
Pro TBB
C++ Parallel Programming with
Threading Building Blocks
—
Michael Voss
Rafael Asenjo
James Reinders

Pro TBB
C++ Parallel Programming with

Threading Building Blocks

Michael Voss
Rafael Asenjo
James Reinders

Pro TBB: C++ Parallel Programming with Threading Building Blocks

ISBN-13 (pbk): 978-1-4842-4397-8			 ISBN-13 (electronic): 978-1-4842-4398-5	
https://doi.org/10.1007/978-1-4842-4398-5

Copyright © 2019 by Intel Corporation

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed.

Open Access  This book is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license and indicate if you modified the licensed material. You do not have permission under this
license to share adapted material derived from this book or parts of it.

The images or other third party material in this book are included in the book’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to
the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as
such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the
authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made.
The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also
available for most titles. For more information, reference our Print and eBook Bulk Sales web page at http://www.apress.
com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub
via the book’s product page, located at www.apress.com/978-1-4842-4397-8. For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper.

Michael Voss
Austin, Texas, USA

James Reinders
Portland, Oregon, USA

Rafael Asenjo
Málaga, Spain

https://doi.org/10.1007/978-1-4842-4398-5

iii

About the Authors���xv

Acknowledgments��xvii

Preface��xix

Table of Contents

Part 1��� 1

Chapter 1: Jumping Right In: “Hello, TBB!”��� 3

Why Threading Building Blocks?�� 3

Performance: Small Overhead, Big Benefits for C++��� 4

Evolving Support for Parallelism in TBB and C++�� 5

Recent C++ Additions for Parallelism�� 6

The Threading Building Blocks (TBB) Library��� 7

Parallel Execution Interfaces�� 8

Interfaces That Are Independent of the Execution Model��� 10

Using the Building Blocks in TBB�� 10

Let’s Get Started Already!�� 11

Getting the Threading Building Blocks (TBB) Library�� 11

Getting a Copy of the Examples�� 12

Writing a First “Hello, TBB!” Example��� 12

Building the Simple Examples�� 15

Building on Windows Using Microsoft Visual Studio�� 16

Building on a Linux Platform from a Terminal�� 17

A More Complete Example��� 21

Starting with a Serial Implementation�� 21

Adding a Message-Driven Layer Using a Flow Graph��� 25

Adding a Fork-Join Layer Using a parallel_for��� 27

Adding a SIMD Layer Using a Parallel STL Transform�� 29

iv

Chapter 2: Generic Parallel Algorithms��� 33

Functional / Task Parallelism��� 37

A Slightly More Complicated Example: A Parallel Implementation of Quicksort��������������������� 40

Loops: parallel_for, parallel_reduce, and parallel_scan��� 42

parallel_for: Applying a Body to Each Element in a Range��� 42

parallel_reduce: Calculating a Single Result Across a Range�� 46

parallel_scan: A Reduction with Intermediate Values�� 52

How Does This Work?��� 54

A Slightly More Complicated Example: Line of Sight�� 56

Cook Until Done: parallel_do and parallel_pipeline��� 57

parallel_do: Apply a Body Until There Are No More Items Left��� 58

parallel_pipeline: Streaming Items Through a Series of Filters�� 67

Chapter 3: Flow Graphs��� 79

Why Use Graphs to Express Parallelism?��� 80

The Basics of the TBB Flow Graph Interface�� 82

Step 1: Create the Graph Object��� 84

Step 2: Make the Nodes��� 84

Step 3: Add Edges��� 87

Step 4: Start the Graph��� 89

Step 5: Wait for the Graph to Complete Executing�� 91

A More Complicated Example of a Data Flow Graph�� 91

Implementing the Example as a TBB Flow Graph��� 93

Understanding the Performance of a Data Flow Graph�� 96

The Special Case of Dependency Graphs��� 97

Implementing a Dependency Graph��� 99

Estimating the Scalability of a Dependency Graph��� 105

Advanced Topics in TBB Flow Graphs�� 106

Chapter 4: TBB and the Parallel Algorithms of the C++ Standard
Template Library�� 109

Does the C++ STL Library Belong in This Book?��� 110

A Parallel STL Execution Policy Analogy�� 112

Table of Contents

v

A Simple Example Using std::for_each�� 113

What Algorithms Are Provided in a Parallel STL Implementation?��� 117

How to Get and Use a Copy of Parallel STL That Uses TBB�� 117

Algorithms in Intel’s Parallel STL�� 118

Capturing More Use Cases with Custom Iterators��� 120

Highlighting Some of the Most Useful Algorithms��� 124

std::for_each, std::for_each_n��� 124

std::transform��� 126

std::reduce��� 127

std::transform_reduce�� 128

A Deeper Dive into the Execution Policies��� 130

The sequenced_policy�� 131

The parallel_policy��� 131

The unsequenced_policy�� 132

The parallel_unsequenced_policy�� 132

Which Execution Policy Should We Use?��� 132

Other Ways to Introduce SIMD Parallelism��� 134

Chapter 5: Synchronization: Why and How to Avoid It�� 137

A Running Example: Histogram of an Image�� 138

An Unsafe Parallel Implementation�� 141

A First Safe Parallel Implementation: Coarse-Grained Locking��� 145

Mutex Flavors��� 151

A Second Safe Parallel Implementation: Fine-Grained Locking��� 153

A Third Safe Parallel Implementation: Atomics�� 158

A Better Parallel Implementation: Privatization and Reduction�� 163

Thread Local Storage, TLS�� 164

enumerable_thread_specific, ETS�� 165

combinable��� 168

The Easiest Parallel Implementation: Reduction Template�� 170

Recap of Our Options��� 172

Table of Contents

vi

Chapter 6: Data Structures for Concurrency��� 179

Key Data Structures Basics�� 180

Unordered Associative Containers�� 180

Map vs. Set��� 181

Multiple Values��� 181

Hashing�� 181

Unordered��� 182

Concurrent Containers��� 182

Concurrent Unordered Associative Containers��� 185

Concurrent Queues: Regular, Bounded, and Priority��� 193

Concurrent Vector��� 202

Chapter 7: Scalable Memory Allocation�� 207

Modern C++ Memory Allocation�� 208

Scalable Memory Allocation: What��� 209

Scalable Memory Allocation: Why�� 209

Avoiding False Sharing with Padding��� 210

Scalable Memory Allocation Alternatives: Which��� 212

Compilation Considerations��� 214

Most Popular Usage (C/C++ Proxy Library): How�� 214

Linux: malloc/new Proxy Library Usage��� 216

macOS: malloc/new Proxy Library Usage��� 216

Windows: malloc/new Proxy Library Usage��� 217

Testing our Proxy Library Usage��� 218

C Functions: Scalable Memory Allocators for C��� 220

C++ Classes: Scalable Memory Allocators for C++��� 221

Allocators with std::allocator<T> Signature�� 222

scalable_allocator�� 222

tbb_allocator�� 222

zero_allocator�� 223

Table of Contents

vii

cached_aligned_allocator�� 223

Memory Pool Support: memory_pool_allocator��� 223

Array Allocation Support: aligned_space�� 224

Replacing new and delete Selectively��� 224

Performance Tuning: Some Control Knobs��� 228

What Are Huge Pages?��� 228

TBB Support for Huge Pages�� 228

scalable_allocation_mode(int mode, intptr_t value)�� 229

TBBMALLOC_USE_HUGE_PAGES�� 229

TBBMALLOC_SET_SOFT_HEAP_LIMIT�� 230

int scalable_allocation_command(int cmd, void *param)�� 230

TBBMALLOC_CLEAN_ALL_BUFFERS�� 230

TBBMALLOC_CLEAN_THREAD_BUFFERS��� 230

Chapter 8: Mapping Parallel Patterns to TBB�� 233

Parallel Patterns vs. Parallel Algorithms�� 233

Patterns Categorize Algorithms, Designs, etc.��� 235

Patterns That Work��� 236

Data Parallelism Wins�� 237

Nesting Pattern�� 238

Map Pattern��� 239

Workpile Pattern�� 240

Reduction Patterns (Reduce and Scan)��� 241

Fork-Join Pattern��� 243

Divide-and-Conquer Pattern�� 244

Branch-and-Bound Pattern�� 244

Pipeline Pattern�� 246

Event-Based Coordination Pattern (Reactive Streams)�� 247

Table of Contents

viii

Part 2��� 249

Chapter 9: The Pillars of Composability�� 251

What Is Composability?�� 253

Nested Composition��� 254

Concurrent Composition��� 256

Serial Composition��� 258

The Features That Make TBB a Composable Library��� 259

The TBB Thread Pool (the Market) and Task Arenas��� 260

The TBB Task Dispatcher: Work Stealing and More�� 263

Putting It All Together��� 270

Looking Forward�� 274

Controlling the Number of Threads��� 274

Work Isolation��� 274

Task-to-Thread and Thread-to-Core Affinity��� 275

Task Priorities��� 275

Chapter 10: Using Tasks to Create Your Own Algorithms�������������������������������������� 277

A Running Example: The Sequence�� 278

The High-Level Approach: parallel_invoke��� 280

The Highest Among the Lower: task_group��� 282

The Low-Level Task Interface: Part One – Task Blocking��� 284

The Low-Level Task Interface: Part Two – Task Continuation�� 290

Bypassing the Scheduler�� 297

The Low-Level Task Interface: Part Three – Task Recycling�� 297

Task Interface Checklist��� 300

One More Thing: FIFO (aka Fire-and-Forget) Tasks�� 301

Putting These Low-Level Features to Work�� 302

Chapter 11: Controlling the Number of Threads Used for Execution��������������������� 313

A Brief Recap of the TBB Scheduler Architecture�� 314

Interfaces for Controlling the Number of Threads�� 315

Table of Contents

ix

Controlling Thread Count with task_scheduler_init��� 315

Controlling Thread Count with task_arena��� 316

Controlling Thread Count with global_control�� 318

Summary of Concepts and Classes�� 318

The Best Approaches for Setting the Number of Threads�� 320

Using a Single task_scheduler_init Object for a Simple Application������������������������������������ 320

Using More Than One task_scheduler_init Object in a Simple Application�������������������������� 323

Using Multiple Arenas with Different Numbers of Slots to Influence Where
TBB Places Its Worker Threads��� 325

Using global_control to Control How Many Threads Are Available to Fill Arena Slots���������� 329

Using global_control to Temporarily Restrict the Number of Available Threads������������������� 330

When NOT to Control the Number of Threads�� 332

Figuring Out What’s Gone Wrong��� 334

Chapter 12: Using Work Isolation for Correctness and Performance�������������������� 337

Work Isolation for Correctness��� 338

Creating an Isolated Region with this_task_arena::isolate�� 343

Using Task Arenas for Isolation: A Double-Edged Sword��� 349

Don’t Be Tempted to Use task_arenas to Create Work Isolation for Correctness����������������� 353

Chapter 13: Creating Thread-to-Core and Task-to-Thread Affinity������������������������ 357

Creating Thread-to-Core Affinity�� 358

Creating Task-to-Thread Affinity�� 362

When and How Should We Use the TBB Affinity Features?�� 370

Chapter 14: Using Task Priorities�� 373

Support for Non-Preemptive Priorities in the TBB Task Class�� 374

Setting Static and Dynamic Priorities�� 376

Two Small Examples�� 377

Implementing Priorities Without Using TBB Task Support�� 382

Chapter 15: Cancellation and Exception Handling��� 387

How to Cancel Collective Work�� 388

Advanced Task Cancellation��� 390

Table of Contents

x

Explicit Assignment of TGC��� 392

Default Assignment of TGC��� 395

Exception Handling in TBB��� 399

Tailoring Our Own TBB Exceptions��� 402

Putting All Together: Composability, Cancellation, and Exception Handling������������������������������� 405

Chapter 16: Tuning TBB Algorithms: Granularity, Locality, Parallelism,
and Determinism��� 411

Task Granularity: How Big Is Big Enough?��� 412

Choosing Ranges and Partitioners for Loops��� 413

An Overview of Partitioners�� 415

Choosing a Grainsize (or Not) to Manage Task Granularity��� 417

Ranges, Partitioners, and Data Cache Performance��� 420

Using a static_partitioner��� 428

Restricting the Scheduler for Determinism�� 431

Tuning TBB Pipelines: Number of Filters, Modes, and Tokens�� 433

Understanding a Balanced Pipeline�� 434

Understanding an Imbalanced Pipeline�� 436

Pipelines and Data Locality and Thread Affinity��� 438

Deep in the Weeds��� 439

Making Your Own Range Type�� 439

The Pipeline Class and Thread-Bound Filters��� 442

Chapter 17: Flow Graphs: Beyond the Basics�� 451

Optimizing for Granularity, Locality, and Parallelism�� 452

Node Granularity: How Big Is Big Enough?��� 452

Memory Usage and Data Locality��� 462

Task Arenas and Flow Graph�� 477

Key FG Advice: Dos and Don’ts�� 480

Do: Use Nested Parallelism�� 480

Don’t: Use Multifunction Nodes in Place of Nested Parallelism��� 481

Do: Use join_node, sequencer_node, or multifunction_node to Reestablish Order
in a Flow Graph When Needed��� 481

Table of Contents

xi

Do: Use the Isolate Function for Nested Parallelism��� 485

Do: Use Cancellation and Exception Handling in Flow Graphs��� 488

Do: Set a Priority for a Graph Using task_group_context��� 492

Don’t: Make an Edge Between Nodes in Different Graphs��� 492

Do: Use try_put to Communicate Across Graphs�� 495

Do: Use composite_node to Encapsulate Groups of Nodes�� 497

Introducing Intel Advisor: Flow Graph Analyzer�� 501

The FGA Design Workflow�� 502

The FGA Analysis Workflow�� 505

Diagnosing Performance Issues with FGA�� 507

Chapter 18: Beef Up Flow Graphs with Async Nodes�� 513

Async World Example��� 514

Why and When async_node?��� 519

A More Realistic Example�� 521

Chapter 19: Flow Graphs on Steroids: OpenCL Nodes��� 535

Hello OpenCL_Node Example��� 536

Where Are We Running Our Kernel?��� 544

Back to the More Realistic Example of Chapter 18�� 551

The Devil Is in the Details�� 561

The NDRange Concept�� 562

Playing with the Offset��� 568

Specifying the OpenCL Kernel�� 569

Even More on Device Selection�� 570

A Warning Regarding the Order Is in Order!��� 574

Chapter 20: TBB on NUMA Architectures��� 581

Discovering Your Platform Topology��� 583

Understanding the Costs of Accessing Memory��� 587

Our Baseline Example�� 588

Mastering Data Placement and Processor Affinity��� 589

Table of Contents

xii

Putting hwloc and TBB to Work Together��� 595

More Advanced Alternatives�� 601

Appendix A: History and Inspiration�� 605

A Decade of “Hatchling to Soaring”��� 605

#1 TBB’s Revolution Inside Intel��� 605

#2 TBB’s First Revolution of Parallelism��� 606

#3 TBB’s Second Revolution of Parallelism�� 607

#4 TBB’s Birds�� 608

Inspiration for TBB��� 611

�Relaxed Sequential Execution Model��� 612

�Influential Libraries��� 613

Influential Languages��� 614

�Influential Pragmas�� 615

Influences of Generic Programming��� 615

�Considering Caches�� 616

Considering Costs of Time Slicing�� 617

Further Reading�� 618

Appendix B: TBB Précis��� 623

Debug and Conditional Coding��� 624

Preview Feature Macros�� 626

Ranges��� 626

Partitioners�� 627

Algorithms�� 628

Algorithm: parallel_do�� 629

Algorithm: parallel_for��� 631

Algorithm: parallel_for_each��� 635

�Algorithm: parallel_invoke��� 636

�Algorithm: parallel_pipeline��� 638

Algorithm: parallel_reduce and parallel_deterministic_reduce��� 641

�Algorithm: parallel_scan�� 645

Table of Contents

xiii

Algorithm: parallel_sort��� 648

�Algorithm: pipeline��� 651

Flow Graph��� 653

Flow Graph: graph class�� 654

�Flow Graph: ports and edges��� 655

Flow Graph: nodes��� 655

Memory Allocation��� 667

Containers�� 673

Synchronization��� 693

Thread Local Storage (TLS)�� 699

Timing�� 708

Task Groups: Use of the Task Stealing Scheduler�� 709

Task Scheduler: Fine Control of the Task Stealing Scheduler�� 710

Floating-Point Settings�� 721

Exceptions�� 723

Threads�� 725

Parallel STL�� 726

Glossary��� 729

Index�� 745

Table of Contents

xv

About the Authors

Michael Voss is a Principal Engineer in the Intel Architecture, Graphics and Software

Group at Intel. He has been a member of the TBB development team since before the

1.0 release in 2006 and was the initial architect of the TBB flow graph API. He is also

one of the lead developers of Flow Graph Analyzer, a graphical tool for analyzing data

flow applications targeted at both homogeneous and heterogeneous platforms. He

has co-authored over 40 published papers and articles on topics related to parallel

programming and frequently consults with customers across a wide range of domains to

help them effectively use the threading libraries provided by Intel. Prior to joining Intel

in 2006, he was an Assistant Professor in the Edward S. Rogers Department of Electrical

and Computer Engineering at the University of Toronto. He received his Ph.D. from the

School of Electrical and Computer Engineering at Purdue University in 2001.

Rafael Asenjo, Professor of Computer Architecture at the University of Malaga, Spain,

obtained a PhD in Telecommunication Engineering in 1997 and was an Associate

Professor at the Computer Architecture Department from 2001 to 2017. He was a

Visiting Scholar at the University of Illinois in Urbana-Champaign (UIUC) in 1996 and

1997 and Visiting Research Associate in the same University in 1998. He was also a

Research Visitor at IBM T.J. Watson in 2008 and at Cray Inc. in 2011. He has been using

TBB since 2008 and over the last five years, he has focused on productively exploiting

heterogeneous chips leveraging TBB as the orchestrating framework. In 2013 and 2014

he visited UIUC to work on CPU+GPU chips. In 2015 and 2016 he also started to research

into CPU+FPGA chips while visiting U. of Bristol. He served as General Chair for ACM

PPoPP’16 and as an Organization Committee member as well as a Program Committee

member for several HPC related conferences (PPoPP, SC, PACT, IPDPS, HPCA, EuroPar,

and SBAC-PAD). His research interests include heterogeneous programming models

and architectures, parallelization of irregular codes and energy consumption.

James Reinders is a consultant with more than three decades experience in Parallel

Computing, and is an author/co-author/editor of nine technical books related to parallel

programming. He has had the great fortune to help make key contributions to two of

the world’s fastest computers (#1 on Top500 list) as well as many other supercomputers,

xvi

and software developer tools. James finished 10,001 days (over 27 years) at Intel in mid-

2016, and now continues to write, teach, program, and do consulting in areas related to

parallel computing (HPC and AI).

About the Authors

xvii

Acknowledgments

Two people offered their early and continuing support for this project – Sanjiv Shah and

Herb Hinstorff. We are grateful for their encouragement, support, and occasional gentle

pushes.

The real heroes are reviewers who invested heavily in providing thoughtful and

detailed feedback on draft copies of the chapters within this book. The high quality

of their input helped drive us to allow more time for review and adjustment than we

initially planned. The book is far better as a result.

The reviewers are a stellar collection of users of TBB and key developers of TBB. It

is rare for a book project to have such an energized and supportive base of help in

refining a book. Anyone reading this book can know it is better because of these kind

souls: Eduard Ayguade, Cristina Beldica, Konstantin Boyarinov, José Carlos Cabaleiro

Domínguez, Brad Chamberlain, James Jen-Chang Chen, Jim Cownie, Sergey Didenko,

Alejandro (Alex) Duran, Mikhail Dvorskiy, Rudolf (Rudi) Eigenmann, George Elkoura,

Andrey Fedorov, Aleksei Fedotov, Tomás Fernández Pena, Elvis Fefey, Evgeny Fiksman,

Basilio Fraguela, Henry Gabb, José Daniel García Sánchez, Maria Jesus Garzaran,

Alexander Gerveshi, Darío Suárez Gracia, Kristina Kermanshahche, Yaniv Klein, Mark

Lubin, Anton Malakhov, Mark McLaughlin, Susan Meredith, Yeser Meziani, David

Padua, Nikita Ponomarev, Anoop Madhusoodhanan Prabha, Pablo Reble, Arch Robison,

Timmie Smith, Rubén Gran Tejero, Vasanth Tovinkere, Sergey Vinogradov, Kyle Wheeler,

and Florian Zitzelsberger.

We sincerely thank all those who helped, and we apologize for any who helped us

and we failed to mention!

Mike (along with Rafa and James!) thanks all of the people who have been involved

in TBB over the years: the many developers at Intel who have left their mark on the

library, Alexey Kukanov for sharing insights as we developed this book, the open-source

contributors, the technical writers and marketing professionals that have worked on

documentation and getting the word out about TBB, the technical consulting engineers

and application engineers that have helped people best apply TBB to their problems, the

managers who have kept us all on track, and especially the users of TBB that have always

provided the feedback on the library and its features that we needed to figure out where

xviii

to go next. And most of all, Mike thanks his wife Natalie and their kids, Nick, Ali, and

Luke, for their support and patience during the nights and weekends spent on this book.

Rafa thanks his PhD students and colleagues for providing feedback regarding

making TBB concepts more gentle and approachable: José Carlos Romero, Francisco

Corbera, Alejandro Villegas, Denisa Andreea Constantinescu, Angeles Navarro;

particularly to José Daniel García for his engrossing and informative conversations about

C++11, 14, 17, and 20, to Aleksei Fedotov and Pablo Reble for helping with the OpenCL_

node examples, and especially his wife Angeles Navarro for her support and for taking

over some of his duties when he was mainly focused on the book.

James thanks his wife Susan Meredith – her patient and continuous support was

essential to making this book a possibility. Additionally, her detailed editing, which often

added so much red ink on a page that the original text was hard to find, made her one of

our valued reviewers.

As coauthors, we cannot adequately thank each other enough. Mike and James have

known each other for years at Intel and feel fortunate to have come together on this book

project. It is difficult to adequately say how much Mike and James appreciate Rafa! How

lucky his students are to have such an energetic and knowledgeable professor! Without

Rafa, this book would have been much less lively and fun to read. Rafa’s command of

TBB made this book much better, and his command of the English language helped

correct the native English speakers (Mike and James) more than a few times. The three

of us enjoyed working on this book together, and we definitely spurred each other on to

great heights. It has been an excellent collaboration.

We thank Todd Green who initially brought us to Apress. We thank Natalie Pao, of

Apress, and John Somoza, of Intel, who cemented the terms between Intel and Apress

on this project. We appreciate the hard work by the entire Apress team through contract,

editing, and production.

Thank you all,

Mike Voss, Rafael Asenjo, and James Reinders

Acknowledgments

xix

Preface

Think Parallel
We have aimed to make this book useful for those who are new to parallel programming

as well as those who are expert in parallel programming. We have also made this book

approachable for those who are comfortable only with C programming, as well as those

who are fluent in C++.

In order to address this diverse audience without “dumbing down” the book, we

have written this Preface to level the playing field.

�What Is TBB
TBB is a solution for writing parallel programs in C++ which has become the most

popular, and extensive, support for parallel programming in C++. It is widely used

and very popular for a good reason. More than 10 years old, TBB has stood the test

of time and has been influential in the inclusion of parallel programming support in

the C++ standard. While C++11 made major additions for parallel programming, and

C++17 and C++2x take that ever further, most of what TBB offers is much more than

what belongs in a language standard. TBB was introduced in 2006, so it contains

support for pre-C++11 compilers. We have simplified matters by taking a modern

look at TBB and assuming C++11. Common advice today is “if you don’t have a

C++11 compiler, get one.” Compared with the 2007 book on TBB, we think C++11,

with lambda support in particular, makes TBB both richer and easier to understand

and use.

TBB is simply the best way to write a parallel program in C++, and we hope to help

you be very productive in using TBB.

xx

�Organization of the Book and Preface
This book is organized into four major sections:

	 I.	 Preface: Background and fundamentals useful for understanding

the remainder of the book. Includes motivations for the TBB

parallel programming model, an introduction to parallel

programming, an introduction to locality and caches, an

introduction to vectorization (SIMD), and an introduction to

the features of C++ (beyond those in the C language) which are

supported or used by TBB.

	 II.	 Chapters 1–8: A book on TBB in its own right. Includes an

introduction to TBB sufficient to do a great deal of effective

parallel programming.

	 III.	 Chapters 9–20: Include special topics that give a deeper

understanding of TBB and parallel programming and deal with

nuances in both.

	 IV.	 Appendices A and B and Glossary: A collection of useful

information about TBB that you may find interesting,

including history (Appendix A) and a complete reference guide

(Appendix B).

�Think Parallel
For those new to parallel programming, we offer this Preface to provide a foundation

that will make the remainder of the book more useful, approachable, and self-contained.

We have attempted to assume only a basic understanding of C programming and

introduce the key elements of C++ that TBB relies upon and supports. We introduce

parallel programming from a practical standpoint that emphasizes what makes parallel

programs most effective. For experienced parallel programmers, we hope this Preface

will be a quick read that provides a useful refresher on the key vocabulary and thinking

that allow us to make the most of parallel computer hardware.

Preface

xxi

After reading this Preface, you should be able to explain what it means to “Think

Parallel” in terms of decomposition, scaling, correctness, abstraction, and patterns.

You will appreciate that locality is a key concern for all parallel programming. You

will understand the philosophy of supporting task programming instead of thread

programming – a revolutionary development in parallel programming supported by TBB.

You will also understand the elements of C++ programming that are needed above and

beyond a knowledge of C in order to use TBB well.

The remainder of this Preface contains five parts:

	 (1)	 An explanation of the motivations behind TBB (begins on page xxi)

	 (2)	 An introduction to parallel programming (begins on page xxvi)

	 (3)	 An introduction to locality and caches – we call “Locality and

the Revenge of the Caches” – the one aspect of hardware that we

feel essential to comprehend for top performance with parallel

programming (begins on page lii)

	 (4)	 An introduction to vectorization (SIMD) (begins on page lx)

	 (5)	 An introduction to the features of C++ (beyond those in the C

language) which are supported or used by TBB (begins on page lxii)

�Motivations Behind Threading Building Blocks (TBB)
TBB first appeared in 2006. It was the product of experts in parallel programming at

Intel, many of whom had decades of experience in parallel programming models,

including OpenMP. Many members of the TBB team had previously spent years helping

drive OpenMP to the great success it enjoys by developing and supporting OpenMP

implementations. Appendix A is dedicated to a deeper dive on the history of TBB and

the core concepts that go into it, including the breakthrough concept of task-stealing

schedulers.

Born in the early days of multicore processors, TBB quickly emerged as the most

popular parallel programming model for C++ programmers. TBB has evolved over its

first decade to incorporate a rich set of additions that have made it an obvious choice for

parallel programming for novices and experts alike. As an open source project, TBB has

enjoyed feedback and contributions from around the world.

Preface

xxii

TBB promotes a revolutionary idea: parallel programming should enable the

programmer to expose opportunities for parallelism without hesitation, and the

underlying programming model implementation (TBB) should map that to the hardware

at runtime.

Understanding the importance and value of TBB rests on understanding three

things: (1) program using tasks, not threads; (2) parallel programming models do

not need to be messy; and (3) how to obtain scaling, performance, and performance

portability with portable low overhead parallel programming models such as TBB. We

will dive into each of these three next because they are so important! It is safe to say

that the importance of these were underestimated for a long time before emerging as

cornerstones in our understanding of how to achieve effective, and structured, parallel

programming.

�Program Using Tasks Not Threads
Parallel programming should always be done in terms of tasks, not threads. We cite an

authoritative and in-depth examination of this by Edward Lee at the end of this Preface.

In 2006, he observed that “For concurrent programming to become mainstream, we

must discard threads as a programming model.”

Parallel programming expressed with threads is an exercise in mapping an

application to the specific number of parallel execution threads on the machine we

happen to run upon. Parallel programming expressed with tasks is an exercise in

exposing opportunities for parallelism and allowing a runtime (e.g., TBB runtime)

to map tasks onto the hardware at runtime without complicating the logic of our

application.

Threads represent an execution stream that executes on a hardware thread for a

time slice and may be assigned other hardware threads for a future time slice. Parallel

programming in terms of threads fail because they are too often used as a one-to-one

correspondence between threads (as in execution threads) and threads (as in hardware

threads, e.g., processor cores). A hardware thread is a physical capability, and the

number of hardware threads available varies from machine to machine, as do some

subtle characteristics of various thread implementations.

In contrast, tasks represent opportunities for parallelism. The ability to subdivide

tasks can be exploited, as needed, to fill available threads when needed.

Preface

xxiii

With these definitions in mind, a program written in terms of threads would have

to map each algorithm onto specific systems of hardware and software. This is not only

a distraction, it causes a whole host of issues that make parallel programming more

difficult, less effective, and far less portable.

Whereas, a program written in terms of tasks allows a runtime mechanism, for

example, the TBB runtime, to map tasks onto the hardware which is actually present at

runtime. This removes the distraction of worrying about the number of actual hardware

threads available on a system. More importantly, in practice this is the only method

which opens up nested parallelism effectively. This is such an important capability, that

we will revisit and emphasize the importance of nested parallelism in several chapters.

�Composability: Parallel Programming Does Not Have
to Be Messy
TBB offers composability for parallel programming, and that changes everything.

Composability means we can mix and match features of TBB without restriction. Most

notably, this includes nesting. Therefore, it makes perfect sense to have a parallel_for

inside a parallel_for loop. It is also okay for a parallel_for to call a subroutine, which

then has a parallel_for within it.

Supporting composable nested parallelism turns out to be highly desirable

because it exposes more opportunities for parallelism, and that results in more scalable

applications. OpenMP, for instance, is not composable with respect to nesting because

each level of nesting can easily cause significant overhead and consumption of resources

leading to exhaustion and program termination. This is a huge problem when you

consider that a library routine may contain parallel code, so we may experience issues

using a non-composable technique if we call the library while already doing parallelism.

No such problem exists with TBB, because it is composable. TBB solves this, in part, by

letting use expose opportunities for parallelism (tasks) while TBB decides at runtime

how to map them to hardware (threads).

This is the key benefit to coding in terms of tasks (available but nonmandatory

parallelism (see “relaxed sequential semantics” in Chapter 2)) instead of threads

(mandatory parallelism). If a parallel_for was considered mandatory, nesting would

cause an explosion of threads which causes a whole host of resource issues which can

easily (and often do) crash programs when not controlled. When parallel_for exposes

Preface

xxiv

available nonmandatory parallelism, the runtime is free to use that information to match

the capabilities of the machine in the most effective manner.

We have come to expect composability in our programming languages, but most

parallel programming models have failed to preserve it (fortunately, TBB does preserve

composability!). Consider “if” and “while” statements. The C and C++ languages allow

them to freely mix and nest as we desire. Imagine this was not so, and we lived in a world

where a function called from within an if statement was forbidden to contain a while

statement! Hopefully, any suggestion of such a restriction seems almost silly. TBB brings

this type of composability to parallel programming by allowing parallel constructs to be

freely mixed and nested without restrictions, and without causing issues.

�Scaling, Performance, and Quest for Performance
Portability
Perhaps the most important benefit of programming with TBB is that it helps

create a performance portable application. We define performance portability as

the characteristic that allows a program to maintain a similar “percentage of peak

performance” across a variety of machines (different hardware, different operating

systems, or both). We would like to achieve a high percentage of peak performance on

many different machines without the need to change our code.

We would also like to see a 16× gain in performance on a 64-core machine vs. a

quad-core machine. For a variety of reasons, we will almost never see ideal speedup

(never say never: sometimes, due to an increase in aggregate cache size we can see more

than ideal speedup – a condition we call superlinear speedup).

WHAT IS SPEEDUP?

Speedup is formerly defined to be the time to run sequentially (not in parallel) divided by the

time to run in parallel. If my program runs in 3 seconds normally, but in only 1 second on a

quad-core processor, we would say it has a speedup of 3×. Sometimes, we might speak of

efficiency which is speedup divided by the number of processing cores. Our 3× would be 75%

efficient at using the parallelism.

The ideal goal of a 16× gain in performance when moving from a quad-core machine

to one with 64 cores is called linear scaling or perfect scaling.

Preface

xxv

To accomplish this, we need to keep all the cores busy as we grow their

numbers – something that requires considerable available parallelism. We will dive

more into this concept of “available parallelism” starting on page xxxvii when we discuss

Amdahl’s Law and its implications.

For now, it is important to know that TBB supports high-performance programming

and helps significantly with performance portability. The high-performance support

comes because TBB introduces essentially no overhead which allows scaling to proceed

without issue. Performance portability lets our application harness available parallelism

as new machines offer more.

In our confident claims here, we are assuming a world where the slight additional

overhead of dynamic task scheduling is the most effective at exposing the parallelism

and exploiting it. This assumption has one fault: if we can program an application to

perfectly match the hardware, without any dynamic adjustments, we may find a few

percentage points gain in performance. Traditional High-Performance Computing

(HPC) programming, the name given to programming the world’s largest computers

for intense computations, has long had this characteristic in highly parallel scientific

computations. HPC developer who utilize OpenMP with static scheduling, and find it

does well with their performance, may find the dynamic nature of TBB to be a slight

reduction in performance. Any advantage previously seen from such static scheduling is

becoming rarer for a variety of reasons. All programming including HPC programming,

is increasing in complexity in a way that demands support for nested and dynamic

parallelism support. We see this in all aspects of HPC programming as well, including

growth to multiphysics models, introduction of AI (artificial intelligence), and use of ML

(machine learning) methods. One key driver of additional complexity is the increasing

diversity of hardware, leading to heterogeneous compute capabilities within a single

machine. TBB gives us powerful options for dealing with these complexities, including

its flow graph features which we will dive into in Chapter 3.

It is clear that effective parallel programming requires a separation between
exposing parallelism in the form of tasks (programmer’s responsibility) and
mapping tasks to hardware threads (programming model implementation’s
responsibility).

Preface

xxvi

�Introduction to Parallel Programming
Before we dive into demystifying the terminology and key concepts behind parallel

programming, we will make a bold claim: parallel is more intuitive than sequential.

