|g(z))

(∑Nmda
i=1

1
αi

)

f
(
z
)

= f
(
d|g(z)) 1

αNmda · · · f
(
d | g(z)) 1

α2 f
(
d | g(z)) 1

α1 f
(
z
)
.

(8.36)

We can then compute Nmda recursive EnKF steps that gradually introduce the ob-
servations using inflated observation errors. This gradual introduction of the update
reduces the impact of the linearization in the ES scheme, see Approx. 5. The method
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Algorithm 8 ESMDA iterations for an assimilation window
1: Input: Z ∈ �n×N 
 Initial model state-vector ensemble

2: Input: d ∈ �m 
 Measurements within the window

3: Input: Cdd ∈ �m×m 
 Measurement error covariance

4: for l = 1, . . . do 
 Loop over assimilation windows

5: for i = 1, Nmda do 
 Loop over assimilation windows

6: X0 = Z
7: for k = 1, K do 
 Ensemble integration

8: Xk = m(Xk−1)

9: end for
10: X = (X0, . . . ,XK )

11: ϒ = h(X) 
 Predicted measurments

12: E = N(0,Cdd) 
 Resample new meaurement perturbations

13: D = d1T + √
αE 
 Create new scaled perturbed measurements

14: call EnKF_update
(
X0,Dl ,ϒ

) 
 Compute update at start of window

15: end for
16: for k = 1, K do 
 Rerun ensemble integration

17: Xk = m(Xk−1)

18: end for
19: Z = XN 
 Define state vector for next window

20: end for

converges precisely to the ES solution in the linear case when the ensemble size goes
to infinity.

In ESMDA, we can use Algorithm 6 to compute the solution. We follow each
step of the algorithm as we do for the EnKF solution, but we repeat the procedure
Nmda times. For each recursive call to the algorithm, we will resample the perturbed
measurements fromN(d, αiCdd). Thus, the effective measurement error variance in
each step is increased with a factor αi .

ESMDAhas gained popularity due to its ease of implementation and its successful
use in various applications. Although it is unclear what the method converges to in
the nonlinear case, it appears to provide an acceptable solution in many cases. Note
that ESMDA with one step corresponds to the EnKF estimate for the start of the
assimilation window.

When we consider the convergence of ESMDA, we mean the number of steps
needed before a further decrease in step length does not change the final solution.
The required number of steps depends on the nonlinearity of the model. In the
COVID example in Chap. 22, we found that 16–32 steps were necessary. We note
that in ESMDA, as the number of steps increases, the measurement perturbations
also increase. Thus, one can imagine cases where the perturbed measurements take
unphysical values causing the algorithm to break down. Emerick (2018) resolved
this particular issue by using a square-root formulation for the update calculation.
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To summarize, both EnRML and ESMDA solve the recursive smoother problem
over a sequence of assimilation windows. It is unclear which method will work the
best for a particular situation, and both have their advantages and disadvantages.
EnKF-type approaches are more efficient to compute as they linearize the measure-
ment prediction and avoid iterations.However, aswewill see in the following section,
we can also use the 4DVarmethods in an ensemble setting and compute the ensemble
update without applying the linear regression of Approx. 7.

8.7 Ensemble 4DVar with Consistent Error Statistics

In Chaps. 4 and 5, we learned that the 4DVar method solves for the maximum a pos-
teriori solution if it converges to the global minimum of the cost function in Eq. (3.9).
Thus, we can use 4DVar to minimize the ensemble of cost functions in Eq. (7.1).
These cost functions are all independent of each other. Suppose the operator g(z) is
weakly nonlinear. In that case, we can minimize each cost function independently
using 4DVar to obtain an ensemble of solutions representing the minima defined
by the cost functions in Eq. (7.1). This approach lets us sample approximately the
marginal probability in Bayes’ theorem in Eq. (2.43). This approach of sampling re-
alizations from the posterior pdf, referred to as the Ensemble of Data Assimilations’
(En4DVar) approach (Isaksen et al., 2010), is an example of RML sampling and is
the method currently used at ECMWF for operational data assimilation.

En4DVar samples an ensemble of realizations from the posterior pdf, so it can
also represent the posterior error covariance matrix. Using SC-4DVar, we sample
the ensemble of initial conditions for the time window and obtain the ensemble
solution over the time window by a final ensemble integration. At the end of the
time window, the ensemble prediction provides the initial conditions for the next
assimilation window, and the ensemble spread represents its updated background
error-covariance matrix.

The WC-4DVar solution of En4DVar gives an updated ensemble for the whole
assimilation window. While SC-En4DVar initializes a prediction from the estimate
at the beginning of the assimilation window, when using WC-En4DVar, we should
initialize the forecast from the ensemble estimate at the end of the assimilation
window. Like SC-En4DVar, the posterior ensemble of WC-En4DVar solutions also
represents the posterior error covariances and the background error covariance for
the next assimilation window.

Hence, we can use both SC-En4DVar and WC-En4DVar to use the ensemble
statistics in recursive model updating as we do when using EnKF. The advantage
of En4DVar is that we minimize precisely the cost functions in Eq. (7.1) without
using the ensemble-averaged model sensitivity as in EnKF. In practice, the ensemble
size is small for high-dimensional 4DVar applications, typically much less than 100
members. In this case, the ensemble covariance matrix is a poor estimate of the prior
covariance matrix in a 4Dvar, which degrades the assimilation results. A partial
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solution to this problem is to use the ensemble to update only the variances and a
few length scales in a climatological prior covariance matrix.

Note that the issue of correctly representing the error-covariancematrix also exists
in the EnKF. But, since the computational cost of EnKF is much less than for an
ensemble 4DVar, we can partly resolve this problem by using a larger ensemble size
with EnKF. Additionally, we often use the localization and inflation schemes, as
discussed in Chap. 10.

8.8 Square-Root EnKF

The so-called square-root filters belong to a popular class of ensembleKalman filters.
These are ensemble filters that do not attempt to sample the Bayesian posterior pdf.
Instead, the square root methods assume a Gaussian posterior distribution with a
covariancematrix equal to theKalman-filter analysis covariancematrix in Eq. (6.33).
The square-root filters’ popularity comes from their avoidance of using perturbed
observations, reducing sampling errors. We can use different routes of deriving the
square-root update equation, but one most commonly starts from a factorization of
Eq. (6.33) using ensemble covariances.

Of course, we usually do not know the analysis error covariance, and if we knew
it, we would not be able to factorize it for many real-sized applications. On the other
hand, when using ensemble methods, we can replace the covariances in Eq. (6.33)
with their ensemble representations, i.e.,

AaAaT = AAT − AY
(
YYT + Cdd

)−1
YAT (8.37)

= A
(
I − YC−1Y

)
AT (8.38)

= A
(
Q�QT

)
AT (8.39)

=
(
AQ�

1
2
)(
AQ�

1
2
)T

(8.40)

=
(
AQ�

1
2QT

)(
AQ�

1
2QT

)T
(8.41)

=
(
AQ�

1
2QT�

)(
AQ�

1
2QT�

)T
. (8.42)

In Eq. (8.37), we have used the definitions in Eqs. (8.4), (8.21), and (8.34) to rewrite
the Kalman filter error covariance update of Eq. (6.33) using the ensemble matrices.
In Eq. (8.38), we define the matrix C = YYT + Cdd. After that, in Eq. (8.39), we
use the eigendecomposition

Q�QT =
(
I − YC−1Y

)
, (8.43)

where we factorize a matrix of the dimension the number of ensemble members N .
To make the method even more efficient, in Sect. 8.9, we will present an algorithm
that computes the inversion of C in the ensemble subspace of dimension N .
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One alternative for updating the forecast ensemble anomalies is to use (8.40) and
write

Aa = AQ�
1
2 , (8.44)

which we usually refer to as the one-sided square-root update. Evensen (2009b) and
Leeuwenburgh (2005) showed that this asymmetrical scheme leads to a solution that
does not conserve the mean, and it creates outliers that hold most of the variance.
However, by using the symmetric square root in Eq. (8.40), we obtain an update-
equation

Aa = AQ�
1
2QT, (8.45)

that ensures zero mean for the anomalies. The updated ensemble becomes a “sym-
metric” and “scaled” contraction along the different eigenvectors in Q. If we desire
a more randomized update, we can add the orthogonal random matrix �, which
randomizes the anomaly updates among the different directions in the eigenvector
space.

Several publications show the superiority of the square-root schemes for low
dimensional models and with small ensemble sizes of O(10). In these examples, the
square-root solution becomes nearly identical to the traditional EnKF solution when
the ensemble size is O(100). One can question how well the ensemble represents
the error statistics for these small ensemble sizes. We may switch from a random
sampling interpretation to an error-subspace formulation with such small ensembles.

For those who want to explore the square-root filters further, we refer to Evensen
(Evensen, 2009b, Chap. 13) and the overwhelming literature on the ensemble trans-
formKalman filter (ETKF) and its implementationwith localization LETKF (Hunt et
al., 2007). For a review comparing different ensemble square-root filters with unified
notation, see Vetra-Carvalho et al. (2018).

8.9 Ensemble Subspace Inversion

In Algorithm 5, we have represented the measurement error-covariance matrix by an
ensemble of measurement perturbations, E. The inversion is, in this case, computed
using an ensemble subspace scheme as was proposed by Evensen (2004), further
discussed in Evensen (2009b) and recently in Evensen et al. (2019) and Evensen
(2021). This scheme projects the measurement error perturbations onto the ensemble
subspace. It computes the pseudo inverse of the following factorization

(
SST + EET)

(8.46)

≈ SST + (SS+)EET(SS+)T (8.47)

= U�
(
IN + �+UTEETU(�+)T

)
�TUT (8.48)

= U�
(
IN + Q�QT)

�TUT (8.49)

= U�Q
(
IN + �

)
QT�TUT, (8.50)
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where we define the singular-value decomposition

S = U�VT, (8.51)

and the identity matrix IN ∈ �N×N . The eigenvalue decomposition in Eq. (8.49)
is of the matrix product in (8.48). Note that this eigenvalue decomposition is most
efficiently computed by a singular value decomposition of the product �+UTE. The
left singular vectors will then equal the eigenvectors in Q, and the squares of the
singular values will equal the eigenvalues in �. Thus, the inversion becomes

(
SST + EET)−1

≈ (
U(�†)TQ

) (
IN + �

)−1 (
U(�†)TQ

)T
.

= U(�†)TQ
(
IN + �

)−1QT�†UT

(8.52)

The main advantage of this algorithm is that it allows for computing the inverse to
a linear cost in the number of measurements, O(mN 2). Also, it is usually easier to
simulate measurement perturbations with given statistics than to construct a com-
plete error covariance matrix. The disadvantage is that using a finite ensemble to
represent the measurement error covariance matrix introduces additional sampling
errors. However, (Evensen, 2021) demonstrated that, by using a larger ensemble to
represent E in Eq. (8.46), one could reduce the associated sampling errors to a neg-
ligible magnitude and with little additional computational cost. We will demonstrate
the consistency of this subspace inversion scheme in the examples in Chap. 13.

8.10 A Note on the EnKF Analysis Equation

Most operational ensemble-based schemes apply an assumption of uncorrelatedmea-
surement errors and use a diagonalCdd = I, see, e.g., the reviews on data assimilation
in the geosciences (Carrassi et al., 2018), weather prediction (Houtekamer & Zhang,
2016), and petroleum applications (Aanonsen et al., 2009). This assumption is em-
ployed for simplicity for two reasons. First, the measurement error covariances are
often not well known, and additionally, it simplifies the update scheme Eq. (13.5)
considerably. With Cdd = I, Eq. (13.5) becomes

Za = Zf + AST
(
SST + I

)−1(D − HZ
)
, (8.53)

which makes it possible to use an efficient algorithm proposed by Hunt et al. (2007)
where, by using a Woodbury identity, the EnKF update becomes

Za = Zf + A
(
STS + I

)−1ST
(
D − HZ

)
. (8.54)

This modification reduces the size of the matrix to be inverted from m × m in
Eq. (8.53) to N × N in Eq. (8.54). See also the discussion related to this particular
implementation in Evensen et al. (2019, Sect. 3.2).
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Alternatively, it is possible to obtain an update equation like Eq. (8.53) if one has

access to a factorization Cdd = C
1
2
ddC

1
2
dd with C

1
2
dd being a symmetrical square root

of a full rank Cdd. E.g., write the eigenvalue decomposition

Cdd = Q�QT = Q�
1
2QT Q�

1
2QT = C

1
2
ddC

1
2
dd (8.55)

and define the symmetrical square root

C
1
2
dd = Q�

1
2QT, (8.56)

and its’ inverse

C
− 1

2
dd = Q�− 1

2QT. (8.57)

Now, by scaling the predicted measurement anomalies and the innovations ac-
cording to

Ŝ = C
− 1

2
dd S, (8.58)

D̂ = C
− 1

2
dd

(
D − HZ

)
, (8.59)

and with some algebra, Eq. (13.5) becomes

Za = Zf + AŜT
(̂
ŜST + I

)−1D̂, (8.60)

and using the Woodbury identity,

Za = Zf + A
(̂
STŜ + I

)−1ŜTD̂. (8.61)

Typically, high numerical costs are associated with establishing C
1
2
dd and the as-

sociated rescalings in Eqs. (8.58) and (8.59), which are both O(m2N ) operations.

Additionally, C
1
2
dd needs to be of full rank or a formulation based on pseudo inverses

must be employed. Thus, the discussion in this section justifies using the ensemble
subspace projection scheme in Eq. (8.52) for computing updates consistently at the
cost of O(mN 2), while taking measurement error-correlations into account.
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9FullyNonlinearDataAssimilation

This chapter provides an introduction tomethods that, in theory, samples precisely the
posterior pdf. Commonly-used ensemble data-assimilation methods, like the EnKF
and EnRML, only sample the posterior pdf correctly in the Gauss-linear case and
typically fail in cases with strong nonlinearity. On the other hand, particle methods
are also ensemble methods, but they attempt to sample the full posterior pdf, also in
problems with multimodal distributions. Their major drawbacks are formed by the
convergence issueswhen the state dimension increases through aphenomenonknown
as ensemble degeneracy. Particle methods work very well for low-dimensional prob-
lems, but they require an intelligent implementation with high-dimensional models
and affordable ensemble sizes. In the following, we will focus on particle filters and
particle flows, which are currently the most promising for highly nonlinear problems
in high-dimensions.

9.1 Particle Approximation

The methods discussed in the previous chapters concentrate on finding or approxi-
mating certain features of the posterior pdf, such as themode (typically the variational
techniques) or the mean (non-iterative ensemble methods). However, if the posterior
pdf is not unimodal and symmetric, then different sampling techniques are needed.
Sometimes the pdf can still be described by a small number of parameters, and
methods to estimate these parameters can be employed, but this is typically not the
case. Often the posterior pdf can have any shape, e.g., being multimodal or heavily
skewed. In this case, we can approximate the posterior pdf by using many samples
of it.

Let’s introduce a new approximation that will significantly ease the computational
aspects of the methods discussed in the previous chapter.
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Approximation 9 (Particle representation of the pdfs) It is possible to approx-
imate a probability density function by a finite ensemble of N model states (or
particles) as

f (z) ≈
N∑

j=1

1

N
δ(z − z j ), (9.1)

where δ(·) denotes the Dirac-delta function.

Wecan then use these samples to calculatemean, covariances, higher-ordermoments,
quantiles, etc.

Several data-assimilation methods exist that sample the posterior pdf, and we
divide them roughly into sequential Metropolis-like algorithms and parallel particle-
filter-like methods. “Sequential” here means that we generate the samples one after
the other, and we use the value of the current sample to generate the next one. Exam-
ples of this kind of algorithms are Metropolis-Hastings, Gibbs samplers, Langevin
samplers, andHybridMonte-Carlo. These are known asMarkov-ChainMonte-Carlo
(MCMC) methods, where the chain part refers to the sequential nature of the sample
generation.

The parallel particle-filter-like algorithms generate samples independently from
each other or with only small interactions. Examples are standard (bootstrap) particle
filters, particle filters with proposal densities, and particle flows. Many of these
parallelmethods use resampling to ensure sufficient samples to represent the posterior
pdf well. Sometimes these particle schemes are also called MCMCmethods, but for
a different reason. They are connected in physical time via a Markov Chain, for
instance, when we propagate the samples in time via a stochastic partial differential
equation.

Many schemes use combinations of methods, such as particle-within-Gibbs
schemes and particle MCMC. However, strategies that generate samples sequen-
tially cannot be made parallel by construction (although one can run several Markov
chains to create different strings of samples). Moreover, we need many samples to
converge to a realistic description of the posterior pdf. Thus, it is not common to use
these methods in high-dimensional geophysical systems. For that reason, we restrict
the discussion to particle filters and flow filters in the following.

As a final note on nonlinear filtering, we touch upon exciting new developments.
One is the so-called Schroedinger perspective on data assimilation, in which one tries
to draw equal-weight particles from the posterior at time n, based directly on draws
from the equal-weight posterior particles at time n − 1, see Reich (2019). These
methods try to solve the prediction and assimilation problem in one go. No practical
algorithms exist for high-dimensional systems, but this is an active research area in
the applied mathematics community.

Substantial progress is also reported using coupling methods that try to find an
optimal transportation map between prior and posterior pdfs by first finding the map
from the prior to a standard Gaussian pdf and then the map from that Gaussian pdf
to the posterior pdf. E.g., ElMoselhy and Marzouk (2012) and Spantini et al. (2019)
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explore a specific form of themap called theKnothe–Rosenblatt (KR) rearrangement
resulting in a triangular map from one pdf to the other. One exciting feature is
that many deep learning algorithms with a ReLU activation function have the same
structure and are ideal for learning the map. Another exciting part is that for a linear
data-assimilation problem, the map is precisely the EnKF.

Another recent development is ensemble-Riemannian data assimilation over the
Wasserstein space. The prior and the likelihood are considered marginal pdfs of a
coupling pdf, and one calculates the distance between pdfs using the Wasserstein
metric. The posterior pdf is then the Wasserstein barycenter of the prior and the
likelihood. It becomes similar to the analysis state being the Euclidian barycenter of
the prior and likelihood terms in a cost function in linear data assimilation (Tamang et
al., 2021). Extensions to high-dimensional problems are described by Tamang et al.
(2022), exploring entropic regularization to speed up convergence in the optimization
method for the optimal transport map. They applied the technique to a two-layer
quasi-geostrophic model.

9.2 Particle Filters

One of the exciting aspects of data assimilation is that we know the solution, and we
can often write it down in analytical form, but we do not know how to describe it in
practical terms for use in a computer. The expression for the posterior pdf is

f (z|d) = f (d|z)
f (d)

f (z), (9.2)

which is just Bayes’ theorem from Eq. (2.10).
There are several ways to generate samples from the posterior pdf. For instance,

similar to ensemble Kalman filters, we can have a set of particles from an ensem-
ble integration of the numerical model. In the ensemble Kalman filter, we assume
that these particles describe a Gaussian prior. The particle filter does not apply the
Gaussian assumption from Approx. 4, and the prior pdf can have any shape. Thus,
the only representation we have of the prior pdf is the set of particles, and in the
following, we will describe several methods that explore this feature.

9.2.1 The Standard Particle Filter

We start out by representing the prior using Eq. (9.1), which is the mathematical
representation of the prior pdf using samples zi . Using this representation in the
expression for the posterior pdf, we find

f (z|d) =
N∑

j=1

w jδ(z − z j ), (9.3)
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Algorithm 9 Update scheme with resampling for the standard particle filter

1: Input: Z ∈ �n×N � Initial model state-vector ensemble

2: Input: d ∈ �m � Measurements vector

3: for j = 1, N do � Log article weights

4: w̃ j = ln f (d|z j )
5: end for
6: w̃max = max j (w̃ j ) � Max of log weights

7: for j = 1, N do � Unnormalized Particle weights

8: w̃ j = exp(w̃max − w̃ j )

9: end for
10: for j = 1, N do � Particle weights

11: w j = w̃ j∑
i w̃i

12: end for
13: call Resample(w, I) � Resampling step

14: for j = 1, N do � Resample ensemble

15: z j = zI j
16: end for

with the so-called likelihood weights w j given by

w j = f (d|z j )
f (d)

= f (d|z j )∑N
i=1 f (d|zi ))

. (9.4)

Here we have used a standard self normalization to ensure the weights add up to one,
which can be derived from f (d) = ∫

f (d|z) f (z) dz ≈ ∑N
i=1 f (d|zi ), and using

the ensemble representation for the prior as above. The full scheme is presented in
Algorithm 9.

Within this scheme, we propagate the weighted particles from one assimilation
step to the next. At each assimilation step, we assign new weights to the particles.
After a few assimilation steps, a particle’s weight is proportional to the product of all
its previous weights. In practice, this means that the weights of the particles diverge
more and more. Typically within a few assimilation steps the relative weight of one
particular particle is very close to one, while all the other particles have weights very
close to zero.We call the resulting ensemble degenerate as it effectively contains just
one particle. The weighted ensemble mean equals the particle with near-one weight,
and the ensemble variance is close to zero.

One way to avoid this degeneracy problem is to use resampling. If the weights
diverge toomuch,we abandon the low-weight particles and duplicate the high-weight
particles such that the total number of particles does not change. A standard measure
for particle divergence is the effective ensemble size, defined as

Neff = 1
∑N

i=1 w2
i

, (9.5)

where wi are the normalized weights, such that they add up to one. Typically, re-
sampling is introduced when Neff ≤ 0.8N .
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Algorithm 10 Stochastic Universal Resampling algorithm
1: subroutine Resample(w, I)
2: Input: w ∈ �N

3: ŵ1 = w1

4: for j = 2, N do � compute cumulative weights

5: ŵ j = ∑ j
i=1 w j

6: end for
7: u ∼ U[0, 1/N ] � generate a random number

8: k = 1

9: for j = 1, N do
10: while u > ŵk do
11: k = k + 1

12: end while
13: I j = k � assign an index of the sampled particle

14: u = u + 1/N

15: k = 1

16: end for

Using resampling avoids the accumulation of weights on each particle, and we
obtain so-called particle filters with sequential importance resampling (SIR). There
are several resampling schemes from which we can choose. The one that leads to the
minimum additional random noise is the so-called Stochastic Universal Resampling,
which proceeds as denoted in Algorithm 10, see Kitagawa (1996).

When the number of independent observations is large, and large here typically
means more than 10, we need 1,00,000 samples or more, even to represent the mean
accurately. The reason is that the likelihood will be very peaked if it consists of
products of individual likelihoods for each independent observation, which means
that the weights will vary enormously over the particles. We often have very many
observations in the geosciences, and the SIR method will degenerate even after one
assimilation step. In this case, the resampling will result in an ensemble of particles
identical to the best member, and the ensemble remains degenerate.

9.2.2 Proposal Densities

Interestingly, we do not have to draw samples from the prior as we can also use
samples from another pdf, the so-called proposal pdf q(z). We can rewrite Bayes’
theorem from Eq. (9.2) as

f (z|d) = f (d|z)
f (d)

f (z) = f (d|z)
f (d)

f (z)
q(z)

q(z), (9.6)
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which holds for any q(z) that is nonzero where the prior is nonzero. Assume we have
samples from q(z), so we can write

q(z) =
N∑

i=1

1

N
δ(z − zi ), (9.7)

then we find again, using the expression for q(z) Eq. (9.6)

f (z|d) =
N∑

i=1

wiδ(z − zi ), (9.8)

but now with weights

wi = f (d|zi )
N

∑N
j=1 f (d|z j )

f (zi )
q(zi )

. (9.9)

and the weights are now the product of the likelihood weights and the so-called pro-
posal weights. It looks like we didn’t gain much, but remember that the pdf q(z) can
be whatever we choose. For instance, we can make it dependent on the observations,
q(z|d). Thus, we can use particles that already know where the observations are. As
an example, we can use posterior samples from an EnKF solution as samples from
the proposal density q(z). In that case, all particles will be closer to the observations
than samples from the prior. Hence, the likelihood weights will be much closer to-
gether. Of course, we need to include the so-called proposal weights f (z j )/q(z j )
in our final expression, but these often have a much smoother distribution than the
likelihood weights.

To use this formalismwe need to evaluate f (z j ). Inmany cases this pdf is assumed
to be known, e.g., for pure parameter estimation or for state estimation over just a
single time window. In general, we know this pdf for stationary estimation problems.

However, in sequential estimation the posterior pdf at one time step becomes the
prior at the next timestep and we do not know the shape of this prior pdf. All we have
are a set of particles that represent the prior pdf and it will be impossible to evaluate
the value of f (z j ). Fortunately, we can use the model equations because we know
the statistics of the model errors. Thus, we assume we know f (zk |zk−1) where k is
the time index, and in which z can be a model state, or parameters when these are
estimated sequentially.

For example, let’s assume Gaussian additive model errors with mean zero and
covariance Cqq. In that case we can introduce the transition density

f (zk |zk−1) ∝ exp
(
−1

2

(
zk − m(zk−1)

)TC−1
qq

(
zk − m(zk−1)

))
. (9.10)

The reason for introducing the transition density of one state to the next is that we
can rewrite the prior pdf as

f (zk) =
∫

f (zk, zk−1) dzk−1 =
∫

f (zk |zk−1) f (zk−1) dzk−1. (9.11)
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If we now invoke a particle representation at time tk−1, we find the following ex-
pression for the prior pdf

f (zk) =
∫

f (zk |zk−1)
1

N

N∑

j=1

δ(zk−1 − z j,k−1) dzk−1 =
N∑

j=1

1

N
f (zk |z j,k−1).

(9.12)
The exciting part of this development is that we have changed from representing the
prior by a set of delta functions to using a continuous prior defined by a sum of transi-
tion densities. The transition densities are often Gaussian pdfs representing Gaussian
model errors without any further approximation. Hence, for Gaussian model errors
a Gaussian mixture is a natural expression of the prior, where the model error co-
variance defines the width of the covariance in the Gaussian pdf in each mixture
component.