Parallelism is around us every day in our lives, and being able to do a single thing step by

step is a luxury we seldom enjoy or expect. Parallelism is not unknown to us and should

not be unknown in our programming.

�Parallelism Is All Around Us
In everyday life, we find ourselves thinking about parallelism. Here are a few examples:

•	 Long lines: When you have to wait in a long line, you have

undoubtedly wished there were multiple shorter (faster) lines, or

multiple people at the front of the line helping serve customers more

quickly. Grocery store check-out lines, lines to get train tickets, and

lines to buy coffee are all examples.

•	 Lots of repetitive work: When you have a big task to do, which many

people could help with at the same time, you have undoubtedly wished for

more people to help you. Moving all your possessions from an old dwelling

to a new one, stuffing letters in envelopes for a mass mailing, and installing

the same software on each new computer in your lab are examples. The

proverb “Many hands make light work” holds true for computers too.

Once you dig in and start using parallelism, you will Think Parallel. You will learn to

think first about the parallelism in your project, and only then think about coding it.

Yale Pat, famous computer architect, observed:

A Conventional Wisdom Problem is the belief that

Thinking in Parallel is Hard

Perhaps (All) Thinking is Hard!

How do we get people to believe that:

Thinking in parallel is natural

(we could not agree more!)

Preface

xxvii

�Concurrent vs. Parallel
It is worth noting that the terms concurrent and parallel are related, but subtly different.

Concurrent simply means “happening during the same time span” whereas parallel is

more specific and is taken to mean “happening at the same time (at least some of the

time).” Concurrency is more like what a single person tries to do when multitasking,

whereas parallel is akin to what multiple people can do together. Figure P-1 illustrates

the concepts of concurrency vs. parallelism. When we create effective parallel programs,

we are aiming to accomplish more than just concurrency. In general, speaking of

concurrency will mean there is not an expectation for a great deal of activity to be truly

parallel – which means that two workers are not necessarily getting more work done than

one could in theory (see tasks A and B in Figure P-1). Since the work is not done sooner,

concurrency does not improve the latency of a task (the delay to start a task). Using the

term parallel conveys an expectation that we improve latency and throughput (work

done in a given time). We explore this in more depth starting on page xxxv when we

explore limits of parallelism and discuss the very important concepts of Amdahl’s Law.

Figure P-1.  Parallel vs. Concurrent: Tasks (A) and (B) are concurrent relative to
each other but not parallel relative to each other; all other combinations are both
concurrent and parallel

Preface

xxviii

Enemies of parallelism: locks, shared mutable state, synchronization, not “Thinking
Parallel,” and forgetting that algorithms win.

�Enemies of Parallelism
Bearing in mind the enemies of parallel programming will help understand our advocacy

for particular programming methods. Key parallel programming enemies include

•	 Locks: In parallel programming, locks or mutual exclusion objects

(mutexes) are used to provide a thread with exclusive access to a

resource – blocking other threads from simultaneously accessing

the same resource. Locks are the most common explicit way to

ensure parallel tasks update shared data in a coordinated fashion

(as opposed to allowing pure chaos). We hate locks because they

serialize part of our programs, limiting scaling. The sentiment “we

hate locks” is on our minds throughout the book. We hope to instill

this mantra in you as well, without losing sight of when we must

synchronize properly. Hence, a word of caution: we actually do love

locks when they are needed, because without them disaster will

strike. This love/hate relationship with locks needs to be understood.

•	 Shared mutable state: Mutable is another word for “can be changed.”

Shared mutable state happens any time we share data among

multiple threads, and we allow it to change while being shared. Such

sharing either reduces scaling when synchronization is needed and

used correctly, or it leads to correctness issues (race conditions or

deadlocks) when synchronization (e.g., a lock) is incorrectly applied.

Realistically, we need shared mutable state when we write interesting

applications. Thinking about careful handling of shared mutable

state may be an easier way to understand the basis of our love/hate

relationship with locks. In the end, we all end up “managing” shared

mutable state and the mutual exclusion (including locks) to make it

work as we wish.

•	 Not “Thinking Parallel”: Use of clever bandages and patches will not

make up for a poorly thought out strategy for scalable algorithms.

Knowing where the parallelism is available, and how it can be

Preface

xxix

exploited, should be considered before implementation. Trying to add

parallelism to an application, after it is written, is fraught with peril.

Some preexisting code may shift to use parallelism relatively well, but

most code will benefit from considerable rethinking of algorithms.

•	 Forgetting that algorithms win: This may just be another way to say

“Think Parallel.” The choice of algorithms has a profound effect on

the scalability of applications. Our choice of algorithms determine

how tasks can divide, data structures are accessed, and results are

coalesced. The optimal algorithm is really the one which serves as the

basis for optimal solution. An optimal solution is a combination of the

appropriate algorithm, with the best matching parallel data structure,

and the best way to schedule the computation over the data. The

search for, and discovery of, algorithms which are better is seemingly

unending for all of us as programmers. Now, as parallel programmers,

we must add scalable to the definition of better for an algorithm.

Locks, can’t live with them, can’t live without them.

�Terminology of Parallelism
The vocabulary of parallel programming is something we need to learn in order to

converse with other parallel programmers. None of the concepts are particularly hard,

but they are very important to internalize. A parallel programmer, like any programmer,

spends years gaining a deep intuitive feel for their craft, despite the fundamentals being

simple enough to explain.

We will discuss decomposition of work into parallel tasks, scaling terminology,

correctness considerations, and the importance of locality due primarily to cache effects.

When we think about our application, how do we find the parallelism?

At the highest level, parallelism exists either in the form of data to operate on

in parallel, or in the form of tasks to execute in parallel. And they are not mutually

exclusive. In a sense, all of the important parallelism is in data parallelism. Nevertheless,

we will introduce both because it can be convenient to think of both. When we discuss

scaling, and Amdahl’s Law, our intense bias to look for data parallelism will become

more understandable.

Preface

xxx

�Terminology: Task Parallelism

Task parallelism refers to different, independent tasks. Figure P-2 illustrates this, showing

an example of mathematical operations that can each be applied to the same data set

to compute values that are independent. In this case, the average value, the minimum

value, the binary OR function, and the geometric mean of the data set are computed.

Finding work to do in parallel in terms of task parallelism becomes limited by the

number of independent operations we can envision.

Earlier in this Preface, we have been advocating using tasks instead of threads. As

we now discuss data vs. task parallelism, it may seem a bit confusing because we use

the word task again in a different context when we compare task parallelism vs. data

parallelism. For either type of parallelism, we will program for either in terms of tasks

and not threads. This is the vocabulary used by parallel programmers.

Figure P-2.  Task parallelism

Figure P-3.  Data parallelism

Preface

xxxi

�Terminology: Data Parallelism

Data parallelism (Figure P-3) is easy to picture: take lots of data and apply the same

transformation to each piece of the data. In Figure P-3, each letter in the data set is

capitalized and becomes the corresponding uppercase letter. This simple example

shows that given a data set and an operation that can be applied element by element,

we can apply the same task in parallel to each element. Programmers writing code for

supercomputers love this sort of problem and consider it so easy to do in parallel that

it has been called embarrassingly parallel. A word of advice: if you have lots of data

parallelism, do not be embarrassed – take advantage of it and be very happy. Consider it

happy parallelism.

When comparing the effort to find work to do in parallel, an approach that focuses

on data parallelism is limited by the amount of data we can grab to process. Approaches

based on task parallelism alone are limited by the different task types we program. While

both methods are valid and important, it is critical to find parallelism in the data that

we process in order to have a truly scalable parallel program. Scalability means that

our application can increase in performance as we add hardware (e.g., more processor

cores) provided we have enough data. In the age of big data, it turns out that big data

and parallel programming are made for each other. It seems that growth in data sizes is

a reliable source of additional work. We will revisit this observation, a little later in this

Preface, when we discuss Amdahl’s Law.

Figure P-4.  Pipeline

Figure P-5.  Imagine that each position is a different car in different stages of
assembly, this is a pipeline in action with data flowing through it

�Terminology: Pipelining

While task parallelism is harder to find than data parallelism, a specific type of

task parallelism is worth highlighting: pipelining. In this kind of algorithm, many

independent tasks need to be applied to a stream of data. Each item is processed by each

stage, as shown by the letter A in (Figure P-4). A stream of data can be processed more

Preface

xxxii

quickly when we use a pipeline, because different items can pass through different stages

at the same time, as shown in Figure P-5. In these examples, the time to get a result

may not be faster (referred to as the latency measured as the time from input to output)

but the throughput is greater because it is measured in terms of completions (output)

per unit of time. Pipelines enable parallelism to increase throughput when compared

with a sequential (serial) processing. A pipeline can also be more sophisticated: it

can reroute data or skip steps for chosen items. TBB has specific support for simple

pipelines (Chapter 2) and very complex pipelines (Chapter 3). Of course, each step in the

pipeline can use data or task parallelism as well. The composability of TBB supports this

seamlessly.

Figure P-6.  Pipelining – each person has a different job

Figure P-7.  Data Parallelism – each person has the same job

Preface

xxxiii

�Example of Exploiting Mixed Parallelism

Consider the task of folding, stuffing, sealing, addressing, stamping, and mailing letters.

If we assemble a group of six people for the task of stuffing many envelopes, we can

arrange each person to specialize in and perform their assigned task in a pipeline

fashion (Figure P-6). This contrasts with data parallelism, where we divide up the

supplies and give a batch of everything to each person (Figure P-7). Each person then

does all the steps on their collection of materials.

Figure P-7 is clearly the right choice if every person has to work in a different location

far from each other. That is called coarse-grained parallelism because the interactions

between the tasks are infrequent (they only come together to collect envelopes, then

leave and do their task, including mailing). The other choice shown in Figure P-6

approximates what we call fine-grained parallelism because of the frequent interactions

(every envelope is passed along to every worker in various steps of the operation).

Neither extreme tends to fit reality, although sometimes they may be close enough

to be useful. In our example, it may turn out that addressing an envelope takes enough

time to keep three people busy, whereas the first two steps and the last two steps require

only one person on each pair of steps to keep up. Figure P-8 illustrates the steps with

the corresponding size of the work to be done. We can conclude that if we assigned only

one person to each step as we see done in Figure P-6, that we would be “starving” some

people in this pipeline of work for things to do – they would be idle. You might say it

would be hidden “underemployment.” Our solution, to achieve a reasonable balance in

our pipeline (Figure P-9) is really a hybrid of data and task parallelism.

Figure P-8.  Unequal tasks are best combined or split to match people

Preface

xxxiv

�Achieving Parallelism

Coordinating people around the job of preparing and mailing the envelopes is easily

expressed by the following two conceptual steps:

	 1.	 Assign people to tasks (and feel free to move them around to

balance the workload).

	 2.	 Start with one person on each of the six tasks but be willing to split

up a given task so that two or more people can work on it together.

The six tasks are folding, stuffing, sealing, addressing, stamping, and mailing. We

also have six people (resources) to help with the work. That is exactly how TBB works

best: we define tasks and data at a level we can explain and then split or combine data to

match up with resources available to do the work.

The first step in writing a parallel program is to consider where the parallelism is.

Many textbooks wrestle with task and data parallelism as though there were a clear

choice. TBB allows any combination of the two that we express.

Far from decrying chaos – we love the chaos of lots of uncoordinated tasks
running around getting work done without having to check-in with each other
(synchronization). This so-called “loosely coupled” parallel programming is great!
More than locks, we hate synchronization because it makes tasks wait for other
tasks. Tasks exist to work – not sit around waiting!

If we are lucky, our program will have an abundant amount of data parallelism

available for us to exploit. To simplify this work, TBB requires only that we specify

tasks and how to split them. For a completely data-parallel task, in TBB we will define

one task to which we give all the data. That task will then be split up automatically

Figure P-9.  Because tasks are not equal, assign more people to addressing letters

Preface

xxxv

to use the available hardware parallelism. The implicit synchronization (as opposed

to synchronization we directly ask for with coding) will often eliminate the need for

using locks to achieve synchronization. Referring back to our enemies list, and the fact

that we hate locks, the implicit synchronization is a good thing. What do we mean by

“implicit” synchronization? Usually, all we are saying is that synchronization occurred

but we did not explicitly code a synchronization. At first, this should seem like a “cheat.”

After all, synchronization still happened – and someone had to ask for it! In a sense,

we are counting on these implicit synchronizations being more carefully planned and

implemented. The more we can use the standard methods of TBB, and the less we

explicitly write our own locking code, the better off we will be – in general.

By letting TBB manage the work, we hand over the responsibility for splitting up the

work and synchronizing when needed. The synchronization done by the library for us,

which we call implicit synchronization, in turn often eliminates the need for an explicit

coding for synchronization (see Chapter 5).

We strongly suggest starting there, and only venturing into explicit synchronization

(Chapter 5) when absolutely necessary or beneficial. We can say, from experience, even

when such things seem to be necessary – they are not. You’ve been warned. If you are

like us, you’ll ignore the warning occasionally and get burned. We have.

People have been exploring decomposition for decades, and some patterns have

emerged. We’ll cover this more later when we discuss design patterns for parallel

programming.

Effective parallel programming is really about keeping all our tasks busy getting
useful work done all the time – and hunting down and eliminating idle time is a
key to our goal: scaling to achieve great speedups.

�Terminology: Scaling and Speedup

The scalability of a program is a measure of how much speedup the program gets as

we add more computing capabilities. Speedup is the ratio of the time it takes to run

a program without parallelism vs. the time it takes to run in parallel. A speedup of 4×

indicates that the parallel program runs in a quarter of the time of the serial program.

An example would be a serial program that takes 100 seconds to run on a one-processor

machine and 25 seconds to run on a quad-core machine.

Preface

xxxvi

As a goal, we would expect that our program running on two processor cores should

run faster than our program running on one processor core. Likewise, running on four

processor cores should be faster than running on two cores.

Any program will have a point of diminishing returns for adding parallelism. It

is not uncommon for performance to even drop, instead of simply leveling off, if we

force the use of too many compute resources. The granularity at which we should

stop subdividing a problem can be expressed as a grain size. TBB uses a notion of

grain size to help limit the splitting of data to a reasonable level to avoid this problem

of dropping in performance. Grain size is generally determined automatically, by an

automatic partitioner within TBB, using a combination of heuristics for an initial guess

and dynamic refinements as execution progresses. However, it is possible to explicitly

manipulate the grain size settings if we want to do so. We will not encourage this in this

book, because we seldom will do better in performance with explicit specifications

than the automatic partitioner in TBB, it tends to be somewhat machine specific, and

therefore explicitly setting grain size reduces performance portability.

As Thinking Parallel becomes intuitive, structuring problems to scale will become

second nature.

�How Much Parallelism Is There in an Application?

The topic of how much parallelism there is in an application has gotten considerable

debate, and the answer is “it depends.”

It certainly depends on the size of the problem to be solved and on the ability to find

a suitable algorithm (and data structures) to take advantage of the parallelism. Before

multicore processors, this debate centered on making sure we wrote efficient and worthy

programs for expensive and rare parallel computers. The definition of size, the efficiency

required, and the expense of the computer have all changed with the emergence of

multicore processors. We need to step back and be sure we review the ground we are

standing on. The world has changed.

Preface

xxxvii

Figure P-10.  Original program without parallelism

Figure P-11.  Progress on adding parallelism

�Amdahl’s Law

Renowned computer architect, Gene Amdahl, made observations regarding the

maximum improvement to a computer system that can be expected when only a portion

of the system is improved. His observations in 1967 have come to be known as Amdahl’s

Law. It tells us that if we speed up everything in a program by 2×, we can expect the

Preface

xxxviii

resulting program to run 2× faster. However, if we improve the performance of only 2/5th

of the program by 2×, the overall system improves only by 1.25×.

Amdahl’s Law is easy to visualize. Imagine a program, with five equal parts, that runs

in 500 seconds, as shown in Figure P-10. If we can speed up two of the parts by 2× and 4×,

as shown in Figure P-11, the 500 seconds are reduced to only 400 (1.25× speedup) and 350

seconds (1.4× speedup), respectively. More and more, we are seeing the limitations of the

portions that are not speeding up through parallelism. No matter how many processor cores

are available, the serial portions create a barrier at 300 seconds that will not be broken (see

Figure P-12) leaving us with only 1.7× speedup. If we are limited to parallel programming in

only 2/5th of our execution time, we can never get more than a 1.7× boost in performance!

Figure P-12.  Limits according to Amdahl’s Law

Parallel programmers have long used Amdahl’s Law to predict the maximum

speedup that can be expected using multiple processors. This interpretation ultimately

tells us that a computer program will never go faster than the sum of the parts that do not

run in parallel (the serial portions), no matter how many processors we have.

Many have used Amdahl’s Law to predict doom and gloom for parallel computers,

but there is another way to look at things that shows much more promise.

Preface

xxxix

Figure P-13.  Scale the workload with the capabilities

�Gustafson’s Observations Regarding Amdahl’s Law

Amdahl’s Law views programs as fixed, while we make changes to the computer. But

experience seems to indicate that as computers get new capabilities, applications

change to take advantage of these features. Most of today’s applications would not run

on computers from 10 years ago, and many would run poorly on machines that are just

5 years old. This observation is not limited to obvious applications such as video games;

it applies also to office applications, web browsers, photography, and video editing

software.

More than two decades after the appearance of Amdahl’s Law, John Gustafson,

while at Sandia National Labs, took a different approach and suggested a reevaluation

of Amdahl’s Law. Gustafson noted that parallelism is more useful when we observe that

workloads grow over time. This means that as computers have become more powerful,

we have asked them to do more work, rather than staying focused on an unchanging

workload. For many problems, as the problem size grows, the work required for the

parallel part of the problem grows faster than the part that cannot be parallelized

(the serial part). Hence, as the problem size grows, the serial fraction decreases, and,

according to Amdahl’s Law, the scalability improves. We can start with an application

that looks like Figure P-10, but if the problem scales with the available parallelism, we

are likely to see the advancements illustrated in Figure P-13. If the sequential parts

still take the same amount of time to perform, they become less and less important as

Preface

xl

a percentage of the whole. The algorithm eventually reaches the conclusion shown in

Figure P-14. Performance grows at the same rate as the number of processors, which is

called linear or order of n scaling, denoted as O(n).

Even in our example, the efficiency of the program is still greatly limited by the

serial parts. The efficiency of using processors in our example is about 40% for large

numbers of processors. On a supercomputer, this might be a terrible waste. On a system

with multicore processors, one can hope that other work is running on the computer in

parallel to use the processing power our application does not use. This new world has

many complexities. In any case, it is still good to minimize serial code, whether we take

the “glass half empty” view and favor Amdahl’s Law or we lean toward the “glass half full”

view and favor Gustafson’s observations.

Figure P-14.  Gustafson saw a path to scaling

Both Amdahl’s Law and Gustafson’s observations are correct, and they are not at

odds. They highlight a different way to look at the same phenomenon. Amdahl’s Law

cautions us that if we simply want an existing program to run faster with the same

workload, we will be severely limited by our serial code. When we envision working

on a larger workload, Gustafson has pointed out we have hope. History clearly favors

programs getting more complex and solving larger problems, and this is when parallel

programming pays off.

Preface

xli

The value of parallelism is easier to prove if we are looking forward than if we
assume the world is not changing.

Making today’s application run faster by switching to a parallel algorithm without

expanding the problem is harder than making it run faster on a larger problem. The

value of parallelism is easier to prove when we are not constrained to speeding up an

application that already works well on today’s machines.

Some have defined scaling that requires the problem size to grow as weak scaling.

It is ironic that the term embarrassingly parallel is commonly applied to other types

of scaling, or strong scaling. Because almost all true scaling happens only when the

problem size scales with the parallelism available, we should just call that scaling.

Nevertheless, it is common to apply the term embarrassing scaling or strong scaling to

scaling that occurs without growth in the problem size and refer to scaling that depends

on expanding data sizes as weak scaling. As with embarrassing parallelism, when we

have embarrassing scaling, we gladly take advantage of it and we are not embarrassed.

We generally expect scaling to be the so-called weak scaling, and we are happy to know

that any scaling is good and we will simply say that our algorithms scale in such cases.

The scalability of an application comes down to increasing the work done in
parallel and minimizing the work done serially. Amdahl motivates us to reduce the
serial portion, whereas Gustafson tells us to consider larger problems.

�What Did They Really Say?

Here is what Amdahl and Gustafson actually said in their famous papers, which have

generated much dialog ever since:

…the effort expended on achieving high parallel processing rates is wasted
unless it is accompanied by achievements in sequential processing rates of
very nearly the same magnitude.

—Amdahl, 1967

…speedup should be measured by scaling the problem to the number of
processors, not by fixing the problem size.

—Gustafson, 1988

Preface

xlii

�Serial vs. Parallel Algorithms

One of the truths in programming is this: the best serial algorithm is seldom the best

parallel algorithm, and the best parallel algorithm is seldom the best serial algorithm.

This means that trying to write a program that runs well on a system with one

processor core, and also runs well on a system with a dual-core processor or quad-core

processor, is harder than just writing a good serial program or a good parallel program.

Supercomputer programmers know from practice that the work required grows

quickly as a function of the problem size. If the work grows faster than the sequential

overhead (e.g., communication, synchronization), we can fix a program that scales

poorly just by increasing the problem size. It’s not uncommon at all to take a program

that won’t scale much beyond 100 processors and scale it nicely to 300 or more

processors just by doubling the size of the problem.

Strong scaling means we can solve the same problem faster on a parallel system.
Weak scaling means we can solve more interesting problems using multiple cores
in the same amount of time that we solved the less interesting problems using a
single core.

To be ready for the future, write parallel programs and abandon the past. That’s the

simplest and best advice to offer. Writing code with one foot in the world of efficient

single-threaded performance and the other foot in the world of parallelism is the hardest

job of all.

One of the truths in programming is this: the best serial algorithm is seldom the
best parallel algorithm, and the best parallel algorithm is seldom the best serial
algorithm.

�What Is a Thread?

If you know what a thread is, feel free to skip ahead to the section “Safety in the Presence

of Concurrency.” It’s important to be comfortable with the concept of a thread, even

though the goal of TBB is to abstract away thread management. Fundamentally, we

will still be constructing a threaded program, and we will need to understand the

implications of this underlying implementation.

Preface

xliii

All modern operating systems are multitasking operating systems that typically use

a preemptive scheduler. Multitasking means that more than one program can be active

at a time. We may take it for granted that we can have an e-mail program and a web

browser program running at the same time. Yet, not that long ago, this was not the case.

A preemptive scheduler means the operating system puts a limit on how long one

program can use a processor core before it is forced to let another program use it. This is

how the operating system makes it appear that our e-mail program and our web browser

are running at the same time when only one processor core is actually doing the work.

Generally, each program runs relatively independent of other programs. In

particular, the memory where our program variables will reside is completely separate

from the memory used by other processes. Our e-mail program cannot directly assign

a new value to a variable in the web browser program. If our e-mail program can

communicate with our web browser – for instance, to have it open a web page from a link

we received in e-mail – it does so with some form of communication that takes much

more time than a memory access.

This isolation of programs from each other has value and is a mainstay of computing

today. Within a program, we can allow multiple threads of execution to exist in a single

program. An operating system will refer to the program as a process, and the threads of

execution as (operating system) threads.

All modern operating systems support the subdivision of processes into multiple

threads of execution. Threads run independently, like processes, and no thread

knows what other threads are running or where they are in the program unless they

synchronize explicitly. The key difference between threads and processes is that the

threads within a process share all the data of the process. Thus, a simple memory access

can set a variable in another thread. We will refer to this as “shared mutable state”

(changeable memory locations that are shared) – and we will decry the pain that sharing

can cause in this book. Managing the sharing of data, is a multifaceted problem that we

included in our list of enemies of parallel programming. We will revisit this challenge,

and solutions, repeatedly in this book.

We will note, that it is common to have shared mutable state between processes. It

could be memory that each thread maps into their memory space explicitly, or it could

be data in an external store such as a database. A common example would be airline

reservation systems, which can independently work with different customers to book

their reservations – but ultimately, they share a database of flights and available seats.

Therefore, you should know that many of the concepts we discuss for a single process

Preface

xliv

can easily come up in more complex situations. Learning to think parallel has benefits

beyond TBB! Nevertheless, TBB is almost always used within a single process with

multiple threads, with only some flow graphs (Chapter 3) having some implications

beyond a single process.

Each thread has its own instruction pointer (a register pointing to the place in the

program where it is running) and stack (a region of memory that holds subroutine return

addresses and local variables for subroutines), but otherwise a thread shares its memory

with all of the other threads in the same process. Even the stack memory of each thread

is accessible to the other threads, though when they are programmed properly, they

don’t step on each other’s stacks.

Threads within a process that run independently but share memory have the

obvious benefit of being able to share work quickly, because each thread has access to

the same memory as the other threads in the same process. The operating system can

view multiple threads as multiple processes that have essentially the same permissions

to regions of memory. As we mentioned, this is both a blessing and a curse – this “shared

mutable state.”

�Programming Threads

A process usually starts with a single thread of execution and is allowed to request that

more threads be started. Threads can be used to logically decompose a program into

multiple tasks, such as a user interface and a main program. Threads are also useful for

programming for parallelism, such as with multicore processors.

Many questions arise when we start programming to use threads. How should we

divide and assign tasks to keep each available processor core busy? Should we create a

thread each time we have a new task, or should we create and manage a pool of threads?

Should the number of threads depend on the number of cores? What should we do with

a thread running out of tasks?

These are important questions for the implementation of multitasking, but that

doesn’t mean we should answer them. They detract from the objective of expressing

the goals of our program. Likewise, assembly language programmers once had to worry

about memory alignment, memory layout, stack pointers, and register assignments.

Languages such as Fortran and C were created to abstract away those important details

and leave them to be solved by compilers and libraries. Similarly, today we seek to

abstract away thread management so that programmers can express parallelism directly.

Preface

xlv

TBB allows programmers to express parallelism at a higher level of abstraction.
When used properly, TBB code is implicitly parallel.

A key notion of TBB is that we should break up the program into many more tasks

than there are processors. We should specify as much parallelism as practical and let

TBB runtime choose how much of that parallelism is actually exploited.

�What Is SIMD?

Threading is not the only way for a processor to do more than one thing at a time! A

single instruction can do the same operation on multiple data items. Such instructions

are often called vector instructions, and their use is called vectorization of code (or

vectorization for short). The technique is often referred to as Single Instruction Multiple

Data (SIMD). The use of vector instructions to do multiple things at once is an important

topic which we will discuss later in this Preface (starting on page lxi).

�Safety in the Presence of Concurrency

When code is written in such a way that runs may have problems due to the

concurrency, it is said not to be thread-safe. Even with the abstraction that TBB offers,

the concept of thread safety is essential. Thread-safe code is code that is written in a

manner to ensures it will function as desired even when multiple threads use the same

code. Common mistakes that make code not thread-safe include lack of synchronization

to control access to shared data during updates (this can lead to corruption) and

improper use of synchronization (can lead to deadlock, which we discuss in a few

pages).

Any function that maintains a persistent state between invocations requires careful

writing to ensure it is thread-safe. We need only to do this to functions that might be

used concurrently. In general, functions we may use concurrently should be written to

have no side effects so that concurrent use is not an issue. In cases where global side

effects are truly needed, such as setting a single variable or creating a file, we must be

careful to call for mutual exclusion to ensure only one thread at a time can execute the

code that has the side effect.

Preface

xlvi

We need to be sure to use thread-safe libraries for any code using concurrency or

parallelism. All the libraries we use should be reviewed to make sure they are thread-

safe. The C++ library has some functions inherited from C that are particular problems

because they hold internal state between calls, specifically asctime, ctime, gmtime,

localtime, rand, and strtok. We need to check the documentation when using these

functions to see whether thread-safe versions are available. The C++ Standard Template

Library (STL) container classes are, in general, not thread-safe (see Chapter 6 for some

current container solutions from TBB for this problem, or Chapter 5 for synchronization

to use in conjunction with items that are otherwise not thread-safe).

�Mutual Exclusion and Locks

We need to think about whether concurrent accesses to the same resources will occur in

our program. The resource we will most often be concerned with is data held in memory,

but we also need to think about files and I/O of all kinds.

If the precise order that updates of shared data matters, then we need some form

of synchronization. The best policy is to decompose our problem in such a way that

synchronization is infrequent. We can achieve this by breaking up the tasks so that they

can work independently, and the only synchronization that occurs is waiting for all the

tasks to be completed at the end. This synchronization “when all tasks are complete” is

commonly called a barrier synchronization. Barriers work when we have very coarse-

grained parallelism because barriers cause all parallel work to stop (go serial) for a

moment. If we do that too often, we lose scalability very quickly per Amdahl’s Law.

For finer-grained parallelism, we need to use synchronization around data

structures, to restrict both reading and writing by others, while we are writing. If we are

updating memory based on a prior value from memory, such as incrementing a counter

by ten, we would restrict reading and writing from the time that we start reading the

initial value until we have finished writing the newly computed value. We illustrate a

simple way to do this in Figure P-15. If we are only reading, but we read multiple related

data, we would use synchronization around data structures to restrict writing while we

read. These restrictions apply to other tasks and are known as mutual exclusion. The

purpose of mutual exclusion is to make a set of operations appear atomic (indivisible).

TBB implements portable mechanisms for mutual exclusion. There are

fundamentally two approaches: atomic (indivisible) operations for very simple and

common operations (such as increment), and a general lock/unlock mechanism for

longer sequences of code. These are all discussed in Chapter 5.

Preface

xlvii

Consider a program with two threads that starts with X = 44. Thread A executes X

= X + 10. Thread B executes X = X – 12. If we add locking (Figure P-15) so that only

Thread A or Thread B can execute its statement at a time, we always end up with X = 42.

If both threads try to obtain a lock at the same time, one will be excluded and will have

to wait before the lock is granted. Figure P-15 shows how long Thread B might have to

wait if it requested the lock at the same time as Thread A but did not get the lock because

Thread A held it first.

Instead of locks, which are used in Figure P-15, we could use a small set of operations

that the system guarantees to appear to be atomic (indivisible). We showed locks first,

because they are a general mechanism that allows any sequence of code to appear to

be atomic. We should always keep such sequences as short as possible because they

degrade scaling per Amdahl’s Law (see page xxxvi). If a specific atomic operation (e.g.,

increment) is available, we would use that because it should be the quickest method and

therefore degrade scaling the least.

Figure P-15.  Serialization that can occur when using mutual exclusion

Preface

xlviii

As much as we hate locks, we need to concede that without them, things are even

worse. Consider our example without the locks, a race condition exists and at least two

more results are possible: X=32 or X=54 (Figure P-16). We will define this very important

concept of race condition very soon starting on page l. The additional incorrect results

are now possible because each statement reads X, does a computation, and writes to X.

Without locking, there is no guarantee that a thread reads the value of X before or after

the other thread writes a value.

�Correctness

The biggest challenge of learning to Think Parallel is understanding correctness as it

relates to concurrency. Concurrency means we have multiple threads of control that may

be active at one time. The operating system is free to schedule those threads in different

ways. Each time the program runs, the precise order of operations will potentially be

different. Our challenge as a programmer is to make sure that every legitimate way the

operations in our concurrent program can be ordered will still lead to the correct result.

A high-level abstraction such as TBB helps a great deal, but there are a few issues we

have to grapple with on our own: potential variations in results when programs compute

results in parallel, and new types of programming bugs when locks are used incorrectly.

Computations done in parallel often get different results than the original sequential

program. Round-off errors are the most common surprise for many programmers when

a program is modified to run in parallel. We should expect numeric results, when using

floating-point values, to vary when computations are changed to run in parallel because

floating-point values have limited precision. For example, computing (A+B+C+D) as

((A+B)+(C+D)) enables A+B and C+D to be computed in parallel, but the final sum may

Figure P-16.  Race conditions can lead to problems when we have no mutual
exclusion. A simple fix here would be to replace each Read-operation-Write with
the appropriate atomic operation (atomic increment or atomic decrement).

Preface

xlix

be different from other evaluations such as (((A+B)+C)+D). Even the parallel results

can differ from run to run, depending on the order of the operations actually taken

during program execution. Such nondeterministic behavior can often be controlled by

reducing runtime flexibility. We will mention such options in this book, in particular the

options for deterministic reduction operations (Chapter 16). Nondeterminism can make

debugging and testing much more difficult, so it is often desirable to force deterministic

behavior. Depending on the circumstances, this can reduce performance because it

effectively forces more synchronization.

A few types of program failures can happen only in a program using concurrency

because they involve the coordination of tasks. These failures are known as deadlocks

and race conditions. Determinism is also a challenge since a concurrent program

has many possible paths of execution because there can be so many tasks operating

independently.

Although TBB simplifies programming so as to reduce the chance for such failures,

they are still possible even with TBB. Multithreaded programs can be nondeterministic

as a result of race conditions, which means the same program with the same input can

follow different execution paths each time it is invoked. When this occurs, failures do

not repeat consistently, and debugger intrusions can easily change the failure, thereby

making debugging frustrating, to say the least.

Tracking down and eliminating the source of unwanted nondeterminism is not easy.

Specialized tools such as Intel Advisor can help, but the first step is to understand these

issues and try to avoid them.

There is also another very common problem, which is also an implication of

nondeterminism, when moving from sequential code to parallel code: instability in

results. Instability in results means that we get different results because of subtle changes

in the order in which work is done. Some algorithms may be unstable, whereas others

simply exercise the opportunity to reorder operations that are considered to have

multiple correct orderings.

Next, we explain three key errors in parallel programming and solutions for each.

�Deadlock

Deadlock occurs when at least two tasks wait for each other and each will not resume

until the other task proceeds. This happens easily when code requires the acquisition of

multiple locks. If Task A needs Lock R and Lock X, it might get Lock R and then try to

get Lock X. Meanwhile, if Task B needs the same two locks but grabs Lock X first, we can

Preface

l

easily end up with Task A wanting Lock X while holding Lock R, and Task B waiting for

Lock R while it holds only Lock X. The resulting impasse can be resolved only if one task

releases the lock it is holding. If neither task yields, deadlock occurs and the tasks are

stuck forever.