Remember that wewant to introduce a proposal density in this formalism to obtain
weights with better behavior. With this in mind, we use the particle representation
from Eq. (9.12) in Eq. (9.2) to obtain

f
(
zk |dk

) = f
(
dk |zk

)

f
(
dk

) f
(
zk

)

= f
(
dk |zk

)

f
(
dk

)
N∑

j=1

1

N
f
(
zk |z j,k−1

)

= f
(
dk |zk

)

f
(
dk

)
N∑

j=1

1

N

f
(
zk |z j,k−1

)

q
(
zk |zk−1,d

)q
(
zk |zk−1,d

)
.

(9.13)

Note that we have introduced a transition proposal density q(zk |zk−1,d) that does
not only depend on state evolution equations, but that we also allow to depend on the
new observations. As before, we multiply and divide the expression in the second
line of the equation by q . This division is possible when the support of q is equal
to or larger than that of the transition density f

(
zk |z j,k−1). The important element

is that we now draw samples from q instead of directly from the model error pdf f .
This leads again to

f
(
zk |dk

) =
N∑

i=1

wiδ
(
zk − zi,k

)
, (9.14)

but now with weights

wi = f
(
dk |zi,k

)
∑N

j=1 f
(
dk |z j,k

)
f
(
zi,k |zi,k−1

)

q
(
zi,k |zi,k−1,dk

) , (9.15)

where the first part comes from Eq. (9.4). The values of the weights in Eq. (9.15)
depend on our choice for q . Since q is a transition density, it is related to state
evolution equations. In fact, we can choose any model equation we like to ensure
that the weights are less degenerate. The freedom is enormous. Since we can take
q to be dependent on the new observations, we can include other data-assimilation
methods into a particle filter in a very natural way.
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Let’s have a look at how to include a stochastic ensemble Kalman filter into a
particle filter, as introduced by Papadakis et al. (2010), and as discussed in correction
to that scheme in Van Leeuwen (2009). In terms of proposal densities, we can split
the stochastic ensemble Kalman filter into two steps, a model evolution step from
time tk−1 to the observation time tk , and an update step at time k. We can write for
each ensemble member, assuming a linear observation operator and suppressing the
superscript f for the forecast

zaj,k = z j,k + K
(
dk − Hz j,k − ε j

)

= m
(
z j,k−1

) + q j + K
(
dk − Hm

(
z j,k−1

) − Hq j − ε j

)

= m
(
z j,k−1

) + K
(
dk − Hm

(
z j,k−1

)) +
(
I − KH

)
q j − Kε j ,

(9.16)

where K is the Kalman gain calculated from the prior ensemble at time k.
We see that the update consists of a deterministic part and a stochastic part.

Assuming Gaussian model errors and Gaussian observation errors, the stochastic
part is Gaussian with mean zero and covariance

� =
(
I − KH

)
Cqq

(
I − KH

)T + KCddK
T
. (9.17)

Hence, the proposal-transition density for each ensemble member of a stochastic
ensemble Kalman filter becomes

q
(
zk |z j,k−1,d

) = N (
z̃ j ,�

)
, (9.18)

where z̃ j results from the deterministic part

z̃ j = m
(
z j,k−1

) + K
(
dk − Hm

(
z j,k−1

))
. (9.19)

Thus, we use EnKF to calculate the “proposed” particles and, after that, obtain their
weights from Eq. (9.15). To compute the weights, we evaluate the probability of each
EnKF-updated particle from the normal distribution q(zk |z j,k−1,d) in Eq. (9.18).
Thenwe calculate f (zk |z j,k−1) for each particle using theGaussian inEq. (9.10). The
ratio of these two probabilities gives the proposal part of theweights.Wemultiply this
ratio with the likelihood part of the weights from Eq. (9.4) and, after normalization,
we have our final weights.

Many other choices are possible too. For instance, one could use a 3DVar on
each particle as a proposal. Or we could use the EnKF with reduced observation
errors to draw the particles closer to the observations. More extensively, we can also
use a 4DVar or an ensemble smoother on each particle (Van Leeuwen et al., 2015).
Other suggested proposals include synchronization methods (Pinheiro et al., 2019a,
2019b) and simple nudging schemes (Van Leeuwen, 2010). The point is, one can
use every trick in the book and beyond without making any other approximation
than Approx. 9. However, the proposed samples should make physical sense and
represent the posterior distribution as close as possible at each update step.
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9.2.3 The Optimal Proposal Density

One can ask if there is an optimal proposal density, and depending on the definition
of optimal, there is. One way to define optimality is to minimize the variance of the
weights, leading to the so-called optimal proposal density. This density is given by
q(zk |z j,k−1, d) = f (zk |z j,k−1,d). By using the definition of conditional densities
as f (a|b, c) = f (a, b|c)/ f (a|c) and f (a, b|c) = f (a|b, c) f (b|c), we can write

f
(
zk |z j,k−1,dk

) = f
(
zk, dk |z j,k−1

)

f
(
dk |z j,k−1

) =

= f
(
dk |zk, z j,k−1

)
f
(
zk |z j,k−1

)

f
(
dk |z j,k−1

) =

= f
(
dk |zk

)
f
(
zk |z j,k−1

)

f
(
dk |z j,k−1

) , (9.20)

where in the last equality we used that f (dk |zk, z j,k−1) = f (dk |zk) because dk does
not explicitly depend on z j,k−1 when z j,k is given. The denominator does not depend
on the active variable zk , and hence is a normalization constant that we do not have
to worry about.

We can evaluate the weights of the optimal proposal density without any approx-
imation. From Eq. (9.15) the weights become, using Eq. (9.20),

w j = f (dk |z j,k)
f (dk)

f (z j,k |z j,k−1)

f (z j,k |z j,k−1,dk)

= f (dk |z j,k)
f (dk)

f (z j,k |z j,k−1)

f (dk |z j,k)
f (dk |z j,k−1)

f (z j,k, z j,k−1)

= f (dk |z j,k−1)

f (dk)
. (9.21)

The variance in these optimal proposal weights will be much lower than those of the
standard particle filter because of the model error pdf. To see this, we can write

w j = f (dk |z j,k−1)

f (dk)
=

∫
f (dk, zk |z j,k−1)

f (dk)
dzk =

∫
f (dk |zk)
f (dk)

f (zk |z j,k−1) dzk .

(9.22)
Thus, we can write the weights as a convolution of the standard particle filter weights
with the model error pdf. Such a convolution always results in a broader pdf as the
standard particle filter weights are “smeared out.”

When the model and the observation operators are nonlinear, it is not straightfor-
ward togenerate these optimal proposal particles, i.e., the draws from f (zk |z j,k−1,dk).
Chorin and Tu (2009), Chorin et al. (2010) andMorzfeld et al. (2012) have developed
an efficient scheme named the implicit particle filter that partly resolves this problem.
For Gaussian observation and model errors, this solution equals a 4DVar estimate
for each particle, perturbed by a random error. In each 4Dvar the state covariance
at the initial time is zero (and hence, the prior pdf is a delta function centered at
that particle). For linear observation operators, we can evaluate this explicitly. The
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numerator in Eq. (9.20) is a product of two Gaussians, and we know from standard
Kalman filters that we can write f (zk |z j,k−1, dk) as another Gaussian with mean

z̃ j = m
(
z j,k−1

) + K̃
(
dk − Hm

(
z j,k−1

))
, (9.23)

in which K̃ = CqqHT
(
HCqqHT + Cdd

)−1, which is a Kalman gain with model
covariance Cqq, and with covariance

�̃ = (
I − K̃H

)
Cqq

(
I − K̃H

)T + K̃CddK̃T. (9.24)

Themean andmode of these transition densities are equal to those of a 4DVar on each
particle with prior covariance equal to zero and model error covariance equal toCqq.
We do not need the mode, but instead we need to draw from the Gaussian distribution
and consider each particle as a weak-constraint 4DVar solution perturbed by a draw
fromN (0, �̃). Note the resemblance with using the stochastic EnKF as proposal, as
expected. For this particular case, we can generate an analytical expression for the
weights as

w j = f (dk |z j,k−1)

f (dk)
=

∫
f (dk |zk)
f (dk)

f (zk |z j,k−1) dzk

∝ exp

(
−1

2

(
dk − Hm(z j,k−1)

)T
C̃−1
dd

(
dk − Hm(z j,k−1)

))
, (9.25)

where
C̃dd = HCqqHT + Cdd. (9.26)

We see that the weight in Eq. (9.25) is the likelihood of particle j starting at the
previous time. These weights will be better behaved than the weights of the standard
particle filter because we inflate the observation error covariance by a termHCqqHT.
When the model error is significant, this additional inflation can make the weights
much more similar.

9.2.4 Other Particle Filter Schemes

It is easy to show that for high-dimensional systems as encountered in the geosciences
the weights are still degenerate when using an EnKF as proposal density. This is
even the case with the optimal proposal density with a realistic number of ensemble
members, e.g., 100, to compute the proposal ensemble. The community has not yet
systematically explored other possibilities of calculating the proposal ensemble, so
searching for methods to avoid degeneracy remains an area of active research.

There aremainly two solutions proposed in the literature for avoiding the weights’
degeneracy. The first approach uses localization to reduce the number of observations
in each local update of the weights. We will discuss localization in more detail in
Chap. 10. The second method tries to ensure that all or most particles have equal
weight. The reason that we can do better than the optimal proposal density, which
minimizes the variance of the weights, is that we sacrifice a few particles to ensure
that the rest of the particles have weights that are very similar. Hence, the variance
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in the weights can be large, but via resampling of the bad particles we can avoid
degeneracy of the overall filter. We will not discuss these methods here but we rather
refer to e.g., Ades and Van Leeuwen (2013, 2015a, 2015b), Skauvold et al. (2019),
Van Leeuwen (2010, 2011), Van Leeuwen and Ades (2013), Zhu et al. (2016), and
the review in Van Leeuwen et al. (2019).

A recently proposed third solution is to use methods that avoid particle weights
altogether, as discussed in the next section.

9.3 Particle-Flow Filters

In particle flows, one typically starts with equally weighted samples from the prior.
Instead of weighing them with the likelihood, as in the standard particle filter, we
transform the samples in state space to represent the posterior pdf. This transfor-
mation is an iterative process. In the previous chapters, we discussed variational
schemes like 4DVar and RML sampling. 4DVar uses an iterative Gauss–Newton
method to find the posterior mode, and RML sampling minimizes an ensemble of
cost functions to approximately sample the posterior pdf. Particle flow is an iterative
ensemble method that in theory correctly samples the posterior pdf.

There is a recent increased interest inmethods that dynamicallymove the particles
in state space from equal-weight particles representing the prior, f (z), to equal-
weight particles representing the posterior, f (z|d). In these methods, we seek a
potentially stochastic differential equation

dz = ms(z)ds + dq, (9.27)

in artificial time s ≥ 0 where the deterministic flow mapms and the stochastic term
dq define the desired transformation. The stochastic term is drawn fromN (0,Cff ds),
in which Cff is the covariance matrix of the error in the flow map, i.e., the stochastic
forcing. If the initial conditions of the differential equation (9.27) are chosen from
a pdf f0(z) with 0 referring to the initial artificial time, then the solutions follow a
distribution characterized by the Fokker–Plank Eq. (2.25) which we write as

∂ fs
∂s

= −∇z · ( fsms) + ∇z ·
(
Cff · ∇z fs

)
. (9.28)

The initial condition for this equation is f0(z) = f (z) and we aim to determine a
flow mapms and stochastic forcing determined byCff, such that fs satisfies the final
condition fsfinal(z) = f (z|d).

9.3.1 Particle Flow Filters via Likelihood Factorization

Several classes of particle-flow filters arise from the likelihood-factorization formal-
ism. To introduce this formulation, let us assume

fs(z) ∝ f (d|z)s f (z), (9.29)
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in which s = 0 gives us back the prior, and s = 1 the posterior pdf. We can take the
natural logarithm to find:

ln fs(z) ∝ s ln f (d|z) + ln f (z) + c(s), (9.30)

in which c(s) is a function of the pseudo time s, but not of the state z. If we now take
the pseudo-time derivative we find:

1

fs

∂ fs
∂s

= ln f (d|z) + ∂c(s)

∂s
. (9.31)

We now divide the Fokker–Plank Eq. (9.28) by fs to find:

1

fs

∂ fs
∂s

= − 1

fs
∇z · ( fsms) + 1

fs
∇z ·

(
Cff · ∇z fs

)
. (9.32)

Combining the last two equations and taking the gradient to the state z to eliminate
c(s) leads directly to:

∇ log f (d|z) = −mT
s ∇2

z log fs −∇z(∇z ·ms )−∇z log fs∇z ·ms + 1

2
∇z

(∇z · (Cff∇z fs )

fs

)
. (9.33)

Thus, we have a nonlinear coupled system of equations whose size is the dimension
of the system. However, ms has that same dimension, and Cff has that dimension
squared, so the number of unknowns is much larger than the number of independent
equations. Thus, there are many, in fact, an infinite number of m,Cff combinations
that are valid solutions.

Remarkably, and this is truly remarkable, Daum et al. (2018) found an analytical
solution of Eq. (9.33) , i.e.,

ms = −
(
∇2
z log fs

)−1(∇z log f (d|z)
)T

, (9.34)

Cff = −
(
∇2
z log fs

)−1(∇2
z log f (d|z)

)(
∇2
z log fs

)−1
. (9.35)

This solution’s significance is the existence of a closed-form solution for the fully
nonlinear data-assimilation problem in terms of themovement of individual particles.
Unfortunately, we need the gradient of the logarithm of fs(z), which is a pdf that we
only have an ensemble representation of, so we know it as a sum of Dirac-delta dis-
tributions. Hence, this gradient does not exist, and we need to make approximations,
e.g., assuming that each particle is not a Dirac-delta distribution but a Gaussian.
We have not yet seen this approach explored in any detail for high-dimensional
geophysical problems.

In another class of methods, we assume that the stochastic term is zero, and start
from a tapering approach, where we gradually increase s such that sfinal = 1. We
now take the limit of increasing number of tapering steps by choosing as steplength
γi = 1/ns = �s with limns→∞, so limγi→0, or lim�s→0, see Daum and Huang
(2011, 2013) and Reich (2011). This approach leads to

lim
�s→0

fs+�s(z) = fs(z)
(

f (d|z)
f (d)

)�s

= fs(z) exp
(
�s

(
ln f (d|z) − ln f (d)

))

≈ fs(z)
(
1 + �s ln f (d|z) − �s ln f (d)

)
,

(9.36)
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where we have use a first order Taylor expansion to get to the final line. Hence, we
find

∂ fs(z)
∂s

= fs(z)
(
ln f (d|z) − ln f (d)

)

= fs(z)
(
ln f (d|z) − cs

)
,

(9.37)

with cs = ∫
fs(z) ln f (d|z) dz, which follows directly from integrating the equation

over the whole state space, and using
∫

fs(z) dz = 1. If we now use the Liouville
equation (Jazwinski, 1970) for the evolution of a pdf we can identify

∇z ( fsms) = − fs(z)
(
ln f (d|z) − cs

)
, (9.38)

which is an implicit equation for ms in terms of fs . Explicit expressions for ms are
available for certain pdfs such as Gaussians and Gaussian mixtures (Reich, 2012).
These particle-flow filters can be viewed as a continuous limit of the tapering meth-
ods, avoiding the need for resampling and jittering. Note that the elliptic partial
differential equation (9.38) does not determinems uniquely. Optimal choices in the
sense of minimizing the L2( fs)-norm ofms lead to the theory of optimal transporta-
tion, see Reich and Cotter (2015) and Villani (2008).

9.3.2 Particle Flows via DistanceMinimization

Alternatively, one can define a distance between the intermediate pdf fs(z) and
the posterior pdf, and then find the flow field ms that minimizes that distance.
Many definitions of the distance between two pdfs exist, and we will use the
Kullback–Leibler (KL) divergence here. (The KL divergence is strictly speaking
not a distance as it is not symmetric in its arguments, but reducing KL does reduce
the distance between the two pdfs.) The following efficient derivation follows Hu
and Van Leeuwen (2021).

The KL divergence is given by

KL
(
fs(z) || f (z|d)

) =
∫

fs(z) ln
fs(z)
f (z|d)

dz, (9.39)

and we find the rate of change of the KL divergence with s from

∂KL

∂s
=

∫
∂ fs(z)

∂s

(
ln

fs(z)
f (z|d)

− 1

)
dz. (9.40)

We can rewrite this expression using the Liouville equation for fs(z) as

∂KL

∂s
=

∫
∇z ·

(
ms(z) fs(z)

) (
1 − ln

fs(z)
f (z|d)

)
dz, (9.41)

and, using partial integrations twice, we obtain

∂KL

∂s
= −

∫
fs(z)

(
ms(z)∇z ln f (z|d) + ∇zms(z)

)
dz. (9.42)

Our task now is to find the flow field ms(z) that leads to a fast decrease of the KL
divergence and thus an efficient mapping from the prior to the posterior pdf. As we
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have no direct solution to this optimization problem, Liu and Wang (2016) suggest
embedding the flow field in a reproducing-kernel Hilbert space (RKHS), such that

ms(z) =
〈
K(·, z) , ms(·)

〉
, (9.43)

in which K(·, z) is a matrix-valued kernel, so a matrix of functions of two state
vectors. Using this result in Eq. (9.42) leads directly to

∂KL

∂s
= −

〈∫
fs(z) [K(·, z)∇z ln f (z|d) + ∇zK(·, z)] dz , ms(·)

〉
, (9.44)

where we used the linearity of the integral and the inner product to change their
order. If we now define ∇zKL as the gradient of the KL distance, i.e., the maximal
functional derivative of KL at every state vector z in the RKHS, we can write the
change in KL in the direction ofms as〈

∇zKL ,ms

〉
. (9.45)

By comparing this expression with Eq. (9.44), we can identify

∇zKL = −
∫

fs(z) [K(·, z)∇z ln f (z|d) + ∇zK(·, z)] dz. (9.46)

Hence, by introducing the Reproducing Kernel Hilbert Space, we find an expression
for the gradient of KL in terms of an integral that contains the kernel. The critical
point is that this gradient is independent ofms . If we choose the flow fieldms along
this gradient direction

ms(z) = −ε∇zKL(z), (9.47)

where ε is a positive scalar,we can use this gradient in a steepest descentminimization
of the KL distance. Furthermore, as in variational data-assimilation methods, we can
rotate the descent direction to achieve faster convergence. In general, we can use

ms(z) = −B∇zKL(z), (9.48)

in which B is a positive definite matrix to our liking. From variational and other
iterative methods discussed in Chap. 3, one might want to choose the posterior
covariance matrix for B, see, e.g., Eq. (3.17). In practical applications with variables
with different physical dimensions, we recommend exploring this freedom of the
definition of the matrix B.

Finally,we replace the integral by its empirical approximation by using the particle
representation of fs(z), to obtain

∂z j
∂s

= ms(z j ) = B
1

N

N∑

l=1

(
K(z j , zl)∇zl ln f (zl |d) + ∇zlK(z j , zl)

)
. (9.49)

The intuitive explanation of this equation is that the first term in (9.49) pulls the
particles towards the mode of the posterior as in a variation method, while the second
term acts as a repulsive force that allows for particle diversity. If only the first term is
present, the particles will all flow towards the mode of the posterior pdf. As a result,
the averaged gradient of the log posterior at each particle, weighted by the kernel,
determines the particle flow.
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Algorithm 11 Update scheme for a particle flow filter

1: Input: Z ∈ �n×N � Initial model state-vector ensemble

2: Input: d ∈ �m � Measurements vector

3: ϒ = g(Z) � Measure ensemble

4: call Precondition (Z,B) � Preconditioning matrix

5: m = 0

6: for j = 1, N do
7: for i = 1, N do
8: call gradLikelihood

(
d, zi ,ϒ i ,φl

) � Alg. 12

9: call gradPrior
(
Z,φ p

) � Alg. 13

10: call kernel
(
zi , z j ,K,φk

) � Alg. 14

11: m = m + K · (φl + φ p) + φk

12: end for
13: m = 1

N B · m � Preconditioning

14: z j = z j + �sm
15: end for

Algorithm 12 Gradient of likelihood for Gaussian observation errors
1: subroutine gradLikelihood(d, zi ,ϒ i ,φl )

2: Input: d ∈ �m

3: Input: zi ∈ �n

4: Input: ϒ i ∈ �m

5: HT
i = ∇zi g(z)

6: φl = HT
i R

−1 (d − Yi )

Algorithm 13 Gradient of log prior for Gaussian prior
1: subroutine gradPrior(Z,φ p)

2: Input: Z ∈ �n×N

3: z = ∑N
i=1 zi/N

4: φ p = −C−1
zz (zi − z)

The second term avoids this particle collapse by repelling the particles when they
become too close. This can easily be seen by choosing a scalar Gaussian kernel, as in
Liu and Wang (2016) and Pulido and Van Leeuwen (2019). If we writeK(z j , zi ) =
k(z j , zi )I and take the gradient to z j , we obtain

∇zlK(z j , zl) ∝ (z j − zl)k(z j , zl). (9.50)

If a component of z j is larger than that of zl , the gradient in Eq. (9.50) is positive,
increasing z j in that dimension. Thus, the term act as a repelling term. Hu and Van
Leeuwen (2021) showed that for sparsely observed systems, a matrix kernel is more
efficient than a scalar kernel. The issue with a scalar kernel is that the repelling
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Algorithm 14 Kernel and its divergence for diagonal Gaussian case
1: subroutine kernel(zi , z j ,K,φk )

2: Input: Z ∈ �n×N

3: K = 0

4: for l = 1, n do

5: K(ll) = exp

[
− 1

2

(
z(l)i −z(l)j

)2

σ 2
l

]

6: φ
(l)
k = −

(
z(l)
i − z(l)

j

)
K(ll)/σ 2

l

7: end for

term uses the distance between two complete state vectors. The particles converge
fast to each other in the space directly influenced by the observations, while that
part of the state vector far from the observations shows slow convergence. This
slow convergence results in a large distance between particles, hence a tiny repelling
force, while the particles collapse in the observed part of the state vector. We can
easily avoid this problem by using a simple diagonal kernel with local kernels on the
diagonal. We present the particle flow algorithm in Algorithm 11.

Interestingly, Lu et al. (2019) showed that this particle-flow filter converges to
the true posterior for any kernel symmetric in its arguments that vanishes at infinity,
in the limit of an infinite number of particles. Hence, in that limit the choice of
kernel is irrelevant! With a finite number of particles, as in any realistic geophysical
application, the choice of the kernel will matter.

Another choice to be made in this scheme is the Bmatrix, which can be seen as a
preconditioningmatrix for theminimization. By choosing this matrix proportional to
a localized ensemble covariancematrix, Hu andVan Leeuwen (2021) demonstrated a
practical scheme thatworkswell in problemswith hundreds of localmodes usingonly
20 particles. In Chap. 18 we demonstrate the use of a particle-flow implementation
with a scalar model and show how themethod samples the true posterior distribution,
in contrast to traditional assimilation methods, while in Chap. 20 a high-dimensional
application to a quasi-geostrophic atmospheric model is described.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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Localization and inflation have become essential means of mitigating the effects
of the low-rank approximation in ensemble methods. Localization increases the ef-
fective rank of the ensemble covariance matrix and allows it to fit a large number
of independent observations. Thus, we use localization to reduce sampling errors,
in combination with inflation, to reduce the underestimation of the ensemble vari-
ance caused by the low-rank approximation. These methods are essential for high-
dimensional applications, and this chapter will give a general introduction to various
formulations of localization and inflation methods.

10.1 Background

The accuracy of data-assimilation methods that exploit a Gaussian prior is strongly
dependent on the quality of the prior covariance matrix. This fact is actual both for
variational and for ensemble Kalman filters. The prior EnKF ensemble is genuinely a
low-rank approximation, and localization is a way to increase the rank of that matrix
drastically. That is essential for being able to fit a large number of independent
observations. Furthermore, we also use localization to reduce sampling errors, in
combinationwith a technique called inflation,which is essential for high-dimensional
applications. The ensemble approximation is not severe when using a sufficiently
large ensemble, and we would happily accept the updated ensemble as our posterior
estimate. However, we are often limited to using few realizations for computational
reasons, limiting the available range of the solution space and leading to significant
sampling errors. For example, the Topaz ocean prediction system described by Xie et
al. (2017) currently hasO(108) state variables and assimilatesO(105)measurements
in each update step while the ensemble size is 100. Thus, although the “effective”
dimension of the model state vector is less than O(108), the state space is vastly
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undersampled, and the ensemble size is too small to represent all the information
provided by a large number of measurements. We would not be able to run these
high-dimensional systems without localization and inflation.

Suppose the measurements contain spatial variability on scales that the model
cannot simulate. In that case, localization allows introducing these finer scales in
the updated ensemble and obtaining a model that better fits the observations. It then
becomes a partly philosophical and partly computational question whether it makes
sense to introduce these fine scales in the model or not. The alternative would be
to treat the finer scales in the measurements as representation errors. We can then
reduce the measurements’ impact by increasing their error variance and specifying
correlated measurement errors. Still, we need localization in large-scale systems
since the ensemble space cannot generally accommodate all the information provided
by the measurements.

We also use localization in particle filters, but for a different reason. There the
issue is filter degeneracy and weight collapse due to a too large number of indepen-
dent observations. Localization limits the number of measurements each gridpoint
sees, reducing the degeneracy problem. This chapter provides the basis for different
localization methods and formulations, including Kalman gain localization, covari-
ance localization, and local analysis. We will see that localization and inflation are
well developed for the EnKF, while it remains a severe obstacle in particle filtering.

10.2 Various Forms of the EnKF Update

This section contains various forms of the EnKF update equations that we will use
throughout this chapter. With reference to definitions given in Chap. 8, we can write
the EnKF update Eq. (8.29), in the following alternative but equivalent forms:

Za = Zf + Czy

(
Cyy + Cdd

)−1(
D − g

(
Zf)) (10.1)

= Zf + AYT
(
YYT + EET

)−1(
D − g

(
Zf)) (10.2)

= Zf + K
(
D − g

(
Zf)) (10.3)

= Zf + CzyB (10.4)

= Zf + AW (10.5)

= ZfT. (10.6)

Here each column of Z represents an ensemble realization, and the corresponding
column in D − g

(
Zf

)
is this realization’s innovation vector, i.e., the difference be-

tween perturbed and predicted observations. The various representations of the EnKF
update allow for making different interpretations of it’s ensemble low-rank approxi-
mations. We eliminate apparence of the projection A†A from the analysis equations
by using Eq. (8.7) in the following discussion.
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In Eqs. (10.2) and (10.5) we have used Eq. (8.32).
In Eq. (10.3) we have defined the ensemble representation of the Kalman gain

from Eq. (6.39) as

K = Czy

(
Cyy + Cdd

)−1
, (10.7)

which leads to an interpretation of the analysis as computing the update as linear
combinations of the m columns of the Kalman gain matrix.

The representer update in Eq. (10.4) is the ensemble version of the formulation in
Eqs. (6.40)–(6.42). We can interpret the representer update in Eq. (10.4) as comput-
ing the update by adding a linear combination of covariance functions (or representer
functions), one for each measurement, to the prior. Thus,Czy is the representer func-
tions’ ensemble representation and the columns in B define the linear combinations
of representer functions used to create the analyzed ensemble members. The matrix
B is the solution of the following m-dimensional linear system of equations with N
right-hand sides, (

YYT + EET
)
B = D − g

(
Zf). (10.8)

Thus, both the representer formulation and the Kalman gain version of the analysis
update have a similar interpretation. Both Eqs. (10.3) and (10.4) computes the solu-
tion in observation space as defined by the dimension of the matrix

(
YYT + EET

)
.

However, in the case with N < m the update is still of low rank and we can compute
it more efficiently using Eqs. (10.5) or (10.6).

10.3 Impact of Sampling Errors in the EnKF Update

There are three major consequences of using a low-rank ensemble approximation
when computing the analysis updates andwewill discuss each of them in this section.

10.3.1 Spurious Correlations

Initially, if approaching the ensemble methods with the perspective of the Kalman
filtering community, the first obvious consequence of using an ensemble of limited
size is a poor representation of the covariance functions and the error covariance
matrix. And, when using a finite ensemble size, we introduce long-range spurious
or unphysical correlations in the covariances Czy . Thus, a measurement may in-
fluence the update throughout the model domain due to the spurious correlations.
Another consequence of the spurious correlations is that they lead to an unrealistic
reduction of the ensemble variance far from the measurements’ locations, leading
to under-estimated prediction uncertainty and possible filter divergence. This obser-
vation led to the introduction of methods for covariance localization, as we discuss
below.
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10.3.2 Update Confined to Ensemble Subspace

Evensen (2003) explicitly showed that the EnKF update equation computes the ana-
lyzed ensemble realizations as linear combinations of the prior ensemble realizations
(see Eq.10.6) where we define the transition matrix using notation from Chap. 8 and
Evensen et al. (2019)

Za = Zf + AW (10.9)

= Zf + Zf
(
I − 1

N
11T

)
W/

√
N − 1 (10.10)

= Zf + ZfW/
√
N − 1 (10.11)

= Zf
(
I + W/

√
N − 1

)
(10.12)

= ZfT, (10.13)

withW defined from Eq. (8.33) as

W = YT
(
YYT + EET

)−1(
D − g

(
Zf)), (10.14)

and using 1TW = 0 (Evensen et al., 2019). Thus, using the EnKF update equation it
is impossible to obtain an update outside the subspace spanned by the prior ensemble.
As in the Topaz system referenced above, the ensemble space may be too restricted
to allow for a realistic update incorporating all the measurements’ information. This
issue is different from spurious correlations and is directly related to the low rank of
the prior ensemble.

10.3.3 Ensemble Representation of theMeasurement Information

Another issue with the EnKF update equation is that it effectively projects the mea-
surements onto the ensemble subspace. Let’s use a measurement error covariance
matrix Cdd of full-rank and use the Woodbury corollary from Eq. (6.10) to obtain

Za = Zf + AYT
(
YYT + Cdd

)−1(
D − g

(
Zf)). (10.15)

= Zf + A
(
IN + YTC−1

ddY
)−1

YTC−1
ddD

′. (10.16)

= Zf + A
(
IN + ỸTỸ

)−1
ỸTD̃′, (10.17)

where we have defined Ỹ = C
− 1

2
dd Y and D̃′ = C

− 1
2

dd D′ which is a normalization or
scaling of Y and D′ by the inverse square root of the measurement error covariance
matrix. The important conclusion is that the EnKF update effectively projects the
scaled innovations onto the ensemble subspace through the multiplication ỸTD̃′.
Thus, the EnKF update removes all the information in the measurements that the
ensemble of predicted measurements cannot represent. This issue is also directly
related to the low rank of the prior ensemble.
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10.4 Localization in Ensemble Kalman Filters

There are different ways to reduce the impact of sampling errors and the low rank of
the prior covariancematrix in ensemblemethods. A common approach is to damp the
long-range spurious correlations, and covariance localization (Hamill et al., 2001;
Houtekamer & Mitchell, 2001) is one such method. Another alternative is to use
the local analysis first used by Haugen and Evensen (2002) and later explained in
more detail by Evensen (2003), where one updates variables on subsets of gridpoints
using only the nearby observations that we know should impact these variables.
In both methodologies, we restrict the influence radius of observations, effectively
decoupling regions of the state space far apart. The local analysis allows for different
linear combinations of prior ensemble members to be used in the distinct parts of
the state space, effectively increasing the prior ensemble-covariance matrix’s rank
by orders of magnitude. In a review paper, Sakov and Bertino (2011) discussed the
formal similarities between covariance localization and local analysis and concluded
that in practice, the two approaches should yield somewhat similar results, and one
should base the choice of localization method on criteria such as computational
efficiency. We refer to Sakov and Bertino (2011) for an overview of early papers
discussing various localization methods, while the more recent review of Chen and
Oliver (2017) analyzes different localization scheme when used with an iterative
ensemble smoother.

10.4.1 Covariance Localization

In covariance localization, (Anderson, 2003; Bishopetal., 2001; Hamilletal., 2001;
Houtekamer&Mitchell, 2001;Whitaker&Hamill, 2002)we use a damping operator
that eliminates long-range spurious correlations in the state covariance matrix Czz .
Typically, wewould damp each covariance function bymultiplying it with a damping
function that equals one at the diagonal element and zero at elements corresponding
to variables far from the diagonal element. It is common towrite the update equations
with covariance localization as

Za = Zf +
(
ρn×n ◦ Czz

)
HT

(
H

(
ρn×n ◦ Cxx

)
HT + Cdd

)−1(
D − g

(
Zf)). (10.18)

Here we have introduced the Schur (or Hadamard) product denoted by ◦ of element-
wise multiplication of two matrices. The matrix of damping functions, ρn×n , acts on
the covariance functions in Czz , and uses a scaling equal to one near a measurement
and then gradually reduces to zero further away from the measurement location. A
commonly used damping function is the one by Gaspari and Cohn (1999) but see
also Furrer and Bengtsson (2007) for an empirical formula that also accounts for
the ensemble size. Covariance localization requires us to compute the full state er-
ror covariance matrix, which is an overwhelming task for large systems. Since the
damping matrix is typically full rank, the Schur product will also be of full rank.
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Chen and Oliver (2017) pointed out that with H being a local and linear mea-
surement operator (rows of H contains zeros and one element equal to one that
corresponds to the measurement), the following applies

(
ρn×n ◦ Cxx

)
HT =

(
ρn×nH

T
)
◦

(
CxxHT

)
. (10.19)

H
(
ρn×n ◦ Cxx

)
HT =

(
Hρn×nH

T
)
◦

(
HCxxHT

)
, (10.20)

Thus, it is possible to replace the Schur product with the n × n-dimensional state
covariance matrix, by a Schur product with a n ×m matrix. Even more importantly,
we do not need to form the full state covariance matrix as it suffices to form the
covariance matrix between the state variables and the predicted measurements. This
observation leads to methods for localization in the observation space.

10.4.2 Localization in Observation Space

For computational efficiency, Houtekamer and Mitchell (2001) proposed to approx-
imate the localization in Eq. (10.18) by writing Eq. (10.1) as

Za = Zf + ρn×m ◦ Czy

(
ρm×m ◦ Cyy + Cdd

)−1(
D − g

(
Zf)). (10.21)

We have definedCzy = CzzHT andCyy = HCzzHT, withH being a linear measure-
ment operator.With nonlinearmeasurement operators we can represent the ensemble
covariances by their ensemble approximations

Czy = AYT, (10.22)

Cyy = YYT. (10.23)

using the definition in Eqs. (8.3) and (8.8). As pointed out by Chen and Oliver
(2017), the relations in Eqs. (10.19) and (10.20) are not valid for general observation
operators. Thus, we need to define ρn×m and ρm×m according to the problem at
hand.

Chen and Oliver (2017) also discussed Kalman-gain localization where one lo-
calizes the Kalman-Gain matrix directly as

Za = Zf + ρn×m ◦ K
(
D − g

(
Zf)

)
. (10.24)

Similarly to Eq. (10.25) we must compute the full Czy ∈ �n×m , but we ignore the
localization ofCyy . Kalman-gain localizaion is popular in the petrolium community
and does indeed reduce the impact of spurious correlations. However, it does not re-
move the spurious correlations inCyy that induce unphysical dependencies between
remote meaurements and thereby reduces their impact on the update.
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10.4.3 Localization in Ensemble Space

When using Eqs. (10.22) and (10.23) we can write Eq. (10.21) as

Za = Zf + ρn×m ◦
(
AYT

)(
ρm×m ◦

(
YYT

)
+ EET

)−1(
D − g

(
Zf

))
. (10.25)

Thus, we can extend this discussion to search for a localization approach in the
ensemble subspacewhere the Schur product acts directly on the ensemble anomalies.
As for the Kalman-gain localization, we neglect the localization of the covariance
of the predicted measurement anomalies. Thus, we write Eq. (10.25) as

Za = Zf + ρn×N ◦ A
{
YT

(
YYT + EET

)−1(
D − g

(
Zf))}. (10.26)

However, in this formulation, we need to redefine our interpretation of the data and
represent them in the ensemble subspace. Following the derivation in Eqs. (10.15)–
(10.17) we have

Za = Zf + ρn×N ◦ A
{
YT

(
YYT + Cdd

)−1(
D − g

(
Zf))}. (10.27)

= Zf + ρn×N ◦ A
{(
IN + ỸTỸ

)−1
ỸTD̃′}, (10.28)

with Ỹ = C
− 1

2
dd Y and D̃′ = C

− 1
2

dd D′ as before. Thus, by projecting the measurement
innovations onto the ensemble subspace through the product ỸTD̃′,we approximately
represent the measurement’s information by N projected measurements. Note that it
is not possible to use a physical distance in the localization scheme for the N projected
measurements. However, the adaptive localization schemes discussed below might
be used in this case. Themain problemwith this approach is the following: one reason
for applying localization is that the measurements contain more information than the
ensemble subspace can accommodate. Thus, localization allows us to compute a
more prosperous update that is not confined to the ensemble subspace. But, from
Eq. (10.28), we project the original measurements onto the ensemble subspace,
and we thereby lose all measured information that the ensemble subspace cannot
represent. So, in this case, why would we localize at all? But, see also the ideas
suggested by Buehner (2005).

10.4.4 Local Analysis

Brusdal et al. (2003) and Haugen and Evensen (2002) used a distance-based local-
analysis scheme in an ocean circulation model, where for each vertical column of
gridpoints, they updated the state variables using only nearby-locatedmeasurements,
we quote fromHaugen and Evensen (2002) “Note that only data located at gridpoints
within a certain influence radius (here chosen to 40km) are used in the update of
the state variables in each gridpoint. This is a common procedure normally denoted
as a local analysis.” Evensen (2003) gave a more detailed explanation of the local
analysis, and later, Ott et al. (2004) introduced the popular local ensemble transform
Kalman filter (LETKF) using the same local-analysis concept.



118 10 Localization and Inflation

In local analysis, we first need to select subsets of variables to update indepen-
dently. In principle, we could update the elements in the state vector one by one,
but that will generally become too computationally expensive. So instead, a sensible
approach is to select all variables associated with a vertical column of gridpoints.
Alternatively, if vertical localization is essential, we can split the model grid into
subgroups of grid points with a limited horizontal and vertical extent. After that,
we must select which measurements to include in the analysis update for each sub-
group. We can often use a distance-based approach to retain all the measurements
located within a specific range from the subgroup to be updated. However, in some
applications, we have so-called non-local measurements where the measured infor-
mation results from non-local physical processes that can extend over large parts of
the model domain. One such example includes pressure transients between wells in
reservoir models. Adaptive localization may be a better alternative in these cases.
We then select measurements based on their correlation with a group of variables
being significant (Neto et al., 2021).

When using local analysis, we can write the update equation Eq. (10.5) in the
three following forms

Za
l = Zf

l + AlWl (10.29)

= Zf
l + Kl

(
Dl − gl

(
Zf)), (10.30)

= Zf
l + Al

{(
IN + YT

l C
−1
dd,lYl

)−1
YT
l C

−1
dd,lD

′
l

}
, (10.31)

where l runs over the different subgroups of local model variables. HereWl and Kl

are local variants of Eqs. (10.14) and (10.7) evaluated using the selected observations
for each l. As each local update uses an individual Kalman gain or weight matrix, the
updated ensemble will no longer be confined to the prior ensemble space. Note that
the local analyses are straightforward to parallelize as the computations for different
values of l are independent.

There is a computational advantage of using local analysis rather than covariance
(or Kalman gain) localization when working with ensemble methods. The reason is
that the Kalman-gain matrix is of low rank unless the number of measurements is
less than the number of ensemble realizations. Thus, forming the Kalman gainmatrix
and performing a Schur product is significantly more computationally demanding
than computing the local analysis. This statement is true even though it is possible
to calculate the Kalman gain matrix and the corresponding update row by row in
parallel (Chen & Oliver, 2017). However, in the local analysis it is not uncommon
to have n ∼ m ∼ N , and when the ratio m/N is sufficiently small, the Kalman
gain update in Eq. (10.30) becomes more computational efficient than the update in
Eq. (10.29).

A variant of the local-analysis scheme combines the formulas in Eq. (10.30)
with the tapering used for covariance or Kalman gain localization (Chen & Oliver,
2017). This approach was also applied by Neto et al. (2021). Alternatively, the local
analysis with observation taper (Greybush et al., 2011; Hunt et al., 2007) uses the
form Eq. (10.31) when computing the local updates and then tapers the (in their
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case diagonal) inverse of the error covariance matrix C−1
dd for each local update.

When using the local analysis in the form Eq. (10.29), we can inflate the variance of
the remotest located measurements by scaling selected rows in E to obtain the same
effect. The tapering of the local updates reduces the impact of the localmeasurements
located furthest from the gridpoints being updated and reduces the discontinuities in
the updated solution. Note that covariance tapering of the local analysis updates is
affordable since both the local state dimension and the number of measurements are
very low compared to the global analysis update.

10.5 Adaptive Localization

In cases with non-local measurements, where it is impossible to use distance-based
tapering, it might be possible to use an adaptive localization method. In adaptive
localization, we use the ensemble correlations between a predicted measurement
and the state variables at a particular gridpoint to determine if we should update
these variables using this measurement. The most straightforward approach is to
truncate all observations that have correlations below a certain level. This approach
eliminates the impact of spurious correlations but also removes weak but physical
correlations. To improve on this approach, Anderson (2007b) proposed using many
small ensembles to check if correlations are significant, while Bishop and Hodyss
(2007) uses the correlation function to derive a tapering function. Fertig et al. (2007)
used the ensemble correlation function to decide whether to update a variable or
not. Evensen (2009b, Chap.15) discussed adaptive localization based on the trun-
cation of small covariances in an example with an advection equation. He found
that the approach worked well but led to small discontinuities in the updates, which
will likely cause problems in many nonlinear models. Luo et al. (2019) and Luo
and Bhakta (2020) have continued this work and developed tuned schemes where
they combine truncation-based adaptive localization with tapering of each local up-
date. Neto et al. (2021) and Soares et al. (2021) used this approach successfully in
petroleum applications. It is essential to focus the localization issue of non-local
observations, not on the prior covariance itself, but the state-observation correla-
tions. As Van Leeuwen (2019) shows, non-local measurements can influence distant
state variables, not physically connected in the prior covariance, but they become
connected via the observation operator.

10.6 Localization in Time

Localization also plays an important role when using iterative ensemble smoothers
like EnRML and ESMDA. Particularly when we use iterative ensemble smoothers
in sequential data assimilation, the accumulation of errors resulting from spurious
correlations will impact the results significantly. It becomes more tricky to define
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which observations should impactwhich state variableswhenwe localize in time. For
instance, we know that the information propagates on the model characteristics for
hyperbolic models, such as the linear advection equation. In this case, when updating
the solution at a gridpoint, we should include all measurements located close to the
characteristic line intersecting this grid point. For more complex nonlinear models,
the situation becomes even more complicated.

On the other hand, many realistic models have chaotic behavior, limiting the time
interval over whichmeasurements will impact the update. There are several proposed
solutions. The simplest is to use a larger influence radius with time localization to
include all relevant observations as, e.g., used in Brusdal et al. (2003). Bocquet
(2015) discusses several time localization schemes where the localization domain
effectively propagates with the dynamical flow. Amezcua et al. (2017) show how a
weak-constraint ensemble smoother strongly reduces the severity of the issue because
the model errors can absorb observation influences local in time and transfer them
to the state variables that propagate through time. But maybe adaptive localization
will be even more helpful in the case of localization in time.

10.7 Inflation

Anderson and Anderson (1999) suggested using an approach named inflation to
counteract the excessive variance reduction caused by spurious correlations in the
update. Inflation is generally needed to avoid filter divergence in operational ensem-
ble data-assimilation systemswith small ensemble sizes.We can implement inflation
as a scaling of the ensemble anomalies

A ← ρA, (10.32)

where ρ is a factor slightly larger than one. Today, most operational ensemble data-
assimilation systems apply some calibrated inflation to counteract different error
sources. We can inflate before or after the analysis update. If applied to the forecast
ensemble, inflation is a way to account for model errors and compensate for the low-
rank approximation, increasing the predicted ensemble variance. If we inflate the
analysis ensemble, inflation accounts for errors introduced by the analysis scheme,
e.g., spurious correlations, the approximate representation of the measurement error
covariance matrix, and possibly adverse localization effects. The standard procedure
is to inflate the analysis update and calibrate the inflation factor to obtain a data-
assimilation system in good agreement with observations. As such, inflation is an
approach that tries to correct “everything” wrong in the system.

Some papers attempt to estimate an optimal inflation parameter adaptively. Ander-
son (2009) proposed a method for adaptively estimating a spatially and temporally
varying inflation parameter using a Bayesian algorithm. The algorithm is recursive
and updates the inflation parameter with time. Wang and Bishop (2003) uses the
sequence of innovation statistics to compute the covariance inflation, while Ander-
son (2007a) estimates the inflation parameter as part of the state vector. Sacher and
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Bartello (2008) discuss the sampling errors in EnKF and proposes an analytical ex-
pression for the optimal covariance inflation method, which depends on the Kalman
gain, the analyzed variance, and the number of realizations. But see also the adaptive
inflation estimation byEvensen (2009b) targeting the impact of spurious correlations.

10.8 Localization in Particle Filters

In particle filters, we introduce localization for a different reason than in ensemble
Kalman filter methods. As we have seen in Chap. 9, particle filters do not rely on
accurate estimation of covariance matrices, which is essential for the success of
variational methods and (iterative) ensemble Kalman filters. The problem here is
that the weights are degenerate when the number of independent observations is
large, see, e.g., Ades and Van Leeuwen (2015a), and Snyder et al. (2008, 2015).
And “large” is minor for geophysical applications, where more than ten independent
observations typically force us to use tens of thousands of particles. Hence, we use
localization in particle filters to reduce the number of measurements in the likelihood
of each gridpoint.

The idea of using localization in particle filters was first introduced in 2003 in
three papers (Bengtsson et al., 2003; Van Leeuwen 2003a, b). Localization in particle
filters faces two main problems. One issue with localization is that different sets of
particles will survive after resampling different gridpoints. It is hard to connect these
different particle sets from different gridpoints to form smooth global particles that
the model equations can propagate. Practical solutions all diminish the influence of
the observations, e.g., by setting a minimumweight for each particle, which restricts
the size of the update of the prior particles (Poterjoy, 2016; Poterjoy & Anderson,
2016), or reducing the observation space to that of the ensemble space of the prior
particles before calculating weights Potthast et al. (2019), or combinations of these.
Typically, further smoothing is needed, such as relaxation to prior particles.

Another localization issue is that in some geophysical systems, such as the atmo-
sphere, the number of measurements inside the localization radius will still be too
large, and the filter becomes degenerate. The point here is that the localization radius
should be connected to physical length scales to consider all relevant observations
for a gridpoint. However, for a global atmospheric model, the order of the localiza-
tion radius is 1000km, the typical size of a low-pressure area, which often contains
millions of observations. The only serious solution to this problem is to project the
observations onto the ensemble space, but that still does ignore large parts of the
observation information.

Of course, this problem does not exist when one does pure parameter estimation,
and localization can be a beneficial technique. The first to explore this is Vossepoel
and Van Leeuwen, (2007), who used 128 particles to successfully update the order
of 10,000 turbulence parameters in a global ocean model.
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10.9 Summary

Localization allows us to compute an updated ensemble with realizations outside the
space spanned by the initial ensemble. We have discussed several localization meth-
ods in this chapter, and the most efficient methods depend on the problem at hand.
Localization and inflation are essential tools in high-dimensional data assimilation
problems. They are, in practice, used for many other issues than the low-rank prior
covariance and spurious correlations between gridpoints far apart. They are also used
as tuning parameters to compensate for many problems, such as unknown model er-
rors, approximations in data-assimilation schemes, forward model deficiencies, less
well-known observation operators, etc.

Both localization and inflation are, in essence, ad-hoc procedures invented to
make the system work. As such, they can introduce so-called unbalanced system
states. The classic example is a linear model, where all realizations are solutions,
and consequently, linear combinations of the realizationswill also be solutions.When
applying localization, we break this property and introduce realizations that may not
be physically realizable or strong adjustment dynamics to the unbalanced part of the
system’s state space.

Finally, localization and inflation are two approximate methods to correct related
errors in the data assimilation system. Therefore, we must calibrate them to work
complementary together.
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The previous chapters illustrate howwe could start from Bayes’ theorem and apply a
sequence of assumptions or approximations that allow us to derive the most popular
data-assimilation methods in use today. This chapter attempts to summarize the dif-
ferent techniques and present and compare them in the context of the approximations
wemade to derive them.We provide a graphical overview that makes it easy to relate
different methods and lists the applied approximations.

11.1 Discussion of Methods

The graphical presentation in Fig. 11.1 summarizes all methods, assuming that the
underlying dynamical model is nonlinear.

In Chap. 2, we saw that we could split an extended timeline into separate as-
similation windows as long as the dynamical model is a Markov process and the
measurement errors are uncorrelated between assimilation windows. Thus, we can
treat the assimilation problem one window at a time, and the recursive version of
Bayes’ formula in Eq. (2.23) applies for each assimilation window. We also saw that
the parameter-estimation problem is analogous to the assimilation problem for one
assimilation window.

As discussed in Sect. 2.3.3, ensemble integrations are a common and probably the
only practical means of propagating the state error covariances, or, more generally,
the state’s pdf, over an assimilation window or from one assimilation window to the
next.

Starting from the recursive Bayes’ formulation, we can choose two routes.We can
solve the Bayesian problem by using a particle representation of the pdf and particle
or particle-flow filters to compute the recursive update steps described in Chap. 9.
These methods tend to be expensive, and we should only use them when the system
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Bayes’ formula (2.10)

A.1 Markov model

A.2 Independent data

A.3 Assimilation windows

Recursive Bayes’ formula (2.23)

A.4 Gaussian priors

A.9 Particle representation

A.5 Model linearization

Recursive Bayes’ and Gaussian priors (3.9)

A.6 RML sampling

Ensemble of cost functions (7.1)

A.8 Ensemble covariances

Low-rank ensemble methods (8.11, 8.14)

A.7 Averaged model sensitivity

Ensemble of approximate gradients (8.20)

A.5 Model linearization

Closed form solution (8.32)

Representer method,
4Dvar, Gauss-Newton Extended Kalman filter

En4DVar with station-
ary background matrix

Particle filters and flows

En4DVar and
IES with adjoints

EnRML, ESMDA

EnKF, EnKS, ES

Fig. 11.1 Unified derivation of DA methods. We have summarized the data-assimilation methods
and their applied approximations when solving the update over one assimilation window. Other ap-
proximationsmay apply for sequential-in-time data assimilation, e.g., using a stationary background
covariance like in 4DVar

is strongly nonlinear. The alternative is to apply the Gaussian priors’ assumption in
Approx. 4, which allows for deriving most data-assimilation methods currently in
use.

The Gaussian-priors’ approximation effectively allows us to search for the MAP
estimate by minimizing the cost function in Eq. (3.9). Some examples include 4DVar
schemes and the representer method, as discussed in Chaps. 4 and 5. Note that these
methods only compute the MAP estimate and do not sample the posterior Bayes’
distribution. Also, they do not have a direct means for computing and propagat-
ing the error statistics to the next assimilation window. Therefore, these methods
typically require an additional approximation of a stationary-in-time background-
error-covariance matrix for the prior state estimate in each assimilation window.
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However, with the correct priors for an assimilation window, if these iterative and
adjoint-based methods converge to the cost function’s global minimum, they find the
MAP solution.