�Solution for Deadlock

Use implicit synchronization to avoid the need for locks. In general, avoid using locks,

especially multiple locks at one time. Acquiring a lock and then invoking a function or

subroutine that happens to use locks is often the source of multiple lock issues. Because

access to shared resources must sometimes occur, the two most common solutions are

to acquire locks in a certain order (always A and then B, for instance) or to release all

locks whenever any lock cannot be acquired and begin again (after a random length

delay).

�Race Conditions

A race condition occurs when multiple tasks read from and write to the same memory

without proper synchronization. The “race” may finish correctly sometimes and

therefore complete without errors, and at other times it may finish incorrectly.

Figure P-16 illustrates a simple example with three different possible outcomes due to a

race condition.

Race conditions are less catastrophic than deadlocks, but more pernicious because

they do not necessarily produce obvious failures and yet can lead to corrupted data (an

incorrect value being read or written). The result of some race conditions can be a state

unexpected (and undesirable) because more than one thread may succeed in updating

only part of their state (multiple data elements).

�Solution for Race Conditions

Manage shared data in a disciplined manner using the synchronization mechanisms

described in Chapter 5 to ensure a correct program. Avoid low-level methods based

on locks because it is so easy to get things wrong. Explicit locks should be used only

as a last resort. In general, we are better off using the synchronization implied by the

algorithm templates and task scheduler when possible. For instance, use parallel_

reduce (Chapter 2) instead of creating our own with shared variables. The join operation

Preface

li

in parallel_reduce is guaranteed not to run until the subproblems it is joining are

completed.

�Instability of Results (Lack of Deterministic Results)

A parallel program will generally compute answers differently each time because it the

many concurrent tasks operate with slight variations between different invocations,

and especially on systems with differing number of processors. We explained this in our

discussion of correctness starting on page xlviii.

�Solution for Instability of Results

TBB offers ways to ensure more deterministic behavior by reducing runtime flexibility.

While this can reduce performance somewhat, the benefits of determinism are often

worth it. Determinism is discussed in Chapter 16.

�Abstraction

When writing a program, choosing an appropriate level of abstraction is important.

Few programmers use assembly language anymore. Programming languages such as

C and C++ have abstracted away the low-level details. Hardly anyone misses the old

programming method.

Parallelism is no different. We can easily get caught up in writing code that is too low

level. Raw thread programming requires us to manage threads, which is time-consuming

and error-prone.

Programming with TBB offers an opportunity to avoid thread management. This will

result in code that is easier to create, easier to maintain, and more elegant. In practice,

we find that this code is also more portable and performance portable. However, it does

require thinking of algorithms in terms of what work can be divided and how data can be

divided.

�Patterns

Experienced parallel programmers know that there are common problems for

which there are known solutions. All types of programming are like this – we have

concepts such as stacks, queues, and linked lists in our vocabulary as a result. Parallel

programming brings forward concepts such as map, reduce, and pipeline.

Preface

lii

We call these patterns, and they can be adapted to our particular needs. Learning

common patterns is a perfect way to learn from those who have gone before us. TBB

implements solutions for key patterns, so we can implicitly learn them simply by

learning TBB. We think patterns are an important enough concept, that we will discuss

them in more depth in Chapter 8.

�Locality and the Revenge of the Caches
Effective parallel programming requires that we have a sense of the importance of

locality. The motivation for this requires that we speak briefly about the hardware, in

particular memory caches. A “cache” is simply a hardware buffer of sorts that retains data

we have recently seen or modified, closer to us so it can be accessed faster than if it was

in the larger memory. The purpose of a cache is to make things faster, and therefore if

our program makes better usage of caches our application may run faster.

We say “caches” instead of “cache” because modern computer design generally

consists of multiple levels of caching hardware, each level of which is a cache. For our

purposes, thinking of cache as a single collection of data is generally sufficient.

We do not need to understand caches deeply, but a high-level understanding of them

helps us understand locality, the related issues with sharing of mutable state, and the

particularly insidious phenomenon known as false sharing.

Important cache implications we must understand: locality, sharing and false-
sharing. To understand these – we must understand caches and cache-lines.
These are fundamental to all modern computer designs.

Preface

liii

�Hardware Motivation
We would like to ignore the details of hardware implementation as much as possible,

because generally the more we cater to a particular system the more we lose portability,

and performance portability. There is a notable and important exception: caches

(Figure P-17).

A memory cache will be found in all modern computer designs. In fact, most systems

will have multiple levels of caches. It was not always this way; originally computers

fetched data and instructions from memory only when needed and immediately wrote

results into memory. Those were simpler times!

The speed of processors has grown to be much faster than main memory. Making all

of memory as fast as a processor would simply prove too expensive for most computers.

Instead, designers make small amounts of memory, known as caches, that operate as fast

as the processor. The main memory can remain slower and therefore more affordable.

The hardware knows how to move information in and out of caches as needed, thereby

adding to the number of places where data is shuffled on its journey between memory

and the processor cores. Caches are critical in helping overcome the mismatch between

memory speed and processor speed.

Figure P-17.  Main memory and a cache

Preface

liv

Virtually all computers use caches only for a temporary copy of data that should

eventually reside in memory. Therefore, the function of a memory subsystem is to move

data needed as input to caches near the requesting processor core, and to move data

produced by processing cores out to main memory. As data is read from memory into

the caches, some data may need to be evicted from the cache to make room for the

newly requested data. Cache designers work to make the data evicted be approximately

the least recently used data. The hope is that data which has not been used recently is

not likely to be needed in the near future. That way, caches keep in their precious space

the data we are most likely to use again.

Once a processor accesses data, it is best to exhaust the program's use of it while it

is still in the cache. Continued usage will hold it in the cache, while prolonged inactivity

will likely lead to its eviction and future usage will need to do a more expensive (slow)

access to get the data back into the cache. Furthermore, every time a new thread runs

on a processor, data is likely to be discarded from the cache to make room for the data

needed by the particular thread.

�Locality of Reference
Consider it to be expensive to fetch data from memory the first time, but it is much

cheaper to use the data for a period of time after it is fetched. This is because caches hold

onto the information much like our own short-term memories allow us to remember

things during a day that will be harder to recall months later.

A simple, and often cited, example of a matrix multiplication, C=AxB, with matrices A,

B, and C of size nxn, is shown in Figure P-18.

Figure P-18.  Matrix multiplication with poor locality of reference

C and C++ store arrays in row-major order. Which means that the contiguous array

elements are in the last array dimension. This means that c[i][2] and c[i][3] are next

to each other in memory, while c[2][j] and c[3][j] will be far apart (n elements apart

in our example).

Preface

lv

By switching the looping order for j and k, as shown in Figure P-19, the speedup

can be dramatic because the locality of reference is greatly increased. This does not

fundamentally change the mathematical result, but it improves efficiency because the

memory caches are utilized more effectively. In our example, the value of n needs to be

large enough that the combined size of the matrices exceeds the size of the caches. If

this is not the case, the order will not matter nearly as much because either order will

fit within the caches. A value of n=10,000 would make each matrix have one hundred

million elements. Assuming double precision floating-point value, the three matrices

together will occupy 2.4GB of memory. This will start to cause cache effects on all

machines at the time of this book’s publication! Almost all computers would benefit

fully from the switched ordering of indices yet almost all systems will see no effects at all

when n is small enough for data to all fit in cache.

Figure P-19.  Matrix multiplication with improved locality of reference

�Cache Lines, Alignment, Sharing, Mutual Exclusion,
and False Sharing
Caches are organized in lines. And processors transfer data between main memory and

the cache at the granularity of cache lines. This causes three considerations which we

will explain: data alignment, data sharing, and false sharing.

The length of a cache line is somewhat arbitrary, but 512 bits is by far the most

common today – that is, 64 bytes in size, or the size of eight double precision floating-

point numbers or sixteen 32-bit integers.

�Alignment

It is far better for any given data item (e.g., int, long, double, or short) to fit within

a single cache line. Looking at Figure P-17 or Figure P-20, and consider if it were a

single data item (e.g., double) stretching across two cache lines. If so, we would need

to access (read or write) two caches lines instead of one. In general, this will take twice

Preface

lvi

as much time. Aligning single data items to not span cache lines can be very important

for performance. To be fair to hardware designers, some hardware has significant

capabilities to lessen the penalty for data that is not aligned (often called misaligned

data). Since we cannot count on such support, we strongly advise that data be aligned

on its natural boundaries. Arrays will generally span cache lines unless they are very

short; normally, we advise that an array is aligned to the alignment size for a single array

element so that a single element never sits in two cache lines even though the array may

span multiple cache lines. The same general advice holds for structures as well, although

there may be some benefit to aligning small structures to fit entirely in a cache line.

A disadvantage of alignment is wasted space. Every time we align data, we are

potentially skipping some memory. In general, this is simply disregarded because

memory is cheap. If alignment occurs frequently, and can be avoided or rearranged to

save memory, that can occasionally still be important. Therefore, we needed to mention

the disadvantage of alignment. In general, alignment is critical for performance, so

we should just do it. Compilers will automatically align variables, including array

and structures to the element sizes. We need to explicitly align when using memory

allocations (e.g., malloc) so we recommend how to do that in Chapter 7.

The real reason we explain alignment is so we can discuss sharing and the evils of

false sharing.

�Sharing

Sharing copies of immutable (unchangeable) data from memory is easy, because

every copy is always a valid copy. Sharing immutable data does not create any special

problems when doing parallel processing.

It is mutable (changeable) data that creates substantial challenges when doing

parallel processing of the data. We did name shared mutable state as an enemy of

parallelism! In general, we should minimize sharing of mutable (changeable) data

between tasks. The less sharing, the less there is to debug and the less there is to go wrong.

We know the reality is that sharing data allows parallel tasks to work on the same problem

to achieve scaling, so we have to dive into a discussion about how to share data correctly.

Shared mutable (changeable) state creates two challenges: (1) ordering, and (2) false

sharing. The first is intrinsic to parallel programming and is not caused by the hardware.

We discussed mutual exclusion starting on page xlv and illustrated a key concern over

correctness with Figure P-16. It is a critical topic that must be understood by every

parallel programmer.

Preface

lvii

�False Sharing

Because data is moved around in cache lines, it is possible for multiple ,completely

independent variables or memory allocations to be all or partially within the same cache

line (Figure P-20). This sharing of a cache line will not cause a program to fail. However,

it can greatly reduce performance. A complete explanation of the issues that arise

when sharing a cache line, for mutable data being used in multiple tasks, would take

many pages. A simple explanation is updating data anywhere in a cache line can create

slowdowns for all accesses in the cache line from other tasks.

Regardless of the details of why false sharing slows down machines, we know that

well written parallel programs take measures to avoid false sharing. Even if one machine

configuration suffers less than most, in order to be performance portable, we should

always take measures to avoid false sharing.

Figure P-20.  False sharing happens when data from two different tasks end up in
the same cache line

To illustrate why false sharing carries such a performance penalty, let’s consider the

extra overhead imposed on the caches and operating system when two threads access

memory near each other. We’ll assume for the sake of this example that a cache line

Preface

lviii

contains 64 bytes, at least two threads are running on processors that share the cache, and

our program defines an array that threads access and update based on their thread ID:

Two consecutive entries in my_private_counter are likely to be in the same cache

line. Therefore, our example program can experience extra overhead due specifically to

the false sharing caused by having data used by separate threads land in the same cache

line. Consider two threads 0 and 1 running on core0 and core1 respectively, and the

following sequence of events:

Thread 0 increments my_private_counter[0] which translates into reading the

value in the core 0 private cache, incrementing the counter, and writing the result. More

precisely, core 0 reads the whole line (say 64 bytes) including this counter into the cache

and then updates the counter with the new value (usually only in the cache line).

Next, if thread 1 also increments my_private_counter[1], extra overhead due to

false sharing is paid. It is highly likely that positions 0 and 1 of my_private_counter fall

into the same cache line. If this is the case, when thread 1 in core1 tries to read their

counter, the cache coherence protocol comes into play. This protocol works at the cache

line level, and it will conservatively assume that thread 1 is reading the value written by

thread 0 (as if thread 0 and thread 1 where truly sharing a single counter). Therefore,

core 1 must read the cache line from core 0 (the slowest alternative would be to flush

core 0 cache line to memory, from where core1 can read it). This is already expensive,

but it is even worse when thread 1 increments this counter, invalidating the copy of the

cache line in core0.

Now if thread 0 increments again my_private_counter[0], it does not find his

counter in core 0’s local cache because it was invalidated. It is necessary to pay the extra

time to access core 1’s version of the line that was updated most recently. Once again, if

thread 0 then increments this counter, it invalidates the copy in core 1. If this behavior

continues, the speed at which thread 0 and thread 1 will access their respective counters

is significantly slower than in the case in which each counter lands in a different cache

line.

This issue is called “false sharing” because actually each thread has a private (not

shared) counter, but due to the cache coherence protocol working at cache line level,

and both counters “sharing” the same cache line, the two counters seem to be shared

from a hardware point of view.

Preface

lix

Now you are probably thinking that a straightforward solution would be to fix the

hardware implementation of the cache coherence protocol so that it works at word level

instead of a line level. However, this hardware alternative is prohibitive, so hardware

vendors ask us to solve the problem by software: Do your best to get each private counter

falling in a different cache line so that it is clear to the hardware that the expensive cache

coherence mechanism does not have to be dispatched.

We can see how a tremendous overhead can easily be imposed from false sharing of

data. In our simple example, the right solution is to use copies of each element. This can

be done in a number of ways, one of which would be to use the cache aligned allocator

for the data needed for a given thread instead allocating them all together with the risk of

false sharing.

�Avoiding False Sharing with Alignment

In order to avoid false sharing (Figure P-20), we need to make sure that distinctly different

pieces of mutable data that may be updated in parallel do not land in the same cache

line. We do that with a combination of alignment and padding.

Alignment of data structures, such as arrays or structures, to a cache line boundary

will prevent placement of the start of the data structure in a cache line used by

something else. Usually, this means using a version of malloc that aligns to a cache

line. We discuss memory allocation, including cache aligned memory allocators (e.g.,

tbb::cache_aligned_allocator), in Chapter 7. We can also explicitly align static

and local variables with compiler directives (pragmas), but the need for that is far less

common. We should note that performance slowdowns from false sharing from memory

allocation are often somewhat nondeterministic, meaning that it may affect some runs

of an application and not others. This can be truly maddening because debugging a

nondeterministic issue is very challenging since we cannot count on any particular run

of an application to have the issue!

�TBB Has Caches in Mind
TBB is designed with caches in mind and works to limit the unnecessary movement of

tasks and data. When a task has to be moved to a different processor, TBB moves the

task with the lowest likelihood of having data in the cache of the old processor. These

considerations are built into the work (task) stealing schedulers and therefore are part of

the algorithm templates discussed in Chapters 1–3.

Preface

lx

While dealing with caches has a role in many chapters, a few key chapters to note are

•	 Chapter 5 explains privatization and reduction.

•	 Chapter 7 covers important considerations for memory allocators

to help with caches, including alignment and padding to avoid false

sharing.

•	 Chapter 16 revisits data locality with an advanced discussion of

options tuning for better locality.

For best performance, we need to keep data locality in mind when considering how

to structure our programs. We should avoid using data regions sporadically when we can

design the application to use a single set of data in focused chunks of time.

�Introduction to Vectorization (SIMD)
Parallel programming is ultimately about harnessing the parallel computational

capabilities of the hardware. Throughout this book, we focus on parallelism that exploits

having multiple processor cores. Such hardware parallelism is exploited by thread-level

(or abstractly task-level) parallelism, which is what TBB solves for us.

There is another class of very important hardware parallelism known as vector

instructions, which are instructions that can do more computation (in parallel) than

a regular instruction. For instance, a regular add instruction takes two numbers, adds

them, and returns a single result. An eight-way vector add would be able to handle

eight pairs of inputs, add each pair, and produce eight outputs. Instead of C=A+B in a

regular add instruction, we get C0=A0+B0 and C1=A1+B1 and C2=A2+B2 … and C7=A7+B7

from a single vector add instruction. This can offer 8× in performance. These

instructions do require that we have eight of the same operations to do at once, which

does tend to be true of numerically intensive code.

This ability to do multiple operations in a single instruction is known as Single

Instruction Multiple Data (SIMD), one of four classification of computer architecture

known by computer scientists as Flynn’s taxonomy. The concept that a single instruction

can operate on multiple data (e.g., the inputs to eight different additions) gives us

parallelism that we will want to exploit.

Preface

lxi

Vectorization is the technology that exploits SIMD parallelism, and it is a technology

which relies on compilers because compilers specialize in hardware instruction

selection.

We could largely ignore vector parallelism in this book and say “it’s a different

subject with a different set of things to study” – but we won’t! A good parallel program

generally uses both task parallelism (with TBB) and SIMD parallelism (with a vectorizing

compiler).

Our advice is this: Read Chapter 4 of this book! Learn about vectorizing capabilities

of your favorite compiler and use them. #pragma SIMD is one such popular capability in

compilers these days. Understand Parallel STL (Chapter 4 and Appendix B), including

why it is generally not the best solution for effective parallel programming (Amdahl’s

Law favors parallelism being put at a higher level in the program than in STL calls).

While vectorization is important, using TBB offers superior speedup for most

applications (if you consider choosing one or the other). This is because systems

usually have more parallelism from cores than from SIMD lanes (how wide the vector

instructions are), plus tasks are a lot more general than the limited number of operations

that are available in SIMD instructions.

Good advice: �Multitask your code first (use TBB);
vectorize second (use vectorization).

Best advice: Do both.

Doing both is generally useful when programs have computations that can benefit

from vectorization. Consider a 32-core processor with AVX vector instructions. A

multitasking program could hope to get a significant share of the theoretical maximum

32× in performance from using TBB. A vectorized program could hope to get a

significant share of the theoretical maximum 4× in performance from using vectorization

on double precision mathematical code. However, together the theoretical maximum

jump in performance is 256× – this multiplicative effect is why many developers of

numerically intensive programs always do both.

Preface

lxii

�Introduction to the Features of C++ (As Needed
for TBB)
Since the goal of parallel programming is to have an application scale in performance

on machines with more cores, C and C++ both offer an ideal combination of abstraction

with a focus on efficiency. TBB makes effective use of C++ but in a manner that is

approachable to C programmers.

Every field has its own terminology, and C++ is no exception. We have included

a glossary at the end of this book to assist with the vocabulary of C++, parallel

programming, TBB, and more. There are several terms we will review here that are

fundamental to C++ programmers: lambda functions, generic programming, containers,

templates, Standard Template Library (STL), overloading, ranges, and iterators.

�Lambda Functions
We are excited by the inclusion of lambda functions in the C++11 standard, which allow

code to be expressed inline as an anonymous function. We will wait to explain them in

Chapter 1 when we need them and will illustrate their usage.

�Generic Programming
Generic programming is where algorithms are written to generically operate on any

data type. We can think of them as using parameters which are “to-be-specified-later.”

C++ implements generic programming in a way that favors compile time optimization

and avoids the necessity of runtime selection based on types. This has allowed modern

C++ compilers to be highly tuned to minimize abstraction penalties arising from heavy

use of generic programming, and consequently templates and STL. A simple example

of generic programming is a sort algorithm which can sort any list of items, provided we

supply a way to access an item, swap two items, and compare two items. Once we have

put together such an algorithm, we can instantiate it to sort a list of integers, or floats, or

complex numbers, or strings, provided that we define how the swap and the comparison

is done for each data type.

A simple example of generic programming comes from considering support for

complex numbers. The two elements of a complex number might be float, double, or

long double types. Rather than declare three types of complex numbers and have three

Preface

lxiii

sets of functions to operate on the various types, with generic programming we can

create the concept of a generic complex data type. When we declare an actual variable,

we will use one of the following declarations which specifies the type of the elements we

want in our complex number variables:

These are actually supported in the C++ Standard Template Library (STL – definition

coming up on the next page) for C++ when we include the appropriate header file.

�Containers
“Container” is C++ for “a struct” that organizes and manages a collection of data items.

A C++ container combines both object-oriented capabilities (isolates the code that can

manipulate the “struct”) and generic programming qualities (the container is abstract,

so it can operate on different data types). We will discuss containers supplied by TBB

in Chapter 6. Understanding containers is not critical for using TBB, they are primarily

supported by TBB for C++ users who already understand and use containers.

�Templates
Templates are patterns for creating functions or classes (such as containers) in an

efficient generic programming fashion, meaning their specification is flexible with types,

but the actual compiled instance is specific and therefore free of overhead from this

flexibility. Creating an effective template library can be a very involved task, but using

one is not. TBB is a template library.

To use TBB, and other template libraries, we can really treat them as a collection

of function calls. The fact that they are templates really only affects us in that we need

to use a C++ compiler to compile them since templates are not part of the C language.

Modern C++ compilers are tuned to minimize abstraction penalties arising from heavy

use of templates.

Preface

lxiv

�STL
The C++ Standard Template Library (STL) is a software library for the C++ programming

language which is part of the C++ programming standard. Every C++ compiler needs to

support STL. STL provides four components called algorithms, containers, functions,

and iterators.

The concept of “generic programming” runs deep in STL which relies heavily on

templates. STL algorithms, such as sort, are independent of data types (containers). STL

supports more complex data types including containers and associative arrays, which

can be based upon any built-in type or user-defined type provided they support some

elementary operations (such as copying and assignment).

�Overloading
Operator overloading is an object-oriented concept which allows new data types (e.g.,

complex) to be used in contexts where built-in types (e.g., int) are accepted. This can

be as arguments to functions, or operators such as = and +. C++ templates given us a

generalized overloading which can be thought of extending overloading to function

names with various parameters and or return value combinations. The goals of generic

programming with templates, and object-oriented programming with overloading, are

ultimately polymorphism – the ability to process data differently based on the type of the

data, but reuse the code processing. TBB does this well – so we can just enjoy it as users

of the TBB template library.

�Ranges and Iterators
If you want to start a bar fight with C++ language gurus, pick either “iterators”

or “ranges” and declare that one is vastly superior to the other. The C++ language

committee is generally favoring to ranges as a higher-level interface and iterators

for future standard revisions. However, that simple claim might start a bar fight too.

C++ experts tell us that ranges are an approach to generic programming that uses the

sequence abstraction as opposed to the iterator abstraction. Head spinning yet?

As users, the key concept behind an iterator or a range is much the same:

a shorthand to denote a set (and some hints on how to traverse it). If we want to

denote the numbers 0 to 999999 we can mathematically write this as [0,999999] or

[0,1000000). Note the use of mathematical notation where [or] are inclusive and (or)

Preface

lxv

note noninclusion of the number closest to the parenthesis. Using TBB syntax, we write

blocked_range<size_t>(0,1000000).

We love ranges, because they match perfectly with our desire to specify “possible

parallelism” instead of mandatory parallelism. Consider a “parallel for” that planned to

iterate a million times. We could immediately create a million threads to do the work in

parallel, or we could create one thread with a range of [0,1000000). Such a range can be

subdivided as needed to fill the available parallelism, and this is why we love ranges.

TBB supports and makes use of iterators and ranges, and we will mention that

periodically in this book. There are plenty of examples of these starting in Chapter 2.

We will show examples of how to use them, and we think those examples are easy to

imitate. We will simply show which one to use where, and how, and not debate why C++

has them both. Understanding the deep C++ meanings of iterators vs. ranges will not

improve our ability to use TBB. A simple explanation for now would be that iterators

are less abstract that ranges, and at a minimum that leads to a lot of code using iterators

which passes two parameters: something.begin() and something.end() when all we

wanted to say was “use this range – begin to end.”

�Summary
We have reviewed how to “Think Parallel” in terms of decomposition, scaling,

correctness, abstraction, and patterns. We have introduced locality as a key concern

for all parallel programming. We have explained how using tasks instead of threads is

a key revolutionary development in parallel programming supported by TBB. We have

introduced the elements of C++ programming that are needed above and beyond a

knowledge of C in order to use TBB well.

With these key concepts bouncing around in your head, you have begun to Think

Parallel. You are developing an intuition about parallelism that will serve you well.

This Preface, the Index, and Glossary are key resources as you venture forth in the

rest of this book to explore and learn parallel programming with TBB.

Preface

lxvi

�For More Information
•	 The C++ standard(s), https://isocpp.org/std/the-standard.

•	 “The Problem with Threads” by Edward Lee, 2006. IEEE Computer

Magazine, May 2006, http://citeseerx.ist.psu.edu/viewdoc/do

wnload?doi=10.1.1.306.9963&rep=rep1&type=pdf, or U. C. Berkley

Technical Report: www2.eecs.berkeley.edu/Pubs/TechRpts/2006/

EECS-2006-1.pdf.

•	 All of the code examples used in this book are available at https://

github.com/Apress/pro-TBB.

Preface

https://isocpp.org/std/the-standard
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.306.9963&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.306.9963&rep=rep1&type=pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
https://github.com/Apress/pro-TBB
https://github.com/Apress/pro-TBB

Part 1

3
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_1

CHAPTER 1

Jumping Right In:
“Hello, TBB!”
Over 10 years after its first release, the Threading Building Blocks (TBB) library has

become one of the most widely used C++ libraries for parallel programming. While it

has retained its core philosophy and features, it continues to expand to address new

opportunities and challenges as they arise.

In this chapter, we discuss the motivations for TBB, provide a brief overview of its

main components, describe how to get the library, and then jump right into a few simple

examples.

�Why Threading Building Blocks?
Parallel programming has a long history, stretching back to the 1950s and beyond.

For decades, scientists have been developing large-scale parallel simulations for

supercomputers, and businesses have been developing enterprise applications for large

multiprocessor mainframes. But a little over 10 years ago, the first multicore chips intended

for desktops and laptops started to enter the marketplace. This was a game changer.

The number of processors in these first multicore desktop and laptop systems was

small – only two cores – but the number of developers that had to become parallel

programmers was huge. If multicore processors were to become mainstream, parallel

programming had to become mainstream too, especially for developers who care about

performance.

The TBB library was first released in September of 2006 to address the unique

challenges of mainstream parallel programming. Its goal now, and when it was first

introduced over 10 years ago, is to provide an easy and powerful way for developers to

4

build applications that continue to scale as new platforms, with different architectures

and more cores, are introduced. This “future-proofing” has paid off as the number of

cores in mainstream processors has grown from two in 2006 to more than 64 in 2018!

To achieve this goal of future-proofing parallel applications against changes in

the number and capabilities of processing cores, the key philosophy behind TBB is

to make it easy for developers to express the parallelism in their applications, while

limiting the control they have over the mapping of this parallelism to the underlying

hardware. This philosophy can seem counterintuitive to some experienced parallel

programmers. If we believe parallel programming must get maximum performance at

all costs by programming to the bare metal of a system, and hand-tuning and optimizing

applications to squeeze out every last bit of performance, then TBB may not be for us.

Instead, the TBB library is for developers that want to write applications that get great

performance on today’s platforms but are willing to give up a little performance to

ensure that their applications continue to perform well on future systems.

To achieve this end, the interfaces in TBB let us express the parallelism in our

applications but provide flexibility to the library so it can effectively map this parallelism

to current and future platforms, and to adapt it to dynamic changes in system resources

at runtime.

�Performance: Small Overhead, Big Benefits for C++
We do not mean to make too big a deal about performance loss, nor do we wish to

deny it. For simple C++ code written in a “Fortran” style, with a single layer of well-

balanced parallel loops, the dynamic nature of TBB may not be needed at all. However,

the limitations of such a coding style are an important factor in why TBB exists. TBB

was designed to efficiently support nested, concurrent, and sequential composition

of parallelism and to dynamically map this parallelism on to a target platform. Using

a composable library like TBB, developers can build applications by combining

components and libraries that contain parallelism without worrying that they will

negatively interfere with each other. Importantly, TBB does not require us to restrict

the parallelism we express to avoid performance problems. For large, complicated

applications using C++, TBB is therefore easy to recommend without disclaimers.

The TBB library has evolved over the years to not only adjust to new platforms but

also to demands from developers that want a bit more control over the choices the

library makes in mapping parallelism to the hardware. While TBB 1.0 had very few

performance controls for users, TBB 2019 has quite a few more – such as affinity controls,

Chapter 1 Jumping Right In: “Hello, TBB!”

5

constructs for work isolation, hooks that can be used to pin threads to cores, and so on.

The developers of TBB worked hard to design these controls to provide just the right

level of control without sacrificing composability.

The interfaces provided by the library are nicely layered – TBB provides high-level

templates that suit the needs of most programmers, focusing on common cases. But it

also provides low-level interfaces so we can drill down and create tailored solutions for

our specific applications if needed. TBB has the best of both worlds. We typically rely on

the default choices of the library to get great performance but can delve into the details if

we need to.

�Evolving Support for Parallelism in TBB and C++
Both the TBB library and the C++ language have evolved significantly since the

introduction of the original TBB. In 2006, C++ had no language support for parallel

programming, and many libraries, including the Standard Template Library (STL), were

not easily used in parallel programs because they were not thread-safe.

The C++ language committee has been busy adding features for threading directly to

the language and its accompanying Standard Template Library (STL). Figure 1-1 shows

new and planned C++ features that address parallelism.

Figure 1-1.  The features in the C++ standard as well as some proposed features

Even though we are big fans of TBB, we would in fact prefer if all of the fundamental

support needed for parallelism is in the C++ language itself. That would allow TBB to

utilize a consistent foundation on which to build higher-level parallelism abstractions.

The original versions of TBB had to address a lack of C++ language support, and this is

an area where the C++ standard has grown significantly to fill the foundational voids

Chapter 1 Jumping Right In: “Hello, TBB!”

6

that TBB originally had no choice but to fill with features such as portable locks and

atomics. Unfortunately, for C++ developers, the standard still lacks features needed for

full support of parallel programming. Fortunately, for readers of this book, this means

that TBB is still relevant and essential for effective threading in C++ and will likely stay

relevant for many years to come.

It is very important to understand that we are not complaining about the C++

standard process. Adding features to a language standard is best done very carefully,

with careful review. The C++11 standard committee, for instance, spent huge energy on

a memory model. The significance of this for parallel programming is critical for every

library that builds upon the standard. There are also limits to what a language standard

should include, and what it should support. We believe that the tasking system and the

flow graph system in TBB is not something that will directly become part of a language

standard. Even if we are wrong, it is not something that will happen anytime soon.

�Recent C++ Additions for Parallelism
As shown in Figure 1-1, the C++11 standard introduced some low-level, basic building

blocks for threading, including std::async, std::future, and std::thread. It also

introduced atomic variables, mutual exclusion objects, and condition variables.

These extensions require programmers to do a lot of coding to build up higher-level

abstractions – but they do allow us to express basic parallelism directly in C++. The

C++11 standard was a clear improvement when it comes to threading, but it doesn’t

provide us with the high-level features that make it easy to write portable, efficient

parallel code. It also does not provide us with tasks or an underlying work-stealing task

scheduler.

The C++17 standard introduced features that raise the level of abstraction above

these low-level building blocks, making it easier for us to express parallelism without

having to worry about every low-level detail. As we discuss later in this book, there are

still some significant limitations, and so these features are not yet sufficiently expressive

or performant – there’s still a lot of work to do in the C++ standard.

The most pertinent of these C++17 additions are the execution policies that can be

used with the Standard Template Library (STL) algorithms. These policies let us choose

whether an algorithm can be safely parallelized, vectorized, parallelized and vectorized,

or if it needs to retain its original sequenced semantics. We call an STL implementation

that supports these policies a Parallel STL.

Chapter 1 Jumping Right In: “Hello, TBB!”

7

Looking into the future, there are proposals that might be included in a future C++

standard with even more parallelism features, such as resumable functions, executors,

task blocks, parallel for loops, SIMD vector types, and additional execution policies for

the STL algorithms.

�The Threading Building Blocks (TBB) Library
The Threading Building Blocks (TBB) library is a C++ library that serves two key roles:

(1) it fills foundational voids in support for parallelism where the C++ standard has not

sufficiently evolved, or where new features are not fully supported by all compilers, and

(2) it provides higher-level abstractions for parallelism that are beyond the scope of what

the C++ language standard will likely ever include. TBB contains a number of features, as

shown in Figure 1-2.

Figure 1-2.  The features of the TBB library

These features can be categorized into two large groups: interfaces for expressing

parallel computations and interfaces that are independent of the execution model.

Chapter 1 Jumping Right In: “Hello, TBB!”

8

�Parallel Execution Interfaces
When we use TBB to create parallel programs, we express the parallelism in the

application using one of the high-level interfaces or directly with tasks. We discuss tasks

in more detail later in this book, but for now we can think of a TBB task as a lightweight

object that defines a small computation and its associated data. As TBB developers, we

express our application using tasks, either directly or indirectly through the prepackaged

TBB algorithms, and the library schedules these tasks on to the platform’s hardware

resources for us.

It’s important to note that as developers, we may want to express different kinds of

parallelism. The three most common layers of parallelism that are expressed in parallel

applications are shown in Figure 1-3. We should note that some applications may

contain all three layers and others may contain only one or two of them. One of the most

powerful aspects of TBB is that it provides high-level interfaces for each of these different

parallelism layers, allowing us to exploit all of the layers using the same library.

The message-driven layer shown in Figure 1-3 captures parallelism that is structured

as relatively large computations that communicate to each other through explicit

messages. Common patterns in this layer include streaming graphs, data flow graphs,

and dependency graphs. In TBB, these patterns are supported through the Flow Graph

interfaces (described in Chapter 3).

The fork-join layer shown in Figure 1-3 supports patterns in which a serial

computation branches out into a set of parallel tasks and then continues only when

the parallel subcomputations are complete. Examples of fork-join patterns include

functional parallelism (task parallelism), parallel loops, parallel reductions, and

pipelines. TBB supports these with its Generic Parallel Algorithms (described in

Chapter 2).

Chapter 1 Jumping Right In: “Hello, TBB!”

9

Finally, the Single Instruction, Multiple Data (SIMD) layer is where data parallelism

is exploited by applying the same operation to multiple data elements simultaneously.

This type of parallelism is often implemented using vector extensions such as AVX,

AVX2, and AVX-512 that use the vector units available in each processor core. There is

a Parallel STL implementation (described in Chapter 4) included with all of the TBB

distributions that provides vector implementations, among others, that take advantage

of these extensions.