We also saw that, compared to the 4DVar solution, the extended Kalman filter
(EKF) applies an additional approximation by linearizing the model and measure-
ment operators to find an explicit update equation. The update only approximates
the MAP estimate, but the EKF provides the means for updating and evolving the
error statistics in time. The Kalman Filter (KF) solves the data-assimilation problem
defined by Eq. (3.8) in the case of a linear model with Gaussian priors. In the weakly
nonlinear case with Gaussian priors, the EKF provides an approximate solution due
to linearization. However, both KF and EKF require the storage and propagation of
the state error-covariance matrix, which becomes overwhelming for real-size geo-
science data-assimilation problems, not to mention the severity of the linearization
of the error covariance propagation, see Eq. (2.28).

Another alternative route is to follow the Gaussian-priors assumption with the
Randomized Maximum Likelihood sampling approach described in Chap 7, pro-
viding an approximate sampling of the posterior pdf. The RML sampling requires
minimizing an ensemble of cost functions with different prior state vectors and per-
turbed measurements. RML sampling turns out to be exact in the Gauss-linear case.
At the same time, with significant nonlinearities, we cannot expect that it will work
satisfactorily, and we might need to use the particle or particle-flow filters.

TheRML sampling allows us to derive several ensemble-based assimilationmeth-
ods. One alternative would be to use the 4DVar schemes to minimize each cost func-
tion to provide an RML ensemble of solutions. En4DVar uses adjoints and solves
each cost function realization exactly, at least as long as there are no local min-
ima. Hence, En4DVar solves the RML sampling problem within the approximations
made on the background matrix. This approach is close to the procedure used by
some operational En4DVar systems. But the method still largely ignores updating
and evolving the error statistics.

Using a sufficiently large ensemble makes it possible to compute posterior error
statistics and propagate error statistics from one time window to the next. We can
then use the forecast ensemble to compute the prediction error covariance and use it
instead of the stationary background matrix. Thus, since we are not able to calculate
the full exact covariances, Approx. 8, wherewe compute the covariances from the en-
semble, allows us to design methods with consistent error statistics evolving in time.
Both En4DVar, using either the strong-constraint algorithms or the weak-constraint
representer method and other adjoint-based Gauss–Newton methods, would work in
this configuration. As the standard En4DVar uses a stationary background matrix,
a complete ensemble-based En4DVar should outperform the traditional version as
long as we use a sufficiently large ensemble.

If an adjoint model is available, we would not need to introduce additional ap-
proximations. However, in many cases, the adjoint model does not exist, and with
commercial software, we often do not have access to the model code, so we cannot
implement the adjoint model. Also, in this case, there is an alternative that uses the
averaged model sensitivity from Approx. 7. We replace the individual adjoints for
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each realization with an ensemble-averaged model sensitivity. This best linear fit of
the model sensitivity is the same for all the realizations. Thus for nonlinear systems,
we introduce an approximation by changing each realization’s gradient slightly. Us-
ing an averagedmodel sensitivity leads tomodern and efficient methods like EnRML
and ESMDA, discussed in Chap. 8. For instance, the petroleum industry uses these
methods operationally to history match reservoir models.

EnRMLandESMDAare iterativemethods and requiremultiple integrations of the
ensemble over the assimilationwindow.Acomputationallymore efficient approach is
to use the ensemble smoother (ES) for the assimilation window. The ES introduces a
linearization of themodel in the expression for the gradient, which allows for deriving
a closed-form solution that we can compute without iterating. This equation is only
valid for minor updates or modest nonlinearity. This property is precisely the basis
for ESMDA. By calculating many minor updates using the ES equation instead of a
single large one, ESMDA reduces the impact of the linearization.

In the “trivial” case with linear models and measurement operators, Fig. 11.1
would simplify the algorithms significantly. The use of Gaussian priors ensures that
the distribution at all future times is alsoGaussian. Furthermore, theRMLsampling is
precisely sampling the posterior pdf and does not introduce any approximation. There
will be sampling errors, of course, since we use a low-rank ensemble approximation.
The averaged model sensitivity is exact in this case, and there is no need for any
linearizations or iterations.

11.2 SoWhichMethod to Use?

It is impossible to provide specific advice on which method to use for a particular
data-assimilation problem in a book like this one. There are just too many different
problems out there. But, perhaps, more importantly, even the experts can disagree
on the best method based on their favorite techniques and experience. However, we
can offer some general advice. At the same time, the user has to keep in mind that
fine-tuning a data-assimilation method remains an art, as it is true with any valuable
thing in life.

The choice of method depends on the data assimilation application and its pur-
pose. We will come back to this question in the final Chap. 23. But first, it is essen-
tial to evaluate the nature of the system, as this will determine the efficacy of the
various data-assimilation methods. Thus, in this book’s Part II, we explain several
example applications to demonstrate how different assimilation methods work with
various dynamic models and assimilation problems. We will present examples that
illustrate smoother versus sequential estimation, state versus parameter estimation,
weak-constraint versus strong-constraint solutions, and linear versus nonlinear or
even highly nonlinear problems.
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Part II
Examples and Applications

The second part of this book presents several simple examples and applications
to demonstrate the properties of different data-assimilation methods. The purpose
is to add context to the theoretical discussion in Part I. The examples range from
simple examples with linear dynamics to highly nonlinear cases.We will also present
two real-world applications to illustrate the methods’ potential: a high-dimensional
parameter-estimation problem solved in the petroleum industry. and an application
of data assimilation for parameter- and control-variable estimation with an epidemic
model for COVID-19.



12AKalmanFilterwith theRoessler
Model

In this chapter, we discuss an application of the Kalman filter on simple systems to
study its behavior in linear and nonlinear situations. We will use the Roessler model,
which we can configure as both a linear and nonlinear system. We start with the
linear system, for which the Kalman filter provides an exact and optimal solution,
and then study the extended Kalman filter’s performance in the nonlinear system.

12.1 Roessler Model System

The governing equations defining the Roessler model system for the three variables
x , y, and z are

∂x

∂t
= −y − z, (12.1)

∂y

∂t
= x + ay, (12.2)

∂z

∂t
= b − cz + βxz, (12.3)

in which β is a parameter that determines the system’s nonlinearity. If β = 1, the
system has stable, periodic, and chaotic solutions, depending on the values of the
three other parameters. Its bifurcation diagrams are similar to that of the logistic
map. Choosing β = 0 results in a linear system with either growing, decaying, or
periodic solutions.
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12.2 Kalman Filter with the Roessler System

We first look at the behavior of the Kalman filter from Chap. 6 applied to a linear
version of the Roessler system resulting by setting β = 0. The systemmatrixM then
becomes

M =
⎛
⎝
0 −1 −1
1 a 0
0 0 −c

⎞
⎠ , (12.4)

and we have chosen b = 0 to simplify the analysis.
We can find the eigenvalues of this linear system via the characteristic equation

det(M − λI) = 0, leading to

λ = −c ∨ λ = a ± √
a2 − 4

2
. (12.5)

We will always define a c > 0, so the first eigenvalue corresponds to a decaying
mode. Positive values of a lead to ever-growing modes that can be spiraling for
a < 2 and growing exponentially for a ≥ 2. Negative values for a lead to spiraling
decaying modes. In the following, we will use a = 0, so a purely oscillatory mode.

We generate the reference solution by solving the system using a fourth-order
Runge–Kutta (RK4) time-stepping scheme with a time step of �t = 0.1. For the
data-assimilation experiment,weuse the same time step but employ anEuler Scheme.
The Euler scheme is less accurate and will give rise to a model error at every time
step.

Figure12.1 gives the evolution for the 3-dimensional system over 200 time steps
starting from initial condition (6, 0, 0), for the RK4 and the Euler scheme over 500
time steps. The parameter setting is (a, b, c) = (0.0, 0.5, 0.1). The true solution
converges towards a periodic orbit, while the Euler solution spins out of control.
Thus, we need to use data assimilation to keep the system on track!

Fig. 12.1 Evolution of the linear system without data assimilation using an accurate RK4 scheme
(left) and a less precise Euler scheme (right) with the same time step
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TheKalman filter needs evolution equations for both themean and the covariance.
The evolution equation for the mean is simply the forward model using the Euler
scheme, i.e.,

xk+1 = xk + �tMxk = (
I + �tM

)
xk, (12.6)

which corresponds to the model defined in Eq. (6.34). We can derive the evolution
equation for the covariance Eq. (6.35) by first subtracting the true solution at time
k + 1 from Eq. (12.6), leading to

xk+1 − xtk = (
I + �tM

)
xk − xtk+1

= (
I + �tM

)(
xk − xtk

) + qk
, (12.7)

in which qk denotes the difference between using the RK4 or the Euler scheme. If we
now multiply the equation from the right with

(
xk+1 − xtk

)T, expand the right-hand
side, and take the expectation, we find

Cxx,k+1 = (
I + �tM

)
Cxx,k

(
I + �tM

)T + Cqq,k, (12.8)

where we assumed the model errors to be independent of the errors in the model
state. Finally, keeping only terms up to �t , consistent with the Euler scheme, we
arrive at

Cxx,k+1 = Cxx,k + �t
(
MCxx,k + Cxx,kMT

)
+ Cqq,k, (12.9)

which is the evolution equation for the covariance we will use in our Kalman filter.
In our first experiment, we use observations of all three variables every 5th time

step, with observation error standard deviation σobs = 0.1, over 1000 timesteps.
Furthermore, the model error covariance matrix Cqq is diagonal with diagonal ele-
ments equal to 0.01. We give the results of the time evolution over 1000 time steps
in Fig. 12.2. We see that the Kalman filter solution wiggles around the true solution
and is stable. Figure12.3 shows the evolution of the root-mean-square error in black

Fig.12.2 True solution (left) and Kalman filter solution (right) with all variables observed every 5
time steps
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Fig.12.3 Time evolution of theRMSE (black) and estimated error standard deviation of 1st variable
(blue) with all variables observed every 5th time step

and the Kalman filter uncertainty of the first variable in blue. The blue line shows
the characteristic behavior of Kalman filter estimated errors, with growth between
observation errors and a strong reduction at assimilation time. The black line looks
rather chaotic, which is not unexpected because it is a random variable. We see that
the error estimation is successful as the blue and black lines have similar means.
It is also interesting to note that the minimum estimated error is slightly below the
observation error, as expectedwhen the state error is larger than the observation error.

The following experiment has the same settings as before, but we only observe
the first variable every five time steps. The solution looks quite similar in Fig. 12.4,
which shows that information from the observed variable also affects the other two
variables. Two processes can be responsible for this transfer. The first process is the

Fig. 12.4 Kalman filters solutions for only 1st variable observed every 5th time step (left) and all
variables observed every 100th time-step (right)
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Fig. 12.5 Time evolution of the RMSE (black) and estimated error standard deviation of 2nd
variable (blue)

update of unobserved variables via their covariance with the observed variables. Just
before the last assimilation step, we found the relative magnitude of that correlation
as 0.2 and 0.1 with the 2nd and the 3rd variable, respectively. These correlations
are low, and the variance in unobserved and observed variables differs by about a
factor of 10. Hence, the second process, i.e., the connection via the model dynamics,
is also essential. The periodic orbit is a stable solution of the system, and forcing
one of the variables to follow the true evolution draws in the others to do the same.
The root-mean-square error confirms the importance of this effect in the 2nd and
3rd variables, which is about a factor

√
10 lower than the estimated error from the

covariance matrix.
Figure12.4 also shows the Kalman filter solution for observations every 100 time

steps, approximately once every two revolutions, again observing all variables.While
the estimate is not perfect, it remains stable and keeps tracking the reference evolu-
tion, although at some distance. We confirm this result by the parallel development
of the true and the estimated error in the 2nd variable in Fig. 12.5. Note that the
errors grow considerably between observation times but return to the observation
error value at assimilation times.

These experiments demonstrate the strength of the Kalman filter in linear systems.
Our next set of experiments concerns the extended Kalman filter applied to the
nonlinear Roessler system.

12.3 Extended Kalman Filter with the Roessler System

In this section, we study the application of the Kalman filter, or rather the Extended
Kalman filter, to the full nonlinear Roessler model, where we now set β = 1. Fig-
ure12.6 shows the evolution of this system using a Runge–Kutta 4 scheme for 2000
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Fig. 12.6 Examples of the time evolution of the Roessler system for c = 4 (left), c = 6 (middle),
and c = 9 (right), showing, respectively periodic behavior with periods one and two, and chaotic
behavior

time steps with time step �t = 0.01, and initial condition (6, 0, 0). We have chosen
a = b = 0.1, and c varies from 4 to 6 to 9, corresponding to a one-period solution,
a two-period solution, and a chaotic solution. We can recognize the remnants of the
periodic orbit of the linear system in the x-y plane and the burst into the z plane
resulting from the nonlinearity. Also, note the remnants of the one-period solution in
the two-period solution, but with enhanced amplitude. Likewise, we see the remnants
of the two-period solution in the chaotic case.

We perform the data-assimilation runs using the following parameters settings for
the full Roessler system: (a, b, c) = (0.1, 0.1, 9), which brings us into the chaotic
regime depicted in the right plot in Fig. 12.6. The time step is �t = 0.01, and we
choose a diagonal model error covariance matrix Cqq with 10−4 on the diagonal.
The value of this model error depends on the system setup and we find this value
by trial and error as there is no general guideline for such nonlinear systems as the
Roessler model. We observe the x variable every 100 time steps, but not the other
variables. The observation error standard deviation is 0.1.
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Fig.12.7 True evolution (left) and mean of the EKF solution (right). Note the difference in scales

We provide an overview of the true solution and the mean of the EKF in Fig. 12.7.
The EKF solution does perform well in the x-y plane but tends to overshoot and
be less accurate in general in the z variable. This result is not surprising as the z
direction is where the nonlinearity in the system has maximal effect via the xz term
in Eq. (12.3). The jumps in the solution at assimilation time are visible and not
restricted to the x variable only.

Figure12.8 provides a more detailed view of the EKF performance. The observed
variable x and the unobserved y variable remain very close to the true solution,

Fig. 12.8 Evolution of x (top), y (middle), and z (botom). The truth (black), observations (red
crosses), and the EKF mean (blue) are displayed. Note the large mismatch in the z variable
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Fig. 12.9 Evolution of the RMSE of x (black) and its estimated standard deviation (blue). Note
that while the RMSE remains bounded the estimated error grows exponentially

but the z variable has more significant deviations from the truth, typically slightly
overshooting.

One advantage of the EKF is that it does provide an error estimate. We present the
root-mean-square error (RMSE) of the second variable y and its estimated standard
deviation in Fig. 12.9. The RMSE remains bounded, and the estimated error is of
the same order of magnitude, but in general, not accurate at higher values. This
result points to a general weakness of the EKF for strongly nonlinear systems. The
linearization of the evolution equation for the error covariance can lead to inaccurate
and unbounded error growth. This result supports the findings of Evensen (1992),
who experienced unbounded error growth when applying the EKF with a nonlinear
QG model. The error estimates for the other variables behave similarly.
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TheKalman filter or its ensemble version, the ensembleKalman filter, is optimal for a
linear model and -measurement operator. This chapter will comprehensively discuss
theEnKFanalysis scheme and its properties, focusing on an ensemble-subspace com-
putation of the inverse. We demonstrate the importance of taking into account corre-
lations in the model errors. Furthermore, we study the efficient ensemble-subspace
inversion method that allows computing the analysis update at a linear cost in both
the number of measurements and the state dimension. We also show how to reduce
sampling errors by increasing the number of measurement-perturbations realizations
used to represent the measurement-error-covariance matrix.

13.1 EnKF Update Example

We will use an example from Evensen (2021) in the following discussion. The
purpose of this example is to illustrate the properties of the update scheme of the
ensembleKalman filter (EnKF) as described inChap. 8, when using themeasurement
perturbations to represent the measurement error covariance matrix. In addition, this
example verifies the robustness of the projection of themeasurement error covariance
matrix onto the ensemble of predicted measurements. Finally, the update is identical
to the EnRML algorithm’s solution in the linear case, and as such, the results are
representative of the EnRML smoother update.

The test example uses a one-dimensional periodic domain with 1024 gridpoints
and �x = 1. In this domain, we simulate a smooth pseudo-random function with
mean μ = 4, variance σ 2 = 1, and decorrelation length rd = 40, representing the
unknown truth,

ztrue ∼ N(
μ = 4, σ 2 = 1, rd = 40

)
. (13.1)

The constant μ = 4, is just added for plotting purposes.
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The first guess solution is generated by simulating another realization z ∼
N(0, 1, 40) and adding it to the truth, i.e.,

zfg = z + ztrue − 4√
2

+ 4. (13.2)

The factor
√
2 ensures that the variance of zfg is equal to one.

The initial ensemble is created by adding random realizations z j ∼ N(0, 1, 40)
to the first guess zfg,

zfj = zfg + z j . (13.3)

The measurements are distributed uniformly over the domain and sampled from
a perturbed true solution according to

d j = H(ztrue + z j ), (13.4)

with either uncorrelated, z j ∼ N(0, 0.25, 0), or Gaussian, z j ∼ N(0, 0.25, 40),
perturbations. Here,H is the linear measurement operator that extracts the measure-
ments from the functions ztrue + z j .

The following experiments use the same reference truth, measurements, initial en-
semble, and random seed. However, when it is essential to eliminate sampling errors,
we use extended ensemble sizes. Thus, although there are seed dependencies in the
obtained solutions, the different methods should produce the same ‘nswer. Further-
more, in most experiments, we can attribute differences in the results to the methods
used. Thus, our approach is different from running multiple data-assimilation exper-
iments with varying seeds.

13.2 SolutionMethods

In the following, we study two prominent cases, one with a diagonal measure-
ment error-covariance matrix and another with correlated errors, ei , simulated from
Eq. (13.4) and with rd = 40. For the two cases of uncorrelated and correlated mea-
surement errors, the EnKF computes the analysis using either an exactly specified
measurement error-covariance matrixCdd or representing the measurement error co-
variance by the perturbations in E. SinceH is a linear operator, we follow the EnKF
update Eq. (7.3), rather than Eq. (7.12) because for this linear example, we do not
need to consider the modification in Eq. (7.11).

The case with a full-rank measurement error-covariance matrix solves

Xa = Xf + AST
(
SST + Cdd

)−1(D − HX
)
, (13.5)

where the ensemble perturbation matrix is A = X�. The matrix C = SST + Cdd is
formed and then inverted by computing an eigenvalue decomposition C = Q�QT.
The inverse is just C = Q�+QT where the use of a pseudo inverse is needed in case
the matrix C is poorly conditioned.



13.2 Solution Methods 141

When using an ensemble representation for the measurement error-covariance
matrix Cdd = EET, we can solve for the update from

Xa = Xf + AST
(
SST + EET)−1(D − HX

)
. (13.6)

In the examples below, the line labels used in the figures indicate the scheme
used to compute the matrix inversion. The line label Cdd denotes using the standard
EnKF analysis equation with a full rank measurement error-covariance matrix Cdd,
as explained above. The curves with line label EE correspond to the EnKF update
when the samples in E replace the “exact” analytic measurement error covariance
matrix Cdd, and we use the ensemble subspace scheme.

Using E to represent the measurement error-covariance matrix introduces addi-
tional sampling errors. However, we will see below how to reduce these sampling
errors to a negligible level with a simple algorithm modification. I.e., one uses a
larger number of realizations in E to represent Cdd better. The code used is the test
case from https://github.com/geirev/EnKF_analysis.git.

13.3 Example 1 (Large Ensemble Size)

The first example uses 50 measurements and a large ensemble size of 2000 to reduce
sampling errors. Figure13.1 shows the results for the two cases with either diagonal
or correlated measurement errors.

The upper-left plot shows the EnKF estimates for the case with uncorrelated
measurement errors for each grid cell numbered with indexes 1–1024. The two
schemes, represented by the lines labeled Cdd and EE, give similar results in this
case. The upper-right plot shows the prior and posterior error variances for the two
updates, and again they are nearly identical. Finally, the lower-left plot presents the
EnKF estimates for the case with correlated measurement errors. In this case, we
also see that the results using the exact and approximate schemes (Cdd and EE) are
nearly identical.

An apparent difference between the two cases is that, with uncorrelated errors,
the measurements are scattered randomly about the correct solution. In contrast,
with correlatedmeasurement errors, successivemeasurements will have similar error
values, and they follow a smooth curve. The nonzero measurement correlations’ role
is to reduce the strength of the update, and the result is an update with a more
substantial variance. By taking the measurement error correlations into account, we
inform EnKF that neighboring measurements make the same error and reduce their
accumulated impact.

https://github.com/geirev/EnKF_analysis.git
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Fig.13.1 Simple update example: The upper plots present the results for a case with uncorrelated
measurement errors, while the lower plots give the results when usingmeasurements with correlated
errors and decorrelation length rd = 40. The left plots show the results for the posterior ensemble
means, while the right plots provide the associated error estimates. The line labels Cdd, EE, denote
different numerical implementations of the inversion scheme used, as is explained in the text. The
ensemble size is 2000

13.4 Example 2 (Ensemble Size of 100)

We now repeat the previous experiment from Example 1 using a more common
ensemble size of 100. The purpose is to illustrate the impact of sampling errors
when using the measurement error perturbations in E to represent Cdd. Figure13.2
shows thatwith 100 realizations, the additional sampling errors introduced by scheme
EE lead to a slight deviation between the two estimates. More problematic is the
underestimation of the ensemble variance. In a sequential data-assimilation context,
this underestimation would have to be compensated for, e.g., by using inflation, to
avoid possible filter divergence. In the following example, we will learn how to
reduce these sampling errors to a negligible level.

13.5 Example 3 (Augmenting theMeasurement Perturbations)

The benefit of using Eq. (13.6) over Eq. (13.5) is the reduced computational cost,
but also the fact that it is easier to sample perturbations with accurate statistics than
constructing a full-rank measurement error covariance matrix. An approach for re-



13.5 Example 3 (Augmenting the Measurement Perturbations) 143

Fig.13.2 Simple update example: Same as Fig. 13.1 but using an ensemble size of 100 realizations

ducing the sampling errors in scheme EE is to augment columns of new realizations
of measurement perturbations to E. This modification only slightly increases the
computational cost of the algorithm when computing �+UTE in Eq. (8.48) and is
a simple modification of the code. Figure13.3 shows the results using 100 realiza-
tions and correlated measurement errors, and when using 1000 samples in E. The
augmentation of additional columns to E in Exp. 3 significantly reduces the errors
in the estimated means and variances for the two cases with correlated and uncorre-
lated measurement errors compared with the results from Exp. 2. It is clear that the
two schemes Cdd and EE, solving Eqs. (13.5) and (13.6) respectively, give almost
identical results. In this case, the measurement error perturbations’ projection onto
the ensemble subspace does not significantly impact the results. Thus, the sampling
errors introduced by using E to represent Cdd can be made negligible by increasing
the sample size in E to only a minor additional cost.

Evensen (2021) found that the algorithm works well with different measure-
ment error decorrelation lengths.When themeasurement perturbations include small
scales not represented by the predicted measurements’ ensemble, the projection onto
the ensemble anomalies in S introduces an approximation. The truncation of small
scales in themeasurement errors leads to a slight underestimation of themeasurement
error variance.
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Fig.13.3 Simple update example: Same as Fig. 13.2 but using an ensemble size of 1000 realizations
to represent E

13.6 Example 4 (Large Number of Measurements)

Figure13.4 shows results from the final example where the number of measurements
increased from 50 to 200, i.e., twice the ensemble size. In this case, we apply a trun-
cation at 99% of the variance when computing the inversion, retaining 29 singular
values when computing the singular value decomposition of S. Again, the results
obtained are very similar using the two algorithms. It is also interesting to see how

Fig.13.4 Simple update example: Same as Fig. 13.3 but for a case with 200 measurements, which
is twice the ensemble size, and with measurement-error correlations rd = 40
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the measurements’ impact reduces at the grid cells with indices 400–500. Note that
there is no indication of the so-called “ensemble degeneracy,” and the analysis en-
semble retains a significant variance. The posterior variance using 200measurements
is similar to the one obtained using only 50 observations. This result indicates that
including additional dependent measurements does not introduce much new infor-
mation in this example.
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This chapter discusses a straightforward application of the EnKF with a linear ad-
vection equation. The example illustrates the smooth spatial update that the EnKF
provides and how information propagates with the flow. Furthermore, we will see
how the EnKF provides consistent error statistics.

14.1 Experiment Description

We now present an extension of the linear update example from Chap. 13 using
the EnKF described in Chap. 8, including a recursion in time. We consider a linear
advection model on a periodic one-dimensional domain where a wave propagates
from left to right. As in the example of Chap. 13, we define a non-dimensional grid
with �x = 1 and 1024 grid cells. Also, we define a non-dimensional time step
�t = 1 and constant advection velocity u = 1.

Thus, we now consider the data assimilation on a rectangular space-time do-
main where the model dynamics propagates the information forward in time from
one assimilation update to the next, subject to stochastic model errors sampled from
N(0, 0.0009, 20).With a linear dynamical model, any of the error-propagation equa-
tions will give the same result (with the ensemble approach requiring an infinite en-
semble size). We have used an EnKF implementation with 5000 realizations, which
is large enough to make the EnKF and KF solutions practically indistinguishable.
After each update we integrate the updated ensemble forward, subject to stochastic
noise until the next update step.

We can relate this problem to a formulation with multiple assimilation windows
defined from a measurement time up to and including the next measurement time.
We also consider the filtering problem described in Sect. 2.4.2, where we update
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the solution at the end of the assimilation window. This update serves as the initial
condition for further integration through the next assimilation window.

As in the previous section, we simulate a true pseudo-random wave sampled
from ztrue ∼ N(μ = 4, σ 2 = 1, rd = 20). We also generate the initial ensemble
using the procedure from Chap. 13, starting from a first guess field zfg computed
using Eq. (13.2) with z ∼ N(0, σ 2 = 1, rd = 20). Then we add the ensemble of
perturbations z j ∼ N(0, 1, 20) to the first-guess to create the initial ensemble from
Eq. (13.3).

To generate the measurements, we integrate the model forward using the exact
dynamicalmodel starting from the true solution at t = 0.Wemeasure the true solution
at 10 equidistributed spatial locations at every�t = 5, andwe add uncorrelated noise
to the measurements sampled from ε ∼ N(0, σ 2 = 0.04).

14.2 Assimilation Experiment

Figure14.1 presents three snapshots at t = 10, t = 50, and t = 100, hence after
2, 10, and 20 updates. The thick blue line is the ensemble mean, with the light
blue shading representing plus and minus two standard deviations of the ensemble
variance. We also show the yellow circles with their two standard-deviation error
bars representing the measurements. The green line at the bottom of the plots is the
estimated ensemble standard deviation. We have also included a thin dashed line,
which is the true solution to recover through the data assimilation.

From the plots we notice how the assimilation of measurements pulls the solu-
tion closer to the measured value at the measurement locations. Simultaneously, the
ensemble spread and error variance reduce. From the green line we also notice how
the information from the measurements propagates downstream. As the model is
also subject to a stochastic system noise or model error, there is a linear increase in
error variance downstream of each measurement. The final plot is a quasi-stationary
solution where the variance increase resulting from the introduced stochastic forcing
balances the variance reduction from the assimilation updates. Note that the updated
ensemble’s standard deviation at each observation point is similar to the observation
error standard deviation of 0.2, as expected fromKalman filter theory. The code used
is available from https://github.com/geirev/EnKF_advection.git.

In the following chapters, we will introduce nonlinearities to the assimilation
problem, which makes the assimilation process and the interpretation of the results
more complicated.

https://github.com/geirev/EnKF_advection.git
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Fig. 14.1 The plots show a time sequence of estimates from using EnKF with a linear advection
equation. The thick blue line is the ensemble mean, while the blue shadow illustrates the ensem-
ble spread by showing plus-minus two ensemble standard deviations. The reference solution is
the dashed blue line, and the observations are the yellow dots, including an error bar indicating
plus-minus two standard deviations. The green line is the estimated ensemble standard devia-
tion. This example is further illustrated in the animation available from https://github.com/geirev/
EnKF_advection/blob/master/doc/animation.gif

https://github.com/geirev/EnKF_advection/blob/master/doc/animation.gif
https://github.com/geirev/EnKF_advection/blob/master/doc/animation.gif
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15EnKFwith the Lorenz Equations

The chaotic Lorenz’63model is amuch-used testbed used to examine the capabilities
of data-assimilation methods to handle nonlinear, unstable, and chaotic dynamics.
This chapterwill repeat some experiments that demonstrate the strengths of ensemble
methods for highly nonlinear dynamics. We mainly focus on applying three differ-
ent ensemble methods, the ensemble smoother (ES), ensemble Kalman smoother
(EnKS), and ensemble Kalman filter (EnKF).

15.1 The Lorenz’63Model

We will now repeat an example from Evensen (1997) and Evensen & Van Leeuwen
(2000) with the chaotic Lorenz (1963) model to demonstrate the properties of
three different ensemble methods, the ensemble smoother (ES), ensemble Kalman
smoother (EnKS), and ensemble Kalman filter (EnKF), when applied to highly non-
linear dynamics. The famous Lorenz (1963) model is a coupled system of three
nonlinear ordinary differential equations

∂x

∂t
= σ(y − x), (15.1)

∂y

∂t
= ρx − y − xz, (15.2)

∂z

∂t
= xy − βz. (15.3)

Here x(t), y(t), and z(t) are the dependent variables, andweuse the commonparame-
ter values σ = 10, ρ = 28, and β = 8/3. The initial conditions for the reference case
are (x(0), y(0), z(0)) = (1.508870, −1.531271, 25.46091) and the time interval is
t ∈ [0, 40].
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Wegenerate the observations and initial conditions by adding normally distributed
white noise with zero mean and variance equal to 2.0 to the reference solution. We
also measure all the variables x , y, and z at regular time intervals �t = 0.5. This
value is half the typical revolution time in each of the wings of the system. The
ensemble size is N = 2000. The current setup corresponds to Experiment B from
(Evensen, 1997). In the upper plots in Figs. 15.1, 15.2 and 15.3, the red line denotes
the estimate and the blue line is the reference solution. In the lower plots the red line
is the standard deviation estimated from ensemble statistics, while the blue line is
the abosulute value of the true residuals with respect to the reference solution.

Fig. 15.1 Ensemble Smoother (ES). The upper plot shows the inverse estimate (red line) and
reference solution (blue line) for x . The black points are the measurements with error bars showing
the plus and minus two standard deviation range. The lower plot shows the corresponding estimated
standard deviations from the ensemble (red line) as well as the actual posterior errors, (blue line),
computed as the absolute value of the difference between the reference solution and the ensemble
mean estimate
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Fig. 15.2 Ensemble Kalman filter. See Fig. 15.1 for description

15.2 Ensemble Smoother Solution

The ensemble smoother (ES) does not split the assimilation interval into multiple
assimilation windows but rather attempts to tackle the smoother formulation from
Sect. 2.4.1. The key to the ESmethod is using an unconstrained ensemble integration
over the whole assimilation interval that represents the prior error statistics. After
that, all measurements are processed in one go to produce the posterior estimate.
Thus, the ES attempts to solve Bayes’ theorem in Eq. (2.10). The ES uses Approx. 4,
by assuming a Gaussian prior, but also Approx. 8 by using a finite but large ensemble
size. With this approach, we do not need to make any of the Approxs. 1 (Markov
model), 2 (uncorrelated measurement errors in time), or 3 (filtering approximation).
Furthermore, for a linear measurement operator, as in the current example, the lin-
earization, the sampling, and the linear regression approximations 5, 6, and 7 do
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Fig. 15.3 Ensemble Kalman smoother. Ensemble Kalman filter. See Fig. 15.1 for description

not apply. Interestingly, for a linear model with Gaussian statistics, ES provides the
optimal solution. However, for a highly nonlinear model like the Lorenz equations,
the Gaussian assumption for the prior is severe.

Figure15.1 presents the ES solution and estimated error variance for the x-
component. ES performs rather poorly for this example. However, even if the fit
to the reference trajectory is poor, the ES solution captures most of the transitions.
The main problem is to estimate of the amplitudes in the reference solution. We at-
tribute the cause for the weak performance to non-Gaussian contributions in the prior
distribution for the model evolution, as can be expected in such a strongly nonlinear
case.

The error estimates evaluated from the posterior ensemble are not large enough
at the peaks where the smoother performs poorly. The underestimated errors result
from neglecting the non-Gaussian contribution from the probability distribution for
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the model evolution. Otherwise, the error estimate looks reasonable with minima at
the measurement locations and maxima between the measurements.

15.3 Ensemble Kalman Filter Solution

As for the advection example in Chap. 14 we now apply the Approxs. 1 (Markov
model), 2 (uncorrelated measurement errors in time), and 3 (assimilation time-
window approximation). Furthermore, in addition to the Approx. 4 (Gaussian priors)
and 8 (the ensemble representation), we compute the filter solution by only updating
the state at the end of the time window. As when using ES, the linearization, the sam-
pling, and the linear regression approximations 5, 6, and 7 do not apply. As for the
advection case in Chap. 14, we update the solution at the end of each time window,
using the standard EnKF update equation in a filtering configuration.

EnKF does an excellent job tracking the reference solution as shown in Fig. 15.2
and captures all transitions. For example, at t = 9, 11, 19, and 24, the model predic-
tion is about to go to the wrong wing of the attractor, but EnKF updates the solution
to the correct wing. The corresponding peaks in the estimated and actual errors indi-
cate these unstable locations in state space. At t = 5 and 20, the estimated solution
misses the reference solution’s amplitudes, as reflected in the error estimates. Thus,
the error-variance estimate is consistent, showing significant peaks at the locations
where the ensemble has problems tracking the reference solution. Note also the sim-
ilarity between the actual error and the estimated standard deviation. Thus, for all
peaks in the residual, a corresponding one is present in the error variance estimate.

The error estimates show the same behavior as in Miller et al. (1994) with signif-
icant error growth when the model solution passes through the unstable regions of
the state space, and otherwise weak error variance growth or even decay in the stable
regions. For instance, observe the low error variance for t ∈ [25, 28] corresponding
to the solution’s oscillation around one of the wings.

For this nonlinear problem, EnKF performs better than ES. The reason is that
the ensemble of realizations are recursively pulled toward the measured solution
and are not allowed to diverge toward the wrong wing. In addition, the Gaussian
update increments lead to an approximately Gaussian ensemble distributed around
one of the wings. ES does not exploit this property of the sequential updating, and
the realizations evolve freely and lead to non-Gaussian ensemble distributions.

15.4 Ensemble Kalman Smoother Solution

The ensemble Kalman smoother (EnKS) is an extension of EnKF that allows for
computing a smoother solution. In addition to updating the solution at the end of
the time window, it uses time correlations from the ensemble to update the solution
at all previously desired time instants. Thus, EnKS attempts to solve the recursive
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smoother problem from Sect. 2.4.3. It is a simple computation to obtain the EnKS
solution for previous time-instants as soon as one has computed the EnKF solution.
In the current example, the only code difference between the EnKF and EnKS is
the number of time instants we include in the state vector. Also, when computing
the EnKS solution, we define the number of previous time instants to update, and
hence, we use a lagged EnKS implementation. The main additional computational
cost of EnKS compared with EnKF is storing the ensemble of the variables we want
to update at all time instants when we wish to compute the smoother solution. We
refer to the extended discussion of EnKF and EnKS in Evensen (2009b, Chap.9).

As for the EnKF solution we apply the Approxs. 1 (Markov model) and 2 (uncor-
related measurement errors in time). However, since the method allows for updating
previous time windows, we do not apply the time window Approx. 3. The Approx. 4
(Gaussian priors) and 8 (the ensemble representation) apply as for EnKF. As when
using ES and EnKF, the linearization, the sampling, and the linear regression ap-
proximations 5, 6, and 7 do not apply.

Figure15.3 shows the solution obtained by EnKS. This solution is smoother than
the EnKF solution and provides a better fit for the reference trajectory. In addition,
EnKS recovers all of the problematic locations in the EnKF solution.

EnKS reduces the error estimates throughout the time interval, including the sig-
nificant error peaks seen in the EnKF solution. As for the EnKF solution, there are
corresponding peaks in the error estimates and the residuals, which suggests that the
EnKS error estimate is consistent with the actual errors.

The code used in these examples is available from https://github.com/geirev/
EnKF_lorenz.git.
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In this chapter, we study the workings of 3DVar and SC-4DVar on the same chaotic
Lorenz 1963 system as used with ensemble methods in Chap. 15. We will apply both
3DVar and SC-4DVar sequentially over multiple data-assimilation windows, and
we will demonstrate the difference between the filter solution obtained by 3DVar
and the recursive SC-4DVar smoother solution. We will also dive deeper into the
behavior of the SC-4DVar with highly nonlinear- and chaotic dynamics and try to
understand more of the method’s properties and possible limitations in these cases.
After studying the 3DVar and 4DVar methods, we compare them with the ensemble
methods used in Chap. 15.

16.1 Data Assimilation Set up

The governing equations of the Lorenz 1963 system are Eqs. (15.1)–(15.3) in
Chap. 15. We use the standard parameter setting of σ = 10, ρ = 28, and β = 3/8,
which leads to chaotic dynamics as depicted in Fig. 16.1. In all simulations the start-
ing point for the true run is (−10, −10, 20)T , and the time step �t = 0.01.

We compute the background error covariance in all experiments by sampling a
long run of the model every 16 time steps and calculating the sample covariance
matrix. After that, we scale this matrix such that the maximum diagonal entry is 4,
resulting in

Cxx =
⎛
⎝

3.10839873 3.10666191 −0.09539367
3.10666191 4.0 −0.04713786

−0.09539367 −0.04713786 3.52161065

⎞
⎠ .

Note the strong covariance between the x and the y components, related to the two
wings in the x-y plane. The covariances with the z component are much smaller.

© The Author(s) 2022
G. Evensen et al., Data Assimilation Fundamentals,
Springer Textbooks in Earth Sciences, Geography and Environment,
https://doi.org/10.1007/978-3-030-96709-3_16

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96709-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-96709-3_16


158 16 3Dvar and SC-4DVar for the Lorenz 63 Model

Fig. 16.1 The plot
illustrates the time evolution
of the Lorenz 1963 system.
Notice the two wings and the
transition zone between
these, which is mainly
responsible for the chaotic
dynamics, as seen by the
spaghetti-like connections
between the wings

The z component has no knowledge of which of the wings or attractors the solution
is on, see Fig. 16.1. From its construction, we can see that this covariance matrix
contains the climatological correlations between the model variables and not the
actual correlations at the start of a specific data assimilation experiment. It is a
general weakness of a variational method that only tries to find the mode of the
posterior pdf because one then ignores information on the uncertainty. The initial
condition of the data-assimilation run is the true state at time zero perturbed by a
random vector C1/2

xx ξ in which ξ is a random vector with elements drawn from a
standard normal distribution.

We generate observations by sampling the true state at variable time intervals,
with uncorrelated observation errors of standard deviation 1.0 and the identity mea-
surement operator. We perform experiments where we observe either all variables
or only the y component. When we only observe one variable, we illustrate how
an SC-4DVar system (see Chap. 4) propagates or spreads the information from the
measurement in time and among the variables.

In the following, we will run several experiments. We start by comparing SC-
4DVar with 3DVar (see Chap. 6) to appreciate the strengths of a smoother, over a
filter. After that, we will study the SC-4Dvar in more detail.

16.2 Comparing 3DVar and SC-4DVar

In this experiment, we run the system over 100 time steps with observations of all
three variables only at the end of the assimilation window. We show the 3DVar
solution in the upper half of Fig. 16.2. The black line is the true solution, and the red
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Fig.16.2 The figure shows a typical 3Dvar solution x , y, and z. Red dots denote the observations
for each variable at the end of the window, the black line is the true solution, the blue line the prior,
and the purple line the analysis. Note that the 3DVar updates the model state only at the end of the
window, and the blue and purple line are identical before the observation time

Fig. 16.3 A typical SC-4Dvar solution for x , y, and z. Red dots denote the observations for each
variable at the end of the window. The black line is the true solution, the blue line the prior, and
the purple line the analysis. In contrast to 3DVar, SC-4DVar updates the model trajectory over the
whole assimilation window

dots at the end of the time window are the observations. The prior estimate is the
blue line, while the purple line denotes the analysis trajectory. Note that the 3Dvar
only updates the solution at observation time, so the analysis only differs from the
prior solution at the last time point.

In contrast, the SC-4DVar solution in Fig. 16.3 shows that the smoother solution
updates the whole trajectory. The purple line is much closer to the truth at any time
point. Note that the strong-constraint SC-4DVar used here only updates the initial
condition at time zero and then uses the model to fill out the rest of the trajectory.
Hence, the SC-4DVar scheme brings the information from the observation from the
end of the assimilation window to the beginning. SC-4DVar computes this backward
information propagation by solving the adjoint equations, as we have seen in Chap. 4.
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16.3 Sensitivity to Observation Density in SC-4DVar

We will now examine the sensitivity of the SC-4DVar solution to the observation
density in the assimilation window. We start by extending the assimilation window
to 200 time steps, still only observing the state at the end of this window. As can
be seen in Fig. 16.4 this is a challenging problem for SC-4DVar. In trying to fit the
observations in the first two variables, the solution is worse for the third variable.
The problem is complicated because themodel trajectory passes through the unstable
regionwhere the twowingsmeet. In this region, themodel evolution is very sensitive,
and small perturbations will make the model solution go to one or the other wing.
Since we assume nomodel errors, this strong sensitivity is carried over directly to the
initial conditions, which the SC-4DVar is trying to estimate. This strong sensitivity
manifests itself viamultipleminima of the SC-4DVar cost function.Wewill elaborate
on the appearance of local minima in the cost function, so multiple modes in the
posterior pdf, in a later section. Finally, we should mention that if the truth stays in
the stable regime in one of the winds of the attractor for a long time, the SC-4DVar
can follow that solution over multiple oscillations.

The situation improves if we addmore observations over the assimilation window.
Figure16.5 demonstrates that if we observe this system every 50 time steps, SC-
4Dvar can find the initial condition that follows the truth quite well for 200 time
steps. It means that the extra observations remove the multiple minima in the cost
function, at least for the present prior initial conditions as we will elaborate on in
Sect. 16.5.

Fig.16.4 Typical SC-4Dvar solution when the solution changes wings in the Lorenz 1963 system.
Red dots denote the observations for each variable at the end of the window, the black line is the true
solution, the blue line the prior, and the purple line the SC-4DVar analysis. Note that the SC-4DVar
updates the model trajectory over the whole assimilation window but is unable to find the true
trajectory
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Fig. 16.5 Typical SC-4Dvar solution when the true trajectory changes wings in the Lorenz 1963
system, as in Fig. 16.4, but now with 4 times as many observations spread out over the assimilation
window (red dots). The black line is the true solution, the blue line the prior, and the purple line the
SC-4DVar analysis

16.4 3DVar and SC-4DVar with Partial Observations

We now run an experiment in which we only observe the y component and compare
this to the case where we observe all three variables. We sample the observations
every 100 time steps in a 200 timestep assimilation window to make this a challenge.

We show the results from only observing the y variable in Fig. 16.6. In contrast,
the results from observing all three variables are indistinguishable from those dis-
played in Fig. 16.5, where we should remove the dots at 50 and 150 time steps. It
is remarkable how well the SC-4DVar performs. To put this in perspective, we also
compare these results with running 3DVar in this configuration in Fig. 16.7.

First, we notice that the 3DVar has to make a few strong adjustments to stay close
to the true evolution of the system. The x variable is strongly updated in the right

Fig. 16.6 4Dvar solution when the true trajectory changes wings in the Lorenz 1963 system with
only the y variable observed at only 2 times in the assimilation window (red dots). The black line is
the true solution, the blue line the prior, and the purple line the SC-4DVar analysis. Note the strong
performance of the SC-4DVar



162 16 3Dvar and SC-4DVar for the Lorenz 63 Model

Fig. 16.7 3Dvar solution when the true trajectory changes wings in the Lorenz 1963 system with
only the y variable observed at only 2 times in the assimilation window (red dots). The black line
is the true solution, the blue line the prior, and the purple line the 3DVar analysis. Note the strong
adjustments of the 3DVar at observation times

direction even though we only observe y, because of the 3DVar prior covariance
matrix, which has a strong covariance between x and y, see Eq. (16.1). But the SC-
4DVar is truly remarkable. It takes the influence from the observations of y at 100
and 200 time steps and brings those back to the initial condition at time zero via the
adjoint equations. It updates all the variables and reruns the model over the window,
providing perfect updates for x and z.

16.5 Sensitivity to the Length of AssimilationWindow

A chaotic system such as Lorenz 1963 displays extreme sensitivity to small perturba-
tions in initial conditions. (This extreme sensitivity is one of the definitions of chaos
in the first place.) Many geophysical systems, such as the atmosphere, ocean, and
climate systems, are chaotic, so the present experiments are so important. It will then
come as no surprise that the SC-4DVar, which only updates the initial conditions,
will be very sensitive to the nonlinearities in the likelihood, the actual realization of
the measurement error, the data-assimilation window length, and the prior. We will
discuss some of these sensitivities below.

It is well-known that the sensitivity grows with the length of the assimilation
window, as we have seen in previous sections. Figure16.8 shows the shape of the
cost function plotted as a function of the x variable at the initial time for three different
assimilation-window lengths. This cost function is the one that the SC-4DVar will
minimize. The details depend on the prior initial condition and measurements and
their error covariances, but the figure demonstrates the point.We see that, in this case,
even for an assimilation window of length two non-dimensional time units, which
corresponds to 200 time steps, multiple minima appear. And when the assimilation-
window length increases to six, the cost function is very wild indeed, with hundreds
of local minima.
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Fig. 16.8 Strong constraint penalty function for the Lorenz model as a function of the initial x-
value, keeping y and z constant, when using data in the intervals t ∈ [0, 2] (blue), t ∈ [0, 4] (red),
and t ∈ [0, 6] (green), from Evensen (2009b)

The question then becomes how it is possible for SC-4DVar, which is a gradient
method, to do a reasonable job on this system in the first place. The answer is
threefold. First, the blue curve for the second assimilation window shows that the
global minimum is at x = 1.8. If the prior mean would be close to that, say at
x = 2.8, the SC-4DVar will find the global minimum. An initial error of the order
of one, as in this case, or more minor, is not uncommon. However, if we would start
with a similar initial error of one, but now at x = 0.8, the 4DVar solution would
move off to the left, and it would not find the global minimum but the local minimum
at x = −1.3. This discussion shows that the first guess, typically the prior mean,
plays a significant role in chaotic systems.

Another reason for the excellent performance of SC-4DVar is that Fig. 16.8 does
not show full cost function in the 3-dimensional solution space. The local minima
shown in this cross-section may be connected by “valleys” in 3-dimensional space.
In that case, the local minima displayed here might not be actual local minima. Of
course, with longer assimilation windows such as four and six, it is implausible that
there will not be many local minima.

The final reason why 4DVar often gives reasonable answers is the width of the
prior pdf. In Fig. 16.8 the prior was relatively wide. One can imagine that a much
narrower prior will smooth out the cost function because we can not reach many of
the local minima in the set assimilation-window length. A clear example comes from
numerical weather prediction. ECMWF is the only operational center that performs
an SC-4DVar over a 12-hour window, while the other centers use 6-hour windows.
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The reason is twofold, the highly accurate prior in the 4DVar system and the superior
treatment of the complex satellite observations.

One could now pose the question why we want to run long-window SC-4DVar.
The main reasons are the accurate covariance between variables and the number of
observations. A longer assimilation window means that we use more future mea-
surements to find the best estimate. Remember that the SC-4DVar uses the adjoint
technique, which tells us how small perturbations around a fully nonlinear model
trajectory move through the assimilation window. Hence, we can interpret this as
having a space-time covariance matrix around a fully nonlinear model trajectory.
This space-time covariance matrix adapts to the system’s local space-time dynamics
through its connection with the nonlinear model trajectory. As a result, as long as
the perturbations remain small, this implicit prior covariance matrix over the whole
assimilation window is superior to anything we can generate otherwise. For instance,
in any ensemble smoother, we would typically need the localization of the ensemble
space-time covariance matrix, which we avoid here.

However, it is good to remember that the above statement is only valid when the
linearization is accurate, which means when the prior remains close enough to the
true system, both in terms of mean and a small uncertainty. In a chaotic system, the
time window that remains valid is always finite, and the only fundamental way to
avoid this issue is to include model errors. Model errors allow for adaptation of the
model trajectory within the assimilation window, removing part of the sensitivity to
the initial conditions.

A practical way to partly remove the sensitivity of the initial conditions on the
assimilation window is to divide the assimilation window up into smaller pieces.
We first run an SC-4DVar over the first piece, likely resulting in a reasonable initial
condition estimate because of the shorter window length. Then this more accurate
estimate is used as the first guess in awindow that is twice longer. Since the first guess
is better, we again can assume amore precise 4DVar solution over this longerwindow.
We can repeat this procedure to cover the whole original assimilation window finally.
This idea by Pires et al. (1996) significantly improves the results of SC-4DVar in
small-dimensional and highly nonlinear systems.

Another practical solution employed bymany operational weather prediction cen-
ters is to run the initial outer loop iterations of the SC-4DVar with a reduced model
resolution and a reduced observation set. The resolution and observation density
increase in later outer loop iterations, slowly bringing in more nonlinearity while
starting each outer-loop iteration from a more accurate first guess. This approach
leads to a much more linear data-assimilation problem that is suitable for SC-4DVar.

16.6 SC-4DVar with Multiple AssimilationWindows

We will now show results from running SC-4DVar over multiple data assimilation
windows. Figure16.9 shows results from 10 assimilation windows observing all
three variables every 50 time steps in an assimilation window of 200 time steps.
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Fig. 16.9 SC-4DVar results over 10 assimilation windows of 200 time steps each. Truth (black),
prior (blue) and analysis (purple). The solution is very accurate, and the black line is almost com-
pletely covered by the purple line

Fig. 16.10 RMSE versus time for SC-4DVar run over 10 assimilation windows. The blue line is
the background error and the purple line is the analysis error

With this observation frequency observing only the y variable did not work well
after two assimilation windows, showing that one has to be careful with results in
short data-assimilation experiments.

Figure16.10 demonstrates that the analysis’s root-mean-square error (RMSE) is
tiny, of the order of the observational error of 1, as expected. The background error
fluctuates dramatically around 100 and 1400 time steps, typically related to the end
of a forecast window.

Finally, we produce a zoom in on the solution when we observe only variable
y at a transition between 2 assimilation windows in Fig. 16.11. We see that even
the analysis is not smooth at this transition. This result should not come as a sur-
prise because the minimizations at each side of the transition see a different set
of observations. Such jumps are standard in strong-constraint SC-4Dvar solutions
and are present in atmospheric reanalyses. They arise because one cannot run a
SC-4DVar over a too-long window because of the sensitivity to initial conditions
in a chaotic system such as the atmosphere or the ocean. To avoid these jumps
at the end of assimilation windows, one would have to run a weak-constraint SC-
4DVar, in which the influence of the initial conditions becomes negligible after
some time. Indeed, the oceanographic ECCO system does provide smoother solu-
tions with assimilation windows of 50years or more, albeit at relatively low spatial
resolution.
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Fig. 16.11 Zoom in of the analysis solution at the boundary of two assimilation windows. Note
that the total solution is not smooth in time because the two solutions on either side of time t = 4,
corresponding to 400 time steps, are from two independent minimizations

16.7 A Comparison with Ensemble Methods

Finally, wemake a comparison with ensemble methods.We can directly compare the
3DVar to an EnKF. The main difference is that the 3DVar uses a climatological prior
covariancematrix, and the EnKF an ensemble-based dynamical prior covariancema-
trix at each observation time. If the ensemble is large enough, the latter will be more
accurate as it contains flow information, while the former does not. As an example,
just after the solution passes the transition region where the decision on which wing
the system will be in, the uncertainty is high, and the EnKF ensemble spread is large,
see the red line in the lower figure in Fig. 15.2. The enhanced uncertainty allows for
the following observation to firmly pull the ensemble to the correct wing, as seen in
the upper panel of that figure.