TBB provides high-level interfaces for many common parallel patterns, but there

may still be cases where none of the high-level interfaces matches a problem. If that’s the

case, we can use TBB tasks directly to build our own algorithms.

The true power of the TBB parallel execution interfaces comes from the ability to

mix them together, something usually called “composability.” We can create applications

that have a Flow Graph at the top level with nodes that use nested Generic Parallel

Algorithms. These nested Generic Parallel Algorithms can, in turn, use Parallel STL

Figure 1-3.  The three layers of parallelism commonly found in applications and
how they map to the high-level TBB parallel execution interfaces

Chapter 1 Jumping Right In: “Hello, TBB!”

10

algorithms in their bodies. Since the parallelism expressed by all of these layers is

exposed to the TBB library, this one library can schedule the corresponding tasks in an

efficient and composable way, making best use of the platform’s resources.

One of the key properties of TBB that makes it composable is that it supports relaxed

sequential semantics. Relaxed sequential semantics means that the parallelism we

express using TBB tasks is in fact only a hint to the library; there is no guarantee that any

of the tasks actually execute in parallel with each other. This gives tremendous flexibility

to the TBB library to schedule tasks as necessary to improve performance. This flexibility

lets the library provide scalable performance on systems, whether they have one core,

eight cores, or 80 cores. It also allows the library to adapt to the dynamic load on the

platform; for example, if one core is oversubscribed with work, TBB can schedule more

work on the other cores or even choose to execute a parallel algorithm using only a

single core. We describe in more detail why TBB is considered a composable library in

Chapter 9.

�Interfaces That Are Independent of the Execution Model
Unlike the parallel execution interfaces, the second large group of features in Figure 1-2

are completely independent of the execution model and of TBB tasks. These features are

as useful in applications that use native threads, such as pthreads or WinThreads, as they

are in applications that use TBB tasks.

These features include concurrent containers that provide thread-friendly interfaces

to common data structures like hash tables, queues, and vectors. They also include

features for memory allocation like the TBB scalable memory allocator and the cache

aligned allocator (both described in Chapter 7). They also include lower-level features

such as synchronization primitives and thread-local storage.

�Using the Building Blocks in TBB
As developers, we can pick and choose the parts of TBB that are useful for our applications.

We can, for example, use just the scalable memory allocator (described in Chapter 7)

and nothing else. Or, we can use concurrent containers (described in Chapter 6) and a

few Generic Parallel Algorithms (Chapter 2). And of course, we can also choose to go all

in and build an application that combines all three high-level execution interfaces and

makes use of the TBB scalable memory allocator and concurrent containers, as well as

the many other features in the library.

Chapter 1 Jumping Right In: “Hello, TBB!”

11

�Let’s Get Started Already!
�Getting the Threading Building Blocks (TBB) Library
Before we can start using TBB, we need to get a copy of the library. There are a few ways

to do this. At the time of the writing of this book, these ways include

•	 Follow links at www.threadingbuildingblocks.org or https://

software.intel.com/intel-tbb to get a free version of the TBB

library directly from Intel. There are precompiled versions available

for Windows, Linux, and macOS. The latest packages include both

the TBB library and an implementation of the Parallel STL algorithms

that uses TBB for threading.

•	 Visit https://github.com/intel/tbb to get the free, open-source

version of the TBB library. The open-source version of TBB is in no

way a lite version of the library; it contains all of the features of the

commercially supported version. You can choose to checkout and

build from source, or you can click “releases” to download a version

that has been built and tested by Intel. At GitHub, pre-built and tested

versions are available for Windows, Linux, macOS, and Android.

Again, the latest packages for the pre-built versions of TBB include

both the TBB library and an implementation of Parallel STL that uses

TBB for threading. If you want the source code for Parallel STL, you

will need to download that separately from https://github.com/

intel/parallelstl.

•	 You can download a copy of the Intel Parallel Studio XE tool suite

https://software.intel.com/intel-parallel-studio-xe. TBB

and a Parallel STL that uses TBB is currently included in all editions

of this tool suite, including the smallest Composer Edition. If you

have a recent version of the Intel C++ compiler installed, you likely

already have TBB installed on your system.

We leave it to readers to select the most appropriate route for getting TBB

and to follow the directions for installing the package that are provided at the

corresponding site.

Chapter 1 Jumping Right In: “Hello, TBB!”

https://www.threadingbuildingblocks.org
https://software.intel.com/intel-tbb
https://software.intel.com/intel-tbb
https://github.com/intel/tbb
https://github.com/intel/parallelstl
https://github.com/intel/parallelstl
https://software.intel.com/intel-parallel-studio-xe

12

�Getting a Copy of the Examples
All of the code examples used in this book are available at

https://github.com/Apress/pro-TBB. In this repository, there are directories for

each chapter. Many of the source files are named after the figure they appear in, for

example ch01/fig_1_04.cpp contains code that matches Figure 1-4 in this chapter.

�Writing a First “Hello, TBB!” Example
Figure 1-4 provides a small example that uses a tbb::parallel_invoke to evaluate two

functions, one that prints Hello and the other that prints TBB! in parallel. This example

is trivial and will not benefit from parallelization, but we can use it to be sure that we

have set up our environment properly to use TBB. In Figure 1-4, we include the tbb.h

header to get access to the TBB functions and classes, all of which are in namespace tbb.

The call to parallel_invoke asserts to the TBB library that the two functions passed to

it are independent of each other and are safe to execute in parallel on different cores

or threads and in any order. Under these constraints, the resulting output may contain

either Hello or TBB! first. We might even see that there is no newline character between

the two strings and two consecutive newlines at the end of the output, since the printing

of each string and its std::endl do not happen atomically.

Figure 1-4.  A Hello TBB example

Figure 1-5 provides an example that uses a Parallel STL std::for_each to apply a

function in parallel to two items in a std::vector. Passing a pstl::execution::par

policy to the std::for_each asserts that it is safe to apply the provided function in

parallel on different cores or threads to the result of dereferencing every iterator in the

range [v.begin(), v.end()). Just like with Figure 1-4, the output that results from

running this example might have either string printed first.

Chapter 1 Jumping Right In: “Hello, TBB!”

https://github.com/Apress/pro-TBB

13

In both Figures 1-4 and 1-5, we use C++ lambda expressions to specify the functions.

Lambda expressions are very useful when using libraries like TBB to specify the user

code to execute as a task. To help review C++ lambda expressions, we offer a callout box

“A Primer on C++ Lambda Expressions” with an overview of this important modern C++

feature.

A PRIMER ON C++ LAMBDA EXPRESSIONS

Support for lambda expressions was introduced in C++11. They are used to create

anonymous function objects (although you can assign them to named variables) that can

capture variables from the enclosing scope. The basic syntax for a C++ lambda expression is

[capture-list] (params) -> ret { body }

where

•	 capture-list is a comma-separated list of captures. We capture a variable by

value by listing the variable name in the capture-list. We capture a variable by

reference by prefixing it with an ampersand, for example, &v. And we can use

this to capture the current object by reference. There are also defaults: [=] is

used to capture all automatic variables used in the body by value and the current

object by reference, [&] is used to capture all automatic variables used in the

body as well as the current object by reference, and [] captures nothing.

Figure 1-5.  A Hello Parallel STL example

Chapter 1 Jumping Right In: “Hello, TBB!”

14

•	 params is the list of function parameters, just like for a named function.

•	 ret is the return type. If ->ret is not specified, it is inferred from the return

statements.

•	 body is the function body.

This next example shows a C++ lambda expression that captures one variable, i, by value

and another, j, by reference. It also has a parameter k0 and another parameter l0 that is

received by reference:

Running the example will result in the following output:

i == 1

j == 10

k == 100

l == 1000

First call returned 2221

i == 1

j == 20

k == 100

l == 2000

Second call returned 4241

i == 1

j == 40

k == 100

l == 4000

Chapter 1 Jumping Right In: “Hello, TBB!”

15

We can think of a lambda expression as an instance of a function object, but the compiler

creates the class definition for us. For example, the lambda expression we used in the

preceding example is analogous to an instance of a class:

Wherever we use a C++ lambda expression, we can substitute it with an instance of a

function object like the preceding one. In fact, the TBB library predates the C++11 standard

and all of its interfaces used to require passing in instances of objects of user-defined classes.

C++ lambda expressions simplify the use of TBB by eliminating the extra step of defining a

class for each use of a TBB algorithm.

�Building the Simple Examples
Once we have written the examples in Figures 1-4 and 1-5, we need to build executable

files from them. The instructions for building an application that uses TBB are OS and

compiler dependent. However, in general, there are two necessary steps to properly

configure an environment.

�Steps to Set Up an Environment

	 1.	 We must inform the compiler about the location of the TBB

headers and libraries. If we use Parallel STL interfaces, we must

also inform the compiler about the location of the Parallel STL

headers.

Chapter 1 Jumping Right In: “Hello, TBB!”

16

	 2.	 We must configure our environment so that the application

can locate the TBB libraries when it is run. TBB is shipped as a

dynamically linked library, which means that it is not directly

embedded into our application; instead, the application locates and

loads it at runtime. The Parallel STL interfaces do not require their

own dynamically linked library but do depend on the TBB library.

We will now briefly discuss some of the most common ways to accomplish these

steps on Windows and Linux. The instructions for macOS are similar to those for Linux.

There are additional cases and more detailed directions in the documentation that ships

with the TBB library.

�Building on Windows Using Microsoft Visual Studio
If we download either the commercially supported version of TBB or a version of Intel

Parallel Studio XE, we can integrate the TBB library with Microsoft Visual Studio when

we install it, and then it is very simple to use TBB from Visual Studio.

To create a “Hello, TBB!” project, we create a project as usual in Visual Studio, add

a “.cpp” file with the code contained in Figure 1-4 or Figure 1-5, and then go to the

project’s Property Pages, traverse to Configuration Properties ➤ Intel Performance
Libraries and change Use TBB to Yes, as shown in Figure 1-6. This accomplishes step 1.

Visual Studio will now link the TBB library into the project as it has the proper paths to

the header files and libraries. This also properly sets the paths to the Parallel STL headers.

Figure 1-6.  Setting Use TBB to Yes in the project Property Pages in Visual Studio

Chapter 1 Jumping Right In: “Hello, TBB!”

17

On Windows systems, the TBB libraries that are dynamically loaded by the

application executable at runtime are the “.dll” files. To complete step 2 in setting up our

environment, we need to add the location of these files to our PATH environment variable.

We can do this by adding the path to either our Users or System PATH variable. One place

to find these settings is in the Windows Control Panel by traversing System and Security
➤ System ➤ Advanced System Settings ➤ Environment Variables. We can refer to the

documentation for our installation of TBB for the exact locations of the “.dll” files.

Note  Changes to the PATH variable in an environment only take effect in
Microsoft Visual Studio after it is restarted.

Once we have the source code entered, have Use TBB set to Yes, and have the path to the

TBB “.dll”s in our PATH variable, we can build and execute the program by entering Ctrl-F5.

�Building on a Linux Platform from a Terminal
�Using the Intel Compiler

When using the Intel C++ Compiler, the compilation process is simplified because the TBB

library is included with the compiler and it supports a compiler flag –tbb that properly

sets the include and library paths during compilation for us. Therefore, to compile our

examples using the Intel C++ Compiler, we just add the –tbb flag to the compile line.

 icpc –std=c++11 -tbb –o fig_1_04 fig_1_04.cpp

 icpc –std=c++11 -tbb –o fig_1_05 fig_1_05.cpp

�tbbvars and pstlvars Scripts

If we are not using the Intel C++ Compiler, we can use scripts that are included with

the TBB and Parallel STL distributions to set up our environment. These scripts modify

the CPATH, LIBRARY_PATH and LD_LIBRARY_PATH environment variables to include the

directories needed to build and run TBB and Parallel STL applications. The CPATH

variable adds additional directories to the list of directories the compiler searches when

it looks for #include files. The LIBRARY_PATH adds additional directories to the list of

directories the compiler searches when it looks for libraries to link against at compile

time. And the LD_LIBRARY_PATH adds additional directories to the list of directories the

executable will search when it loads dynamic libraries at runtime.

Chapter 1 Jumping Right In: “Hello, TBB!”

18

Let us assume that the root directory of our TBB installation is TBB_ROOT. The

TBB library comes with a set of scripts in the ${TBB_ROOT}/bin directory that we can

execute to properly set up the environment. We need to pass our architecture type

[ia32|intel64|mic] to this script. We also need to add a flag at compile time to enable

the use of C++11 features, such as our use of lambda expressions.

Even though the Parallel STL headers are included with all of the recent TBB library

packages, we need to take an extra step to add them to our environment. Just like with

TBB, Parallel STL comes with a set of scripts in the ${PSTL_ROOT}/bin directory. The

PSTL_ROOT directory is typically a sibling of the TBB_ROOT directory. We also need to pass

in our architecture type and enable the use of C++11 features to use Parallel STL.

The steps to build and execute the example in Figure 1-4 on a Linux platform with

64-bit Intel processors look like

 source ${TBB_ROOT}/bin/tbbvars.sh intel64 linux auto_tbbroot

 g++ -std=c++11 -o fig_1_04 fig_1_04.cpp -ltbb

 ./fig_1_04

The steps to build and execute the example in Figure 1-5 on a Linux platform with

64-bit Intel processors look like

 source ${TBB_ROOT}/bin/tbbvars.sh intel64 linux auto_tbbroot

 source ${PSTL_ROOT}/bin/pstlvars.sh intel64 auto_pstlroot

 g++ -std=c++11 -o fig_1_05 fig_1_05.cpp -ltbb

 ./fig_1_05

Note I ncreasingly, Linux distributions include a copy of the TBB library. On these
platforms, the GCC compiler may link against the platform’s version of the TBB
library instead of the version of the TBB library that is added to the LIBRARY_PATH
by the tbbvars script. If we see linking problems when using TBB, this might be
the issue. If this is the case, we can add an explicit library path to the compiler’s
command line to choose a specific version of the TBB library. 

For example: 

 g++ -L${TBB_ROOT}/lib/intel64/gcc4.7 –ltbb ...

Chapter 1 Jumping Right In: “Hello, TBB!”

19

We can add –Wl,--verbose to the g++ command line to generate a report of all
of the libraries that are being linked against during compilation to help diagnose
this issue.

Although we show commands for g++, except for the compiler name used, the

command lines are the same for the Intel compiler (icpc) or LLVM (clang++).

�Setting Up Variables Manually Without Using the tbbvars Script
or the Intel Compiler

Sometimes we may not want to use the tbbvars scripts, either because we want to know

exactly what variables are being set or because we need to integrate with a build system.

If that’s not the case for you, skip over this section unless you really feel the urge to do

things manually.

Since you’re still reading this section, let’s look out how we can build and execute on

the command line without using the tbbvars script. When compiling with a non-Intel

compiler, we don’t have the –tbb flag available to us, so we need to specify the paths to

both the TBB headers and the shared libraries.

If the root directory of our TBB installation is TBB_ROOT, the headers are in

${TBB_ROOT}/include and the shared library files are stored in ${TBB_ROOT}/

lib/${ARCH}/${GCC_LIB_VERSION}, where ARCH is the system architecture

[ia32|intel64|mic] and the GCC_LIB_VERSION is the version of the TBB library that is

compatible with your GCC or clang installation.

The underlying difference between the TBB library versions is their dependencies on

features in the C++ runtime libraries (such as libstdc++ or libc++).

Typically to find an appropriate TBB version to use, we can execute the command

gcc –version in our terminal. We then select the closest GCC version available in

${TBB_ROOT}/lib/${ARCH} that is not newer than our GCC version (this usually works

even when we are using clang++). But because installations can vary from machine to

machine, and we can choose different combinations of compilers and C++ runtimes, this

simple approach may not always work. If it does not, refer to the TBB documentation for

additional guidance.

Chapter 1 Jumping Right In: “Hello, TBB!”

20

For example, on a system with GCC 5.4.0 installed, we compiled the example in

Figure 1-4 with

g++ -std=c++11 -o fig_1_04 fig_1_04.cpp \

 –I ${TBB_ROOT}/include \

 -L ${TBB_ROOT}/lib/intel64/gcc4.7 –ltbb

And when using clang++, we used the same TBB version:

clang++ -std=c++11 -o fig_1_04 fig_1_04.cpp \

 -I ${TBB_ROOT}/include \

 -L ${TBB_ROOT}/lib/intel64/gcc-4.7 –ltbb

To compile the example in Figure 1-5, we also need to add the path to the Parallel

STL include directory:

g++ -std=c++11 -o fig_1_05 fig_1_05.cpp \

 –I ${TBB_ROOT}/include \

 -I ${PSTL_ROOT}/include \

 -L ${TBB_ROOT}/lib/intel64/gcc4.7 –ltbb

Regardless of whether we have compiled with the Intel compiler, gcc, or clang++,

we need to add the TBB shared library location to our LD_LIBRARY_PATH so that it can

be found when the application runs. Again, assuming that the root directory of our TBB

installation is TBB_ROOT, we can set this, for example, with

export LD_LIBRARY_PATH=${TBB_ROOT}/lib/${ARCH}/${GCC_LIB_VERSION}:${LD_

LIBRARY_PATH}

Once we have compiled our application using the Intel compiler, gcc, or clang++ and

have set our LD_LIBRARY_PATH as required, we can then run the applications from the

command line:

./fig_1_04

This should result in an output similar to

 Hello

 Parallel STL!

Chapter 1 Jumping Right In: “Hello, TBB!”

21

�A More Complete Example
The previous sections provide the steps to write, build, and execute a simple TBB

application and a simple Parallel STL application that each print a couple of lines of

text. In this section, we write a bigger example that can benefit from parallel execution

using all three of the high-level execution interfaces shown in Figure 1-2. We do not

explain all of the details of the algorithms and features used to create this example,

but instead we use this example to see the different layers of parallelism that can be

expressed with TBB. This example is admittedly contrived. It is simple enough to explain

in a few paragraphs but complicated enough to exhibit all of the parallelism layers

described in Figure 1-3. The final multilevel parallel version we create here should be

viewed as a syntactic demonstration, not a how-to guide on how to write an optimal TBB

application. In subsequent chapters, we cover all of the features used in this section in

more detail and provide guidance on how to use them to get great performance in more

realistic applications.

�Starting with a Serial Implementation
Let’s start with the serial implementation shown in Figure 1-7. This example applies

a gamma correction and a tint to each image in a vector of images, writing each result

to a file. The highlighted function, fig_1_7, contains a for-loop that processes the

elements of a vector by executing applyGamma, applyTint, and writeImage functions on

each image. The serial implementations of each of these functions are also provided in

Figure 1-7. The definitions of the image representation and some of the helper functions

are contained in ch01.h. This header file is available, along with all of the source code for

the example, at https://github.com/Apress/threading-building-blocks.

Chapter 1 Jumping Right In: “Hello, TBB!”

https://github.com/Apress/threading-building-blocks

22

Figure 1-7.  A serial implementation of an example that applies a gamma
correction and a tint to a vector of images

Chapter 1 Jumping Right In: “Hello, TBB!”

23

Both the applyGamma function and the applyTint function traverse across the rows

of the image in an outer for-loop and the elements of each row in an inner for-loop.

New pixel values are computed and assigned to the output image. The applyGamma

function applies a gamma correction. The applyTint function applies a blue tint to the

image. The functions receive and return std::shared_ptr objects to simplify memory

management; readers that are unfamiliar with std::shared_ptr can refer to the sidebar

discussion “A note on smart pointers.” Figure 1-8 shows example outputs for an image

fed through the example code.

Figure 1-7.  (continued)

Chapter 1 Jumping Right In: “Hello, TBB!”

24

A NOTE ON SMART POINTERS

One of the most challenging parts of programming in C/C++ can be dynamic memory

management. When we use new/delete or malloc/free, we have to be sure we that we

match them up correctly to avoid memory leaks and double frees. Smart pointers including

unique_ptr, shared_ptr, and weak_ptr were introduced in C++11 to provide automatic,

exception-safe memory management. For example, if we allocate an object by using

make_shared, we receive a smart pointer to the object. As we assign this shared pointer to

other shared pointers, the C++ library takes care of reference counting for us. When there

are no outstanding references to our object through any smart pointers, then the object is

Figure 1-8.  Outputs for the example: (a) the original image generated by ch01::
makeFractalImage(2000000), (b) the image after it has been gamma corrected,
and (c) the image after it has been gamma corrected and tinted

Chapter 1 Jumping Right In: “Hello, TBB!”

25

automatically freed. In most of the examples in this book, including in Figure 1-7, we use

smart pointers instead of raw pointers. Using smart pointers, we don’t have to worry about

finding all of the points where we need to insert a free or delete – we can just rely on the

smart pointers to do the right thing.

�Adding a Message-Driven Layer Using a Flow Graph
Using a top-down approach, we can replace the outer loop in function fig_1_07 in

Figure 1-7 with a TBB Flow Graph that streams images through a set of filters as shown

in Figure 1-9. We admit that this is the most contrived of our choices in this particular

example. We could have easily used an outer parallel loop in this case; or we could have

merged the Gamma and Tint loop nests together. But for demonstration purposes, we

choose to express this as a graph of separate nodes to show how TBB can be used to

express message-driven parallelism, the top level of the parallelism in Figure 1-3. In

Chapter 3, we will learn more about the TBB Flow Graph interfaces and discover more

natural applications for this high-level, message-driven execution interface.

Figure 1-9.  A data flow graph that has four nodes: (1) a node that gets or
generates images, (2) a node that applies the gamma correction, (3) a node that
applies the tint, and (4) a node that writes out the resulting image

By using the data flow graph in Figure 1-9, we can overlap the execution of different

stages of the pipeline as they are applied to different images. For example, when a first

image, img0, completes in the gamma node, the result is passed to the tint node, while

a new image img1 enters the gamma node. Likewise, when this next step is done, img0,

which has now passed through both the gamma and tint nodes, is sent to the write node.

Meanwhile, img1 is sent to the tint node, and a new image, img2, begins processing in

the gamma node. At each step, the execution of the filters is independent of each other,

and so these computations can be spread across different cores or threads. Figure 1-10

shows the loop from function fig_1_7 now expressed as a TBB Flow Graph.

Chapter 1 Jumping Right In: “Hello, TBB!”

26

Figure 1-10.  Using a TBB Flow Graph in place of the outer for-loop

As we will see in Chapter 3, several steps are needed to build and execute a TBB

Flow Graph. First, a graph object, g, is constructed. Next, we construct the nodes that

represent the computations in our data flow graph. The node that streams the images to

Chapter 1 Jumping Right In: “Hello, TBB!”

27

the rest of the graph is a source_node named src. The computations are performed by

the function_node objects named gamma, tint, and write. We can think of a source_

node as a node that has no input and continues to send data until it runs out of data to

send. We can think of a function_node as a wrapper around a function that receives an

input and generates an output.

After the nodes are created, we connect them to each other using edges. Edges

represent the dependencies or communication channels between nodes. Since, in our

example in Figure 1-10, we want the src node to send the initial images to the gamma

node, we make an edge from the src node to the gamma node. We then make an edge

from the gamma node to the tint node. And likewise, we make an edge from the tint

node to the write node. Once we complete construction of the graph’s structure, we call

src.activate() to start the source_node and call g.wait_for_all() to wait until the

graph completes.

When the application in Figure 1-10 executes, each image generated by the src

node passes through the pipeline of nodes as described previously. When an image is

sent to the gamma node, the TBB library creates and schedules a task to apply the gamma

node’s body to the image. When that processing is done, the output is fed to the tint

node. Likewise, TBB will create and schedule a task to execute the tint node’s body on

that output of the gamma node. Finally, when that processing is done, the output of the

tint node is sent to the write node. Again, a task is created and scheduled to execute

the body of the node, in this case writing the image to a file. Each time an execution of

the src node finishes and returns true, a new task is spawned to execute the src node’s

body again. Only after the src node stops generating new images and all of the images it

has already generated have completed processing in the write node will the wait_for_

all call return.

�Adding a Fork-Join Layer Using a parallel_for
Now, let’s turn our attention to the implementation of the applyGamma and applyTint

functions. In Figure 1-11, we replace the outer i-loops in the serial implementations

with calls to tbb::parallel_for. We use a parallel_for Generic Parallel Algorithm to

execute across different rows in parallel. A parallel_for creates tasks that can be spread

across multiple processor cores on a platform. This pattern is an example of the fork-join

layer from Figure 1-3 and is described in more detail in Chapter 2.

Chapter 1 Jumping Right In: “Hello, TBB!”

28

Figure 1-11.  Adding parallel_for to apply the gamma correction and tint across
rows in parallel

Chapter 1 Jumping Right In: “Hello, TBB!”

29

�Adding a SIMD Layer Using a Parallel STL Transform
We can further optimize our two computational kernels by replacing the inner j-loops

with calls to the Parallel STL function transform. The transform algorithm applies a

function to each element in an input range, storing the results into an output range. The

arguments to transform are (1) the execution policy, (2 and 3) the input range of elements,

(4) the beginning of the output range, and (5) the lambda expression that is applied to

each element in the input range and whose result is stored to the output elements.

In Figure 1-12, we use the unseq execution policy to tell the compiler to use the SIMD

version of the transform function. The Parallel STL functions are described in more

detail in Chapter 4.

Figure 1-12.  Using std::transform to add SIMD parallelism to the inner loops

Chapter 1 Jumping Right In: “Hello, TBB!”

30

In Figure 1-12, each Image::Pixel object contains an array with four single byte

elements, representing the blue, green, red, and alpha values for that pixel. By using the

unseq execution policy, a vectorized loop is used to apply the function across the row of

elements. This level of parallelization corresponds to the SIMD layer in Figure 1-3 and

takes advantage of the vector units in the CPU core that the code executes on but does

not spread the computation across different cores.

Note P assing an execution policy to a Parallel STL algorithm does not guarantee
parallel execution. It is legal for the library to choose a more restrictive execution
policy than the one requested. It is therefore important to check the impact of using
an execution policy – especially one that depends on compiler implementations!

Figure 1-12.  (continued)

Chapter 1 Jumping Right In: “Hello, TBB!”

31

While the examples we created in Figure 1-7 through Figure 1-12 are a bit contrived,

they demonstrate the breadth and power of the TBB library’s parallel execution

interfaces. Using a single library, we expressed message-driven, fork-join, and SIMD

parallelism, composing them together into a single application.

�Summary
In this chapter, we started by explaining why a library such as TBB is even more relevant

today than it was when it was first introduced over 10 years ago. We then briefly looked at

the major features in the library, including the parallel execution interfaces and the other

features that are independent of the execution interfaces. We saw that the high-level

execution interfaces map to the common message-driven, fork-join, and SIMD layers

that are found in many parallel applications. We then discussed how to get a copy of TBB

and verify that our environment is correctly set up by writing, compiling, and executing

very simple examples. We concluded the chapter by building a more complete example

that uses all three high-level execution interfaces.

We are now ready to walk through the key support for parallel programming in the

next few chapters: Generic Parallel Algorithms (Chapter 2), Flow Graphs (Chapter 3),

Parallel STL (Chapter 4), Synchronization (Chapter 5), Concurrent Containers

(Chapter 6), and Scalable Memory Allocation (Chapter 7).

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material.

If material is not included in the chapter's Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 1 Jumping Right In: “Hello, TBB!”

http://creativecommons.org/licenses/by-nc-nd/4.0/

33
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_2

CHAPTER 2

Generic Parallel
Algorithms
What is the best method for scheduling parallel loops? How do we process data

structures in parallel that do not support random-access iterators? What’s the best way to

add parallelism to applications that look like pipelines? If the TBB library only provided

tasks and a task scheduler, we would need to answer these questions ourselves. Luckily,

we don’t need to plow through the many master’s theses and doctoral dissertations

written on these topics. The TBB library developers have already done this dirty work

for us! They provide the best-known methods for addressing these scenarios as template

functions and template classes, a group of features known as the TBB generic parallel

algorithms. These algorithms capture many of the processing patterns that are the

cornerstones of multithreaded programming.

Note  The TBB library developers have historically used the term generic parallel
algorithms to describe this set of features. By algorithm, they do not mean
a specific computation like matrix multiplication, LU decomposition, or even
something like std::find, but instead they mean common execution patterns.
It has been argued by some reviewers of this book that these features would
therefore be more accurately referred to as patterns and not algorithms. However,
to align with the terminology that the TBB library has been using for many years,
we refer to these features as generic parallel algorithms in this book.

34

We should have a strong preference for using these prewritten algorithms, whenever

they apply, instead of writing our own implementations. The developers of TBB have

spent years testing and improving their performance! The set of algorithms included in

the TBB library do not, of course, exhaustively cover every possible scenario, but if one

of them does match our processing pattern, we should use it. The algorithms provided

by TBB capture the majority of the scalable parallelism in applications. In Chapter 8, we

discuss design patterns for parallel programming, such as those described in Patterns for

Parallel Programming by Mattson, Sanders and Massingill (Addison-Wesley), and how

we can implement them using the TBB generic parallel algorithms.

As shown in Figure 2-1, all of the TBB generic algorithms start from a single thread of

execution. When a thread encounters a parallel algorithm, it spreads the work associated

with that algorithm across multiple threads. When all of the pieces of work are done, the

execution merges back together and continues again on the initial single thread.

Figure 2-1.  The fork-join nature of the TBB parallel algorithms

TBB algorithms provide a powerful but relatively easy parallel model to apply

because they can often be added incrementally and with a fairly local view of the code

under consideration. We can look for the most time-consuming region of a program,

add a TBB parallel algorithm to speed up that region, then look for the next most time-

consuming region, add parallelism there, and so on.

It must be understood however that TBB algorithms do not guarantee parallel

execution! Instead, they only communicate to the library that parallel execution is allowed.

If we look at Figure 2-1 from a TBB perspective, this means that all of the worker threads may

participate in executing parts of the computation, only a subset of threads may participate,

or just the master thread may participate. Programs and libraries that assume that the

parallelism is optional, like TBB does, are referred to as having relaxed sequential semantics.

Chapter 2 Generic Parallel Algorithms

35

A parallel program has sequential semantics if executing it using only a single thread

does not change the program’s semantics. As we will note several times in this book

though, the results of a sequential and parallel execution of a program may not always

match exactly due to rounding issues and other sources of inexactness. We acknowledge

these potential, nonsemantic differences by using the term relaxed sequential semantics.

While models like TBB and the OpenMP API offer relaxed sequential semantics, some

other models, such as MPI, let us write applications that have cyclic relationships that

require parallel execution. The relaxed sequential semantics of TBB are an important

part of what makes it useful for writing composable applications, as introduced in

Chapter 1 and described in more detail in Chapter 9. For now, we should just remember

that any of the algorithms described in this chapter will spread the work across one or

more threads, but not necessarily all of the threads available in the system.

The set of algorithms available in the Threading Building Blocks 2019 distribution is

shown in the table in Figure 2-2. They are all in namespace tbb and are available when

the tbb.h header file is included. The basics of the boldface algorithms are covered in

this chapter, with the other algorithms described in later chapters. We also provide a

sidebar Lambda expressions –vs- user-defined classes that explains that while we

almost exclusively use lambda expressions to pass code to the TBB algorithms in our

examples in this book, these arguments can almost always be replaced by user-defined

function objects if so desired.

Chapter 2 Generic Parallel Algorithms

36

LAMBDA EXPRESSIONS –VS- USER-DEFINED CLASSES

Since the first release of TBB predates the C++11 standard that introduced lambda

expressions into the language, the TBB generic algorithms do not require the use of

lambda expressions. Sometimes we can use the same interface with lambda expressions

or with function objects (functors). In other cases, there are two sets of interfaces for an

Figure 2-2.  The Generic Algorithms in the Threading Building Blocks library.
The bold-face algorithms are described in more detail in this chapter.

Chapter 2 Generic Parallel Algorithms

37

algorithm: a set that is more convenient with lambda expressions and a set that is more

convenient with user-defined objects.

For example, in place of

we can use a user-defined class and write

Often the choice between using a lambda expression or a user-defined object is simply a

matter of preference.

�Functional / Task Parallelism
Perhaps the simplest algorithm provided by the TBB library is parallel_invoke, a

function that allows us to execute as few as two functions in parallel, or as many as we

wish to specify:

Chapter 2 Generic Parallel Algorithms

38

The pattern name for this concept is map – which we will discuss more in Chapter 8

when we discuss patterns explicitly. The independence expressed by this algorithm/

pattern allows it to scale very well, making it the preferred parallelism to use when

we can apply it. We will also see that parallel_for, because the loop bodies must be

independent, can be used to similar effect.

A complete description of the interfaces available for parallel_invoke can be

found in Appendix B. If we have a set of functions that we need to invoke and it is safe to

execute the invocations in parallel, we use a parallel_invoke. For example, we can sort

two vectors, v1 and v2, by calling a serialQuicksort on each vector, one after the other:

 serialQuicksort(serial_v1.begin(), serial_v1.end());

 serialQuicksort(serial_v2.begin(), serial_v2.end());

Or, since these calls are independent of each other, we can use a parallel_invoke to

allow the TBB library to create tasks that can be executed in parallel by different worker

threads to overlap the two calls, as shown in Figure 2-3.

Figure 2-3.  Using parallel_invoke to execute two serialQuicksort calls in
parallel

If the two invocations of serialQuicksort execute for roughly the same amount

of time and there are no resource constraints, this parallel implementation can be

completed in half the time it takes to sequentially invoke the functions one after the other.

Chapter 2 Generic Parallel Algorithms

39

Note  We as developers are responsible for invoking functions in parallel only
when they can be safely executed in parallel. That is, TBB will not automatically
identify dependencies and apply synchronization, privatization, or other
parallelization strategies to make the code safe. This responsibility is ours when we
use parallel_invoke or any of the parallel algorithms we discuss in this chapter.

Using parallel_invoke is straightforward, but a single invocation of parallel_

invoke is not very scalable. A scalable algorithm makes effective use of additional cores

and hardware resources as they become available.

An algorithm shows strong scaling if it takes less time to solve a problem with a

fixed size as additional cores are added. For example, an algorithm that shows good

strong scaling may complete the processing of a given data set two times faster than

the sequential algorithm when two cores are available but complete the processing of

the same data set 100 times faster than the sequential algorithm when 100 cores are

available.