In contrast, when the solution circles around in one of the wings, the error growth
is small, the ensemble spread remains small, demonstrating that the uncertainty in
the solution is small. In contrast, the 3DVar prior covariance matrix is some average
of these situations. The climatological variance of the x variable is 3.1, while, in
the EnKF, it is of order 1.5. We see that the 3DVar covariance values are quite large
and hence conservative. This situation is similar for a 4DVar, and neither of these
methods will perform well without these conservative prior covariances.

We should compare 4DVar with the ES and the EnKS or their iterative variants.
One apparent issue is that the SC-4DVar struggles with window lengths larger than
two, so 200 time steps, while in the previous chapter, we saw in Fig 15.1 that the ES
manages to follow the truth quite well, placing the solution in the right wing all the
time, for 4000 timesteps! The ES solution was imperfect, and analysis errors were
significant but still consistent with the ensemble spread. The main difference is that
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the SC-4DVar only adjusts the initial conditions, while the ES updates the whole
model trajectory at every time step. Hence, the ES can follow the observations quite
well.

The EnKS and the SC-4DVar perform quite similarly as long as the assimilation
windows for the latter are not too long, typically two non-dimensional time units or
shorter for theLorenz 1963 system.SinceSC-4DVar decouples the analysiswindows,
jumps will occur between assimilation windows, as shown in Fig. 16.11. Inside a
window, the solution is perfectly smooth, following the model equations exactly. In
contrast, the EnKS update also affects the previous assimilation windows, and we
obtain a smooth solution from one assimilation window to the next, but the model
equations are only followed exactly between updates.
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17RepresenterMethodwith an
Ekman-FlowModel

Eknes and Evensen (1997) solved the weak-constraint variational problem for a
linear Ekman-flow model using the representer method. They computed the weak
constraint solution for a long time series of velocitymeasurements.Additionally, they
considered a parameter-estimation problem which rendered the problem nonlinear.
Here we will focus on the representer method’s properties for a linear problem. The
model is simple and allows for a straightforward interpretation and demonstration
of the method. For more details, we refer to Eknes and Evensen (1997) and Evensen
(2009b).

17.1 Ekman-FlowModel

The Ekman-flow model describes the horizontal velocity field as a function of depth
in the ocean’s upper surface layerwhen subject to awind forcing. Themodel provides
the so-called Ekman spiral due to the Coriolis force and we can write its equations
in a nondimensional form as

∂u
∂t

+ k × u = ∂

∂z

(
A

∂u
∂z

)
, (17.1)

where u(z, t) is the horizontal velocity vector, k is a vertically pointing unit vector,
and A = A(z) is the diffusion coefficient. The initial conditions are

u(z, 0) = u0, (17.2)

and we specify boundary conditions as a wind-drag at the surface z = 0 and zero
drag or no friction at the lower boundary z = −H as
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A
∂u
∂z

∣∣∣∣
z=0

=
(
cd

√
u2a + v2a

)
ua, (17.3)

A
∂u
∂z

∣∣∣∣
z=−H

= 0, (17.4)

where cd is the wind drag coefficient, and ua is the atmospheric wind speed. Follow-
ing the procedure outlined in Sect. 5.5, we can derive the Euler–Lagrange equations
and the representer solution. We refer to the original work by Eknes and Evensen
(1997) for the detailed derivation.

17.2 Example Experiment

We now discuss a simple example to illustrate the representer method. We use a
constant wind with ua = (10m s−1, 10m s−1) to spin up the velocity structure in
the first-guess solution, whichwe initialize with u(z, 0) = 0 and then perform 50h of
integration. We construct the reference case and extract velocity data by continuing
the integration for another 50h.

By measuring the reference case and adding Gaussian noise, we generate nine
simulated measurements of u; i.e., we have a total of 18 measurements of the u
and v components of the velocity at three different depths. Figure17.1 illustrates the
measurement locations, together with the first-guess, the reference solution, and the
posterior mode from the representer method. The reference solution is regenerated
quite well, even though the first-guess solution is out of phase with the reference
case, and the measurements do not resolve the period of the oscillation. A single
measurementmay suffice for reconstructing the correct phase since the corresponding
representer will carry the information both forward and backward in time. However,
the errors will be more significant with fewer measurements.

To illustrate the solution procedure using the representer method in more detail,
Fig. 17.2 presents the u-components of the variables s5, r5, λ, and the convolutions
Cqq•s5 andCqq•λ. The • denote convolution in space and time, but we set themodel
errors’ time correlation to zero in this example. The symbols follow the notation
of Sect. 5.5. The subscript five denotes the measurement number. Measurement
number five corresponds to the u component at the location (z, t) = (−20.0, 25.0).
These plots demonstrate how the information from the measurements influences the
solution.

The upper plot shows the u-component of adjoint representer s5 forced by the
impulse function at the measurement location, see Eq. (5.41). This information is
then propagated backward in time while the u and v adjoint representer velocity
components interact during the integration.

After that, we use s5 on the right-hand side of the forward Eqs. (5.38) and (5.39)
to evaluate the representer’s initial and boundary conditions and forcing fields. The
convolution Cqq • s5, is a smoothing of s5 according to the covariance functions
contained in Cqq, as seen from the second plot in Fig. 17.2.
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Fig.17.1 The u components of (from top to bottom) the first-guess estimateuF , the reference caseu
and the posterior mode solution for u. The contour intervals are 0.05m s−1 for all the velocity plots.
The measurement locations are marked with a bullet. The v components are similar in structure and
not shown. Reproduced from Eknes and Evensen (1997)

The representer r5 is smooth and is oscillating in time with a period reflecting
the inertial oscillations described by the dynamical model. Note that the representers
will have a discontinuous time derivative at the measurement location since the
right-hand side Cqq • s5 is discontinuous there. However, if we had included a time-
correlation in Cqq, then Cqq • s5 would be continuous, and the representer r5 would
be smooth.

After computing and measuring the representers of all observations to generate
the representer matrixR, we solve for the vector b from Eq. (5.42). We then use b in
(5.43) to decouple the Euler–Lagrange equations. The u-component of λ (Fig. 17.2)
illustrates how the various measurements have a different impact determined by
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Fig. 17.2 The u component of (top to bottom) s5, Cqq • s5, r5, the adjoint λ, and Cqq • λ. The
measurement locations are marked with a bullet. The v components are similar in structure and not
shown. Reproduced from Eknes and Evensen (1997)
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values of the coefficients in b. After solving for λ, we construct the right-hand side
in the forward model equation through the convolution Cqq • λ, given at the bottom
of Fig. 17.2. The role of this term is to force the solution to smooth themeasurements.

17.3 Assimilation of Real Measurements

We will now apply the representer method with the LOTUS–3 data set (Bowers et
al., 1986) in a similar setup to the one used by Yu and O’Brien (1991, 1992). The
LOTUS–3 experiment sampledmeasurements in the northwestern Sargasso Sea (34◦
N, 70◦ W) during summer 1982. Current meters at depths of 5, 10, 15, 20, 25, 35,
50, 65, 75, and 100m measured the currents. A wind recorder mounted on top of the
LOTUS–3 tower measured the wind speed. The sampling interval was 15min, and
we are using data from June 30 to July 9, 1982. We have further subsampled the data
every five hours at the depths 5, 25, 35, 50, and 75m. The reason for not using all the
measurements is to reduce the size of the representer matrix. The data still resolve
the inertial period and the vertical length, and we expect only to ignore small-scale
noise by the subsampling.

We initialized the model from the first measurements collected on June 30, 1982.
The standard deviation of the small-scale variability of the velocity observations was
close to 0.025m s−1, and we used this value to determine the error variances for the
observations and the initial conditions. We specified the model error variance after
a few runs to give a relatively smooth posterior mode estimate. We want a solution
that nearly satisfies the model equations and is close to the observations without
over-fitting them.

Figure17.3 shows the results from the estimation as time series of the u component
of the velocity at various depths. Thefigure plots the posterior-mode estimate together
with the complete time series of measurements. We denote the measurements used
in the estimation as bullets. The estimate’s amplitude and phase agree well with the
measurements at all times and depths. Note also that the estimate is smooth and does
not precisely interpolate the measurements. By a closer examination of the solution,
it is possible to see that the time derivative is discontinuous at measurement locations
due to neglecting the time correlation in the model error covariances.

For comparison, we present a strong-constraint solution in Fig. 17.4. It is clear
from comparisons that the strong-constraint solution, as determined by the initial
conditions, in the upper part of the ocean is reasonably in phase with the measure-
ments. At the same time, the amplitudes are not as good as in the weak-constraint
solution. The only way the amplitudes can change when the model is assumed to
be perfect is by vertical transfer of momentum from the surface. Thus, we obtain
a good fit near the surface, while there is hardly any effect from the wind stress
at depth, and the strong-constraint solution is also far from the measurements. The
strong-constraint estimate is close to a sine curve representing the model’s inertial
oscillations. These results indicate thatmodel deficiencies, such as neglected physics,
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Fig. 17.3 Weak-constraint results from the LOTUS–3 assimilation experiment from Eknes and
Evensen (1997). Inverse estimate for the u component of velocity (red lines), the time series of
measurements (blue lines), and the subsampled measurements (bullets), at 5, 25 and 50m

should be accounted for through a weak-constraint variational formulation to ensure
the solution agrees with the measurements.

The representer solution provides the optimal minimizing solution of the linear
inverse problem. Furthermore, theM-dimensional space spanned by the representers
contains the optimal solution update. Note that the equation for b, (5.42) is similar to
the one solved in the analysis scheme in the standard Kalman filter. The representers
correspond to the measurements of the space-time error covariance of the first-guess



17.3 Assimilation of Real Measurements 175

Fig. 17.4 Strong-constraint results from the LOTUS–3 assimilation experiment from Eknes and
Evensen (1997). Inverse estimate for the u component of velocity (red lines), the time series of
measurements (blue lines), and the subsampled measurements (bullets), at 5, 25 and 50m

solution. Thus, there are strong similarities between the analysis step in the ensemble
Kalman smoother and in the representer method. To summarize, the representer
method is a highly efficient approach for solving linear inverse problems, and it is
also applicable to many nonlinear dynamical models.
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18ComparisonofMethods onaScalar
Model

This chapter aims to demonstrate the impact of some of the critical approximations
we apply with different assimilation methods. Using a simple scalar model, we
can simulate many realizations and eliminate sampling errors. We will examine
the advanced particle flow and compare its performance to iterative smoothers and
the linear updates from the ensemble Kalman filter (EnKF) or ensemble smoother
(ES). By testing the methods on models of varying degrees of nonlinearity, we
develop an overall understanding of howdifferent data-assimilationmethods perform
in different situations.

18.1 Scalar Model and Inverse Problem

Let’s define two nonlinear scalar models

y = g(x, q) = x + βx3 + q, (18.1)
and

y = g(x, q) = 1 + sin(x) + q, (18.2)

which, given an initial state x and a model error q , define a prediction y.
In Eq. (18.1) β is a parameter that determines the non-linearity of the model. In

the current example, we have used β = 0.3. Evensen (2018) used the same model
but without the model error, while Evensen (2019) included model errors but used
β = 0.2. This model introduces a nonlinearity while retaining a monotonic model
response given the inputs x and q . In Eq. (18.2), we introduce a model with stronger
nonlinearity, resulting in multimodal posteriors, since one model output can result
from different model inputs.

The goal is to demonstrate the impact of some of the approximations we intro-
duced in Chap. 2 when we try to sample the Bayes’ posterior for x and q given a
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measurement of y. We will use techniques that solve the data-assimilation problem
with different approximations. We start with a particle-flow approach that samples
the Bayes’ posterior exactly when we use an adjoint-based model sensitivity. Then,
we introduce the approximate ensemble-based model sensitivity in Approx. 7 to ex-
amine its impact. The EnRML approachwith adjointmodel sensitivityminimizes the
cost functions Eq. (7.1) exactly. Still, this approach only approximately samples the
Bayes’ posterior due toApprox. 6.We further examine the impact of the linearization
in Approx. 5 introduced by the ES scheme. Finally, we examine the convergence of
the ESMDA method.

18.2 Discussion of Data-Assimilation Examples

We run three cases of different levels of nonlinearity. In the first case, we use the
model in Eq. (18.1). We sample the prior ensemble x fj from a normal distribution

N (x f = 0.0,Cxx = 1.0). and we sample the perturbed observations, d j of y, from
N (0.0, 1.0). Thus, except for the model nonlinearity, this is a rather trivial case.

In the second case, we also use the model in Eq. (18.1), but now we sample the
prior from to N (1.0, 1.0) the perturbed measurements from N (−1.0, 1.0). Thus,
we introduce stronger nonlinearity and non-symmetry to the problem.

In the third case, we use the multimodal model in Eq. (18.2) with the prior en-
semble sampled fromN (1.0, 1.0) and themeasurement ensemble fromN (0.0, 1.0).
The model error q is a random variable sampled from N (0,Cqq = 0.25) for all the
three cases.

In these examples, we use a sufficiently large number of samples, i.e., 107, to
generate accurate estimates of the probability density functions. Furthermore, the
large ensemble allows us to work directly with the pdfs and examine the converged
solutions of the methods and the impact of the various approximations. We use a
smaller ensemble of 105 realizations for the particle flow computations due to the
increased computational cost of the kernel matrix multiplications.

Stordal et al. (2021) discussed the particle flow for this type of data-assimilation
problem. Given a cost function as in Eq. (3.9) and its gradient Eq. (3.10) we can
write an iteration using the gradient from Eq. (9.49) as

zi+1
j = zij − γ

1

N

N∑

l=1

K
(
zil , z

i
j

)∇zil
J (

zil
) − ∇zil

K
(
zil , z

i
j

)
. (18.3)

Herewe use the particle-flowfilter fromEq. (9.49) and thatwe canwrite any posterior
pdf as f (z|d) ∝ exp

(−J (
z
))
, such that the gradient of the log-posterior is identical

to the gradient of the cost function J (
z
)
. As explained in Sect. 9.3.2, we can choose

any symmetric smooth kernel when the number of particles is large, and in this
example, we use a Gaussian kernel

K(zil , z
i
j ) = exp

(
− (

zil − zij
)TC−1 (
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. (18.4)
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Using a “narrow” kernel will lead to an ineffective repulsion term and a gradient
term where only realization j impacts the gradient for itself. In the examples below,
we used a diagonal C with the number 2/π on the diagonal.

In Figs. 18.1, 18.2 and 18.3 we present the results from the three cases with
increasing degrees of nonlinearity. From top to bottom, we show the results using
particle flow, an iterative ensemble smoother (IES) based on EnRML, ES, and finally,
ESMDA.

In the upper plots we see that the particle-flow method with adjoint model sensi-
tivity (full line) converges to the correct posterior independent of model nonlinearity.
Moreover, the technique even recovers the bimodality in the rightmost plot. This re-
sult is in agreement with the theory.When introducing the ensemble-averagedmodel
sensitivity from Approx. 7 in the particle flow methods, we still obtain good results
in the weakly nonlinear cases with only a slight distortion of the sampled distribution
compared to the true posterior. However, in the bimodal case, none of the methods
show any skill in recovering the correct distribution. Thus, the linear regression Ap-
prox. 7 requires the model to be weakly nonlinear in the sense that the model is a
monotonic function of the estimated inputs.

Although the particle-flow algorithm shows excellent potential for sampling the
posterior pdf, extending it to higher-dimensional problems and practical applications
poses certain challenges. For example, in a high-dimensional model, we must ensure
that the repulsion term with a given kernel is “active,” using an appropriate kernel
and a sufficient number of samples.

In the second row of plots in Figs. 18.1, 18.2 and 18.3 we computed the results
from the EnRML sampling where we apply the Approx. 6 and minimize an ensem-
ble of cost functions Eq. (7.1) using the IES. The solid line shows the sampled pdf
when using the adjoint model sensitivity, while the dashed lines illustrate the results
when we introduce the ensemble-averaged model sensitivity from Approx. 7. In the
nearly linear case in Fig. 18.1, the EnRML sampling using both the adjoint and the
linear regression representation for model sensitivity gives nearly the same answer.
However, when the degree of nonlinearity increases, the two estimates diverge from
each other and the true posterior. In the bimodal case, the EnRML sampling with
adjoint model sensitivity captures both the modes but only approximately. This ex-
ample represents all methods that exactly minimize the cost functions in Eq. (7.1),
including the En4DVar.

The third row of plots in Figs. 18.1, 18.2 and 18.3 shows the results when we
minimize the cost functions in Eq. (7.1) using the ES method that includes the
additional linearization of Approx. 5. Clearly, in both cases using an ensemble-
averaged linear regression and an adjoint model sensitivity, the linearization causes
the resulting pdf to deviate even further from the true posterior pdf. Surprisingly, we
obtain a nearly perfect fit using ES in the case with themultimodal model when using
the adjointmodel sensitivity. In these plots, we also show the result with an ensemble-
averaged sensitivity and where we computed Cyy directly without using the correct
regression in Eq. (7.11). This error causes a significant shift in the estimated pdf and
a worsening of the result.
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Fig. 18.1 Sampling Bayes’ for the scalar inverse problem in Eq. (18.1) with the prior and obser-
vation centered at zero. From top to bottom we show results using particle flow (PFF), an iterative
ensemble smoother (IES), ES, and ESMDA. Each plot shows the results using an ensemble based
model sensitivity (full lines) and an adjoint model sensitivity (dashed lines). Additionally, for ES
and ESMDA, we plot the results when omitting the correction when computing Cyy
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Fig. 18.2 As in Fig. 18.1 but with the prior centered at x = 1 and the measurement at x = −1
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Fig. 18.3 As in Fig. 18.1 but for the highly nonlinear model defined by Eq. (18.2)
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Finally, the bottom plots of Figs. 18.1, 18.2 and 18.3 show the results when sam-
pling the posterior distribution using ESMDA. Recall that ESMDA is just a se-
quence of ES updates using measurements with inflated errors. In the linear case,
ESMDA samples exactly the Bayes’ posterior pdf. In the nonlinear case, ESMDA
is subject to the linearity Approx. 5, but the impact of this approximation can be
made negligible by using many small update steps. The many minor updates are
nearly linear, and we have an almost insignificant effect of using the regression for-
mula in Eq. (7.11). ESMDA with an ensemble gradient does amazingly well for
this particular problem, while when using the adjoint model sensitivity, we obtain
a much worse result. In the highly nonlinear case in Fig. 18.3, we observe that ES-
MDA with 32 steps and an adjoint model sensitivity does not work. This problem
is a result of the vastly inflated measurements used in each update step. The large
perturbations create some perturbed measurements with non-physical values that
exceed the possible function outputs. For the model in Eq. (18.2), the outputs are
restricted to the interval y ∈ [0 : 2], neglecting the stochastic model errors q .
Evensen (2018) pointed out this issue with ESMDA. Using fewer update steps or
even a square root formulation for the ESMDA (Emerick, 2018) might resolve this
problem.

In summary, the particle-flow algorithm converges to the Bayesian posterior when
using the adjoint model sensitivity. However, the computational cost is significantly
larger than for the other methods. Moreover, we must choose the kernel wisely and
care about the required number of particles for high-dimensional systems. Further-
more, introducing an ensemble gradient results in a solution that diverts from the
correct Bayesian solution. Thus, when we don’t have an adjoint, we may still obtain
an improved estimate using particle flow. Finally, the EnRML solution introduces
another approximation, and the result is less good than the particle-flow solution.
The code used for these examples is available from https://github.com/geirev/EnKF_
scalar.git.

18.3 Summary

As we have seen from the examples discussed in this chapter, the approximate sam-
pling of the Bayes’ posterior worsen with increasing nonlinearity. Particularly for
the multimodal problem, the results from using ensemble smoothers with an ensem-
ble model sensitivity completely fail. In Fig. 18.4 we illustrate the basis for these
methods. In this example, we have a monotonically increasing prediction with an
increasing value for the input parameter. This situation corresponds to the two ex-
amples in Figs. 18.1 and 18.2. Thus, we have a positive correlation between the input
parameter and the predictedmeasurement.Whenwe are underpredicting the observa-
tion, the positive correlation indicates that we can increase the input-parameter value
to obtain a better fit. The ES is using precisely this approach. The iterative EnRML

https://github.com/geirev/EnKF_scalar.git
https://github.com/geirev/EnKF_scalar.git
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Fig.18.4 Illustration of the linear regression update used to solve the parameter estimation problem.
The upper frame illustrates the ensemble prediction of five realizations of a scalar parameter, which
misses the measurement in blue. The lower frame shows how the updated parameter realizations
lead to predictions in better agreement with the measurement

smoothers take this one step further to handle better a certain degree of nonlinearity
in the dynamics. However, the stronger the nonlinearity, the poorer is the regres-
sion representation of the model sensitivity. And, for non-monotonic functions, the
correlation between input parameters and predicted measurements approach zero,
explaining the poor performance of the regression updates in Fig. 18.3.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
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19Particle Filter for Seismic-Cycle
Estimation

The particle filter is an effective data-assimilation method for low-dimensional, non-
linear systems. It is easy to implement, and it is straightforward to include model
error, parameters, and controls in the state vector. This chapter demonstrates the use
of a particle filter in the case of a parameter bias. We apply the standard particle
filter with importance-resampling to estimate seismic cycles. Seismic-cycle estima-
tion helps us assess and forecast fault slips in slow-slip events and earthquakes. In
the simulation of seismic cycles, the parameter choice determines the periodicity of
the seismic events. Consequently, having a parameter bias will result in errors in the
simulated state trajectory. This chapter illustrates how we can compensate for errors
in the state trajectory caused by a parameter bias using the particle filter. We include
the model errors, and the joint estimation of state and parameters leads to more
satisfactory results than we can obtain by estimating the state alone. We compare
state-estimation results between the standard particle filter and EnKF. Furthermore,
we illustrate the advantage of using a fully nonlinear data-assimilation method for
systems with sudden transitions in the model trajectory.

19.1 Particle Filter for State and Parameter Estimation

We apply the particle filter with sequential importance resampling as described in
Sect. 9.2.1 on an application for seismic-cycle estimation. This application provides
an interesting data assimilation case as the state trajectory is sensitive to both param-
eters and state, which are generally uncertain.

The highly nonlinear behavior of seismic cyclemodels may limit the effectiveness
of the EnKF or related methods. Within a set of realizations for seismic cycles,
seismic events can occur at different times for each of the realizations. In this case,
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the particle filter has the advantage of propagating the full pdf of the state. The
standard particle filter applied in this chapter only affects the weight of the particles.
As we will illustrate for a quasi-geostropic ocean model in Chap. 20, it will not move
the particles as the particle flow filter does.

19.2 Seismic Cycle Model

To simulate the stick-slipmotion of a fault related to themovement of a tectonic plate,
Burridge and Knopoff (1967) introduced a simplified representation of an assembly
of springs and blocks. This Burridge–Knopoff (BK) model connects a set of blocks
through springs. It also uses springs to connect the blocks to a loader plate. The
loader plate moves with a uniform velocity and pulls the blocks. Here, we consider
a zero-dimensional version of the BK model that represents a single spring-block
system, as shown in Fig. 19.1. The contact surface, represented by the block and the
rough surface over which the block can slide, simulates the fault.

The equations for this rate- and state-dependent friction law can be found in Ruina
(1983). Erickson et al. (2011) shows how to solve these equations by rewriting them
as three partial differential equations

∂θ

∂t
= −v(θ + (1 + ζ ) ln v), (19.1)

∂u

∂t
= v − 1, (19.2)

∂v

∂t
= −F2

(
u + 1

ξ

(
θ + ln v

))
, (19.3)

where F is the non-dimensional frequency of the resulting cyclic motion, and ξ is
a non-dimensional spring constant. Furthermore, u is the block’s non-dimensional

Fig.19.1 The figure illustrates a zero-dimensional version of the spring-block system by Burridge
and Knopoff (1967), consisting of a block connected with a spring to a driving plate moving with
a constant velocity
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slip, i.e., displacement, relative to the driver plate, and v is the corresponding slip
rate. Finally, θ characterizes the state of the frictional surface. We interpret it as a
measure of the average lifetime of the asperity contact population in a fault, a variable
that influences the strength of the contacts. We obtain the fault shear stress τ can by
multiplying the slip values with−ξ . Banerjee et al. (2022) give further details on the
parameters used in the simulations.

The parameter ζ is the parameter of interest here. It depends on the friction
parameters in the rate- and state-dependent friction law and determines the stick-slip
behavior of the slip events. In our zero-dimensional model, we choose the parameter
ζ such, that the system has a stable limit cycle solution with periodic oscillations.
We investigate the effectiveness of the particle filter in a case of a biased ζ . A bias
in ζ affects the simulated amplitude and frequency of fault stress, slip and the state
variable θ in the earthquake cycle.

19.3 Data-Assimilation Experiments

We apply a standard particle filter with sequential importance resampling in three
cases:

Case A: state estimation,
Case B: state estimation with increased model error,
Case C: state- and parameter estimation.

In all three cases, we represent the model noise by an additive model error dq in
Eq. 2.24). We add this model error to the Eq. (19.2) for ∂u

∂t . For Case A and Case C,
we draw the model error from a Gaussian distribution with zero mean and a standard
deviation of 0.01. For Case B, the standard deviation of the model error is 0.1.

We run the forward model for a period of 500 time units. We define the system’s
state by the fault shear stress τ , the slip rate v, and the state variable θ at the fault
interface. In Case A and Case B, the state vector contains the model state plus
the model error z = [θ, τ, v, dq]T, while Case C extends the state vector with the
parameter ζ , i.e., z = [θ, τ, v, dq, ζ ]T. The measurement vector has two elements
and contains the (synthetic) measurements of fault shear stress and slip rate.

We sample synthetic measurements from the truth run with parameter ζt = 0.7.
We assume the state variables of shear stress (τ ) and slip-velocity (v) to be measured
every 4 time units. Measurement errors are sampled from a normal distribution and
added to the truth-run samples. For shear stress, the standard deviation of this normal
distribution is 0.6. The standard deviation of the measurement errors added to the
slip velocity measurements is 1.15.

We generate the prior particles with a biased ζ = 0.6. In the following, we denote
this biased parameter with ζ ′ and the true parameter as ζ̂ . We evaluate the data-
assimilation performance by comparing the posterior of z to the values of z in the
true trajectory. Figure19.2 illustrates the state trajectories for ζ̂ = 0.7 and ζ ′ = 0.6.
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Fig.19.2 Phase diagram for a Burridge–Knopoff (BK)model with rate-and-state-friction lawwhen
ζ = 0.6 (bias case) and ζ = 0.7, i.e., a case of no bias

Starting from an initial condition of θ = 0 and τ = −1, both θ and τ increase,
after which the shear stress τ stays constant and θ drops (the interseismic phase).
Following this phase, the shear stress drops while θ remains stable in the coseismic
phase. After that, we observe a very short post-seismic phase where τ remains low
and θ rapidly becomes less negative. The system then moves to the interseismic
phase in which both θ and τ increase again and the cycle repeats. For both ζ = 0.6
and ζ = 0.7, the trajectories are stable cycles. Figure19.2 shows that the trajectory
for ζ = 0.6 has smaller amplitudes of τ and θ than the trajectory for ζ = 0.7. A
smaller value of ζ results in a shorter cycle.

The experiments use N = 1000 particles in a standard particle filter with im-
portance resampling similar as described in Sect. 9.2.1. We assume the likelihood
f (d|z j ) in Eq. 9.4 to be known (see Algorithm 9). We use a Lorentz function rather
than a Gaussian (see Algorithm 9), i.e., for a measurement d and the model state z
in assimilation window l, the likelihood becomes

f
(
dl |zl

) = 1

1 +
(
dl−H(zl )

)2
σ 2
l

, (19.4)

with the variance σ 2
l of the measurement noise. This function has the advantage

of broader tails than the Gaussian function, resulting in fewer particles having zero
weight (Vossepoel & Van Leeuwen, 2007). While this choice helps the particle filter
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algorithm avoid degeneracy, it is slightly inconsistent with the actual measurement
errors drawn from a Gaussian with the same width.

19.4 Case A: State Estimation

Figure19.3 illustrates the evolution of the posterior mean τ , θ and v, in the presence
of a bias (ζ ′ = 0.6) compared to the truth case of no bias (ζ̂ = 0.7). The figure
illustrates that when performing only state estimation while not accounting for the
parameter bias, the data assimilation cannot fully recover the true trajectory of these
state variables. While the data assimilation appears to decrease the frequency of the
events and brings the shear stress and θ closer to the truth, the resulting analysis does
not capture the amplitude of the τ and θ cycles very well, and the reconstruction of
the slip rate v is poor.

During the interseismic phase (e.g., at t = 16), the difference between prior
and truth is not very large. But at time t = 20, i.e., in the coseismic phase, the
distribution of the prior shear stress has a peak around τ = −5, while the weights

Fig.19.3 Case A: Evolution of 1000 particles and the posterior mean and truth of state variables θ ,
shear stress τ , and slip velocity v in an experiment with state estimation for a synthetic experiment
where the prior has a biased parameter relative to the truth. The dotted blue lines provide the actual
θ , τ , and v, and cyan dots represent synthetic measurements. Grey lines represent the prior particles,
and the red line is the analysis given by the weighted mean of the posterior distribution
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Fig. 19.4 Time evolution of 1000 particles (right panel), as shown in Fig. 19.3, zoomed in for
t = 20. The colors of the lines represent the weights for t = 20. The lines have a lighter color
when the particle they represent has a higher weight. The neighboring left panel graph gives the
distribution of prior particles (in grey) and the distribution after resampling (in red)

at that moment in time are highest for the shear stress value around τ = 0 (see
Fig. 19.4). The weighting of the particles favors the particles whose shear stress has
not yet dropped. The relatively late change in shear stress as measured only occurs
in a few particles, and as a result, the filter reaches the criterion for resampling.
Figure19.4 illustrates the particles’ distribution before and after resampling.

The different behavior of the particle filter compared to the ensembleKalman filter
(EnKF) is illustrated in Fig. 19.5. For the times t = 20, t = 24, t = 72, and t = 76,
this figure presents the pdfs for Case Awith the standard particle filter and the EnKF.
It shows that the posterior distribution of τ in the case of a particle filter can feature
small secondary peaks next to the dominant peak, and it can redistribute the particles
in such a way that sudden transitions in the trajectory, such as in the coseismic
phase at t = 20, are captured in the posterior. In the EnKF experiment, the posterior
distribution of τ remains very close to its prior distribution. For the interseismic
period, the results of the particle filter and the EnKF are virtually the same.

Figure19.6 illustrates the particle results further with a phase diagram of the θ and
τ values of the particles. These plots give the expected phase trajectories, as shown
in Fig. 19.2. The lower value of ζ ′ in the prior particles implies a phase difference
compared to the truth. We can only partly compensate for this difference by favoring
particles that quickly enter the coseismic phase. We also observe that for t = 20, the
particles closest to the truth in the τ -θ space obtain the highest weight. At t = 24,
t = 72, and t = 76, this is less so because of the match of the slip rate v to the truth
(not shown). By adjusting the state, the assimilation partly compensates for the bias
in the parameter, but the resulting posterior fails to follow the actual trajectory.
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Fig.19.5 Case A: Comparison of EnKF (top) and particle filter (bottom) for state estimation in the
presence of a biased prior parameter for t = 20, t = 24, t = 72 and t = 76. The panels give the
prior distribution (grey for the particle filter, blue for EnKF) and posterior distribution (red) of τ

in the ensemble members/particles. The value of the measured shear stress is indicated with a pink
line, the true shear stress with a dotted black line

19.5 Case B: State Estimation with IncreasedModel Error

In many real-life applications, it is not clear beforehand whether the difference be-
tween model and measurements comes from errors in the model state, in the model
parameters, the model controls, or in the model itself. In these situations, one typi-
cally applies the model as a weak constraint. In Case B, we investigate whether we
can compensate for a bias in the prior parameter by increasing the prior model error
in Eq. (19.2) from 0.01 to 0.1.

Figure19.7 shows the results. Not surprisingly, a more significant model error
increases the spread in the prior compared to Case A (Fig. 19.6). The most noticeable
difference occurs at t = 72, just before the coseismic phase. Some particles still have
high shear-stress values, while the shear stress has dropped for others. By giving the
high-shear-stress particles a relatively high weight, the particle filter with this weak-
constraint formulation partly compensates for the bias in the parameter.

19.6 Case C: State- and Parameter Estimation

In Case C, we investigate state- and parameter estimation in the case of a biased
prior parameter. The state vector contains the state variables τ , θ , and v and the
parameter ζ . We generate the initial ensemble by sampling each particle from a log-
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Fig.19.6 CaseA: Left column: phase diagrams showing the θ-τ trajectories of the true state (black,
ζ̂ = 0.7) and the biased prior (blue, ζ ′ = 0.6) as in Fig. 19.2. Particles of the Case A experiment
are indicated with dots, whose size and color indicate their weights for t = 20, 24, 72, and 76. We
indicate the true values of θ and τ for these times with a black dot. Right column: the posterior
(red) and prior (grey) shear stress distributions. For t = 24, 72, and 76, the difference between the
prior and the posterior is so small that the two lines overlap
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Fig. 19.7 As in Fig. 19.6, but now for Case B
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Fig. 19.8 As in Fig. 19.6, but now for Case C
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Fig. 19.9 Case C: evolution of the parameter estimation

normal distribution with mean ζ ′ and standard deviation 0.01. To ensure that the
state of each particle is different but consistent with its parameter value, we sample
its state from a single realization with this parameter at a random moment in time.
This approach is similar to the lagged forecasting by Hoffman and Kalnay (1983).
The resulting N particles have N parameter values centered around ζ ′ and different
initial states that are consistent with the parameter of each particle.

Figure19.8 provides the phase diagrams for Case C’s state- and parameter es-
timation. The distributions in this figure demonstrate that the state- and parameter
estimation results in a posterior closer to the truth than in Case A or B. By varying
parameter values within the ensemble, the resulting states and phases within the seis-
mic cycle cover a more significant part of the θ -τ domain. The results suggest that,
for this case, state- and parameter estimation provides an effective reconstruction of
the true τ and θ . However, for the time steps t = 24, 72, and 76, none of the parti-
cles represented v accurately, and as a result, the weights remained relatively low.
Figure19.9 shows the reconstruction of ζ . After a period with significant adjustment
of the posterior parameter value, the estimation of the parameter fluctuates around
the true value, and the true value is within the ensemble spread. For this particular
case, there is no degeneracy of the ensemble. An artificial evolution equation for the
parameters could have resolved the problem if we observed degeneracy.

19.7 Summary

These results indicate that for the particular case of seismic-cycle estimation pre-
sented in this chapter, the combined state- and parameter estimation provides a more
favorable data-assimilation outcome in the presence of a parameter bias than state
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estimation alone. Increasing model error in state estimation can only partly com-
pensate for this bias. We also see that a particle filter handles bimodal pdfs and
provides physically acceptable solutions while the EnKF fails. The low dimension
of the current example makes the use of a standard particle filter straightforward.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
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20Particle Flow for aQuasi-Geostrophic
Model

This chapter discusses the application of a particle-flow filter to a two-layer quasi-
geostrophicmodel. The reasons for including this example are twofold. First, it shows
that it is possible to apply fully nonlinear data assimilation to high-dimensional
systems, even without localization. Second, we introduce how to set up such an
experiment in more detail and discuss the choices one must make.

20.1 Introduction

We start by demonstrating how the evolution of the particles in pseudo-time pro-
gresses in a highly idealized model to understand the basic ideas behind particle-
flowmethods better. We look at one specific gridpoint in a 1000-dimensional Lorenz
1996model for an observation that is the square of the state variable at that gridpoint,
so d = x2true + ε. The value of d = 7.3 with observation-error standard deviation
equal to 0.2. The prior is a wide Gaussian with mean 0.5 and standard deviation 1,
represented by 100 particles as depicted by the lower red dots in Fig. 20.1. The blue
lines denote the movement of the particles in the one-dimensional state space of this
gridpoint. The vertical axis is pseudo time, scaled between 0 and 1. We made many
iterations with small steps to accurately illustrate the movement in this part of the
state space.

Figure20.1 shows that the particles flow towards the posterior pdf, centered on
the possible gridpoint values corresponding to x2 = d = 7.3, hence x = ±√

7.3 =
±2.7, with a standard deviation of order 0.1. The pseudo-time trajectories seem
to cross each other, e.g., in the lower right corner of the plot. An actual crossing
of trajectories would lead to the failure of the method, indicating the use of too
large pseudo time steps. However, this crossing is not actual because we only plot
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Fig. 20.1 The plot shows
the evolution of 100 particles
(colored lines) in pseudo
time (horizontal axis) at one
gridpoint in a
1000-dimensional Lorenz
1996 data-assimilation
experiment. Note the motion
from the relatively narrow
prior distribution to the two
modes

the flow of the 1000-dimensional particles in a one-dimensional projection. In the
1000-dimensional full space, the particles do not cross.

The particle-flow filter demonstrates behavior that is impossible to obtain with an
ensemble Kalman filter, not even an iterative ensemble Kalman filter that uses the
ensemble gradient for the adjoint of the observation operator. The reason is that the
gradients will have different signs for the two posterior modes, while the ensemble
provides only one average gradient. Only iterative methods that use either the adjoint
of H or different ensemble gradients for different state-variable values can accurately
find the twomodes.Variationalmethodswill converge to one of themodes, dependent
on the first guess. Finally, a standard particle filter will not move the particles, only
their weights. The relatively narrow prior in Fig. 20.1 does not cover the two posterior
modes, and no particles will end up in these modes. Resampling would produce two
artificial modes at the extremes of the prior. Only a particle-flow filter can produce
these modes in its standard configuration.

20.2 Application to the QGModel

The quasi geostrophic (QG) model solves the following equations for a 2-layer
system

∂p1
∂t

+ J (ψ1, p1) = A�q1, (20.1)

∂p2
∂t

+ J (ψ2, p2) = A�q2, (20.2)

where the potential vorticity pi in each layer is the sum of the relative vorticity, the
planetary vorticity, and a stretching term,

p1 = ∇2ψ1 + f − F1(ψ1 − ψ2), (20.3)

p2 = ∇2ψ2 + f + F2(ψ1 − ψ2). (20.4)

Here ψ1 and ψ2 are the stream functions in the two model layers, and A is the
horizontal diffusion or mixing coefficient. The Jacobian J (ψ, p) = ∂ψ

∂x
∂p
∂y − ∂ψ

∂y
∂p
∂x
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denotes the advection of potential vorticity. The Coriolis parameter is f = f0 + βy
in which y is the meridional coordinate (the so-called β-plane approximation), and
the Fi are constants related to the densities and height of the two layers.

A practical scheme to solve the QG model equations is the following. First, cal-
culate the potential vorticity from the stream-function fields. Next, propagate the
potential-vorticity fields over one time step. Then solve the Helmholtz equations
for the new stream-function fields, which the advection terms use to propagate the
potential vorticity over the next time step.

The model setup uses two layers of 257 by 129 gridpoints with a grid spacing of
100 km. The dimension of the state vector is 66306. The time step is 30 min, and
F1 = F2 = 2.8 × 10−12 m−2. The Coriolis parameter in the middle of the domain
is f0 = 7.28 × 10−5 s−1 and β = 2.0 × 10−11 m−1s−1.

20.3 Data-Assimilation Experiment

We initialized the model with a meandering jet of wavenumber four in the upper
layer with maximum stream-function value 5× 107 m2s−1, and the stream function
in the lower layer was taken as a factor 0.03 times that of the upper layer. This model
state was spun up for 250 time steps, approximately five days.

Figure20.2 gives examples of the true model stream function in the upper layer at
different time steps during the data-assimilation experiment. The plots show different
stages of the evolution of the flow field, with the Jet Stream flowing from East to
West at the boundary between reddish and greenish colors.We observe several eddies
(low- and high-pressure cells) north and south of the meandering Jet Stream. The
three plots show the shedding of high-pressure cells for a little more than two days.

An initial ensemble of 100 members was created by adding Gaussian random
noise with a decorrelation length scale of 20 gridpoints to a similarly perturbed true
spun-up state. The standard deviation of the perturbations was 100 m2s−1. At every
time step, we added model errors drawn from a Gaussian with zero mean and the
same decorrelation length scale and a standard deviation of 0.005 times the one in
the true initial fields.

We assimilated observations every 10 time steps, corresponding to 5h. We ob-
served the stream function at 600 equally-distributed gridpoints in each layer. This
number corresponds to a fraction of 0.036 of the total number of gridpoints. Obser-
vation errors were uncorrelated, with standard deviation 5 × 105 m2s−1.

To understandwhat else is needed,we show the evolution equation for the particles
in pseudo time s,

dx j

ds
= D

1

N

N∑

l=1

(
K(x j , xl)∇x log f (xl |d) + ∇xlK(x j , xl)

)
. (20.5)

This equation shows we need to provide three ingredients: the likelihood f (d|x), a
continuous version of the prior f (x), and the matrix-valued kernelK. We assume the
likelihood is known, and we do have a representation of the prior by a set of particles.
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Fig. 20.2 The plots show the upper-layer stream-function fields from the true run 25h apart from
top to bottom
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In the evolution equation for the particles, we need to take the gradient of the prior pdf
to the state x, so a representation in terms of delta functions is not sufficient. Several
possibilities for approximations are possible. One is to assume the prior is a Gaussian
mixture model centered on the particle positions. Another is to use a single Gaussian
as the prior pdf. Note that this approximation is only needed to find an approximate
gradient of the prior. The prior particles can still represent a non-Gaussian pdf. This
situation is similar to EnKF, which updates each ensemble member separately. In
the EnKF, the posterior pdf can retain non-Gaussian structures present in the prior
ensemble even though it uses a Gaussian approximation to define the update. In this
application, we assumed that the prior particles represent a Gaussian pdf, defined by
the ensemble mean and ensemble covariance.

We use a matrix-valued kernel with off-diagonal entries equal to zero, and on the
diagonal a scalar Gaussian kernel,

kii
(
x j , xl

) = exp

(
−1

2

(
xij − xil

)2

σ 2
i

)
, (20.6)

where σ 2
i is the prior variance in state variable i . In the limit of an infinite number of

ensemble members, theory tells us that any smooth, symmetric kernel will result in
the prior particles converging to the posterior pdf. In practice, with a small number
of particles, care has to be taken to ensure fast convergence.

20.4 Results

Figure20.3 shows the prior mean, the truth, and the posterior mean of the lower
layer stream-function fields at day 10 of the assimilation experiment as an example
of the outputs. The posterior mean is indeed much closer to the truth than the prior
mean, as expected. The data assimilation manages to deepen low-pressure areas,
make high-pressure regions less deep, and generate a more accurate splitting of the
Jet Stream around the gridpoint (200, 70).

Figure20.4 compares the time evolution of the spatially averaged mean-square
errors of the ensemble mean and the ensemble variance. We see the typical decrease
of errors at assimilation times and the growth of the actual and predicted errors
between assimilation times. The two curves closely follow each other, showing that
the ensemble spread is a realistic estimate of the true error (defined as the square of
the difference between ensemble mean and the truth run).

The particle-flow filter is an iterative scheme that reduces the KL-divergence at
every time step. To illustrate this property, the right plot in Fig. 20.4 shows the mean
square error spatially averaged between the ensemblemean and the truth as a function
of the iteration number. Each line corresponds to a different observation time. The
error converges to a fixed value, mainly determined by the observation error. For
practical reasons, we limited the number of iterations to 50, but additional iterations
could have reduced the divergence even further.
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Fig. 20.3 The plots show the lower-layer stream-function fields’ prior mean, truth, and posterior
mean at day ten from top to bottom

We obtained these experimental results by observing the stream-function value
directly at 600 points in each layer at each observation time. It is interesting to see
what happens when using a nonlinear observation operator. We also performed an
experiment where we observed the square of the stream function at each observation
point. This situation typically leads to a skewed posterior pdf when all prior particles
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Fig. 20.4 The left plot shows the time evolution of the true error (red line) and the ensemble
variance (blue) over 19d. The right plot shows the convergence of the ensemble mean to the truth as
a function of the pseudo time step (or iteration). The different curves correspond to the observation
times in the left plot

are positive. The likelihood is bimodal, but the prior only sees one of the modes.
The skewness arises because of the nonlinear transformation between state and ob-
servation space. The more exciting situation appears in observed gridpoints where
prior particles have different signs for the stream-function value. In that case, both
the positive and the negative root of the observation are covered by the prior. Thus,
the likelihood will be bimodal in the domain where the prior is non-zero. Figure20.5
depicts what can happen in such a case. Since the observation is the square of the
stream-function value, it points to two possible solutions, one positive and one neg-
ative. The blue histogram represents the prior pdf. The red bars indicate the possible
values of the observation at this gridpoint, and the orange histogram represents the

Fig.20.5 The figure shows the QGmodel’s particle-flow filter results in a selected gridpoint using a
quadratic observation operator. The two red bars denote the two possible positions of the observation
in state space. The prior (blue) and posterior (orange) histograms represent the distribution of the
100 prior and posterior particles
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posterior pdf. The prior pdf is a wide pdf with no particular structure. The likelihood
in state space is bimodal, and the posterior pdf is indeed bimodal as expected.

This example demonstrates how to set up a particle-flow filter in a large-
dimensional system.Localization is not needed explicitly. Research on thesemethods
is still in its infancy, but fully nonlinear data assimilation seems to have come within
reach.
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21EnRML forHistoryMatching
PetroleumModels

In this chapter, we present an application of an iterative ensemble smoother for a
history-matching case with a reservoir simulator. The application is realistic and
represents an actual oil reservoir with production data. This case focuses on for-
mulating the history-matching problem with consistent error statistics. The chapter
shows how we can use ensemble methods to estimate high-dimensional parameter
sets and additional model controls by conditioning the model on fluid production
rates.

21.1 Reservoir Modeling

In petroleum engineering, reservoir engineers use parameter-estimation methods to
improve the characterization of oil reservoirs. Oil reservoirs are permeable layers in
the subsurface that are bounded by structural or stratigraphic elements that create
seals (traps) on the reservoir’s top and sides. For example, the seals can be, e.g., shale
layers with low permeability or impermeable faults. We have only limited knowl-
edge of the reservoir properties. We obtain coarse information about the large-scale
reservoir structure from seismic data, and we have localized point information from
core samples from test wells. With additional assumptions about the depositional
environment, it is possible to build a geologic model of the reservoir. However, the
model will always be an approximation of reality.

The geologic model and the seismic data form the basis for well planning, drilling
and production. Therefore, any improvement of the reservoir model can significantly
impact the reservoir economy. For example, one can define a reservoir-simulation
model used to simulate the production of existing andplannedwells from the geologic
model. Typically, the predicted oil production is initially vastly different from the
actual oil production due to flaws in the reservoir model.

© The Author(s) 2022
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21.2 History Matching Reservoir Models

The reservoir model has the form of Eq. (2.34), which we write as

y = g(z) = h
(
m

(
x, θ , u

))
(21.1)

Here x denotes the initialization of the dynamical variables (e.g., oil, water, gas,
pressure), θ represents all the uncertain reservoir parameters such as the three-
dimensional porosity and permeability fields, fault multipliers, structural surfaces,
etc. The uncertain control variables in u represent the production of oil, water, and
gas from the production wells and the injection of water and gas through the injection
wells. For predictions, we specify the controls in u, while for a historical simulation,
we use the observed well-rates in u. Typically, one assumes that the uncertain model
parameters in θ dominate the model errors, and we have set q = 0. In Eq. (21.1),
y represents the predicted measurements corresponding to each well’s produced oil,
water, and gas.

We define the data-assimilation problem as estimating or updating the uncertain
model initial conditions x, model parameters θ , and model control parameters u,
given the prior information and the observed production and injection. If the reservoir
could deliver all the production data enforced through u, there would be no misfit
between observed and predicted data and consequently no model update. However,
the reservoir model can generally not deliver the observed historical production
data enforced on the model. Thus, we update model parameters to fit the observed
production better. Hence, the name history matching.

Methods for parameter estimation in petroleum engineering typically sample the
posterior pdf in Eq. (2.43) while assuming Gaussian priors and neglecting the model
errors q. For this joint parameter-state estimation problem, a filtering approach re-
quires recursive updates of the parameters and dynamical state, which typically in-
troduces dynamical inconsistencies and adds to the computation time by numerous
stops and restarts of the model (Evensen et al., 2007; Gu & Oliver, 2005; Haugen
et al., 2008; Reynolds et al., 2006; Seiler et al., 2007; Skjervheim et al., 2009). For
this reason, Skjervheim et al. (2011) introduced the use of ensemble smoothers for
reservoir history matching. Following Skjervheim et al. (2011), there was a rapid
development of iterative ensemble smoothers such as the EnRML (Chen & Oliver,
2012, 2013) and the ESMDA (Emerick &Reynolds, 2013). Recent papers (Evensen,
2018, 2019, 2021; Evensen & Eikrem, 2018; Evensen et al., 2019; Raanes et al.,
2019) have analyzed and further developed the iterative smoothers and enhanced
their performance.

21.3 Example

Wewill now present an example from Evensen (2021), who discussed the consistent
formulation of the history-matching problem and illustrated its solution. Evensen
(2021) particularly emphasized that one needs to consider the uncertainties of the
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model controls and include their temporal error correlations to compute a consis-
tent update. The model was a realistic but straightforward reservoir model with six
producing wells and three injectors. The uncertain parameters included the model
porosity and seven fault multipliers. Evensen (2021) found that by updating the
porosity field, the fault multipliers, and the model controls, one obtained an updated
ensemble of models that fit the production data within their prescribed uncertainty.
The assimilation method was the subspace EnRML from Algorithm 5.