An algorithm shows weak scaling if it takes the same amount of time to solve a

problem with a fixed data set size per processor as more processors are added. For

example, an algorithm that shows good weak scaling may be able to process two times

the data than its sequential version in a fixed period of time using two processors and

100 times the data than its sequential version in that same fixed period of time when

using 100 processors.

Using a parallel_invoke to execute two sorts in parallel will demonstrate neither

strong nor weak scaling, since the algorithm can at most make use of two processors. If

we have 100 processors available, 98 of them will be idle because we have not given them

anything to do. Instead of writing code like our example, we should develop scalable

applications that allow us to implement parallelism once without the need to revisit the

implementation each time new architectures containing more cores become available.

Luckily, TBB can handle nested parallelism efficiently (described in detail in

Chapter 9), and so we can create scalable parallelism by using parallel_invoke in

recursive divide-and-conquer algorithms (a pattern we discuss in Chapter 8). TBB also

includes additional generic parallel algorithms, covered later in this chapter, to target

patterns that haven proven effective for achieving scalable parallelism, such as loops.

Chapter 2 Generic Parallel Algorithms

40

�A Slightly More Complicated Example: A Parallel
Implementation of Quicksort
A well-known example of a recursive divide-and-conquer algorithm is quicksort, as shown

in Figure 2-4. Quicksort works by recursively shuffling an array around pivot values, placing

the values that are less than or equal to the pivot value in the left partition of the array and

the values that are greater than the pivot value in the right partition of the array. When the

recursion reaches the base case, arrays of size one, the whole array has been sorted.

Figure 2-4.  A serial implementation of quicksort

We can develop a parallel implementation of quicksort as shown in Figure 2-5

by replacing the two recursive calls to serialQuicksort with a parallel_invoke. In

addition to the use of parallel_invoke, we also introduce a cutoff value. In the original

serial quicksort, we recursively partition all the way down to arrays of a single element.

Chapter 2 Generic Parallel Algorithms

41

Note S pawning and scheduling a TBB task is not free – a rule of thumb is that
a task should execute for at least 1 microsecond or 10,000 processor cycles in
order to mitigate the overheads associated with task creation and scheduling.
We provide experiments that demonstrate and justify this rule of thumb in more
detail in Chapter 16.

To limit overheads in our parallel implementation, we recursively call parallel_

invoke only until we dip below 100 elements and then directly call serialQuicksort

instead.

Figure 2-5.  A parallel implementation of quicksort using parallel_invoke

You may notice that the parallel implementation of quicksort has a big limitation –

the shuffle is done completely serially. At the top level, this means we have an O(n)

operation that is done on a single thread before any of the parallel work can begin.

This can limit the speedup. We leave it up to those that are interested to see how this

limitation might be addressed by known parallel partitioning implementations (see the

“For More Information” section at the end of this chapter).

Chapter 2 Generic Parallel Algorithms

42

�Loops: parallel_for, parallel_reduce,
and parallel_scan
For many applications, the execution time is dominated by time spent in loops. There

are several TBB algorithms that express parallel loops, letting us quickly add scalable

parallelism to the important loops in an application. The algorithms labeled as “Simple

Loops” in Figure 2-2 are ones where the beginning and end of the iteration space can

easily be determined by the time that the loop starts.

For example, we know there will be exactly N iterations in the following loop, so we

classify it as a simple loop:

All of the simple loop algorithms in TBB are based on two important concepts, a

Range and a Body. A Range represents a recursively divisible set of values. For a loop, a

Range is typically the indices in the iteration space or the values that an iterator will take

on as it iterates through a container. The Body is the function we apply to each value

in the Range; in TBB, the Body is typically provided as a C++ lambda expression but

can also be provided as a function object (see Lambda expressions –vs- user-defined
classes).

�parallel_for: Applying a Body to Each Element
in a Range
Let’s start with a small serial for loop that applies a function to an element of an array in

each iteration:

We can create a parallel version of this loop by using a parallel_for:

Chapter 2 Generic Parallel Algorithms

43

A complete description of the interfaces available for parallel_for can be found in

Appendix B. In the small example loop, the Range is the half-open interval [0, N), the

step is 1, and the Body is f(a[i]). We can express this as shown in Figure 2-6.

Figure 2-6.  Creating a parallel loop using parallel_for

When TBB executes a parallel_for, the Range is divided up into chunks of

iterations. Each chunk, paired with a Body, becomes a task that is scheduled onto one

of the threads that participate in executing the algorithm. The TBB library handles the

scheduling of tasks for us, so all we need to do is to use the parallel_for function to

express that the iterations of the loop should be executed in parallel. In later chapters,

we discuss tuning the behavior of TBB parallel loops. For now, let us assume that TBB

generates a good number of tasks for the range size and number of available cores. In

most cases, this is a good assumption to make.

It is important to understand that by using a parallel_for, we are asserting that it’s

safe to execute the iterations of the loop in any order and in parallel with each other. The

TBB library does nothing to check that executing the iterations of a parallel_for (or in

fact any of the generic algorithms) in parallel will generate the same results as a serial

execution of the algorithm – it is our job as developers to be sure that this is the case

when we choose to use a parallel algorithm. In Chapter 5, we discuss synchronization

mechanisms in TBB that can be used to make some unsafe code, safe. In Chapter 6, we

discuss concurrent containers that provide thread-safe data structures that can also

sometimes help us make code thread-safe. But ultimately, we need to ensure when we

use a parallel algorithm that any potential changes in read and write access patterns

do not change the validity of the results. We also need to ensure that we are using only

thread-safe libraries and functions from within our parallel code.

Chapter 2 Generic Parallel Algorithms

44

For example, the following loop is not safe to execute as a parallel_for since each

iteration depends on the result of the previous iteration. Changing the order of execution

of this loop will alter the final values stored in the elements of array a:

Imagine if the array a={1,0,0,0,...,0}. After executing this loop sequentially, it will

hold {1,2,3,4,...,N}. But if the loop executes out-of-order, the results will be different.

A mental exercise, when looking for loops that are safe to execute in parallel, is to ask

yourself whether the results will be the same if the loop iterations are executed all at

once, or in random order, or in reverse order. In this case, if a={1,0,0,0,...,0} and the

iterations of the loop are executed in reverse order, a will hold {1,2,1,1,...,1} when

the loop is complete. Obviously, execution order matters for this loop!

Formal descriptions of data dependence analysis are beyond the scope of this

book but can be found in many compiler and parallel programming books, including

High-Performance Compilers for Parallel Computing by Michael Wolfe (Pearson)

and Optimizing Compilers for Modern Architectures by Allen and Kennedy (Morgan

Kaufmann). Tools like Intel Inspector in Intel Parallel Studio XE can also be used to find

and debug threading errors, including in applications that use TBB.

�A Slightly More Complicated Example: Parallel Matrix
Multiplication

Figure 2-7 shows a nonoptimized serial implementation of a matrix multiplication loop

nest that computes C = AB for MxM matrices. We use this kernel here for demonstration

purposes – if you ever need to use matrix multiply in a real application and do not

consider yourself to be an optimization guru – you will almost certainly be better served

by using a highly optimized implementation from a math library that implements the

Basic Linear Algebra Subprograms (BLAS) like the Intel Math Kernel Library (MKL),

BLIS, or ATLAS. Matrix multiplication is a good example here because it is a small kernel

and performs a basic operation we are all familiar with. With these disclaimers covered,

let us continue with Figure 2-7.

Chapter 2 Generic Parallel Algorithms

45

Figure 2-7.  A nonoptimized implementation of matrix multiplication

We can quickly implement a parallel version of the matrix multiplication in Figure 2-7

by using parallel_for as shown in Figure 2-8. In this implementation, we make the outer

i loop parallel. An iteration of the outer i loop executes the enclosed j and k loops and so,

unless M is very small, will have enough work to exceed the 1 microsecond rule of thumb.

It is often better to make outer loops parallel when possible to keep overheads low.

Figure 2-8.  A simple parallel_for implementation of matrix multiply

Chapter 2 Generic Parallel Algorithms

46

The code in Figure 2-8 quickly gets us a basic parallel version of matrix multiply.

While this is a correct parallel implementation, it will leave a lot of performance on the

table because of the way it is traversing the arrays. In Chapter 16, we will talk about the

advanced features of parallel_for that can be used to tune performance.

�parallel_reduce: Calculating a Single Result Across
a Range
Another very common pattern found in applications is a reduction, commonly known

as the “reduce pattern” or “map-reduce” because it tends to be used with a map pattern

(see more about pattern terminology in Chapter 8).

A reduction computes a single value from a collection of values. Example

applications include calculating a sum, a minimum value, or a maximum value.

Let’s consider a loop that finds the maximum value in an array:

Computing a maximum from a set of values is an associative operation; that is, it’s

legal to perform this operation on groups of values and then combine those partial

results, in order, later. Computing a maximum is also commutative, so we do not even

need to combine the partial results in any particular order.

For loops that perform associative operations, TBB provides the function parallel_

reduce:

A complete description of the parallel_reduce interfaces is provided in Appendix B.

Many common mathematical operations are associative, such as addition,

multiplication, computing a maximum, and computing a minimum. Some operations

are associative in theory but are not associative when implemented on real systems due

to limitations in numerical representations. We should be aware of the implications of

depending on associativity for parallelism (see Associativity and floating-point types).

Chapter 2 Generic Parallel Algorithms

47

ASSOCIATIVITY AND FLOATING-POINT TYPES

In computer arithmetic, it is not always practical to represent real numbers with exact

precision. Instead, floating-point types such as float, double, and long double are

used as an approximation. The consequence of these approximations is that mathematical

properties that apply to operations on real numbers do not necessarily apply to their floating-

point counterparts. For example, while addition is associative and commutative on real

numbers, it is neither of these for floating-point numbers.

For example, if we compute the sum of N real values, each of which is equal to 1.0, we would

expect the result to be N.

But there is a limited number of significant digits in the float representation and so not

all integer values can be represented exactly. So, for example, if we run this loop with N ==

10e6 (10 million), we will get an output of 10000000. But if we execute this loop with N ==

20e6, we get an output of 16777216. The variable r simply cannot represent 16777217

since the standard float representation has a 24-bit mantissa (significand) and 16777217

requires 25 bits. When we add 1.0, the result rounds down to 16777216, and each

subsequent addition of 1.0 also rounds down to 16777216. To be fair, at each step, the result

of 16777216 is a good approximation of 16777217. It is the accumulation of these rounding

errors that makes the final result so bad.

If we break this sum into two loops and combine partial results, we get the right answer in

both cases:

Chapter 2 Generic Parallel Algorithms

48

Why? Because r can represent larger numbers, just not always exactly. The values in tmp1

and tmp2 are of similar magnitude, and therefore the addition impacts the available significant

digits in the representation, and we get a result that is a good approximation of 20 million.

This example is an extreme case of how associativity can change the results of a computation

using floating-point numbers.

The take-away of this discussion is that when we use a parallel_reduce, it uses

associativity to compute and combine partial results in parallel. So, we may get different results

when compared to a serial implementation when using floating-point numbers. And in fact,

depending on the number of participating threads, the implementation of parallel_reduce

may choose to create a different number of partial results from run to run. Therefore, we may

also get different results from run to run in the parallel implementation, even on the same input.

Before we panic and conclude that we should never use a parallel_reduce, we should

keep in mind that implementations that use floating-point numbers generally result in an

approximation. Getting different results on the same input does not necessarily mean that at

least one of the results is wrong. It just means that the rounding errors accumulated differently

for two different runs. It is up to us as developers to decide whether or not the differences

matter for an application.

If we want to ensure that we at least get the same results on each run on the same input data,

we can choose to use a parallel_deterministic_reduce as described in Chapter 16.

This deterministic implementation always creates the same number of partial results and

combines them in the same order for the same input, so the approximation will be the same

from run to run.

As with all of the simple loop algorithms, to use a TBB parallel_reduce, we need to

provide a Range (range) and Body (func). But we also need to provide an Identity Value

(identity) and a Reduction Body (reduction).

To create parallelism for a parallel_reduce, the TBB library divides the range into

chunks and creates tasks that apply func to each chunk. In Chapter 16, we discuss how

to use Partitioners to control the size of the chunks that are created, but for now, we

can assume that TBB creates chunks of an appropriate size to minimize overheads and

balance load. Each task that executes func starts with a value init that is initialized with

identity and then computes and returns a partial result for its chunk. The TBB library

combines these partial results by calling the reduction function to create a single final

result for the whole loop.

Chapter 2 Generic Parallel Algorithms

49

The identity argument is a value that leaves other values unchanged when they are

combined with it using the operation that is being parallelized. It is well known that the

identity element with respect to addition (additive identity) is “0” (since x + 0 = x) and

that the identity element with respect to multiplication (multiplicative identity) is “1”

(since x * 1 = x). The reduction function takes two partial results and combines them.

Figure 2-9 shows how func and reduction functions may be applied to compute the

maximum value from an array of 16 elements if the Range is broken into four chunks.

In this example, the associative operation applied by func to the elements of the array

is max() and the identity element is -∞, since max(x,- ∞)=x. In C++, we can use

std::max as the operation and std::numeric_limits<int>::min() as the programmatic

representation of -∞.

Figure 2-9.  How the func and reduction functions are called to compute a
maximum value

We can express our simple maximum value loop using a parallel_reduce as shown

in Figure 2-10.

Chapter 2 Generic Parallel Algorithms

50

Figure 2-10.  Using parallel_reduce to compute a maximum value

You may notice in Figure 2-10 that we use a blocked_range object for the Range, instead

of just providing the beginning and ending of the range as we did with parallel_for. The

parallel_for algorithm provides a simplified syntax that is not available with parallel_

reduce. For parallel_reduce, we must pass a Range object directly, but luckily we can

use one of the predefined ranges provided by the library, which include blocked_range,

blocked_range2d, and blocked_range3d among others. These other range objects will

be described in more detail in Chapter 16, and their complete interfaces are provided in

Appendix B.

A blocked_range, used in Figure 2-10, represents a 1D iteration space. To construct

one, we provide the beginning and ending value. In the Body, we use its begin() and

end() functions to get the beginning and ending values of the chunk of values that this

body execution has been assigned and then iterate over that subrange. In Figure 2-8,

each individual value in the Range was sent to the parallel_for Body, and so there is no

need for an i-loop to iterate over a range. In Figure 2-10, the Body receives a blocked_

range object that represents a chunk of iterations, and therefore we still have an i-loop

that iterates over the entire chunk assigned to it.

Chapter 2 Generic Parallel Algorithms

51

�A Slightly More Complicated Example: Calculating π by
Numerical Integration

Figure 2-11 shows an approach to calculate π by numerical integration. The height of

each rectangle is calculated using the Pythagorean Theorem. The area of one quadrant

of a unit circle is computed in the loop and multiplied by 4 to get the total area of the

circle, which is equal to π.

Figure 2-11.  A serial π calculation using the rectangular integral method

The code in Figure 2-11 computes the sum of the areas of all of the rectangles, a

reduction operation. To use a TBB parallel_reduce, we need to identify the range,

body, identity value, and reduction function. For this example, the range is [0, num_

intervals), and the body will be similar to the i-loop in Figure 2-11. The identity value

is 0.0 since we are performing a sum. And the reduction body, which needs to combine

Chapter 2 Generic Parallel Algorithms

52

partial results, will return the sum of two values. The parallel implementation using a

TBB parallel_reduce is shown in Figure 2-12.

Figure 2-12.  Implementation of pi using tbb::parallel_reduce

As with parallel_for, there are advanced features and options that can be used

with parallel_reduce to tune performance and to manage rounding errors (see

Associativity and floating-point types). These advanced options are covered in

Chapter 16.

�parallel_scan: A Reduction with Intermediate Values
A less common, but still important, pattern found in applications is a scan (sometimes

called a prefix). A scan is similar to a reduction, but not only does it compute a single

value from a collection of values, it also calculates an intermediate result for each element

Chapter 2 Generic Parallel Algorithms

53

in the Range (the prefixes). An example is a running sum of the values x0, x1, ... xN.

The results include each value in the running sum, y0, y1, ... yN, and the final sum yN.

y0 = x0

y1 = x0+ x1

. . .

yN = x0+ x1 + ... + xN

A serial loop that computes a running sum from a vector v follows:

On the surface, a scan looks like a serial algorithm. Each prefix depends on the

results computed in all of the previous iterations. While it might seem surprising, there

are however efficient parallel implementations of this seemingly serial algorithm.

The TBB parallel_scan algorithm implements an efficient parallel scan. Its interface

requires that we provide a range, an identity value, a scan body, and a combine body:

The range, identity value, and combine body are analogous to the range,

identity value, and reduction body of parallel_reduce. And, as with the other

simple loop algorithms, the range is divided by the TBB library into chunks and TBB

tasks are created to apply the body (scan) to these chunks. A complete description of the

parallel_scan interfaces is provided in Appendix B.

What is different about parallel_scan is that the scan body may be executed more

than once on the same chunk of iterations – first in a pre-scan mode and then later in a

final-scan mode.

Chapter 2 Generic Parallel Algorithms

54

In final-scan mode, the body is passed an accurate prefix result for the iteration that

immediately precedes its subrange. Using this value, the body computes and stores

the prefixes for each iteration in its subrange and returns the accurate prefix for the last

element in its subrange.

However, when the scan body is executed in pre-scan mode, it receives a starting

prefix value that is not the final value for the element that precedes its given range. Just

like with parallel_reduce, a parallel_scan depends on associativity. In pre-scan

mode, the starting prefix value may represent a subrange that precedes it, but not the

complete range that precedes it. Using this value, it returns a (not yet final) prefix for the

last element in its subrange. The returned value represents a partial result for the starting

prefix combined with its subrange. By using these pre-scan and final-scan modes, it is

possible to exploit useful parallelism in a scan algorithm.

�How Does This Work?
Let’s look at the running sum example again and think about computing it in three

chunks A, B, and C. In a sequential implementation, we compute all of the prefixes for A,

then B, and then C (three steps done in order). We can do better with a parallel scan as

shown in Figure 2-13.

Figure 2-13.  Performing a scan in parallel to compute a sum

Chapter 2 Generic Parallel Algorithms

55

First, we compute the scan of A in final-scan mode since it is the first set of values and

so its prefix values will be accurate if it is passed an initial value of identity. At the same

time that we start A, we start B in pre-scan mode. Once these two scans are done, we can

now calculate accurate starting prefixes for both B and C. To B we provide the final result

from A (92), and to C we provide the final-scan result of A combined with the pre-scan

result of B (92+136 = 228).

The combine operation takes constant time, so it is much less expensive than the

scan operations. Unlike the sequential implementation that takes three large steps that

are applied one after the other, the parallel implementation executes final-scan of A

and pre-scan of B in parallel, then performs a constant-time combine step, and then

finally computes final-scan of B and C in parallel. If we have at least two cores and N is

sufficiently large, a parallel prefix sum that uses three chunks can therefore be computed

in about two thirds of the time of the sequential implementation. And parallel_prefix

can of course execute with more than three chunks to take advantage of more cores.

Figure 2-14 shows an implementation of the simple partial sum example using a TBB

parallel_scan. The range is the interval [1, N), the identity value is 0, and the combine

function returns the sum of its two arguments. The scan body returns the partial sum for

all of the values in its subrange, added to the initial sum it receives. However, only when its

is_final_scan argument is true does it assign the prefix results to the running_sum array.

Figure 2-14.  Implementation of a running sum using parallel_scan

Chapter 2 Generic Parallel Algorithms

56

�A Slightly More Complicated Example: Line of Sight
Figure 2-15 shows a serial implementation of a line of sight problem similar to the one

described in Vector Models for Data-Parallel Computing, Guy E. Blelloch (The MIT Press).

Given the altitude of a viewing point and the altitudes of points at fixed intervals from the

viewing point, the line of sight code determines which points are visible from the viewing

point. As shown in Figure 2-15, a point is not visible if any point between it and the

viewing point, altitude[0], has a larger angle Ѳ. The serial implementation performs

a scan to compute the maximum Ѳ value for all points between a given point and the

viewing point. If the given point’s Ѳ value is larger than this maximum angle, then it is a

visible point; otherwise, it is not visible.

Figure 2-15.  A line of sight example

Chapter 2 Generic Parallel Algorithms

57

Figure 2-16 shows a parallel implementation of the line of sight example that uses a

TBB parallel_scan. When the algorithm completes, the is_visible array will contain

the visibility of each point (true or false). It is important to note that the code in

Figure 2-16 needs to compute the maximum angle at each point in order to determine

the point’s visibility, but the final output is the visibility of each point, not the maximum

angle at each point. Because the max_angle is needed but is not a final result, it is

computed in both pre-scan and final-scan mode, but the is_visible values are stored

for each point only during final-scan executions.

Figure 2-16.  An implementation of the line of sight using parallel_scan

�Cook Until Done: parallel_do and parallel_pipeline
For some applications, simple loops get us full coverage of the useful parallelism.

But for others, we need to express parallelism in loops where the range cannot be fully

computed before the loop starts. For example, consider a while loop:

Chapter 2 Generic Parallel Algorithms

58

This loop keeps reading in images until there are no more images to read. After each

image is read, it is processed by the function f. We cannot use a parallel_for because

we don’t know how many images there will be and so cannot provide a range.

A more subtle case is when we have a container that does not provide random-

access iterators:

Note  In C++, an iterator is an object that points to an element in a range of
elements and defines operators that provide the ability to iterate through the
elements of the range. There are different categories of iterators including forward,
bidirectional, and random-access iterators. A random-access iterator can be
moved to point to any element in the range in constant time.

Because a std::list does not support random access to its elements, we can obtain

the delimiters of the range my_images.begin() and my_images.end(), but we cannot

get to elements in between these points without sequentially traversing the list. The TBB

library therefore cannot quickly (in constant time) create chunks of iterations to hand

out as tasks since it cannot quickly point to the beginning and ending points of these

chunks.

To handle complex loops like these, The TBB library provides two generic

algorithms: parallel_do and parallel_pipeline.

�parallel_do: Apply a Body Until There Are No More
Items Left
A TBB parallel_do applies a Body to work items until there are no more items to

process. Some work items can be provided up front when the loop begins, and others

can be added by Body executions as they are processing other items.

The parallel_do function has two interfaces, one that accepts a first and last iterator

and another that accepts a container. A complete description of the parallel_do

Chapter 2 Generic Parallel Algorithms

59

interfaces is provided in Appendix B. In this section, we will look at the version that

receives a container:

As a simple example, let us start with a std::list of std::pair<int, bool>

elements, each of which contains a random integer value and false. For each element,

we will calculate whether or not the int value is a prime number; if so, we store true to

the bool value. We will assume that we are given functions that populate the container

and determine if a number is prime. A serial implementation follows:

We can create a parallel implementation of this loop using a TBB parallel_do as

shown in Figure 2-17.

Figure 2-17.    An implementation of the prime number loop using a parallel_do

The TBB parallel_do algorithm will safely traverse the container sequentially,

while creating tasks to apply the body to each element. Because the container has to be

traversed sequentially, a parallel_do is not as scalable as a parallel_for, but as long

Chapter 2 Generic Parallel Algorithms

60

as the body is relatively large (> 100,000 clock cycles), the traversal overhead will be

negligible compared to the parallel executions of the body on the elements.

In addition to handling containers that do not provide random access, the parallel_

do also allows us to add additional work items from within the body executions. If bodies

are executing in parallel and they add new items, these items can be spawned in parallel

too, avoiding the sequential task spawning limitations of parallel_do.

Figure 2-18 provides a serial implementation that calculates whether values are

prime numbers, but the values are stored in a tree instead of a list.

Figure 2-18.  Checking for prime numbers in a tree of elements

We can create a parallel implementation of this tree version using a parallel_do,

as shown in Figure 2-19. To highlight the different ways to provide work items, in this

implementation we use a container that holds a single tree of values. The parallel_do

starts with only a single work item, but two items are added in each body execution,

one to process the left subtree and the other to process the right subtree. We use the

parallel_do_feeder.add method to add new work items to the iteration space. The

class parallel_do_feeder is defined by the TBB library and is passed as the second

argument to the body.

Chapter 2 Generic Parallel Algorithms

61

The number of available work items increases exponentially as the bodies traverse

down the levels of the tree. In Figure 2-19, we add new items through the feeder even

before we check if the current element is a prime number, so that the other tasks are

spawned as quickly as possible.

Figure 2-19.  Checking for prime numbers in a tree of elements using a TBB
parallel_do

Chapter 2 Generic Parallel Algorithms

62

We should note that the two uses we considered of parallel_do have the potential

to scale for different reasons. The first implementation, without the feeder in Figure 2-17,

can show good performance if each body execution has enough work to do to mitigate

the overheads of traversing the list sequentially. In the second implementation, with the

feeder in Figure 2-19, we start with only a single work item, but the number of available

work items grows quickly as the bodies execute and add new items.

�A Slightly More Complicated Example: Forward Substitution

Forward substitution is a method to solve a set of equations Ax = b, where A is an nxn

lower triangular matrix. Viewed as matrices, the set of equations looks like

	

a

a a

a a a

x

x

xn n nn n

11

21 22

1 2

1

2

0 0

0

�
�

� � � �
�

�

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
úú

=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

b

b

bn

1

2

�
	

and can be solved a row at a time:

	 x b a1 1 11= / 	

	 x b a x a2 2 21 1 22= -()/ 	

	 x b a x a x a3 3 31 1 32 2 33= - -()/ 	

	 

	

	 x b a x a x a x am n n n nn n nn= - - -¼-()- -1 1 2 2 1 1 / 	

The serial code for a direct implementation of this algorithm is shown in Figure 2-20.

In the serial code, b is destructively updated to store the sums for each row.

Chapter 2 Generic Parallel Algorithms

63

Figure 2-21(a) shows the dependencies between the iterations of the body of the

i,j loop nest in Figure 2-20. Each iteration of the inner j loop (shown by the rows in

the figure) performs a reduction into b[i] and also depends on all of the elements of

x that were written in earlier iterations of the i loop. We could use a parallel_reduce

to parallelize the inner j loop, but there may not be enough work in the early iterations

of the i loop to make this profitable. The dotted line in Figure 2-21(a) shows that there

is another way to find parallelism in this loop nest by looking diagonally across the

iteration space. We can exploit this parallelism by using a parallel_do to add iterations

only as their dependencies are satisfied, similar to how we added new tree elements as

we discovered them in Figure 2-19.

Figure 2-20.  The serial code for a direct implementation of forward substitution.
This implementation is written to make the algorithm clear – not for best
performance.

Chapter 2 Generic Parallel Algorithms

64

If we express the parallelism for each iteration separately, we will create tasks that are

too small to overcome scheduling overheads since each task will only be a few floating-

point operations. Instead, we can modify the loop nest to create blocks of iterations, as

shown in Figure 2-21(b). The dependence pattern stays the same, but we will be able to

schedule these larger blocks of iterations as tasks. A blocked version of the serial code is

shown in Figure 2-22.

Figure 2-21.  The dependencies in forward substitution for a small 8 × 8 matrix.
In (a), the dependencies between iterations are shown. In (b), the iterations are
grouped into blocks to reduce scheduling overheads. In both (a) and (b), each
block must wait for its neighbor above and its neighbor to its left to complete before
it can safely execute.

Chapter 2 Generic Parallel Algorithms

65

A parallel implementation that uses parallel_do is shown in Figure 2-23. Here,

we use the interface of parallel_do that allows us to specify a beginning and ending

iterator, instead of an entire container. You can see the details of this interface in

Appendix B.

Unlike with the prime number tree example in Figure 2-19, we don’t want to simply

send every neighboring block to the feeder. Instead, we initialize an array of counters,

ref_count, to hold the number of blocks that must complete before each block is

allowed to start executing. Atomic variables will be discussed more in Chapter 5. For our

purposes here, we can view these as variables that we can modify safely in parallel; in

particular, the decrements are done in a thread-safe way. We initialize the counters so

that the top-left element has no dependencies, the first column and the blocks along the

diagonal have a single dependency, and all others have two dependencies. These counts

match the number of predecessors for each block as shown in Figure 2-21.

Figure 2-22.  A blocked version of the serial implementation of forward substitution

Chapter 2 Generic Parallel Algorithms

66

Figure 2-23.  An implementation of forward substitution using parallel_do

Chapter 2 Generic Parallel Algorithms

67

In the call to parallel_do in Figure 2-23, we initially provide only the top-left block,

[&top_left, &top_left+1). But in each body execution, the if-statements at the

bottom decrement the atomic counters of the blocks that are dependent on the block

that was just processed. If a counter reaches zero, that block has all of its dependencies

satisfied and is provided to the feeder.

Like the previous prime number examples, this example demonstrates the hallmark of

applications that use parallel_do: the parallelism is constrained by the need to sequentially

access a container or by the need to dynamically find and feed work items to the algorithm.

�parallel_pipeline: Streaming Items Through a Series
of Filters
The second generic parallel algorithm in TBB used to handle complex loops is parallel_

pipeline. A pipeline is a linear sequence of filters that transform items as they pass through

them. Pipelines are often used to process data that stream into an application such as video

or audio frames, or financial data. In Chapter 3, we will discuss the Flow Graph interfaces

that let us build more complex graphs that include fan-in and fan-out to and from filters.

Figure 2-24 shows a small example loop that reads in arrays of characters, transforms

the characters by changing all of the lowercase characters to uppercase and all of the

uppercase characters to lowercase, and then writes the results in order to an output file.

Figure 2-24.  A serial case change example

Chapter 2 Generic Parallel Algorithms

68

The operations have to be done in order on each buffer, but we can overlap the

execution of different filters applied to different buffers. Figure 2-25(a) shows this

example as a pipeline, where the “write buffer” operates on bufferi, while in parallel the

“process” filter operates on bufferi+1 and the “get buffer” filter reads in bufferi+2.

get buffer process write buffer

Figure 2-25.  The case change example using a pipeline

As illustrated in Figure 2-25(b), in the steady state, each filter is busy, and their

executions are overlapped. However, as shown in Figure 2-25(c), unbalanced filters

decrease speedup. The performance of a pipeline of serial filters is limited by the slowest

serial stage.

Chapter 2 Generic Parallel Algorithms

69

The TBB library supports both serial and parallel filters. A parallel filter can be

applied in parallel to different items in order to increase the throughput of the filter.

Figure 2-26(a) shows the “case change” example, with the middle/process filter

executing in parallel on two items. Figure 2-26(b) illustrates that if the middle filter

takes twice as long as the other filters to complete on any given item, then assigning two

threads to this filter will allow it to match the throughput of the other filters.

Figure 2-26.  The case change example using a pipeline with a parallel filter.
By using two copies of the parallel filter, the pipeline maximizes throughput.

A complete description of the parallel_pipeline interfaces is provided in Appendix B.

The interface of parallel_pipeline we use in this section is shown as follows:

Chapter 2 Generic Parallel Algorithms

70

The first argument max_number_of_live_tokens is the maximum number of

items that will be allowed to flow through the pipeline at any given time. This value is

necessary to constrain resource consumption. For example, consider the simple three

filter pipeline. What if the middle filter is a serial filter and it takes 1000 times longer than

the filter that gets new buffers? The first filter might allocate 1000 buffers only to queue

them up before the second filter – wasting a lot of memory.

The second argument to parallel_pipeline is filter_chain, a series of filters

created by concatenating filters that are created using the make_filter function:

The template arguments T and U specify the input and output types of the filter. The

mode argument can be serial_in_order, serial_out_of_order, or parallel. And the

f argument is the body of the filter. Figure 2-27 shows the implementation of the case

change example using a TBB parallel_pipeline. A more complete description of the

parallel_pipeline interfaces is provided in Appendix B.

We can note that the first filter, since its input type is void, receives a special

argument of type tbb::flow_control. We use this argument to signal when the first

filter in a pipeline is no longer going to generate new items. For example, in the first filter

in Figure 2-27, we call stop() when the pointer returned by getCaseString() is null.

Chapter 2 Generic Parallel Algorithms

71

Figure 2-27.  The case change example using a pipeline with a parallel middle
filter

Chapter 2 Generic Parallel Algorithms

72

In this implementation, the first and last filters are created using the serial_in_

order mode. This specifies that both filters should run on only one item at a time and

that the last filter should execute the items in the same order that the first filter generated

them in. A serial_out_of_order filter is allowed to execute the items in any order. The

middle filter is passed parallel as its mode, allowing it to execute on different items in

parallel. The modes supported by parallel_pipeline are described in more detail in

Appendix B.

�A Slightly More Complicated Example: Creating 3D Stereoscopic
Images

A more complicated example of a pipeline is shown in Figure 2-28. A while loop reads

in frame numbers, and then for each frame it reads a left and right image, adds a red

coloring to the left image and a blue coloring to the right image. It then merges the

resulting two images into a single red-cyan 3D stereoscopic image.

Chapter 2 Generic Parallel Algorithms

73

Figure 2-28.  A red-cyan 3D stereoscopic sample application

Chapter 2 Generic Parallel Algorithms

74

Similar to the simple case change sample, we again have a series of inputs that pass

through a set of filters. We identify the important functions and convert them to pipeline

filters: getNextFrameNumber, getLeftImage, getRightImage, increasePNGChannel (to

left image), increasePNGChannel (to right image), mergePNGImages, and right.write().

Figure 2-29 shows the example drawn as a pipeline. The increasePNGChannel filter is

applied twice, first on the left image and then on the right image.

Figure 2-29.  The 3D stereoscopic sample application as a pipeline

The parallel implementation using a TBB parallel_pipeline is shown in

Figure 2-30.

Chapter 2 Generic Parallel Algorithms

75

Figure 2-30.  The stereoscopic 3D example implemented using parallel_pipeline

Chapter 2 Generic Parallel Algorithms

76

The TBB parallel_pipeline function imposes a linearization of the pipeline filters.

The filters are applied one after the other as the input from the first stage flows through

the pipeline. This is in fact a limitation for this sample. The processing of the left and

right images is independent until the mergeImageBuffers filter, but because of the

interface of parallel_pipeline, the filters must be linearized. Even so, only the filters

that read in the images are serial filters, and therefore this implementation can still be

scalable if the execution time is dominated by the later, parallel stages.

In Chapter 3, we introduce the TBB Flow Graph, which will allow us to more directly

express applications that benefit from nonlinearized execution of filters.

�Summary
This chapter offered a basic overview of the generic parallel algorithms provided by the

TBB library, including patterns that capture functional parallelism, simple and complex

loops, and pipeline parallelism. These prepackaged algorithms (patterns) provide well-

tested and tuned implementations that can be applied incrementally to an application to

improve performance.

The code shown in this chapter provides small examples that show how these

algorithms can be used. In Part 2 of this book (starting with Chapter 9), we discuss

how to get the most out of TBB by combining these algorithms in composable ways

and tuning applications using the library features available for optimizing locality,

minimizing overheads, and adding priorities. Part 2 of the book also discusses how to

deal with exception handling and cancellation when using the TBB generic parallel

algorithms.

We continue in the next chapter by taking a look at another one of TBB’s high-level

features, the Flow Graph.

�For More Information
Here are some additional reading materials we recommend related to this chapter.

•	 We discussed design patterns for parallel programming and how

these relate to the TBB generic parallel algorithms. A collection of

design patterns can be found in

Chapter 2 Generic Parallel Algorithms

77

Timothy Mattson, Beverly Sanders, and Berna Massingill, Patterns for

Parallel Programming (First ed.), 2004, Addison-Wesley Professional.

•	 When discussing the parallel implementation of quicksort, we noted

that the partitioning was still a serial bottleneck. Papers that discuss

parallel partitioning implementations include

P. Heidelberger, A. Norton and J. T. Robinson, “Parallel Quicksort

using fetch-and-add,” in IEEE Transactions on Computers, vol. 39, no.

1, pp. 133-138, Jan 1990.

P. Tsigas and Y. Zhang. A simple, fast parallel implementation of

quicksort and its performance evaluation on SUN enterprise 10000.

In 11th Euromicro Workshop on Parallel, Distributed and Network-

Based Processing (PDP 2003), pages 372–381, 2003.

•	 You can learn more about data dependence analysis in a number of

compiler or parallel programming books, including

Michael Joseph Wolfe, High-Performance Compilers for Parallel

Computing, 1995, Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA.

Kennedy and John R. Allen, Optimizing Compilers for Modern

Architectures, 2001, Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA.

•	 When we discussed matrix multiplication, we noted that unless we

are optimization gurus, we should typically prefer to use prepackaged

implementations of linear algebra kernels when available.

Such packages include

The Basic Linear Algebra Subprograms (BLAS) at www.netlib.org/

blas/

The Intel Math Kernel Library (Intel MKL) at https://software.

intel.com/mkl

Automatically Tuned Linear Algebra Software (ATLAS) found at

http://math-atlas.sourceforge.net/

Chapter 2 Generic Parallel Algorithms

http://www.netlib.org/blas/
http://www.netlib.org/blas/
https://software.intel.com/mkl
https://software.intel.com/mkl
http://math-atlas.sourceforge.net/

78

The FLAME project researches and develops dense linear algebra

libraries. Their BLIS software framework can be used to create

high-performance BLAS libraries. The FLAME project can be found

at www.cs.utexas.edu/~flame.

•	 The line of sight example in this chapter was implemented using

parallel scan based on the description provided in

Vector Models for Data-Parallel Computing, Guy E. Blelloch

(The MIT Press).

The photograph used in Figures 2-28a, 2-29, and 3-7, was taken by Elena Adams, and is

used with permission from the Halide project’s tutorials at http://halide-lang.org.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 2 Generic Parallel Algorithms

https://www.cs.utexas.edu/~flame
https://doi.org/10.1007/978-1-4842-4398-5_3Fig#7
http://halide-lang.org
http://creativecommons.org/licenses/by-nc-nd/4.0/

79
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_3

CHAPTER 3

Flow Graphs
In Chapter 2, we introduced a set of algorithms that match patterns we often come

across in applications. Those are great! And we should use those whenever we can.

Unfortunately, not all applications fit nicely into one of those boxes; they can be messy.

When things start to get messy, we can become control freaks and try to micromanage

everything or just decide to “go with the flow” and react to things as they come along.

TBB lets us choose either path.

In Chapter 10, we discuss how to use tasks directly to create our own algorithms.

There are both high-level and low-level interfaces to tasks, so if we use tasks directly, we

can choose to become control freaks if we really want to.

In this chapter, however, we look at the Threading Building Blocks Flow Graph

interface. Most of the algorithms in Chapter 2 are geared toward applications where

we have a big chunk of data up front and need to create tasks to divide up and process

that data in parallel. The Flow Graph is geared toward applications that react as data

becomes available, or toward applications that have dependences that are more

complicated than can be expressed by a simple structure. The Flow Graph interfaces

have been successfully used in a wide range of domains including in image processing,

artificial intelligence, financial services, healthcare, and games.

The Flow Graph interfaces let us express programs that contain parallelism that

can be expressed as graphs. In many cases, these applications stream data through a

set of filters or computations. We call these data flow graphs. Graphs can also express

before-after relationships between operations, allowing us to express dependency

structures that cannot be easily expressed with a parallel loop or pipeline. Some

linear algebra computations, for example, Cholesky decomposition, have efficient

parallel implementations that avoid heavyweight synchronization points by tracking

dependencies on smaller operations instead. We call graphs that express these before-

after relationships dependency graphs.

80

In Chapter 2, we were introduced to two generic parallel algorithms that, like a

Flow Graph, do not require all of the data to be known ahead of time, parallel_do and

parallel_pipeline. These algorithms are very effective when they apply; however, both

of these algorithms have limitations that a Flow Graph does not have. A parallel_do has

only a single body function that is applied to each input item as it becomes available.

A parallel_pipeline applies a linear series of filters to input items as they flow through

a pipeline. At the end of Chapter 2, we looked at a 3D stereoscopic example that had more

parallelism than could be expressed by a linear series of filters. The Flow Graph APIs let us

express more complicated structures than either parallel_do or parallel_pipeline.

In this chapter, we start with a discussion about why graph-based parallelism is

important and then discuss the basics of the TBB Flow Graph API. After that, we explore

an example of each of the two major types of flow graphs: a data flow graph and a

dependency graph.

�Why Use Graphs to Express Parallelism?
An application that is expressed as a graph of computations exposes information that

can be effectively used at runtime to schedule its computations in parallel. We can look

at the code in Figure 3-1(a) as an example.

Figure 3-1.  An application that can be expressed as a data flow graph

In each iteration of the while loop in Figure 3-1(a), an image is read and then passed

through a series of filters: f1, f2, f3, and f4. We can draw the flow of data between these

filters as shown in Figure 3-1(b). In this figure, the variables that were used to pass the

data returned from each function are replaced by edges from the node that generates the

value to the node(s) that consume the values.

Chapter 3 Flow Graphs

81

For now, let’s assume that the graph in Figure 3-1(b) captures all of the data that is

shared between these functions. If so, we (and in turn a library like TBB) can infer a lot

about what is legal to execute in parallel as shown in Figure 3-2.

Figure 3-2 shows the types of parallelism that can be inferred from the data flow

graph representation of our small example. In the figure, we stream four images through

the graph. Since there are no edges between nodes f2 and f3, they can be executed in

parallel. Executing two different functions in parallel on the same data is an example of

functional parallelism (task parallelism). If we assume that the functions are side-effect-

free, that is, they do not update global states and only read from their incoming message

and write to their outgoing message, then we can also overlap the processing of different

messages in the graph, exploiting pipeline parallelism. And finally, if the functions are

thread-safe, that is, we can execute each function in parallel with itself on different

inputs, then we can also choose to overlap the execution of two different images in the

same node to exploit data parallelism.

Figure 3-2.  The kinds of parallelism that can be inferred from the graph

When we express our application as a graph using the TBB flow graph interface, we

provide the library with the information it needs to take advantage of these different

kinds of parallelism so it can map our computation to the platform hardware to improve

performance.

Chapter 3 Flow Graphs

82

�The Basics of the TBB Flow Graph Interface
The TBB flow graph classes and functions are defined in flow_graph.h and are

contained within the tbb::flow namespace. The all-encompassing tbb.h also includes

flow_graph.h, so if we use that header, we do not need to include anything else.

To use a flow graph, we first create a graph object. We then create nodes to

perform operations on messages that flow through the graph, such as applying user

computations, joining, splitting, buffering, or reordering messages. We use edges to

express the message channels or dependencies between these nodes. Finally, after

we have assembled a graph from the graph object, node objects, and edges, we feed

messages into the graph. Messages can be primitive types, objects, or pointers to objects.

If we want to wait for processing to complete, we can use the graph object as a handle for

that purpose.

Figure 3-3 shows a small example that performs the five steps needed to use a TBB

Flow Graph. In this section, we will discuss each of these steps in more detail.

Chapter 3 Flow Graphs

83

Figure 3-3.  An example flow graph with two nodes

Chapter 3 Flow Graphs

84

�Step 1: Create the Graph Object
The first step to create a flow graph is to construct a graph object. In the flow graph

interface, a graph object is used for invoking whole graph operations such as waiting for

all tasks related to the graph’s execution to complete, resetting the state of all nodes in

the graph, and canceling the execution of all nodes in the graph. When building a graph,

each node belongs to exactly one graph, and edges are made between nodes in the same

graph. Once we have constructed the graph, then we need to construct the nodes that

implement the computations of the graph.

�Step 2: Make the Nodes
The TBB flow graph interface defines a rich set of node types (Figure 3-4) that can

roughly be broken into three groups: functional node types, control flow node types

(includes join node types), and buffering node types. A detailed review of the interfaces

provided by the graph class and the interfaces provided by all node types can be found

in the “Flow Graph: nodes” section of Appendix B. It is not expected that you read these

tables in detail now, but instead, that you know that you can reference them as node

types are used in this and subsequent chapters.

Chapter 3 Flow Graphs

85

Figure 3-4.  Flow graph node types (see Chapters 3, 17, 18, 19; interface details in
Appendix B)

Chapter 3 Flow Graphs

86

Like all of the functional nodes, a function_node takes a lambda expression as

one of its arguments. We use these body arguments in functional nodes to provide the

code we want to apply to incoming messages. In Figure 3-3, we defined the first node to

receive an int value, print the value, and then convert it to a std::string, returning the

converted value. This node is reproduced as follows:

Nodes are typically connected to each other by edges, but we can also explicitly send

a message to a node. For example, we can send a message to my_first_node by calling

try_put on it:

my_first_node.try_put(10);

This causes the TBB library to spawn a task to execute the body of my_first_node on

the int message 10, resulting in output such as

first node received: 10

Unlike the functional nodes, where we provide a body argument, the control flow

node types perform predefined operations that join, split, or direct messages as they

flow through a graph. For example, we can create a join_node that joins together inputs

from multiple input ports to create an output of type std::tuple<int, std::string,

double> by providing a tuple type, the join policy, and a reference to the graph object:

This join_node, j, has three input ports and one output port. Input port 0 will accept

messages of type int. Input port 1 will accept messages of type std::string. Input port

2 will accept messages of type double. There will be a single output port that broadcasts

messages of type std::tuple<int, std::string, double>.

A join_node can have one of four join policies: queueing, reserving, key_

matching, and tag_matching. For the queueing, key_matching, and tag_matching

Chapter 3 Flow Graphs

87

policies, the join_node buffers incoming messages as they arrive at each of its input

ports. The queueing policy stores incoming messages in per-port queues, joining the

messages into a tuple using a first-in-first-out approach. The key_matching and tag_

matching policies store the incoming messages in per-port maps and join messages

based on matching keys or tags.

A reserving join_node does not buffer the incoming messages at all. Instead, it

tracks the state of the preceding buffers – when it believes that there are messages

available for each of its input ports, it tries to reserve an item for each input port.

A reservation prevents any other node from consuming the item while the reservation

is held. Only if the join_node can successfully acquire a reservation on an element for

each input port does it then consume these messages; otherwise, it releases all of the

reservations and leaves the messages in the preceding buffers. If a reserving join_node

fails to reserve all of the inputs, it tries again later. We will see use cases of this reserving

policy in Chapter 17.

The buffering node types buffer messages. Since the functional nodes, function_

node and multifunction_node, contain buffers at their inputs and source_node

contains a buffer at its output, buffering nodes are used in limited circumstances –

typically in conjunction with a reserving join_node (see Chapter 17).

�Step 3: Add Edges
After we construct a graph object and nodes, we use make_edge calls to set up the

message channels or dependencies:

make_edge(predecessor_node, successor_node);

If a node has more than one input port or output port, we use the input_port and

output_port function templates to select the ports:

make_edge(output_port<0>(predecessor_node),

 input_port<1>(successor_node));

In Figure 3-3, we made an edge between my_first_node and my_second_node in our

simple two-node graph. Figure 3-5 shows a slightly more complicated flow graph that

has four nodes.

Chapter 3 Flow Graphs

88

Figure 3-5.  An example flow graph with four nodes

Chapter 3 Flow Graphs

89

The first two nodes in Figure 3-5 generate results that are joined together into a tuple

by a queueing join_node, my_join_node. When the edges are made to the input ports of

the join_node, we need to specify the port number:

make_edge(my_node, tbb::flow::input_port<0>(my_join_node));

make_edge(my_other_node, tbb::flow::input_port<1>(my_join_node));

The output of the join_node, a std::tuple<std::string, double>, is sent to my_

final_node. We do not need to specify a port number when there is only a single port:

make_edge(my_join_node, my_final_node);

�Step 4: Start the Graph
The fourth step in creating and using a TBB flow graph is to start the graph execution.

There are two main ways that messages enter a graph either (1) through an explicit

try_put to a node or (2) as the output of a source_node. In both Figure 3-3 and

Figure 3-5, we call try_put on nodes to start messages flowing into the graph.

A source_node is constructed by default in the active state. Whenever an outgoing

edge is made, it immediately starts sending messages across the edge. Unfortunately,

we believe this is error prone, and so we always construct our source nodes in the

inactive state, that is, pass false as the is_active argument. To get messages flowing

after our graph is completely constructed, we call the activate() function on all of our

inactive nodes

Figure 3-6 demonstrates how a source_node can be used as a replacement for a

serial loop to feed messages to a graph. In Figure 3-6(a), a loop repeatedly calls try_put

on a node my_node, sending messages to it. In Figure 3-6(b), a source_node is used for

the same purpose.

The return value of a source_node is used like the boolean condition in a serial

loop – if true, another execution of the loop body is performed; otherwise, the loop halts.

Since a source_node’s return value is used to signal the boolean condition, it returns

its output value by updating the argument provided to its body. In Figure 3-6(b), the

source_node replaces the count loop in Figure 3-6(a).

Chapter 3 Flow Graphs

90

Figure 3-6.  In (a), a loop sends the int values 0, 1, and 2 to a node my_node.
In (b), a source_node sends the int values 0, 1, and 2 to the node my_node.

The main advantage of using a source_node, instead of loop, is that it responds to

other nodes in the graph. In Chapter 17, we discuss how a source_node can be used

in conjunction with a reserving join_node or a limiter_node to control how many

Chapter 3 Flow Graphs

91

messages are allowed to enter a graph. If we use a simple loop, we can flood our graph

with inputs, forcing nodes to buffer many messages if they cannot keep up.

�Step 5: Wait for the Graph to Complete Executing
Once we have sent messages into a graph either using try_put or a source_node, we

wait for the execution of the graph to complete by calling wait_for_all() on the graph

object. We can see these calls in Figure 3-3, Figure 3-5, and Figure 3-6.

If we build and execute the graph in Figure 3-3, we see an output like

 first node received: 10

 second node received: 10

If we build and execute the graph in Figure 3-5, we see an output like

 other received: received: 21

 final: 1 and 2

The output from Figure 3-5 looks a little jumbled, and it is. The first two function

nodes execute in parallel, and both are streaming to std::cout. In our output, we see a

combination of the two outputs jumbled together because we broke the assumption we

made earlier in this chapter when we discussed graph-based parallelism – our nodes are

not side-effect-free! These two nodes execute in parallel, and both affect the state of the

global std::cout object. In this example, that’s ok since this output is printed just to show

the progress of the messages through the graph. But it is an important point to remember.

The final function_node in Figure 3-5 only executes when both values from the

preceding function nodes are joined together by the join_node and are passed to it.

This final node therefore executes by itself, and so it streams the expected final output to

std::cout: “final: 1 and 2”.

�A More Complicated Example of a Data Flow Graph
In Chapter 2, we introduced an example that applied a red-cyan 3D stereoscopic effect

to pairs of left and right images. In Chapter 2, we parallelized this example with a TBB

parallel_pipeline, but in doing so admitted that we left some parallelism on the table

by linearizing the pipeline stages. An example output is shown in Figure 3-7.

Chapter 3 Flow Graphs

92

Figure 3-8 shows the data and control dependencies in the serial code that

was shown in Figure 2-28. The data dependencies are shown as solid lines and the

control dependencies as dotted lines. From this diagram, we can see that the calls

to getLeftImage followed by increasePNGChannel do not depend on the calls to

getRightImage followed by increasePNGChannel. Consequently, these two series of

calls can be made in parallel with each other. We can also see that mergePNGImages

cannot proceed until increasePNGChannel has completed on both the left and right

images. And finally, write must wait until the call to mergePNGImages is finished.

Unlike in Chapter 2, where we used a linear pipeline, using a TBB flow graph we can

now more accurately express the dependencies. To do so, we need to first understand

the constraints in our application that preserve correct execution. For example, each

iteration of the while loop does not start until the previous iteration is complete, but

this may be just a side effect of using a serial while loop. We need to determine which

constraints are truly necessary.

Figure 3-7.  A left and right image are used to generate a red-cyan stereoscopic
image. The original photograph was taken by Elena Adams.

Chapter 3 Flow Graphs

93

In this example, let us assume that the images represent frames that are read in

order, either from a file or from a camera. Since the images must be read in order, we

cannot make multiple calls to getLeftImage or multiple calls to getRightImage in

parallel; these are serial operations. We can, however, overlap a call to getLeftImage

with a call to getRightImage because these functions do not interfere with each

other. Beyond these constraints though, we will assume that increasePNGChannel,

mergePNGImages, and write are safe to execute on different inputs in parallel (they are

both side-effect-free and thread-safe). Therefore, the iterations of the while loop cannot

be executed completely in parallel, but there is some parallelism that we can exploit

both within and across iterations as long as the constraints we have identified here are

preserved.

�Implementing the Example as a TBB Flow Graph
Now, let’s step through the construction of a TBB flow graph that implements our

stereoscopic 3D sample. The structure of the flow graph we will create is shown in

Figure 3-9. This diagram looks different than Figure 3-8, because now the nodes

represent TBB flow graph node objects and the edges represent TBB flow graph edges.

Figure 3-8.  The control and data dependencies from the code sample in
Figure 2-28, where the solid lines represent data dependencies and the dotted lines
represent control dependencies

Chapter 3 Flow Graphs

94

Figure 3-10 shows the stereoscopic 3D example implemented using the TBB flow

graph interfaces. The five basic steps are outlined in boxes. First, we create a graph

object. Next, we create the eight nodes, including a source_node, several function_node

instances, and a join_node. We then connect the nodes using calls to make_edge.

After making the edges, we activate the source node. Finally, we wait for the graph to

complete.

In the diagram in Figure 3-9, we see that frame_no_node is the source of inputs for

the graph, and in Figure 3-10, this node is implemented using a source_node. As long as

the body of a source_node continues to return true, the runtime library will continue to

spawn new tasks to execute its body, which in turn calls getNextFrameNumber().

As we noted earlier, the getLeftImage and getRightImage functions must execute

serially. In the code in Figure 3-10, we communicate this constraint to the runtime

library by setting the concurrency constraint for these nodes to flow::serial. For these

nodes, we use class function_node. You can see more details about function_node in

Appendix B. If a node is declared with flow::serial, the runtime library will not spawn

the next task to execute its body until any outstanding body task is finished.

Figure 3-9.  A graph that represents the calls in Figure 2-28. The circles
encapsulate the functions from Figure 2-28. The edges represent intermediate
values. The trapezoid represents a node that joins messages into a two-tuple.

Chapter 3 Flow Graphs

95

Figure 3-10.  The stereoscopic 3D example as a TBB flow graph

Chapter 3 Flow Graphs

96

In contrast, the increase_left_node and the increase_rigt_node objects are

constructed with a concurrency constraint of flow::unlimited. The runtime library

will immediately spawn a task to execute the body of these nodes whenever an incoming

message arrives.

In Figure 3-9, we see that the merge_images_node function needs both a right and left

image. In the original serial code, we were ensured that the images would be from the

same frame, because the while loop only operated on one frame at a time. In our flow

graph version, however, multiple frames may be pipelined through the flow graph and

therefore may be in progress at the same time. We therefore need to ensure that we only

merge left and right images that correspond to the same frame.

To provide our merge_images_node with a pair of matching left and right images, we

create the join_images_node with a tag_matching policy. You can read about join_node

and its different policies in Appendix B. In Figure 3-10, join_images_node is constructed

to have two input ports and to create a tuple of Image objects based on matching their

frameNumber member variables. The call to the constructor now includes two lambda

expressions that are used to obtain the tag values from the incoming messages on the two

input ports. The merge_images_node accepts a tuple and generates a single merged image.

The last node created in Figure 3-10 is write_node. It is a flow::unlimited

function_node that receives Image objects and calls write to store each incoming buffer

to an output file.

Once constructed, the nodes are connected to each other using calls to make_edge

to create the topology shown in Figure 3-9. We should note that nodes that have only a

single input or output do not require a port to be specified. However, for nodes such as

join_images_node that have multiple input ports, port accessor functions are used to

pass specific ports to the make_edge call.

Finally, in Figure 3-10, the frame_no_node is activated and a call to wait_for_all is

used to wait for the graph to complete executing.

�Understanding the Performance of a Data Flow Graph
It is important to note that, unlike in some other data flow frameworks, the nodes in

a TBB flow graph are not implemented as threads. Instead, TBB tasks are spawned

reactively as messages arrive at nodes and concurrency limits allow. Once tasks are

spawned, they are then scheduled across the TBB worker threads using the same work-

stealing approach used by the TBB generic algorithms (see Chapter 9 for details about

work-stealing schedulers).

Chapter 3 Flow Graphs

97

There are three main factors that can limit the performance of a TBB flow graph:

(1) the serial nodes, (2) the number of worker threads, and (3) the overhead from the

parallel execution of TBB tasks.

Let’s consider how our 3D stereoscopic graph might be mapped to TBB tasks and

how these tasks might perform. Nodes frame_no_node, get_left_node, and get_right_

node are flow::serial nodes. The remaining nodes are flow::unlimited.

Serial nodes can cause worker threads to become idle, because they limit the

availability of tasks. In our stereoscopic 3D example, the images are read in order. Once

each image has been read, the processing of the image can begin immediately and can

be overlapped with any other work in the system. Therefore, these three serial nodes

are the ones limiting task availability in our graph. If the time to read these images

dominates the rest of the processing, we will see very little speedup. If, however, the

processing time is much larger than the time to read the images, we may see a significant

speedup.

If the image reads are not our limiting factor, the performance is then limited by the

number of worker threads and the overhead of parallel execution. When we use a flow

graph, we pass data between nodes that may execute on different worker threads and,

likewise, processor cores. We also overlap the execution of different functions. Both the

passing of data across threads and the execution of functions simultaneously on different

threads can affect memory and cache behavior. We will discuss locality and overhead

optimizations in more detail in Part 2 of this book.

�The Special Case of Dependency Graphs
The TBB flow graph interfaces support both data flow and dependency graphs. Edges in

a data flow graph are channels over which data passes between nodes. The stereoscopic

3D example that we constructed earlier in this chapter is an example of a data flow

graph – Image objects pass over the edges from node to node in the graph.

Edges in a dependency graph represent before-after relationships that must be

satisfied for a correct execution. In a dependency graph, data is passed from node to

node through shared memory and is not communicated directly by messages that

travel over the edges. Figure 3-11 shows a dependency graph for making a peanut butter

and jelly sandwich; the edges communicate that a node cannot begin until all of its

predecessors have completed.

Chapter 3 Flow Graphs

98

To express dependency graphs using the TBB flow graph classes, we use class

continue_node for the nodes and pass messages of type continue_msg. The primary

difference between a function_node and continue_node is how they react to messages.

You can see the details of continue_node in Appendix B.

When a function_node receives a message, it applies its body to that message –

either by spawning a task immediately or by buffering the message until it is legal to

spawn a task to apply the body. In contrast, a continue_node counts the number of

messages it receives. When the number of messages it has received is equal to the

number of predecessors it has, it spawns a task to execute its body and then resets its

messages-received count. For example, if we were to implement Figure 3-11 using

continue_nodes, the “Put slices together” node would execute each time it received two

continue_msg objects, since it has two predecessors in the graph.

continue_node objects count messages and do not track that each individual

predecessor has sent a message. For example, if a node has two predecessors, it will

execute after it receives two messages, regardless of where the messages originated.

This makes the overhead of these nodes much lower but also requires that dependency

graphs are acyclic. Also, while a dependency graph can be executed repeatedly to

completion, it is not safe to stream continue_msg objects into it. In both cases, when

there is a cycle or if we stream items into a dependency graph, the simple counting

Figure 3-11.  A dependency graph for making a peanut butter and jelly sandwich.
The edges here represent before-after relationships.

Chapter 3 Flow Graphs

99

mechanism means that the node might mistakenly trigger because it counts messages

received from the same successor when it really needs to wait for inputs from different

successors.

�Implementing a Dependency Graph
The steps for using a dependency graph are the same as for a data flow graph; we create

a graph object, make nodes, add edges, and feed messages into the graph. The main

differences are that only continue_node and broadcast_node classes are used, the graph

must be acyclic, and we must wait for the graph to execute to completion each time we

feed a message into the graph.

Now, let us build an example dependency graph. For our example, let’s implement

the same forward substitution example that we implemented in Chapter 2 using a TBB

parallel_do. You can refer to the detailed description of the serial example in that

chapter.

The serial tiled implementation of this example is reproduced in Figure 3-12.

Figure 3-12.  The serial blocked code for a direct implementation of forward
substitution. This implementation is written to make the algorithm clear – not for
best performance.

Chapter 3 Flow Graphs

100

In Chapter 2, we discussed the dependencies between the operations in this example

and noted, as shown again in Figure 3-13, that there is a wavefront of parallelism that can

be seen diagonally across the computation. When using a parallel_do, we created a 2D

array of atomic counters and had to manually track when each block could be safely fed

to the parallel_do algorithm for execution. While effective, this was cumbersome and is

error-prone.

Figure 3-13.  The dependencies in forward substitution for a small 8 × 8 matrix.
In (a), the dependencies between iterations are shown. In (b), the iterations are
grouped into blocks to reduce scheduling overheads. In both (a) and (b), each node
must wait for its neighbor above and its neighbor to its left to complete before it can
execute.

In Chapter 2, we noted that we might also use a parallel_reduce to express

parallelism in this example. We can see such an implementation in Figure 3-14.

Chapter 3 Flow Graphs

101

However, as we can see in Figure 3-15, the main thread must wait for each parallel_

reduce to complete before it can move on to the next one. This synchronization between

the rows adds unnecessary synchronization points. For example, once block 1,0 is

done, it is safe to immediately start working on 2,0, but we must wait until the fork-join

parallel_reduce algorithm is done until we move on to that row.

Figure 3-14.  Using a parallel_reduce to make forward substitution parallel

Figure 3-15.  The main thread must wait for each parallel_reduce to complete
before it can move to the next parallel_reduce, introducing synchronization points

Chapter 3 Flow Graphs

102

Using a dependency graph, we simply express the dependencies directly and allow

the TBB library to discover and exploit the available parallelism in the graph. We do not

have to maintain counts or track completions explicitly like in the parallel_do version in

Chapter 2, and we do not introduce unneeded synchronization points like in Figure 3-14.

Figure 3-16 shows a dependency graph version of this example. We use a

std::vector nodes to hold a set of continue_node objects, each node representing a

block of iterations. To create the graph, we follow the common pattern: (1) create a graph

object, (2) create nodes, (3) add edges and (4) feed a message into the graph, and (5) wait

for the graph to complete. However, we now create the graph structure using a loop nest

as shown in Figure 3-16. The function createNode creates a new continue_node object

for each block, and the function addEdges connects the node to the neighbors that must

wait for its completion.

Chapter 3 Flow Graphs

103

Figure 3-16.  A dependency graph implementation of the forward substitution
example

In Figure 3-17, we show the implementation of the createNode. In Figure 3-18, we

show the implementation of the addEdges functions.

Chapter 3 Flow Graphs

104

The continue_node objects created in createNode use a lambda expression that

encapsulates the inner two loops from the blocked version of forward substitution

shown in Figure 3-12. Since no data is passed across the edges in a dependency graph,

the data each node needs is accessed via shared memory using the pointers that are

captured by the lambda expression. In Figure 3-17, the node captures by value the

integers r, c, N, and block_size as well as references to the vectors x, a and b.

In Figure 3-18, the function addEdges uses make_edge calls to connect each node to

its right and lower neighbors, since they must wait for the new node to complete before

they can execute. When the loop nest in Figure 3-16 is finished, a dependency graph

similar to the one in Figure 3-13 has been constructed.

Figure 3-17.  The createNode function implementation

Figure 3-18.  The addEdges function implementation

Chapter 3 Flow Graphs

105

As shown in Figure 3-16, once the complete graph is constructed, we start it by

sending a single continue_msg to the upper left node. Any continue_node that has no

predecessors will execute whenever it receives a message. Sending a message to the top

left node starts the dependency graph. Again, we use g.wait_for_all() to wait until the

graph is finished executing.

�Estimating the Scalability of a Dependency Graph
The same performance limitations that apply to data flow graphs also apply to

dependency graphs. However, because dependency graphs must be acyclic, it is easier

to estimate an upper bound on scalability for them. In this discussion, we use notation

introduced by the Cilk project at MIT (see, e.g., Blumofe, Joerg, Kuszmaul, Leiserson,

Randall and Zhou, “Cilk: An Efficient Multithreaded Runtime System,” In the Proceedings

of the Principles and Practice of Parallel Programming, 1995).

We denote the sum of the times to execute all nodes in a graph as T1; the 1 means

that this is the time it takes to execute the graph if we have only one thread of execution.

And we denote the time to execute the nodes along the critical (longest) path as T∞

since this is the minimum possible execution time even if we had an infinite number

of threads available. The maximum speedup achievable through parallelism in a

dependency graph is then T1/T∞. When executing on a platform with P processors, the

execution time can never be smaller than the largest of T1/P and T∞.

For example, let us assume for simplicity that every node in Figure 3-13(a) takes

the same amount of time to execute. We will call this time tn. There are 36 nodes (the

number of rows * the number of columns) in the graph, and so T1 = 36tn. The longest

path from 0,0 to 7,7 contains 15 nodes (the number of rows + the number of columns – 1),

and so for this graph T∞ = 15tn. Even if we had an infinite number of processors, the

nodes along the critical path must be executed in order and cannot be overlapped.

Therefore, our maximum speedup for this small 8×8 graph is 36tn/15tn= 2.4. However,

if we have a larger set of equations to solve, let’s assume a 512×512 matrix, there would

be 512×512=131,328 nodes and 512+512-1=1023 nodes along the critical path, for a

maximum speedup of 131,328/1023 ≈ 128.

When possible, if you are considering implementing a dependency graph version

of a serial application, it is good practice to profile your serial code, collect the time

for each would-be node, and estimate the critical path length. You can then use the

simple calculation described previously to estimate the upper bound on the achievable

speedup.

Chapter 3 Flow Graphs

106

�Advanced Topics in TBB Flow Graphs
The TBB flow graph has a rich set of nodes and interfaces, and we have really only begun

to scratch this surface with this chapter. In Chapter 17, we delve deeper into the API to

answer some important questions, including

•	 How do we control resource usage in a flow graph?

•	 When do we need to use buffering?

•	 Are there antipatterns to avoid?

•	 Are there effective patterns to mimic?

Also, flow graph enables asynchronous, and heterogeneous, capabilities that we will

explore in Chapters 18 and 19.

�Summary
In this chapter, we learned about the classes and functions in the tbb::flow namespace

that let us develop data flow and dependency graphs. We first discussed why expressing

parallelism using graphs is useful. We then learned the basics of the TBB flow graph

interface, including a brief overview of the different categories of nodes that are available

in the interface. Next, we built, step by step, a small data flow graph that applies a 3D

stereoscopic effect to sets of left and right images. Afterward, we discussed how these

nodes are mapped to TBB tasks and what the limitations are on the performance of flow

graphs. Next, we looked at dependency graphs, a special case of data flow graphs, where

edges communicate dependency messages instead of data messages. We also built a

forward substitution example as a dependency graph and discussed how to estimate its

maximum speedup. Finally, we noted some of the important advanced topics that will

be covered later in this book.

The photograph used in Figures 2-28a, 2-29, and 3-7, was taken by Elena Adams, and is

used with permission from the Halide project’s tutorials at http://halide-lang.org.

Chapter 3 Flow Graphs

https://doi.org/10.1007/978-1-4842-4398-5_2Fig#28a
https://doi.org/10.1007/978-1-4842-4398-5_2Fig#29
http://halide-lang.org

107

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 3 Flow Graphs

http://creativecommons.org/licenses/by-nc-nd/4.0/

109
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_4

CHAPTER 4

TBB and the Parallel
Algorithms of the C++
Standard Template Library
To use the Threading Building Blocks (TBB) library effectively, it is important to

understand how it supports and augments the C++ standard. We discuss three aspects of

TBB’s relationship with standard C++ in this chapter:

	 1.	 The TBB library has often included parallelism-related features

that are new to the C++ standard. Including such features in TBB

provides developers early access to them before they are widely

available in all compilers. In this vein, all pre-built distributions

of TBB now include Intel’s implementation of the parallel

algorithms of the C++ Standard Template Library (STL). These

implementations use TBB tasks to implement multithreading and

use SIMD instructions to implement vectorization. Discussion of

Parallel STL makes up the bulk of this chapter.

	 2.	 The TBB library also provides features that are not included in

the C++ standard but make expressing parallelism easier for

developers. The generic parallel algorithms and flow graph are

examples of these. In this chapter, we discuss custom iterators

that have been included in TBB to widen the applicability of the

Parallel STL algorithms.