Figures21.1 and 21.2 present some history-matching results from a casewherewe
have assumed substantial time correlations in the rate errors, which Evensen (2021)
found to be the most realistic. He sampled the prior fault-multiplier realizations
from a log-uniform distribution on the interval 0.001 to 1.0 for all the faults. Thus,
with a log-scale on the y-axis, the samples would appear uniformly distributed. In
Fig. 21.1, the circles of different colors denote the updated ensembles of multipliers.
Notably, the F3, F4, and F5 faults are closed after the conditioning. Evensen (2021)
also updated the model’s three-dimensional porosity field (not shown). The left plots
in Fig. 21.2 show the prior and posterior ensembles of model-predicted oil, gas,
and water production rates from top to bottom. The plots to the right in Fig. 21.2
present the prior and posterior historical rates, which we use as control variables
in the simulation model. We observe a weak reduction in the ensemble variance
for OPR and WPR. At the same time, for GPR, there is a significant update with
both reduced gas production and a lower posterior ensemble variance. The updated
model parameters and controls result in the posterior ensemble prediction shown by
the red curves. The posterior ensemble fits the observations within their two standard
deviations error bars.
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Fig.21.1 Petroleum case: Prior and posterior fault multiplier realizations. The prior distribution is
log-uniform on the interval 0.001 to 1.0 for all faults
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Fig. 21.2 Petroleum case: The plots show the prior and posterior ensembles of predicted and
observed production of oil (OPR), gas (GPR), and water (WPR) for the well OP2, from top to
bottom. The left plots show the ensemble of predicted rates, while in the right column we present
the ensemble of historical rates used to force the model. The green curves are the prior realizations
of predicted rates, and the red curves are the corresponding updated realizations. The blue curves
are the prior control-rates realizations used to force the model, while the orange curves are the
updated realizations

We point out that the example from Evensen (2021) is the first time the condition-
ing process includes the model controls as variables to be updated. This approach
resolves previously reported issues related to overfitting the measured rates and un-
derestimating the posterior ensemble variance. We refer to the paper for a detailed
discussion.
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22ESMDAwith a SARS-COV-2Pandemic
Model

In parallel with the global SARS-COV-2 pandemic, several data-assimilation prac-
titioners have implemented systems to predict pandemic development. Common for
several of these studies is an approach of recursive updating of the model’s state
variables using EnKFs or even particle filters. However, the problem is closer to a
parameter-estimation problem than state estimation. Evensen et al. (2020) presented
a new assimilation process for predicting the SARS-COV-2 pandemic. They used
an approach of combined parameter and control-variable estimation. The reason is
that the effective reproductive number R(t) drives the model. And it is a function of
time, as it is the public behavior that determines its value. Another exciting aspect
is that today’s number of observed hospitalizations and deaths results from peo-
ple’s behavior about two weeks earlier. In their paper, Evensen et al. (2020) showed
that the assimilation system, which used ESMDA to estimate parameters and the
time-dependent control, R(t), was capable of tracking the pandemic over multiple
“waves” and making predictions with realistic uncertainty estimates.

22.1 An Extended SEIRModel

Evensen et al. (2020) developed an extended SEIR (susceptible, exposed, infectious,
and recovered) model (Blackwood & Childs, 2018) for predicting the SARS-COV-2
pandemic. The model has multiple age classes (since the COVID-19 disease affects
different age groups differently) and includes compartments for quarantined, hospi-
talized, and dead, with additional separation into those with mild, severe, and fatal
symptoms.

Figure22.1 gives an overview of the model where we have stratified the suscep-
tible, exposed, and infectious populations into age groups Si , Ei , and Ii following
Cao and Zhou (2012). As in the standard SEIR model, the infectious and susceptible
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Fig. 22.1 Flow diagram of the SEIR model

interaction leads to the newly exposed. The effective reproductive numbers between
different age groups Ri j together with the infection time scale τinf determine the
rate of new infections. We will discuss the formulation used for Ri j in detail below.
Note that the susceptible and infectious interaction constitutes the only source of
nonlinearity in the model.

The different age groups of infectious Ii , transition into the various groups of
quarantined sick,Qm,Qs, andQf , based on the fractions pim, p

i
s, p

i
f , and the infection

time scale τinf. The fractions refer to patients with mild symptoms, hospitalized
patients with severe symptoms, and fatally ill patients and specify how the virus
affects people in different age groups. The subscripts m, s, and f refer to mild, severe,
and fatal symptoms. Thus, the model includes different probabilities for dying or
being hospitalized dependent on the age group and accounts for how the SARS-
CoV-2 virus affects older people more severely. We have assumed that a patient will
not infect anyone while in a quarantined group.

The patients with mild symptoms inQm will recover and transition into the group
of recovered with mild symptoms Rm, on a time scale τrecm, without going to the
hospital. Severely sick patients in Qs transfer to the hospital compartment Hs, on a
time scale τhosp. After that, they recover on a time scale τrecs into the compartment
of patients recovered from severe disease Rs.

The model admits the fatally-ill patients in Qf to a hospital Hf on the time scale
τhosp. However, we also allow for a fraction of fatally-ill patients not admitted to
a hospital, and we model them in Cf . The purpose of the Cf variable is to include
the fatally-ill patients not measured as hospitalized. Introducing Cf allows us to
use realistic fractions pf of fatally-ill patients and still condition on the measured
hospitalization numbersHs+Hf . This partition of the fatally-ill patientswas essential
formost cases discussed in the paper. The fatally ill patients inHf andCf end up in the
group of dead D on a time scale τdeath. Later, we added compartments of vaccinated
Vi , which was essential to match the data after the vaccinations started in 2021.

A challenging property of the model is that the time-dependent effective repro-
ductive number R(t) is the primary driver of its evolution. Furthermore, R(t)’s value
about two weeks ago determines today’s number of hospitalizations and deaths.
Hence, standard sequential state estimation, Sect. 2.4.2, is not appropriate for this
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problem, as the model will be strongly biased unless we correct R(t). It turns out that
the best approach to solve this problem is to consider it as a combined initial-value-,
parameter-, and model-control estimation problem. This application corresponds to
the problem definition in Sect. 2.4.6. Thus, we define the assimilation window to
include the simulation period from the pandemic’s onset until today. We estimate
the initial number of exposed and infectious, i.e., the initial conditions, and all the
model’s static time scales. Still, the dominating parameter in the model is the control
variable R(t). In the model example below, we also included the impact of vaccina-
tions. Unless we explicitly model the vaccination, it is impossible to fit the model
prediction to the observations.

22.2 Example

In this application, we used ESMDA with M = 32 steps and a vast ensemble size of
N = 5000 realizations (see the sensitivity experiments below). In Fig. 22.2, we show
results from one such experiment for Norway. The upper plot shows the ensemble
predictions of current hospitalizations in red and accumulated deaths in green, and
the black dots are the observations. The ensemble of effective R(t) controls, shown
in blue, drives the time evolution of the pandemic.We note the immediate sharp drop
in R(t) in mid-March when Norway shut down, and we estimate R(t) values around
0.4 at the end of March. This reduction of R(t) to below one leads to an efficient
decline in hospitalizations and deaths. The pandemic was essentially over at the end
of July. Then, during July and August, the government allowed for vacation travels
outsideNorway, and duringAugust and September,many foreignworkers came back
to Norway. Norway had, at this time, no effective quarantine system, and the virus

Fig. 22.2 Ensemble predictions for Norway including the impact of vaccinations
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started spreading again throughout society with several prominent local outbreaks.
We see that the estimated R(t) is above one from the second half of July until the end
of the year. This increase in R(t) accounts for the relativelyweak restrictions on social
contact between people and the additional imported cases as we do not explicitly
model them. The increase in R(t) led to the second wave during November and
December, followed by a strict lockdown in January. This new lockdown initially
seemed to control the pandemic and reduced the number of cases. However, during
March 2021, we have experienced another steep increase in infections caused by
higher values of R(t) partly caused by the introduction of mutated, more infectious
viruses. The vaccinations of the adult population, which started in January, helped
control the further pandemic growth.

22.3 Sensitivity to Ensemble Size

We have examined the convergence of ESMDA as a function of the ensemble size.
ESMDA being a Monte Carlo algorithm means that we can continually improve

Fig. 22.3 The plots show the estimated solution of current hospitalized in red and accumulated
deaths in green for increasing ensemble sizes of N = 100, N = 1000, and N = 5000. The black
dots are the measurements. The left and right columns show results from two random seeds. All
the cases used 32 MDA steps
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the solution by increasing the ensemble size. However, we need to decide on a
tradeoff between ensemble size and the number ofESMDAsteps due to limitations on
computing power.While the number ofESMDAsteps impacts the actual convergence
of the algorithm towards the right solution, the ensemble size impacts the precision of
the statistical estimate of the final solution.We find it most important to first converge
to the correct physical solution and, then, use an as large as possible ensemble to
reduce the sampling errors.

Figures22.3 and 22.4 show the results using various ensemble sizes and two
different random seeds. For all cases, we used a sufficient number NMDA = 32
to ensure a converged ESMDA solution. These plots demonstrate the robustness
of ensemble-based assimilation methods. Even using 100 realizations, the posterior
predictions are consistent with the data and very similar to the cases with larger
ensemble sizes. There is a visual effect on the update from the random seed that we
see more clearly in the estimated R(t). When using 1000 realizations, there is still a
significant difference in the estimated R(t). It is hard to note any dependency on the
seed or difference from the case with 5000 realizations for the predictions. When

Fig.22.4 The plots show the estimated effective reproductive number R(t) for increasing ensemble
sizes of N = 100, N = 1000, and N = 5000. The left and right columns show results from two
random seeds corresponding to the plots in Fig. 22.3
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Fig.22.5 The left plots show the estimated solution of hospitalized in red and accumulated deaths
in green. The right plots show the corresponding effective reproductive number R(t). From top to
bottom, the results are from ESMDA with NMDA = 1, 2, 4, 8, and 16
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we increase the ensemble size to 10,000 realizations, we do not see any difference
in the parameter estimates or forecasts. For this reason, Evensen et al. (2020) used
5000 realizations for all the simulations in their paper.

22.4 Sensitivity to MDA Steps

We include a sensitivity experiment to examine the convergence properties of the
ESMDA algorithmwith to the number of MDA steps. We expect that the accuracy of
the solution will improve with the number of steps until a certain level where there is
nothing more to gain. The required number of steps is, of course, dependent on the
model’s nonlinearity. Evensen (2018) examined the convergence of ESMDA for a
simple nonlinear scalar case and obtained minimal improvement after 16–32 steps.
See also the ESMDAexample in Chap. 18. Figure22.5 presents the posterior solution
for deaths and hospitalized, and corresponding estimates of R(t)whenusingESMDA
with 1, 2, 4, 8, and 16 steps. From visual inspection, it is hard to justify more than 16
steps. In Evensen et al. (2020), the authors decided to use 32 MDA steps and 5000
realizations in all simulations to ensure convergence and eliminate the possibility
of sampling errors. Each experiment required a few minutes of computation on a
powerful laptop with this simple model.

22.5 Summary

From the ESMDA implementation with the SEIR model, we have seen that we
can accurately estimate the time-dependent R(t) that ensures an excellent fit to the
data up till about two weeks before the final data point. From there on, we need
to specify R(t) based on what we know about ongoing and planned lockdowns,
the versions of mutated viruses, and the population’s general behavior. There is an
apparent predictive skill in the system since every action we take or intervention we
implement will only influence the data a couple of weeks into the future. Thus, we
only see the impact of a lockdown two weeks later. The sensitivity experiments shed
light on the effects of the ensemble size on sampling errors in ensemble methods
and provide insight into the convergence properties of ESMDA. This example also
illustrates how we can estimate both model parameters and the forcing (controls)
to constrain the model to follow the observations. Thus, we have great flexibility
in formulating the problem and ensuring physically reliable solutions using data
assimilation.
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23Final Summary

This final chapter provides a general summary and discussion of the data-assimilation
problem that will help the reader to choose a suitable assimilation method given the
problem at hand, the application’s purpose, and the available time and resources. As
the reader will notice, the classification below follows to a large extent the graphical
representation of all the methods in Fig. 11.1 from bottom to top.

23.1 Classification of the Nonlinearity

Whether the dynamical model is linear or nonlinear, and eventually the level of non-
linearity, is the primary factor to consider when selecting a suitable data-assimilation
method. Thus, wewill start by discussing howdifferent levels of nonlinearity impacts
the choice of the data-assimilation method. In each case, the minimal requirement is
the mean or mode of the posterior pdf. However, an uncertainty estimate is crucial
for scientific significance, and uncertainty estimates are essential for any real-life
application.

23.1.1 Linear toWeakly-Nonlinear Systems with Gaussian Priors

We first consider the case where the system is linear Gaussian, or the forward model
is weakly nonlinear. We only have to solve for the posterior mean and covariance in
this case. The Kalman filter and possibly the extended Kalman filter from Chap. 6,
finds the optimal solution for these problems. However, they have a drawback: the
state and its covariance matrix must be propagated from one update step to the next,
which is infeasible or impossible for high-dimensional systems. Furthermore, even
with weak nonlinearity present, the linearization of the error-covariance equation
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might lead to instabilities and unphysical solutions. Evensen (1994) developed the
EnKF to handle the error-covariance propagation’s nonlinearity and resolve the di-
mensionality issue. Thus, even for linear models, the EnKF can be a computationally
attractive alternative, e.g., as in the linear advection example in Chap. 14.

One would use an EnKF with a large ensemble of O(100) realizations for high-
dimensional systems. Of course, using a limited ensemble size introduces sampling
errors, and we should select the ensemble size to reduce the sampling errors to an
acceptable level. If a large ensemble size is not affordable, we can use an EnKF with
a smaller ensemble size with the localization and inflation methods from Chap. 10.
In the EnKF, the forward model equations can be nonlinear and do not need to be
linearized, so the error propagation is exact.

The Kalman smoother is optimal for a smoother problem with observations dis-
tributed over an assimilation window. We have not discussed this method as we
rarely use it in geosciences. A drawback is the forward and backward propagation
of the error-covariance matrix over the assimilation window, making the method of
little use for high-dimensional problems. For these problems, we can apply either an
EnKS or an ES with a large ensemble size, or in combination with the localization
and inflation methods from Chap. 10 when the ensemble size is small. If we have
an adjoint model available, we can also use the representer method from Chap. 5
to solve the weak-constraint problem effectively for the mode. We can even use an
ensemble of representer solutions in an RML setting (see Chap. 7) to represent the
posterior uncertainty.

23.1.2 Weakly Nonlinear Systems with Gaussian Priors

We now consider model systems with weakly to modest nonlinearity and Gaussian
priors. Modest nonlinearity means that the predicted measurements are monotonic
functions of the state vector. This constraint eliminates cases with multiple modes
in the pdf. We can distinguish situations where the adjoint of the forward model is
available and situations where it is not. A general rule is that if we have access to
the adjoint of the forward model, it is such a powerful tool that we should use it.
In this case, the method of choice is RML sampling with adjoints, which includes
EnRML, ensembles of variational methods, i.e., En3DVar, En4DVar, and the repre-
senter method. Note that the requirement of a posterior uncertainty estimate rules
out a single 3DVar, or, for a smoother, a single SC-4DVar or WC-4DVar. For this
reason, all operational weather prediction centers run either En4DVar, EnKF, or a
single 3DVar or 4DVar augmented with an EnKF in some combination.

It is of interest to consider the complexity of implementing the different methods.
The development and coding of an adjoint model can be an overwhelming task. If the
adjoint of the forward model is unavailable, the recommended choices are EnRML
and ESMDA, either with a large ensemble or exploring localization and inflation.
Note that neither of these methods, with or without an adjoint, will provide the exact
solution, but if the nonlinearity is modest, the error made is often negligible com-
pared to other approximations in the system. For sequential data assimilation aimed
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for prediction, the EnRML and ESMDA may be unnecessarily computationally de-
manding. EnKF updates at the end of the assimilation window are straightforward
and highly efficient to compute. Moreover, using existing well-tested codes and li-
braries for the EnKF analysis scheme, an EnKF application can be up and running
in a few days. For a sequential prediction problem, it is not clear that an ensemble of
4DVar systems will perform better than a standard EnKF implementation configured
to similar computational cost.

Another consideration in the choice of a method for a weakly nonlinear system,
is the timing of the estimate update. We have seen that some methods update the
estimate at the beginning of the window, e.g., SC-4DVar, while others estimate the
update at the end of the window, e.g., EnKF. SC-4DVar assumes zero model errors,
and we obtain the final solution by integrating the model over the assimilation win-
dow. The weak constraint 4DVar and the ensemble smoothers simultaneously update
the model state in the whole window.

Finally, we mention that SC-4DVar and WC-4Dvar, including the representer
method, are only efficient with appropriate preconditioning and reasonable estimates
of the background covariance matrix. Unfortunately, no efficient preconditioning for
WC-4DVar is available for the observation-space variant, the representer method, or
the state- or forcing formulation. The lack of an efficient preconditioner for these
weak-constraint methods is related to the vast problem size, whichmakes paralleliza-
tion essential. However, efficient preconditioners developed for the strong-constraint
problem interfere with the parallelization. Randomized preconditioners might be
able to break this deadlock (see, e.g., Bousserez et al., 2020; Daužickaitė et al.,
2020, 2021a, 2021b).

23.1.3 Strongly Nonlinear Systems

When the system is strongly nonlinear with multiple modes in the pdf, we must
use fully nonlinear data-assimilation methods. We recommend using either parti-
cle filters or particle-flow filters. Note that we can reduce the effective nonlinearity
in well-observed nonlinear systems. We saw an example in Chap. 15 where suffi-
ciently frequent measurements managed to keep the ensemble tracking the observed
attractor, avoiding bimodality. Particle filters require equivalent-weights schemes or
localization, and there are applications of local particle filters with high-dimensional
atmospheric problems. Particle-flow filters do not need localization by construction,
and the research community has not yet fully explored this approach in detail. The
only variant tested in high-dimensional systems uses kernels, and one has to find
good kernels for each specific problem. However, it seems that solutions might be
less sensitive to the exact kernel choice than previously thought.
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23.2 Purpose of the Data Assimilation

In choosing a data-assimilation method, it is essential to consider the linearity or the
Gaussianity of the system and its priors. Still, it also depends on the purpose of the
data assimilation. The classification below lists several possible goals for using an
assimilation system.

23.2.1 Hindcasts and Re-analyses

To analyze a system’s behavior, we can assimilate all available data over a certain
period into a numericalmodel to obtain a consistent evolution of the state. In this case,
it is more important to choose a data-assimilation scheme that is computationally
efficient and can incorporate a long time series of (heterogeneous) measurements
than a scheme that provides accurate posterior distributions of the variables. We
would still split the hindcast period into several assimilation windows and use, e.g.,
an EnKS or a 4DVar.

23.2.2 Prediction Systems

Let’s imagine that we want to design a sequential data assimilation system used
for weather predictions. What is the preferred approach? The most common and
original purpose of assimilating data is to obtain the best model state at the end of
an assimilation window and the best model parameters to forecast a natural system’s
behavior accurately. We need the solution at the end of the assimilation window to
compute a new forecast. The EnKF and WC-4DVar readily provide the necessary
initial conditions if the system is weakly nonlinear and has Gaussian priors. The
EnKF and an ensemble ofWC-4DVar systems have the added advantage of providing
consistent error statistics at the initial time of the next assimilation window. These
methods thereby support recursive data assimilation and allow us to initialize a
prediction with quantified uncertainty.

Interestingly, the most used data-assimilation method for weather prediction is
SC-4DVar, which optimizes the solution at the beginning of an assimilation window.
After that, one integrates the model solution to the end of the assimilation window
with the deterministic nonlinear model, where the actual weather prediction starts.
The reasons for this procedure’s success are twofold. First, the model state at the
beginning of the assimilation window will be accurate because we have used past
and future observations to update it. Second, a data-assimilation update will always
push the model slightly out of its preferred balanced state, resulting in an adjustment
of the model state during the first part of the forward integration, leading to less
accurate forecasts. An SC-4DVar ensures that this adjustment is happening before
the actual prediction.

There is a, perhaps slightly overlooked, problem when using SC-4DVar for pre-
dictions. While the SC-4DVar finds the posterior pdf’s mode at the start of the
assimilation window, there is no guarantee that the solution will be the mode after
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propagation to the end of the assimilation window where we initialize the actual
forecasts (see, e.g., Van Leeuwen et al., 2015).

The pdf evolution over the assimilation window also affects smoother methods
that estimate the joint pdf’s mode over the whole assimilation window. For nonlinear
systems, the joint pdf’s mode will not be the same as the marginal pdf’s mode at the
end of the assimilation window (Van Leeuwen et al., 2015). And the marginal pdf’s
mode at the end of the assimilation window is, at least in theory, the best starting
point for a prediction. This point explains one reason why data-assimilation methods
that update the state at the end of the assimilation window might be preferable.

23.2.3 Uncertainty Quantification and Risk Assessment

In many applications, assessing the uncertainties in the state or parameter estimates
is critical. A particular example relates to subsurface uncertainty quantification or
geotechnical applications for risk assessment (e.g., Mohsan et al., 2021). EnRML,
ESMDA, and EnKF are commonly used methods for these applications.

But would, in these applications, estimating the mode be enough, or do we need
to sample the posterior distribution? While the mentioned methods may be easy to
implement and computationally efficient, their estimates of posterior distributions in
the case of the system’s nonlinear behavior may be flawed. Therefore, it is essential
to evaluate the nonlinearity and Gaussianity of the system, as for highly nonlinear
problems, the assumptions on linearity or Gaussianity may have implications for
quantifying the uncertainties or risks. The choice of method depends on whether the
problem is a parameter-estimation problem that we can solve over a single assimila-
tionwindowor a data assimilation problemwhere data become available sequentially
and where we must evolve the error statistics.

23.2.4 Model Improvement and Parameter Estimation

One can distinguish parameter estimation from estimating missing physics and pa-
rameterizations. Specifically, we use data assimilation to identify missing physics,
inaccurate forcing, or model errors. In specific cases, data assimilation aims not
to obtain a description, forecast, or better understand a system, but the main aim
is a model improvement. In some cases, data assimilation has involved estimat-
ing missing terms in model equations (Lang et al., 2016), estimating model factors
(Vossepoel & Behringer, 2000), and adjusting the geometry of the model domain
(Glegola et al., 2012). It is essential to apply a method that explicitly considers the
model errors in such cases. We can include model errors by adding q to the state
vectors of any ensemble or variational methods. The estimated model errors will
contain both random and structural parts. The structural components point to esti-
mated missing physics at each time step, hence at the level of the model equations,
and allow for direct model improvement, contrary to comparing model forecast to
observations where finding the source of the model issues is almost impossible.
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23.2.5 Scenario Forecasts and Optimal Controls

In some applications, we use data assimilation to forecast a given system under a
given control. It is then possible to evaluate different scenarios or optimize the con-
trol strategy. Other examples of the application of data assimilation for forecasts,
scenarios, or optimal controls include the control of a producing hydrocarbon field
as discussed by Jansen et al. (2009) and in Chap. 21, scenario planning for the evo-
lution of a pandemic as presented in Chap. 22, regularizing economic processes or
forecasting and controlling traffic (van Hinsbergen et al., 2012; Wang & Papageor-
giou, 2005; Xie et al., 2018). In many cases, the EnKF is a practical and efficient
method. In the case of parameter and control variables estimation, techniques such
as EnRML or ESMDA are popular.

23.3 How to Reduce Computational Costs

Section 11.2 assumes that we can meet the necessary computational requirements,
while this can be a severe issue. Present-day computer architectures are parallel,
and we must explore this structure fully. Ensemble methods are naturally parallel in
the forward propagation of the model state. The update in ensemble space is harder
to parallelize because communication between ensemble realizations is essential.
Iterative methods need the solution of one iteration before the next iteration can be
processed, making these methods sequential by construction. However, research is
ongoing on parallelization in the time domain. In this case, one splits the assimila-
tion window into smaller time segments and runs parallel iterations for each, with
communication only needed after each iteration.

As mentioned in Sect. 23.1, an adjoint of the forward model or the observation
operator will increase accuracy and efficiency. Unfortunately, generating the adjoint
of a complex forward model is a highly challenging process, often taking many
years to complete. Automatic adjoint-compilers are available that need as input a
forward model and a complete specification of the meaning of each symbol used in
the forward model code and generate as output the tangent-linear and adjoint model
codes. While these compilers are pretty sophisticated and helpful for many forward
models, their output codes are (as yet) not as efficient as a human can make them.
A way to improve the efficiency is to generate the adjoint code simultaneously with
the forward code. Indeed, the adjoint compilers have generated some remarkably
efficient codes this way, but it requires coding the forward model from scratch.

A frequent statement is that ensemble methods are too expensive, and variational
methods require less computational costs and are preferable. This statement is, how-
ever, amisrepresentation of reality. First of all, variational methods need an ensemble
component for uncertainty quantification. But the most crucial argument is that each
iteration of a 4DVar contains one forward tangent-linear and one adjoint integration
over the assimilation window. This computation corresponds roughly to integrating
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two ensemble realizations. Hence, 50 iterations correspond to an ensemble size of
approximately 100.

Furthermore, the linearizations in the iterative methods lead to additional terms in
the model equations. A tangent linear or adjoint integration is two to four times more
expensive than a nonlinear model integration used in an ensemble method. However,
there are ways of compensating for this additional cost in variational methods. We
can reduce the resolution of themodels used in the iterations or simplify the nonlinear
forward model’s nonlinear parameterizations. Both approaches introduce additional
approximations. It seems that variational and ensemble methods have similar costs
for similar accuracy in practice.

23.4 WhatWill the Future Hold?

Of course, it is almost impossible to predict the future, even given all the data we
have, because human evolution is perhaps more chaotic than nature. Nonetheless, we
can pinpoint some trends that might have some momentum, hence predictive power.

First, there is an increasing trend of pushing for nonlinear data-assimilation meth-
ods. For instance, the ever-increasing resolution in weather prediction models re-
solves turbulent features in the atmospheric boundary layer. We do not have enough
observations to avoid the development of strongly non-Gaussian pdfs. Indeed, a
growing number of scientists within applied and even pure mathematics are among
those pushing the boundaries.

Another trend is the incorporation of machine learning in data assimilation. Ex-
amples include using machine learning to make models more efficient, accelerating
data-assimilation methods, and replacing parts of the data-assimilation process. It
is hard to predict where this is heading. An important lesson seems to be that, e.g.,
neural networks from image processing are not directly applicable for data assimi-
lation, and we need particular machine architectures to make real progress. Physi-
cally realistic predictions seem achievable by building strong model constraints into
the machine-learning cost function, bringing machine learning closer to variational
methods where model constraints incorporate prior knowledge.

A general weakness of machine learning is its inability to estimate uncertainty.
That will need to change if machine learning will be an alternative for data as-
similation for real-world applications in geosciences. Indeed, many ideas from data-
assimilation on uncertainty quantification are starting to find their way in themachine
learning literature, either being actively brought in or reinvented. Unfortunately, not
all application areas are fully aware of othermethods, and some practitioners reinvent
techniques that have been mainstream in different research fields for decades.

Whatever the future, it will most likely result from the collaborations of many
scientists from many different disciplines. If we keep the data-assimilation field as
collaborative as it is now, the future is bright.
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