110

	 3.	 Finally, we note throughout the chapter that some additions to

the C++ standard may displace the need for certain TBB features.

However, we also note that TBB has value that will likely not be

subsumed by the C++ standard for the foreseeable future. The

features that TBB provides that will be of continuing benefit

include its work-stealing task scheduler, its thread-safe containers,

its flow graph API, and its scalable memory allocators for example.

�Does the C++ STL Library Belong in This Book?
Does a chapter about additions to the C++ Standard Template Library really belong in a

book about TBB? Yes, indeed it does! TBB is a C++ library for parallelism, and it does not

exist in a vacuum. We need to understand how it relates to the C++ standard.

The execution policies we discuss in this chapter are similar in some ways to the TBB

parallel algorithms covered in Chapter 2 because they let us express that an algorithm is

safe to execute in parallel — but they do not prescribe the exact implementation details.

If we want to mix TBB algorithms and Parallel STL algorithms in an application and still

have efficient, composable parallelism (see Chapter 9), we benefit from using a Parallel

STL implementation that uses TBB as its parallel execution engine! Therefore, when we

talk about the parallel execution policies in this chapter, we will focus on TBB-based

implementations. When we use a Parallel STL that uses TBB underneath, then Parallel

STL becomes just another path for us to use TBB tasks in our code.

Back in Figure 1-3 in Chapter 1, we noted that many applications have multiple

levels of parallelism available, including a Single Instruction Multiple Data (SIMD)

layer that is best executed on vector units. Exploiting this level of parallelism can

be critical as demonstrated by the performance results for the binomial options

application shown in in Figure 4-1. Vector parallelism can only improve performance

by a small factor when used alone; it’s limited by the vector width. Figure 4-1 reminds

us, however, that the multiplicative effect of using both task parallelism and vector

parallelism should not be overlooked.

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

111

150

100

50

200

0

> 200x

Threaded

Vectorized

10
9 B

in
om

ia
l O

pt
io

ns
 P

er
 S

ec
. S

P
(H

ig
he

r i
s

Be
tte

r)

Vectorized
& Threaded

2010
Intel Xeon

Processor X5680
formerly codenamed

Westmere

2012
Intel Xeon

Processor E5-2600
formerly code-

named Sandy Bridge

2013
Intel Xeon

Processor E5-2600
v2 formerly code-
named lvy Bridge

2014
Intel Xeon

Processor E5-2600
v3 formerly

codenamed Haswell

2016
Intel Xeon

Processor E5-2600
v4 formerly code-
named Broadwell

2017
Intel Xeon Platinum

Processor 81xx formerly
codenamed Skylake

Server

Benchmark: Binomial Options Pricing Model

Serial

® ™ ® ™ ® ™ ® ™ ® ™ ® ®

Figure 4-1.  The performance of a binomial options pricing application when
executed serial, vectorized, threaded, and vectorized and threaded

In Chapter 1, we implemented an example that used a top-level TBB flow graph layer

to introduce threading, nested generic TBB parallel algorithms within the graph nodes

to get more threading, and then nested STL algorithms that use vector policies in the

bodies of the parallel algorithms to introduce vectorization. When we combine TBB with

Parallel STL and its execution policies, we not only get composable messaging and fork-

join layers, but we also gain access to the SIMD layer.

It is for these reasons that execution policies in the STL library are an important part

of our exploration of TBB!

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

112

TBB AND THE C++ STANDARD

The team that develops TBB is a strong proponent of support for threading in the C++

language itself. In fact, TBB has often included parallelism features modeled after those

proposed for standardization in C++ to allow developers to migrate to these interfaces before

they are widely supported by mainstream compilers. An example of this is std::thread.

The developers of TBB recognized the importance of std::thread and so made an

implementation available as a migration path for developers before it was available in all

of the C++ standard libraries, injecting the feature directly into the std namespace. Today,

TBB’s implementation of std::thread simply includes the platform’s implementation of

std::thread if available and only falls back to its own implementation if the platform’s

standard C++ library does not include an implementation. A similar story can be told for other

now-standard C++ features like atomic variables, mutex objects, and std::condition_

variable.

�A Parallel STL Execution Policy Analogy
To help think about the different execution policies that are provided by the Parallel

STL library, we can visualize a multilane highway as shown in Figure 4-2. As with most

analogies, this is not perfect, but it can help us see the benefits of the different policies.

We can think of each lane in a multilane highway as a thread of execution, each person

as an operation to accomplish (i.e., the person needs to get from point A to point B), each

car as a processor core, and each seat in the car as an element in a (vector) register. In a

serial execution, we only use a single lane of the highway (a single thread) and each person

gets their own car (we are not using vector units). Whether people are traveling the same

route or not, they each take their own car and all travel in the same lane.

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

113

In a threaded execution, we use more than one lane of the highway (i.e., more than

one thread of execution). Now, we get more tasks accomplished per unit of time, but still,

no carpooling is allowed. If several people are coming from the same starting point and

traveling to the same destination, they each take their own car. We are more effectively

utilizing the highway, but our cars (cores) are being used inefficiently.

A vectorized execution is like carpooling. If several people need to travel the same

exact route, they share a car. Many modern processors support vector instructions,

for example SSE and AVX in Intel processors. If we don’t use vector instructions, we

are underutilizing our processors. The vector units in these cores can apply the same

operation to multiple pieces of data simultaneously. The data in vector registers are like

people sharing a car, they take the same exact route.

Lastly, a threaded and vectorized execution is like using all the lanes in the highway

(all of the cores) and also carpooling (using the vector units in each core).

�A Simple Example Using std::for_each
Now that we have a general idea about execution policies but before we get into all of the

gory details, let’s start by applying a function void f(float &e) to all of the elements

in a vector v as shown in Figure 4-3(a). Using std::for_each, one of the algorithms in

the C++ STL library, we can do the same thing, as shown in Figure 4-3(b). Just like with

Figure 4-2.  A multilane highway analogy for the execution policies in Parallel STL

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

114

a range-based for, the for_each iterates from v.begin() to v.end() and invokes the

lambda expression on each item in the vector. This is the default sequenced behavior of

for_each.

With Parallel STL, however, we can inform the library that it is okay to relax these

semantics in order to exploit parallelism or, as shown in Figure 4-3(c), we can make it

explicitly known to the library that we want the sequenced semantics. When using Intel’s

Parallel STL, we need to include both the algorithms and the execution policy headers

into our code, for example:

In C++17, leaving out the execution policy or passing in the sequenced_policy

object, seq, results in the same default execution behavior: it appears as if the lambda

expression is invoked on each item in the vector in order. We say “as if” because the

hardware and compiler are permitted to parallelize the algorithm, but only if doing so is

invisible to a standard-conforming program.

The power of Parallel STL comes from the other execution policies that relax this

sequenced constraint. We say that the operations can be overlapped or vectorized from

within a single thread of execution by using the unsequenced_policy object, unseq, as

shown in Figure 4-3(d). The library can then overlap operations in a single thread, for

example, by using Single Instruction Multiple Data (SIMD) extensions such as SSE or

AVX to vectorize the execution. Figure 4-4 shows this behavior using side-by-side boxes

to indicate that these operations execute simultaneously using vector units. The unseq

execution policy allows “carpooling.”

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

115

Figure 4-3.  A simple loop implemented with std::for_each and using various
Parallel STL execution policies

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

116

In Figure 4-3(e), we tell the library that it is safe to execute this function on all of the

elements in the vector using multiple threads of execution using the parallel_policy

object, par. As shown in Figure 4-4, the par policy allows the operations to be spread

across different threads of execution, but, within each thread, the operations are not

overlapped (i.e., they are not vectorized). Thinking back to our multilane highway

example, we are now using all of the lanes in the highway but are not yet carpooling.

Finally, in Figure 4-3(f), the parallel_unsequenced_policy object, par_unseq, is

used to communicate that the application of the lambda expression to the elements

can be both parallelized and vectorized. In Figure 4-4, the par_unseq execution uses

multiple threads of execution and overlaps operations within each thread. We are now

fully utilizing all of the cores in our platform and effectively utilizing each core by making

use of its vector units.

In practice, we must be careful when we use execution policies. Just like with the

generic TBB parallel algorithms, when we use an execution policy to relax the execution

order for an STL algorithm, we are asserting to the library that this relaxation is legal and

profitable. The library does not check that we are correct. Likewise, the library does not

guarantee that performance is not degraded by using a certain execution policy.

Another point to notice in Figure 4-3 is that the STL algorithms themselves are

in namespace std, but the execution policies, as provided by Intel’s Parallel STL, are

in namespace pstl::execution. If you have a fully compliant C++17 compiler, other

implementations that may not use TBB will be selected if you use the standard execution

policies in the std::execution namespace.

Figure 4-4.  Applying operations using different execution policies

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

117

�What Algorithms Are Provided in a Parallel STL
Implementation?
The C++ Standard Template Library (STL) primarily includes operations that are applied

to sequences. There are some outliers like std::min and std::max that can be applied

to values, but for the most part, the algorithms, such as std::for_each, std::find,

std::transform, std::copy, and std::sort, are applied to sequences of items. This focus

on sequences is convenient when we want to operate on containers that support iterators,

but can be somewhat cumbersome if we want to express something that does not operate

on containers. Later in this chapter, we will see that sometimes we can “think outside the

box” and use custom iterators to make some algorithms act more like general loops.

Explaining what each STL algorithm does is beyond the scope of this chapter and

book. There are entire books written about the C++ Standard Template Library and how

to use it, including The C++ Standard Library: A Tutorial and Reference by Nicolai Josuttis

(Addison-Wesley Professional). In this chapter, we only focus on what the execution

policies, first introduced in C++17, mean for these algorithms and how they can be used

together with TBB.

Most of the STL algorithms specified in the C++ standard have overloads in C++17

that accept execution polices. In addition, a few new algorithms were added because

they are especially useful in parallel programs or because the committee wanted to avoid

changes in semantics. We can find exactly which algorithms support execution policies

by looking at the standard itself or online at web sites like http://en.cppreference.

com/w/cpp/algorithm.

�How to Get and Use a Copy of Parallel STL That Uses TBB
Detailed instructions for downloading and installing Intel’s Parallel STL are provided

in Chapter 1 in the section “Getting the Threading Building Blocks (TBB) Library.”

If you download and install a pre-built copy of TBB 2018 update 5 or later, whether a

commercially license copy obtained through Intel or an open-source binary distribution

downloaded from GitHub, then you also get Intel’s Parallel STL. Parallel STL comes with

all of the pre-built TBB packages.

If however, you want to build the TBB library from sources obtained from GitHub,

then you will need to download the Parallel STL sources from GitHub separately, since

the source code for the two libraries are maintained in separate repositories https://

github.com/intel/tbb and https://github.com/intel/parallelstl.

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

http://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/algorithm
https://github.com/intel/tbb
https://github.com/intel/tbb
https://github.com/intel/parallelstl

118

As we have already seen, Parallel STL supports several different execution policies,

some that support parallelized execution, some that support vectorized execution,

and some that support both. Intel’s Parallel STL supports parallelism with TBB and

vectorization using OpenMP 4.0 SIMD constructs. To get the most out of Intel’s

Parallel STL, you must have a C++ compiler that supports C++11 and OpenMP 4.0

SIMD constructs – and of course you also need TBB. We strongly recommend using

the Intel compiler that comes with any version of Intel Parallel Studio XE 2018 or later.

Not only do these compilers include both the TBB library and support OpenMP 4.0

SIMD constructs, but they also include optimizations that were specifically included to

increase performance for some C++ STL algorithms when used with the unseq or par_

unseq execution policies.

To build an application that uses Parallel STL on the command line, we need

to set the environment variables for compilation and linkage. If we installed Intel

Parallel Studio XE, we can do this by calling the suite-level environment scripts such

as compilervars.{sh|csh|bat}. If we just installed Parallel STL, then we can set the

environment variables by running pstlvars.{sh|csh|bat} in <pstl_install_dir>/

{linux|mac|windows}/pstl/bin. Additional instructions are provided in Chapter 1.

�Algorithms in Intel’s Parallel STL
Intel’s Parallel STL does not yet support all execution policies for every single STL

algorithm. An up-to-date list of which algorithms are provided by the library and which

policies each algorithm supports can be found at https://software.intel.com/en-us/

get-started-with-pstl.

Figure 4-5 shows the algorithms and execution policies that were supported at the

time this book was written.

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

https://software.intel.com/en-us/get-started-with-pstl
https://software.intel.com/en-us/get-started-with-pstl

119

Figure 4-6 shows the policies supported by Intel’s Parallel STL including those that are

part of the C++17 standard as well as those that have been proposed for inclusion in a future

standard. The C++17 policies let us select a sequenced execution (seq), a parallel execution

using TBB (par), or a parallel execution using TBB that is also vectorized (par_unseq).

The unsequenced (unseq) policy let us select an implementation that is only vectorized.

Figure 4-5.  The algorithms that support execution policies in Intel’s Parallel STL
as of January 2019. Additional algorithms and policies may be supported later.
See https://software.intel.com/en-us/get-started-with-pstl for updates.

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

https://software.intel.com/en-us/get-started-with-pstl

120

�Capturing More Use Cases with Custom Iterators
Earlier in this chapter, we introduced a simple use of std::for_each and showed how

the different execution policies can be used with it. Our simple example with par_unseq

in Figure 4-3(f) looked like

At first glance, the for_each algorithm appears fairly limited, it visits the elements in

a sequence and applies a unary function to each element. When used on a container in

this expected way, it is in fact limited in applicability. It does not, for example, accept a

range like the TBB parallel_for.

However, C++ is a powerful language, and we can use STL algorithms in creative

ways to stretch their applicability. As we discussed earlier in Chapter 2, an iterator is

an object that points to an element in a range of elements and defines operators that

provide the ability to iterate through the elements of the range. There are different

categories of iterators including forward, bidirectional, and random-access iterators.

Many standard C++ containers provide begin and end functions that return iterators that

let us traverse the elements of the containers. One common way to apply STL algorithms

to more use cases is by using custom iterators. These classes implement the iterator

interface but are not included in the C++ Standard Template Library.

Figure 4-6.  The execution policies supported by Intel’s Parallel STL

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

121

As an example, we can pass custom iterators to std::for_each to make it act more

like a general for loop. Let’s consider the simple loop shown in Figure 4-8(a). This loop

writes a[i]+b[i]*b[i] back to a[i] for each i in the range [0,n).

Figure 4-7.  The custom iterator classes available in TBB

Three commonly used custom iterators are included in the TBB library to assist

in using the STL algorithms. These iterator types are described in Figure 4-7 and are

available in the iterators.h header or through the all-inclusive tbb.h header file.

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

122

Figure 4-8.  Using std::for_each with custom iterators

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

123

In Figure 4-8(b), the counting_iterator class is used to create something like a

range. The arguments passed to the for_each lambda expression will be the integer

values from 0 to n-1. Even though the for_each still iterates over only a single sequence,

we use these values as an index into the two vectors, a and b.

In Figure 4-8(c), the zip_iterator class is used to iterate over the a and b vectors

simultaneously. The TBB library provides a make_zip_iterator function to simplify

construction of the iterators:

In Figure 4-8(c), we still use only a single sequence in the call to for_each. But now,

the argument passed to the lambda expression is a std::tuple of references to float,

one from each vector.

Finally, in Figure 4-8(d), we add uses of the transform_iterator class. We first

combine the two sequences from vector a and b into a single sequence using the zip_

iterator class, like we did in Figure 4-8(c). But, we also create a lambda expression,

which we assign to square_b. The lambda expression will be used to transform the

std::tuple of references to float that are obtained by dereferencing the zip_iterator.

We pass this lambda expression to our calls to the make_tranform_iterator function:

When the transform_iterator objects in Figure 4-8(d) are dereferenced, they

receive an element from the underlying zip_iterator, square the second element of the

tuple, and create a new std::tuple that contains a reference to the float from a and the

squared value from b. The argument passed to the for_each lambda expression includes

an already squared value, and so the function does not need to compute b[i]*b[i].

Because custom iterators like those in Figure 4-7 are so useful, they are not only

available in the TBB library but also through other libraries such as the Boost C++

libraries (www.boost.org) and Thrust (https://thrust.github.io/doc/group__

fancyiterator.html). They are currently not available directly in the C++ Standard

Template Library.

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

http://www.boost.org
https://thrust.github.io/doc/group__fancyiterator.html
https://thrust.github.io/doc/group__fancyiterator.html

124

�Highlighting Some of the Most Useful Algorithms
With the preliminaries out of the way, we can now discuss the more useful and general

algorithms provided by Parallel STL in more depth, including for_each, transform, reduce,

and transform_reduce. As we discuss each algorithm, we point out analogs in the TBB

generic algorithms. The advantage of the Parallel STL interfaces over the TBB-specific

interfaces is that Parallel STL is part of the C++ standard. The disadvantage of the Parallel STL

interfaces is that they are less expressive and less tunable than the generic TBB algorithms.

We point out some of these drawbacks as we talk about the algorithms in this section.

�std::for_each, std::for_each_n
We’ve already talked a lot about for_each in this chapter. In addition to for_each,

Parallel STL also provides a for_each_n algorithm that only visits the first n elements.

Both algorithms for_each and for_each_n have several interfaces; the ones that accept

execution policies are as follows:

Combined with custom iterators, for_each can be quite expressive, as we

demonstrated earlier in Figure 4-8. We can, for example, take the simple matrix

multiplication example from Chapter 2 and re-implement it in Figure 4-9 using the

counting_iterator class.

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

125

If we use an STL that uses TBB underneath, like Intel’s Parallel STL, the par policy

is implemented using a tbb::parallel_for, and so the performance of std::for_each

and tbb::parallel_for will be similar for a simple example like this.

This of course begs a question. If std::for_each uses a tbb::parallel_for to

implement its par policy but is a standard interface and also gives us access to the other

policies, shouldn’t we just always use std::for_each instead of a tbb::parallel_for?

Unfortunately, no. Not all code is as simple as this example. If we are interested in

an effective threaded implementation, it’s typically better to use a tbb::parallel_for

directly. Even for this matrix multiplication example, as we noted back in Chapter 2,

our simple implementation is not optimal. In Part 2 of this book, we discuss important

optimization hooks available in TBB that we can use to tune our code. We will see in

Chapter 16 that these hooks result in significant performance gains. Unfortunately, most

of these advanced features cannot be applied when we use a Parallel STL algorithm.

The standard C++ interfaces simply do not allow for them.

When we use a Parallel STL algorithm and choose a standard policy such as par,

unseq, or par_unseq, we get whatever the implementation decides to give us. There are

proposals for additions to C++, like executors, that may address this limitation sometime

in the future. But for now, we have little control over STL algorithms. When using TBB

generic algorithms, such as parallel_for, we have access to the rich set of optimization

features described in Part 2 of this book, such as partitioners, different types of blocked

ranges, grainsizes, affinity hints, priorities, isolation features, and so on.

Figure 4-9.  Using std::for_each with tbb::counting_iterator to create a
parallel version of matrix multiplication

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

126

Figure 4-10.  Using std::transform to add two vectors

For some simple cases, a standard C++ Parallel STL algorithm might be just as

good as its TBB counterpart, but in more realistic scenarios, TBB provides us with the

flexibility and control we need to get the performance we want.

�std::transform
Another useful algorithm in Parallel STL is transform. It applies a unary operation to

the elements from one sequence or a binary operation to the elements from two input

sequences and writes the results to the elements in a single output sequence. The two

interfaces that support parallel execution policies are as follows:

In Figure 4-8, we used for_each and custom iterators to read from two vectors and

write back to a single output vector, computing a[i] = a[i] + b[i]*b[i] in each

iteration. This is a great candidate for std::transform as we can see in Figure 4-10.

Because transform has an interface that supports two input sequences and one output

sequence, this matches our example well.

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

127

As with std::for_each, the applicability of this algorithm when used in a typical

way is limited because there is at most two input sequences and only a single output

sequence. If we have a loop that writes to more than one output array or container, it’s

awkward to express that with a single call to transform. Of course, it’s possible – almost

anything is in C++ – but it requires using custom iterators, like zip_iterator, and some

pretty ugly code to access the many containers.

�std::reduce
We discussed reductions when we covered tbb::parallel_reduce in Chapter 2. The

Parallel STL algorithm reduce performs a reduction over the elements of a sequence.

Unlike tbb::parallel_reduce however, it provides only a reduction operation. In the

next section, we discuss transform_reduce, which is more like tbb::parallel_reduce

because it provides both a transform operation and a reduce operation. The two

interfaces to std::reduce that support parallel execution policies are as follows:

The reduce algorithm performs a generalized sum of the elements of the sequence

using binary_op and the identity value init. In the first interface, binary_op is not an input

parameter, and std::plus<> is used by default. A generalized sum means a reduction

where the elements can be grouped and rearranged in arbitrary order – so this algorithm

assumes that the operation is both associative and commutative. Because of this, we can

have the same floating-point rounding issues that we discussed in the sidebar in Chapter 2.

If we want to sum the elements in a vector, we can use std::reduce and any of the

execution policies, as shown in Figure 4-11.

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

128

�std::transform_reduce
As mentioned in the previous section, transform_reduce is similar to a tbb::parallel_

reduce because it provides both a transform operation and reduce operation. However, as

with most STL algorithms, it can be applied to only one or two input sequences at a time:

An important and common kernel we can implement with a std::transform_

reduce is an inner product. It is so commonly used for this purpose that there is an

interface that uses std::plus<> and std::multiplies<> for the two operations by

default:

The serial code for an inner product of two vectors, a and b, is shown in Figure 4-12(a).

We can use a std::transform_reduce and provide our own lambda expressions for the

two operations as shown in Figure 4-12(b). Or, like in Figure 4-12(c), we can rely on the

default operations.

Figure 4-11.  Using std::reduce to sum the elements of a vector four times

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

129

Figure 4-12.  Using std::transform_reduce to calculate an inner product

And again, as with the other Parallel STL algorithms, if we think slightly outside of

the box, we can use custom iterators, like counting_iterator, to use this algorithm to

process more than just elements in containers. For example, we can take the calculation

of pi example that we implemented with tbb::parallel_reduce in Chapter 2 and

implement it using a std::transform_reduce, as shown in Figure 4-13.

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

130

Using a Parallel STL algorithm like std::transform_reduce instead of a

tbb::parallel_reduce carries with it the same pros and cons as the other algorithms

we’ve described. It uses a standardized interface so is potentially more portable.

However, it doesn’t allow us to use the optimization features that are described in Part 2

of this book to optimize its performance.

�A Deeper Dive into the Execution Policies
The execution policies in Parallel STL let us communicate the constraints that we want

to apply to the ordering of the operations during the execution of the STL algorithm. The

standard set of policies did not come out of thin air – it captures the relaxed constraints

necessary for executing efficient parallel/threaded or SIMD/vectorized code.

If you are happy enough to think of the sequenced_policy as meaning sequential

execution, the parallel_policy as meaning parallel execution, the unsequenced_

policy as meaning vectorized execution, and the parallel_unsequenced_policy as

meaning parallel and vectorized execution, then you can skip the rest of this section.

However, if you want to understand the subtleties implied by these policies, keep reading

as we dive into the details.

Figure 4-13.  Using std::transform_reduce to calculate pi

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

131

�The sequenced_policy
The sequenced_policy means that an algorithm’s execution appears as if (1) all of the

element access functions used by the algorithm are invoked on the thread that called the

algorithm and (2) the invocations of the element access functions are not interleaved

(i.e., they are sequenced with respect to each other within a given thread). An element

access function is any function invoked during the algorithm that accesses the elements,

such as functions in the iterators, comparison or swap functions, and any other user-

provided functions that are applied to the elements. As mentioned earlier, we say “as if”

because the hardware and compiler are permitted to break these rules, but only if doing

so is invisible to a standard-conforming program.

One thing to note is that many of the STL algorithms do not specify that operations

are applied in any specific sequence order even in the sequenced case. For example,

while std::for_each does specify that the elements of a sequence are accessed in

order in the sequenced case, std::transform does not. The std::transform visits

all of the elements in a sequence, but not in any particular order. Unless stated

otherwise, a sequenced execution means that the invocations of the element access

functions are indeterminately sequenced in the calling thread. If two function calls

are “indeterminately sequenced,” it means that one of the function calls executes

to completion before the other function call starts executing – but it doesn’t matter

which function call goes first. The result is that the library may not be able to interleave

the execution of the operations from the two functions, preventing the use of SIMD

operations for example.

The “as if” rule can sometimes lead to unexpected performance results. For example,

a sequenced_policy execution may perform just as well as an unsequenced_policy

because the compiler vectorizes both. If you get confusing results, you may want to

inspect your compiler’s optimization reports to see what optimizations have been

applied.

�The parallel_policy
The parallel_policy allows the element access functions to be invoked in the calling

thread or from other threads created by the library to assist in parallel execution.

However, any calls from within the same thread are sequenced with respect to

each other, that is, the execution of access functions on the same thread cannot be

interleaved.

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

132

When we use Intel’s Parallel STL library, the parallel_policy is implemented using

TBB generic algorithms and tasks. The threads that execute the operations are the main

thread and the TBB worker threads.

�The unsequenced_policy
The unsequenced_policy asserts that all of the element access functions must be

invoked from the calling thread. However, within the calling thread, the execution

of these functions can be interleaved. This relaxation of the sequenced constraint

is important since it allows the library to aggregate operations in different function

invocations into single SIMD instructions or to overlap operations.

SIMD parallelism can be implemented with vector instructions introduced through

assembly code, compiler intrinsics, or compiler pragmas. In Intel’s Parallel STL

implementation, the library uses OpenMP SIMD pragmas.

Because the executions of the element access functions can be interleaved in a single

thread, it is unsafe to use mutex objects in them (mutex objects are described in more

detail in Chapter 5). Imagine, for example, interleaving several lock operations from

different functions before executing any of the matching unlock operations.

�The parallel_unsequenced_policy
As we might guess after learning about the preceding policies, the parallel_

unsequenced_policy weakens execution constraints in two ways: (1) element access

functions may be invoked by the calling thread or by other threads created to help

with parallel execution and (2) the function executions within each thread may be

interleaved.

�Which Execution Policy Should We Use?
When we choose an execution policy, we first have to be sure it doesn’t relax constraints

to a point that the values computed by the algorithm will be wrong.

For example, we can use a std::for_each to compute a[i] = a[i] + a[i-1] for a

vector a, but the code depends on the sequenced order of for_each (which, unlike some

other indeterminately sequenced algorithms, applies the operator to the items in order):

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

133

This sample stores the last value into the previous_value variable, which has been

captured by reference by the lambda expression. This sample only works if we execute

the operations in order within a single thread of execution. Using any of the policy

objects other than seq will yield incorrect results.

But let’s assume we do our due diligence and we know which policies are legal

for our operations and the STL algorithm we are using. How do we choose between a

sequenced_policy execution, an unsequenced_policy execution, a parallel_policy

execution, or a parallel_unsequenced_policy execution?

Unfortunately, there’s not a simple answer. But there are some guidelines we can use:

•	 We should use threaded execution only when the algorithm has

enough work to profit from parallel execution. We discuss rules

of thumb for when to use tasks or not in Chapter 16 in Part 2 of

this book. These rules apply here as well. A parallel execution has

some overhead, and if the work isn’t large enough we will only add

overhead with no performance gain.

•	 Vectorization has lower overhead and therefore can be used

effectively for small, inner loops. Simple algorithms may benefit from

vectorization when they do not benefit from threading.

•	 Vectorization can have overhead too though. To use vector registers

in a processor, the data has to be packed together. If our data is not

contiguous in memory or we cannot access it with a unit stride, the

compiler may have to generate extra instructions to gather the data

into the vector registers. In such cases, a vectorized loop may perform

worse than its sequential counterpart. You should read compiler

vectorization reports and look at runtime profiles to makes sure you

don’t make things worse by adding vectorization.

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

134

•	 Because we can switch policies easily with Parallel STL, the best

option may be to profile your code and see which policy performs

best for your platform.

�Other Ways to Introduce SIMD Parallelism
Outside of using the parallel algorithms in the C++ STL, there are several ways to

introduce SIMD parallelism into applications. The easiest, and preferred route, is to use

optimized domain-specific or math-kernel libraries whenever possible. For example,

the Intel Math Kernel Library (Intel MKL) provides highly tuned implementations of

many math functions, like those found in BLAS, LAPACK, and FFTW. These functions

take advantage of both threading and vectorization when profitable – so if we use these,

we get both threading and vectorization for free. Free is good! Intel MLK supports

TBB-based execution for many of its functions, so if we use these TBB versions they will

compose well with the rest of our TBB-based parallelism.

Of course, we might need to implement algorithms that are not available in any

prepackaged library. In that case, there are three general approaches to adding vector

instructions: (1) inline assembly code, (2) simd intrinsics, and (3) compiler-based

vectorization.

We can use inline assembly code to inject specific assembly instructions, including

vector instructions, directly into our applications. This is a low-level approach that is

both compiler and processor dependent and therefore is the least portable and most

error-prone. But, it does give us complete control over the instructions that are used (for

better or worse). We use this approach as a last resort!

An only slightly better approach is to use SIMD intrinsics. Most compilers provide a

set of intrinsic functions that let us inject platform-specific instructions without resorting

to inline assembly code. But other than making it easier to inject the instructions, the

end result is still compiler and platform dependent and error-prone. We generally avoid

this approach too.

The final approach is to rely on compiler-based vectorization. At one extreme, this

can mean fully automated vectorization, where we turn on the right compiler flags, let

the compiler do its thing, and hope for the best. If that works, great! We get the benefits

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

135

of vectorization for free. Remember, free is a good thing. However, sometimes we need to

give guidance to the compiler so that it can (or will) vectorize our loops. There are some

compiler specific ways to provide guidance, such as the Intel compiler’s #pragma ivdep

and #pragma vector always and some standardized approaches, such as using the

OpenMP simd pragmas. Both fully automatic and user-guided compiler vectorization are

much more portable than inserting platform-specific instructions directly into our code

through inline assembly code or compiler intrinsics. In fact, even Intel’s Parallel STL

library uses OpenMP simd pragmas to support vectorization in a portable way for the

unseq and parallel_unseq policies.

We provide links to learn more about the options for adding vector instructions in

the “For More Information” section at the end of this chapter.

�Summary
In this chapter, we provided an overview of Parallel STL, what algorithms and execution

policies it supports, and how to get a copy that uses Threading Building Blocks as its

execution engine. We then discussed the custom iterator classes provided by TBB that

increase the applicability of the STL algorithms. We continued by highlighting some

of the most useful and general algorithms for parallel programming: std::for_each,

std::transform, std::reduce, and std::transform_reduce. We demonstrated that

some of the samples we implemented in Chapter 2 can also be implemented with these

algorithms. But we also warned that the STL algorithms are still not as expressive as TBB

and that the important performance hooks we discuss in Part 2 of this book cannot be

used with Parallel STL. While Parallel STL is useful for some simple cases, its current

limitations make us hesitant to recommend it broadly for threading. That said, TBB tasks

are not a path to SIMD parallelism. The unseq and parallel_unseq policies provided by

Intel’s Parallel STL, which is included with all of the recent TBB distributions, augment

the threading provided by TBB with support for easy vectorization.

�For More Information
Vladimir Polin and Mikhail Dvorskiy, “Parallel STL: Boosting Performance of C++ STL

Code: C++ and the Evolution Toward Parallelism,” The Parallel Universe Magazine, Intel

Corporation, Issue 28, pages 5–18, 2017.

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

136

Alexey Moskalev and Andrey Fedorov, “Getting Started with Parallel STL,” https://

software.intel.com/en-us/get-started-with-pstl, March 29, 2018.

Pablo Halpern, Arch D Robison, Robert Geva, Clark Nelson and Jen Maurer, “Vector

and Wavefront Policies,” Programming Language C++ (WG21), P0076r3, http://open-

std.org/JTC1/SC22/WG21/docs/papers/2016/p0076r3.pdf, July 7, 2016.

The Intel 64 and IA-32 Architectures Software Developer Manuals: https://

software.intel.com/en-us/articles/intel-sdm.

The Intel Intrinsics Guide: https://software.intel.com/sites/landingpage/

IntrinsicsGuide/.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material.

If material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 4 TBB and the Parallel Algorithms of the C++ Standard Template Library

https://software.intel.com/en-us/get-started-with-pstl
https://software.intel.com/en-us/get-started-with-pstl
http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0076r3.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0076r3.pdf
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
http://creativecommons.org/licenses/by-nc-nd/4.0/

137
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_5

CHAPTER 5

Synchronization: Why
and How to Avoid It
Let us underscore this up front: if you don’t need to use the synchronization features

described in this chapter, so much the better. Here, we cover synchronization

mechanisms and alternatives to achieve mutual exclusion. “Synchronization” and

“exclusion” should have quite a negative connotation for parallel programmers caring

about performance. These are operations that we want to avoid because they cost time

and, in some cases, processor resources and energy. If we can rethink our data structures

and algorithm so that it does not require synchronization nor mutual exclusion, this is

great! Unfortunately, in many cases, it is impossible to avoid synchronization operations,

and if this is your case today, keep reading! An additional take-home message that we

get from this chapter is that careful rethinking of our algorithm can usually result in a

cleaner implementation that does not abuse synchronization. We illustrate this process

of rethinking an algorithm by parallelizing a simple code following first a naïve approach

that resorts to mutexes, evolve it to exploit atomic operations, and then further reduce

the synchronization between threads thanks to privatization and reduction techniques.

In the latter of these, we show how to leverage thread local storage (TLS) as a way to

avoid highly contended mutual exclusion overhead. In this chapter, we assume you are,

to some extent, familiarized with the concepts of “lock,” “shared mutable state,” “mutual

exclusion,” “thread safety,” “data race,” and other synchronization-related issues. If not, a

gentle introduction to them is provided in the Preface of this book.

138

�A Running Example: Histogram of an Image
Let’s us start with a simple example that can be implemented with different

kinds of mutual exclusion (mutex) objects, atomics, or even by avoiding most

of the synchronization operations altogether. We will describe all these possible

implementations with their pros and cons, and use them to illustrate the use of mutexes,

locks, atomic variables, and thread local storage.

There are different kinds of histograms, but an image histogram is probably the

most widely used, especially in image and video devices and image processing tools.

For example, in almost all photo editing applications, we can easily find a palette that

shows the histogram of any of our pictures, as we see in Figure 5-1.

Figure 5-1.  Grayscale picture (of Ronda, Málaga) and its corresponding image
histogram

For the sake of simplicity, we will assume grayscale images. In this case, the

histogram represents the number of pixels (y-axis) with each possible brightness value

(x-axis). If image pixels are represented as bytes, then only 256 tones or brightness

values are possible, with zero being the darkest tone and 255 the lightest tone. In

Figure 5-1, we can see that the most frequent tone in the picture is a dark one: out of the

5 Mpixels, more than 70 thousand have the tone 30 as we see at the spike around x=30.

Photographers and image professionals rely on histograms as an aid to quickly see the

pixel tone distribution and identify whether or not image information is hidden in any

blacked out, or saturated, regions of the picture.

In Figure 5-2, we illustrate the histogram computation for a 4×4 image where the

pixels can only have eight different tones from 0 to 7. The bidimensional image is usually

represented as a unidimensional vector that stores the 16 pixels following a row-major

Chapter 5 Synchronization: Why and How to Avoid It

139

order. Since there are only eight different tones, the histogram only needs eight elements,

with indices from 0 to 7. The elements of the histogram vector are sometime called

“bins” where we “classify” and then count the pixels of each tone. Figure 5-2 shows the

histogram, hist, corresponding to that particular image. The “4” we see stored in bin

number one is the result of counting the four pixels in the image with tone 1. Therefore,

the basic operation to update the value of the bins while traversing the image is

hist[<tone>]++.

Figure 5-2.  Computing the histogram, hist, from an image with 16 pixels (each
value of the image corresponds to the pixel tone)

From an algorithmic point of view, a histogram is represented as an array of integers

with enough elements to account for all possible tone levels. Assuming the image is

an array of bytes, there are now 256 possible tones; thus, the histogram requires 256

elements or bins. The sequential code that computes the histogram of such an image is

presented in Figure 5-3.

Chapter 5 Synchronization: Why and How to Avoid It

140

If you already understand everything in the previous code listing, you will probably

want to skip the rest of this section. This code first declares the vector image of size n (say

one million for a Megapixel image) and, after initializing the random number generator,

it populates the image vector with random numbers in the range [0,255] of type uint8_t.

For this, we use a Mersenne_twister_engine, mte, which generates random numbers

uniformly distributed in the range [0, num_bins) and inserts them into the image

vector. Next, the hist vector is constructed with num_bins positions (initialized to zero

by default). Note that we declared an empty vector image for which we later reserved n

integers instead of constructing image(n). That way we avoid traversing the vector first to

initialize it with zeros and once again to insert the random numbers.

Figure 5-3.  Code listing with the sequential implementation of the image
histogram computation. The relevant statements are highlighted inside a box.

Chapter 5 Synchronization: Why and How to Avoid It

141

The actual histogram computation could have been written in C using a more

traditional approach:

for (int i = 0; i < N; ++i) hist[image[i]]++;

which counts in each bin of the histogram vector the number of pixels of every tonal

value. However, in the example of Figure 5-3, we fancied showing you a C++ alternative

that uses the STL for_each algorithm and may be more natural for C++ programmers.

Using the for_each STL approach, each actual element of the image vector (a tone of type

uint8_t) is passed to the lambda expression, which increments the bin associated with the

tone. For the sake of expediency, we rely on the tbb::tick_count class in order to account

for the number of seconds required in the histogram computation. The member functions

now and seconds are self-explanatory, so we do not include further explanation here.

�An Unsafe Parallel Implementation
The first naïve attempt to parallelize the histogram computation consists on using a

tbb::parallel_for as shown in Figure 5-4.

Figure 5-4.  Code listing with the unsafe parallel implementation of the image
histogram computation

Chapter 5 Synchronization: Why and How to Avoid It

142

In order to be able to compare the histogram resulting from the sequential

implementation of Figure 5-3, and the result of the parallel execution, we declare a

new histogram vector hist_p. Next, the crazy idea here is to traverse all the pixels

in parallel… why not? Aren’t they independent pixels? To that end, we rely on the

parallel_for template that was covered in Chapter 2 to have different threads traverse

different chunks of the iteration space and, therefore, read different chunks of the image.

However, this is not going to work: the comparison of vectors hist and hist_p (yes,

hist!=hist_p does the right thing in C++), at the end of Figure 5-4, reveals that the two

vectors are different:

 c++ -std=c++11 -O2 -o fig_5_4 fig_5_4.cpp -ltbb

 ./fig_5_4

 Serial: 0.606273, Parallel: 6.71982, Speed-up: 0.0902216

 Parallel computation failed!!

A problem arises because, in the parallel implementation, different threads are

likely to increment the same shared bin at the same time. In other words, our code is

not thread-safe (or unsafe). More formally, as it is, our parallel unsafe code exhibits

“undefined behavior” which also means that our code is not correct. In Figure 5-5 we

illustrate the problem supposing that there are two threads, A and B, running on cores

0 and 1, each one processing half of the pixels. Since there is a pixel with brightness 1 in

the image chunk assigned to thread A, it will execute hist_p[1]++. Thread B also reads

a pixel with the same brightness and will also execute hist_p[1]++. If both increments

coincide in time, one executed on core 0 and the other on core 1, it is highly likely that

we miss an increment.

Chapter 5 Synchronization: Why and How to Avoid It

143

This happens because the increment operation is not atomic (or indivisible), but on

the contrary it usually consists of three assembly level operations: load the variable from

memory into a register, increment the register, and store the register back into memory.1

Using a more formal jargon, this kind of operation is known as a Read-Modify-Write

or RMW operation. Having concurrent writes to a shared variable is formally known

as shared mutable state. In Figure 5-6, we illustrate a possible sequence of machine

instructions corresponding to the C++ instruction hist_p[1]++.

If at the time of executing these two increments we have already found one previous

pixel with brightness 1, hist_p[1] contains a value of one. This value could be read

and stored in private registers by both threads which will end up writing two in this bin

instead of three, which is the correct number of pixels with brightness 1 that have been

encountered thus far. This example is somehow oversimplified, not taking into account

caches and cache coherence, but serve us to illustrate the data race issue. A more

elaborated example is included in the Preface (see Figures P-15 and P-16).

1�Due to the very essence of the von Neumman architecture, the computational logic is separated
from the data storage so the data must be moved into where it can be computed, then computed
and finally moved back out to storage again.

Figure 5-5.  Unsafe parallel update of the shared histogram vector

Figure 5-6.  Unsafe update of a shared variable or shared mutable state

Chapter 5 Synchronization: Why and How to Avoid It

144

We might think that this series of unfortunate events are unlikely to happen, or

even if they happen, that slightly different result will be acceptable when running the

parallel version of the algorithm. Is not the reward a faster execution? Not quite: as we

saw in the previous page, our unsafe parallel implementation is ~10× slower than the

sequential one (running with four threads on a quad-core processor and with n equal

to one thousand million pixels). The culprit is the cache coherency protocol that was

introduced in the Preface (see “Locality and the Revenge of the Caches” section in the

Preface). In the serial execution, the histogram vector is likely to be fully cached in the

L1 cache of the core running the code. Since there are a million pixels, there will be a

million of increments in the histogram vector, most of them served at cache speed.

Note O n most Intel processors, a cache line can hold 16 integers (64 bytes).
The histogram vector with 256 integers will need just 16 cache lines if the vector is
adequately aligned. Therefore, after 16 cache misses (or much less if prefetching
is exercised), all histogram bins are cached and each one accessed in only around
three cycles (that’s very fast!) in the serial implementation (assuming a large enough
L1 cache and that the histogram cache lines are never evicted by other data).

On the other hand, in the parallel implementation, all threads will fight to cache the

bins in per-core private caches, but when one thread writes in one bin on one core, the

cache coherence protocol invalidates the 16 bins that fit in the corresponding cache line

in all the other cores. This invalidation causes the subsequent accesses to the invalidated

cache lines to cost an order of magnitude more time than the much desired L1 access

time. The net effect of this ping-pong mutual invalidation is that the threads of the

parallel implementation end up incrementing un-cached bins, whereas the single thread

of the serial implementation almost always increments cached bins. Remember once

again that the one-megapixel image requires one million increments in the histogram

vector, so we want to create an increment implementation that is as fast as possible. In

this parallel implementation of the histogram computation, we find both false sharing

(e.g., when thread A increments hist_p[0] and thread B increments hist_p[15], due

to both bins land in the same cache line) and true sharing (when both threads, A and B,

increment hist_p[i]). We will deal with false and true sharing in subsequent sections.

Chapter 5 Synchronization: Why and How to Avoid It

145

�A First Safe Parallel Implementation:
Coarse-Grained Locking
Let’s first solve the problem of the parallel access to a shared data structure. We need

a mechanism that prevents other threads from reading and writing in a shared

variable when a different thread is already in the process of writing the same variable.

In more layman terms, we want a fitting room where a single person can enter, see

how the clothes fit, and then leaves the fitting room for the next person in the queue.

Figure 5-7 illustrates that a closed door on the fitting room excludes others. In parallel

programming, the fitting room door is called a mutex, when a person enters the fitting

room he acquires and holds a lock on the mutex by closing and locking the door, and

when the person leaves they release the lock by leaving the door open and unlocked.

In more formal terms, a mutex is an object used to provide mutual exclusion in the

execution of a protected region of code. This region of code that needs to be protected

with mutual exclusion is usually known as a “critical section.” The fitting room example

also illustrates the concept of contention, a state where the resource (a fitting room)

is wanted by more than one person at a time, as we can see in Figure 5-7(c). Since the

fitting room can be occupied just by a single person at a time, the use of the fitting room

is “serialized.” Similarly, anything protected by a mutex can reduce the performance of a

program, first due to the extra overhead introduced by managing the mutex object, and

second and more importantly because the contention and serialization it can elicit.

A key reason we want to reduce synchronization as much as possible is to avoid contention

and serialization which in turns limits scaling in parallel programs.

Figure 5-7.  Closing a door on a fitting room excludes others

Chapter 5 Synchronization: Why and How to Avoid It

146

In this section, we focus on the TBB mutex classes and related mechanisms

for synchronization. While TBB predates C++11, it is worth noting that C++11 did

standardize support for a mutex class, although it is not as customizable as the ones

in the TBB library. In TBB, the simplest mutex is the spin_mutex that can be used

after including tbb/spin_mutex.h or the all-inclusive tbb.h header file. With this new

tool in our hands, we can implement a safe parallel version of the image histogram

computation as we can see in Figure 5-8.

The object my_lock that acquires a lock on my_mutex, when it is created

automatically unlocks (or releases) the lock in the object destructor, which is called

when leaving the object scope. It is therefore advisable to enclose the protected regions

with additional braces, {}, to keep the lifetime of the lock as short as possible, so that the

other waiting threads can take their turn as soon as possible.

Note I f in the code of Figure 5-8 we forget to put a name to the lock object, for
example: 

// was my_lock{my_mutex}
my_mutex_t::scoped_lock {my_mutex}; 

the code compiles without warning, but the scope of the scoped_lock ends at
the semicolon. Without the name of the object (my_lock), we are constructing an

Figure 5-8.  Code listing with our first safe parallel implementation of the image
histogram computation that uses coarse-grained locking

Chapter 5 Synchronization: Why and How to Avoid It

147

anonymous/unnamed object of the scoped_lock class, and its lifetime ends at
the semicolon because no named object outlives the definition. This is not useful,
and the critical section is not protected with mutual exclusion.

A more explicit, but not recommended, alternative of writing the code of Figure 5-8

is presented in Figure 5-9.

Figure 5-9.  A discouraged alternative for acquiring a lock on a mutex

C++ pundits favor the alternative of Figure 5-8, known as “Resource Acquisition

Is Initialization,” RAII, because it frees us from remembering to release the lock. More

importantly, using the RAII version, the lock object destructor, where the lock is

released, is also called in case of an exception so that we avoid leaving the lock acquired

due to the exception. If in the version of Figure 5-9 an exception is thrown before the

my_lock.release() member function is called, the lock is also released anyway, because

the destructor is invoked and there, the lock is released. If a lock leaves its scope but

was previously released with the release() member function, then the destructor does

nothing.

Back to our code of Figure 5-8, you are probably wondering, “but wait, haven’t we

serialized our parallel code with a coarse-grained lock?” Yes, you are right! As we can

see in Figure 5-10, each thread that wants to process its chunk of the image first tries to

acquire the lock on the mutex, but only one will succeed and the rest will impatiently

wait for the lock to be released. Not until the thread holding the lock releases it, can a

different thread execute the protected code. Therefore, the parallel_for ends up being

executed serially! The good news is that now, there are no concurrent increments of the

histogram bins and the result is finally correct. Yeah!

Chapter 5 Synchronization: Why and How to Avoid It

148

Actually, if we compile and run our new version, what we get is a parallel execution a

little bit slower than the sequential one:

 c++ -std=c++11 -O2 -o fig_5_8 fig_5_8.cpp -ltbb

 ./fig_5_8

 Serial: 0.61068, Parallel: 0.611667, Speed-up: 0.99838

This approach is called coarse-grained locking because we are protecting a coarse-

grained data structure (actually the whole data structure – the histogram vector – in

this case). We could partition the vector in several sections and protect each section

with its own lock. That way, we would increase the concurrency level (different threads

accessing different sections can proceed in parallel), but we would have increased the

complexity of the code and the memory required for each of the mutex objects.

A word of caution is in order! Figure 5-11 shows a common mistake of parallel

programming newbies.

Figure 5-10.  Thread A holds the coarse-grained lock to increment bin number
one, while thread B waits because the whole histogram vector is locked

Figure 5-11.  Common mistake made by parallel programming newbies

Chapter 5 Synchronization: Why and How to Avoid It

149

This code compiles without errors nor warnings, so what is wrong with it? Back to our

fitting-room example, our intention was to avoid several people entering in the fitting-

room at the same time. In the previous code, my_mutex is defined inside the parallel

section, and there will be a mutex object per task, each one locking its own mutex, which

does not prevent concurrent access to the critical section. As we can see in Figure 5-12,

the newbie code essentially has a separate door for each person into the same fitting

room! That is not what we want! The solution is to declare my_mutex once (as we did in

Figure 5-8) so that all accesses have to enter the fitting room through the same door.

Figure 5-12.  A fitting room with more than one door

Before tackling a fine-grained locking alternative, let’s discuss two aspects that

deserve a comment. First, the execution time of the “parallelized-then-serialized” code

of Figure 5-8 is greater than the time needed by the serial implementation. This is due to

the “parallelization-then-serialization” overhead, but also due to a poorer exploitation

of the caches. Of course, there is no false sharing nor true sharing, because in our

serialized implementation there is no “sharing” whatsoever! Or is there? In the serial

implementation, only one thread accesses a cached histogram vector. In the coarse-

grained implementation, when one thread processes its chunk of the image, it will cache

the histogram in the cache of the core where the thread is running. When the next thread

in the queue can finally process its own chunk, it may need to cache the histogram

in a different cache (if the thread is running on a different core). The threads are still

sharing the histogram vector, and more cache misses will likely occur with the proposed

implementation than with the serial one.

The second aspect that we want to mention is the possibility of configuring the mutex

behavior by choosing one of the possible mutex flavors that are shown in Figure 5-13.

It is therefore recommended to use

using my_mutex_t = <mutex_flavor>

Chapter 5 Synchronization: Why and How to Avoid It

150

or the equivalent C-ish alternative

typedef <mutex_flavor> my_mutex_t;

and then use my_mutex_t onward. That way, we can easily change the mutex flavor in a

single program line and experimentally evaluate easily which flavor suits us best. It may

be necessary to also include a different header file, as indicated in Figure 5-13, or use the

all-inclusive tbb.h.

Figure 5-13.  Different mutex flavors and their properties

Chapter 5 Synchronization: Why and How to Avoid It

151

�Mutex Flavors
In order to understand the different flavors of mutex, we have to first describe the

properties that we use to classify them:

•	 Scalable mutexes do not consume excessive core cycles nor memory

bandwidth while waiting to have their turn. The motivation is that a

waiting thread should avoid consuming the hardware resources that

may be needed by other nonwaiting threads.

•	 Fair mutexes use a FIFO policy for the threads to take their turn.

•	 Recursive mutexes allow that a thread already holding a lock on a

mutex can acquire another lock on the same mutex. Rethinking your

code to avoid mutexes is great, doing it to avoid recursive mutexes

is almost a must! Then, why does TBB provide them? There may be

corner cases in which recursive mutexes are unavoidable. They may

also come in handy when we can’t be bothered or have no time to

rethink a more efficient solution.

In the table in Figure 5-13, we also include the size of the mutex object and the

behavior of the thread if it has to wait for a long time to get a lock on the mutex. With

regard to the last point, when a thread is waiting its turn it can busy-wait, block, or

yield. A thread that blocks will be changed to the blocked state so that the only resource

required by the thread is the memory that keeps its sleeping state. When the thread can

finally acquire the lock, it wakes up and moves back to the ready state where all the ready

threads wait for their next turn. The OS scheduler assigns time slices to the ready threads

that are waiting in a ready-state queue. A thread that yields while waiting its turn to hold

a lock is kept in the ready state. When the thread reaches the top of the ready-state queue,

it is dispatched to run, but if the mutex is still locked by other thread, it again gives away

its time slice (it has nothing else to do!) and goes back to the ready-state queue.

Note N ote that in this process there may be two queues involved: (i) the ready-
state queue managed by the OS scheduler, where ready threads are waiting, not
necessarily in FIFO order, to be dispatched to an idle core and become running
threads, and (ii) the mutex queue managed by the OS or by the mutex library in
user space, where threads wait their turn to acquire a lock on a queueing mutex.

Chapter 5 Synchronization: Why and How to Avoid It

152

If the core is not oversubscribed (there is only one thread running in this core), a

thread that yields because the mutex is still locked will be the only one in the ready-

state queue and be dispatched right away. In this case, the yield mechanism is virtually

equivalent to a busy-wait.

Now that we understand the different properties that can characterize the

implementation of a mutex, let’s delve into the particular mutex flavors that TBB offers.

mutex and recursive_mutex are TBB wrappers around the OS-provided mutex

mechanism. Instead of the “native” mutex, we use TBB wrappers because they add

exception-safe and identical interfaces to the other TBB mutexes. These mutexes block

on long waits, so they waste fewer cycles, but they occupy more space and have a longer

response time when the mutex becomes available.

spin_mutex, on the contrary, never blocks. It spins busy-waiting in the user space

while waiting to hold a lock on a mutex. The waiting thread will yield after a number of

tries to acquire the loop, but if the core is not oversubscribed, this thread keeps the core

wasting cycles and power. On the other hand, once the mutex is released, the response

time to acquire it is the fastest possible (no need to wake up and wait to be dispatched to

run). This mutex is not fair, so no matter for how long a thread has been waiting its turn,

a quicker thread can overtake it and acquire the lock if it is the first to find the mutex

unlocked. A free-for-all prevails in this case, and in extreme situations, a weak thread can

starve, never getting the lock. Nonetheless, this is the recommended mutex flavor under

light contention situations because it can be the fastest one.

queueing_mutex is the scalable and fair version of the spin_mutex. It still spins, busy-

waiting in user space, but threads waiting on that mutex will acquire the lock in FIFO

order, so starvation is not possible.

speculative_spin_mutex is built on top of Hardware Transactional Memory (HTM)

that is available in some processors. The HTM philosophy is to be optimistic! HTM

lets all threads enter a critical section at the same time hoping that there will be no

shared memory conflicts! But what if there are? In this case, the hardware detects the

conflict and rolls back the execution of one of the conflicting threads, which has to retry

the execution of the critical section. In the coarse-grained implementation shown in

Figure 5-8, we could add this simple line:

using my_mutex_t = speculative_spin_mutex;

and then, the parallel_for that traverses the image becomes parallel once again. Now,

all threads are allowed to enter the critical section (to update the bins of the histogram

Chapter 5 Synchronization: Why and How to Avoid It

153

for a given chunk of the image), but only if there is an actual conflict updating one of the

bins, one of the conflicting threads has to retry the execution. For this to work efficiently,

the protected critical section has to be small enough so that conflicts and retries are rare,

which is not the case in the code of Figure 5-8.

spin_rw_mutex, queueing_rw_mutex, and speculative_spin_rw_mutex are the

Reader-Writer mutex counterparts of the previously covered flavors. These implementations

allow multiple readers to read a shared variable at the same time. The lock object

constructor has a second argument, a boolean, that we set to false if we will only read

(not write) inside the critical section:

If for any reason, a reader lock has to be promoted to a writer lock, TBB provides an

upgrade_to_writer() member function that can be used as follows:

which returns true if the my_lock is successfully upgraded to a writer lock without

releasing the lock, or false otherwise.

Finally, we have null_mutex and null_rw_mutex that are just dummy objects that do

nothing. So, what’s the point? Well, we can find these mutexes useful if we pass a mutex

object to a function template that may or may not need a real mutex. In case the function

does not really need the mutex, just pass the dummy flavor.

�A Second Safe Parallel Implementation:
Fine-Grained Locking
Now that we know a lot about the different flavors of mutexes, let’s think about an

alternative implementation of the coarse-grained locking one in Figure 5-8. One

alternative is to declare a mutex for every bin of the histogram so that instead of locking

the whole data structure with a single lock, we only protect the single memory position

Chapter 5 Synchronization: Why and How to Avoid It

154

that we are actually incrementing. To do that, we need a vector of mutexes, fine_m, as

the one shown in Figure 5-14.

Figure 5-14.  Code listing with a second safe parallel implementation of the image
histogram computation that uses fine-grained locking

Figure 5-15.  Thanks to fine-grained locking, we exploit more parallelism

As we see in the lambda used inside the parallel_for, when a thread needs to

increment the bin hist_p[tone], it will acquire the lock on fine_m[tone], preventing

other threads from touching the same bin. Essentially “you can update other bins, but

not this particular one.” This is illustrated in Figure 5-15 where thread A and thread B are

updating in parallel different bins of the histogram vector.

However, from a performance standpoint, this alternative is not really an optimal

one (actually it is the slowest alternative up to now):

c++ -std=c++11 -O2 -o fig_5_14 fig_5_14.cpp -ltbb

./fig_5_14

Serial: 0.59297, Parallel: 26.9251, Speed-up: 0.0220229

Chapter 5 Synchronization: Why and How to Avoid It

155

Now we need not only the histogram array but also an array of mutex objects of the

same length. This means a larger memory requirement, and moreover, more data that

will be cached and that will suffer from false sharing and true sharing. Bummer!

In addition to the lock inherent overhead, locks are at the root of two additional

problems: convoying and deadlock. Let’s cover first “convoying.” This name comes from

the mental image of all threads convoying one after the other at the lower speed of the

first one. We need an example to better illustrate this situation, as the one depicted in

Figure 5-16. Let’s suppose we have threads 1, 2, 3, and 4 executing on the same core the

same code, where there is a critical section protected by a spin mutex A. If these threads

hold the lock at different times, they run happily without contention (situation 1). But it

may happen that thread 1 runs out of its time slice before releasing the lock, which sends

A to the end of the ready-state queue (situation 2).

Figure 5-16.  Convoying in the case of oversubscription (a single core running four
threads, all of them wanting the same mutex A)

Chapter 5 Synchronization: Why and How to Avoid It

156

Threads 2, 3, and 4 will now get their corresponding time slices, but they cannot

acquire the lock because 1 is still the owner (situation 3). This means that 2, 3, and 4

can now yield or spin, but in any case, they are stuck behind a big truck in first gear.

When 1 is dispatched again, it will release the lock A (situation 4). Now 2, 3, and 4 are

all poised to fight for the lock, with only one succeeding and the others waiting again.

This situation is recurrent, especially if now threads 2, 3, and 4 need more than a

time slice to run their protected critical section. Moreover, threads 2, 3, and 4 are now

inadvertently coordinated, all running in step the same region of the code, which leads

to a higher probability of contention on the mutex! Note that convoying is especially

acute when the cores are oversubscribed (as in this example where four threads

compete to run on a single core) which also reinforces our recommendation to avoid

oversubscription.

An additional well-known problem arising from locks is “deadlock.” Figure 5-17(a)

shows a nightmare provoking situation in which nobody can make progress even when

there are available resources (empty lines that no car can use). This is deadlock in real

life, but get this image out of your head (if you can!) and come back to our virtual world

of parallel programming. If we have a set of N threads that are holding a lock and also

waiting to acquire a lock already held by any other thread in the set, our N threads are

deadlocked. An example with only two threads is presented in Figure 5-17(b): thread

1 holds a lock on mutex A and is waiting to acquire a lock on mutex B, but thread 2 is

already holding the lock on mutex B and waiting to acquire the lock on mutex A. Clearly,

no thread will progress, forever doomed in a deadly embrace! We can avoid this

unfortunate situation by not requiring the acquisition of a different mutex if the thread

is already holding one. Or at least, by having all threads always acquire the locks in the

same order.

Chapter 5 Synchronization: Why and How to Avoid It

157

We can inadvertently provoke deadlock if a thread already holding a lock calls a

function that also acquires a different lock. The recommendation is to eschew calling a

function while holding a lock if we don’t know what the function does (usually advised

as don’t call other people’s code while holding a lock). Alternatively, we should carefully

check that the chain of subsequent functions call won’t induce deadlock. Ah! and we can

also avoid locks whenever possible!

Although convoying and deadlock are not really hitting our histogram

implementation, they should have helped to convince us that locks often bring

more problems than they solve and that they are not the best alternative to get high

parallel performance. Only when the probability of contention is low and the time

to execute the critical section is minimal are locks a tolerable choice. In these cases,

a basic spin_lock or speculative_spin_lock can yield some speedup. But in any

other cases, the scalability of a lock based algorithm is seriously compromised and

the best advice is to think out of the box and devise a new implementation that does

not require a mutex altogether. But, can we get fine-grained synchronization without

relying on several mutex objects, so that we avoid the corresponding overheads and

potential problems?

Figure 5-17.  Deadlock situations

Chapter 5 Synchronization: Why and How to Avoid It

158

�A Third Safe Parallel Implementation: Atomics
Fortunately, there is a less expensive mechanism to which we can resort to get rid

of mutexes and locks in many cases. We can use atomic variables to perform atomic

operations. As was illustrated in Figure 5-6, the increment operation is not atomic but

divisible into three smaller operations (load, increment, and store). However, if we

declare an atomic variable and do the following:

the increment of the atomic variable is an atomic operation. This means that any other

thread accessing the value of counter will “see” the operation as if the increment is done

in a single step (not as three smaller operations, but as a single one). This is, any other

“sharp-eyed” thread will either observe the operation completed or not, but it will never

observe the increment half-complete.

Atomic operations do not suffer from convoying or deadlock2 and are faster than

mutual exclusion alternatives. However, not all operations can be executed atomically,

and those that can, are not applicable to all data types. More precisely, atomic<T>

supports atomic operations when T is an integral, enumeration, or pointer data type.

The atomic operations supported on a variable x of such a type atomic<T> are listed in

Figure 5-18.

2�Atomic operations cannot be nested, so they cannot provoke deadlock.

Figure 5-18.  Fundamental operations on atomic variables

Chapter 5 Synchronization: Why and How to Avoid It

159

With these five operations, a good deal of derived operations can be implemented.

For example, x++, x--, x+=..., and x-=... are all derived from x.fetch_and_add().

Note A s we have already mentioned in previous chapters, C++ also incorporated
threading and synchronization features, starting at C++11. TBB included these
features before they were accepted in the C++ standard. Although starting at
C++11, std::mutex and std::atomic, among others, are available, TBB still
provides some overlapping functionalities in its tbb::mutex and tbb::atomic
classes, mainly for compatibility with previously developed TBB-based
applications. We can use both flavors in the same code without problem, and it is
up to us to decide if one or the other is preferable for a given situation. Regarding
std::atomic, some extra performance, w.r.t. tbb::atomic, can be wheedle out
if used to develop lock-free algorithms and data structures on “weakly-ordered”
architectures (as ARM or PowerPC; in contrast, Intel CPUs feature a strongly-
ordered memory-model). In the last section of this chapter, “For More Information,”
we recommend further readings related to memory consistency and C++
concurrency model where this topic is thoroughly covered. For our purpose here,
suffice it to say that fetch_and_store, fetch_and_add, and compare_and_
swap adhere by default to the sequential consistency (memory_order_seq_cst
in C++ jargon), which can prevent some out-of-order execution and therefore
cost a tiny amount of extra time. To account for that, TBB also offers release and
acquire semantic: acquire by default in atomic read (...=x); and release by
default in atomic write (x=...). The desired semantic can also be specified using
a template argument, for example, x.fetch_and_add<release> enforces only
the release memory order. In C++11, other more relaxed memory orders are also
allowed (memory_order_relaxed and memory_order_consume) which in particular
cases and architectures can allow for more latitude on the order of reads and
writes and squeeze a small amount of extra performance. Should we want to work
closer to the metal for the ultimate performance, even knowing the extra coding
and debugging burden, then C++11 lower level features are there for us, and yet
we can combine them with our higher-level abstractions provided by TBB.

Chapter 5 Synchronization: Why and How to Avoid It

160

Another useful idiom based on atomics is the one already used in the wavefront

example presented in Figure 2-23 (Chapter 2). Having an atomic integer refCount

initialized to “y” and several threads executing this code:

will result in only the y-th thread executing the previous line entering in the “body.”

Of these five fundamental operations, compare_and_swap (CAS) can be considered as

the mother of all atomic read-modify-write, RMW, operations. This is because all atomic

RMW operations can be implemented on top of a CAS operation.

Note  Just in case you need to protect a small critical section and you are already
convinced of dodging locks at any rate, let’s dip our toes into the details of the CAS
operation a little bit. Say that our code requires to atomically multiply a shared
integer variable, v, by 3 (don’t ask us why! we have our reasons!). We are aiming
for a lock-free solution, though we know that multiplication is not included as one
of the atomic operations. Here is where CAS comes in. First thing is to declare v as
an atomic variable: 

tbb::atomic<uint_32_t> v; 

so now we can call v.compare_and_swap(new_v, old_v) which atomically
does

This is, if and only if v is equal to old_v, we can update v with the new value. In any
case, we return ov (the shared v used in the “==” comparison). Now, the trick to
implement our “times 3” atomic multiplication is to code what is dubbed CAS loop:

Chapter 5 Synchronization: Why and How to Avoid It

161

Our new fetch_and_triple is thread-safe (can be safely called by several
threads at the same time) even when it is called passing the same shared atomic
variable. This function is basically a do-while loop in which we first take a snapshot
of the shared variable (which is key to later compare if other thread has managed
to modify it). Then, atomically, if no other thread has changed v (v==old_v),
we do update it (v=old_v*3) and return v. Since in this case v == old_v
(again: no other thread has changed v), we leave the do-while loop and return from
the function with our shared v successfully updated.

However, after taking the snapshot, it is possible that other thread updates v. In
this case, v!=old_v which implies that (i) we do not update v and (ii) we stay in
the do-while loop hoping that lady luck will smile on us next time (when no other
greedy thread dares to touch our v in the interim between the moment we take
the snapshot and we succeed updating v). Figure 5-19 illustrates how v is always
updated either by thread 1 or thread 2. It is possible that one of the threads has to
retry (as thread 2 that ends up writing 81 when initially it was about to write 27)
one or more times, but this shouldn’t be a big deal in well-devised scenarios.

The two caveats of this strategy are (i) it scales badly and (ii) it may suffer from the
“ABA problem” (there is background on the classic ABA problem in Chapter 6
on page 201). Regarding the first one, consider P threads contending for the
same atomic, only one succeeds with P-1 retrying, then another succeeds with
P-2 retrying, then P-3 retrying, and so on, resulting in a quadratic work. This
problem can be ameliorated resorting to an “exponential back off” strategy that
multiplicatively reduces the rate of consecutive retries to reduce contention. On
the other hand, the ABA problem happens when, in the interim time (between the
moment we take the snapshot and we succeed updating v), a different thread
changes v from value A to value B and back to value A. Our CAS loop can succeed
without noticing the intervening thread, which can be problematic. Double check
you understand this problem and its consequences if you need to resort to a CAS
loop in your developments.

Chapter 5 Synchronization: Why and How to Avoid It

162

But now it is time to get back to our running example. A re-implementation of the

histogram computation can now be expressed with the help of atomics as shown in

Figure 5-20.

Figure 5-20.  Code listing with a third safe parallel implementation of the image
histogram computation that uses atomic variables

Figure 5-19.  Two threads concurrently calling to our fetch_and_triple atomic
function implemented on top of a CAS loop

In this implementation, we get rid of the mutex objects and locks and declare the

vector so that each bin is a tbb::atomic<int> (initialized to 0 by default). Then, in the

lambda, it is safe to increment the bins in parallel. The net result is that we get parallel

increments of the histogram vector, as with the fine-grained locking strategy, but at a

lower cost both in terms of mutex management and mutex storage.

However, performance wise, the previous implementation is still way too slow:

c++ -std=c++11 -O2 -o fig_5_20 fig_5_20.cpp -ltbb

./fig_5_20

Serial: 0.614786, Parallel: 7.90455, Speed-up: 0.0710006

Chapter 5 Synchronization: Why and How to Avoid It

163

In addition to the atomic increment overhead, false sharing and true sharing are

issues that we have not addressed yet. False sharing is tackled in Chapter 7 by leveraging

aligned allocators and padding techniques. False sharing is a frequent showstopper that

hampers parallel performance, so we highly encourage you to read in Chapter 7 the

recommended techniques to avoid it.

Great, assuming that we have fixed the false sharing problem, what about the true

sharing one? Two different threads will eventually increment the same bin, which will be

ping-pong from one cache to other. We need a better idea to solve this one!

�A Better Parallel Implementation: Privatization
and Reduction
The real problem posed by the histogram reduction is that there is a single shared vector

to hold the 256 bins that all threads are eager to increment. So far, we have seen several

implementations that are functionally equivalent, like the coarse-grained, fine-grained,

and atomic-based ones, but none of those are totally satisfactory if we also consider

nonfunctional metrics such as performance and energy.

The common solution to avoid sharing something is to privatize it. Parallel

programming is not different in this respect. If we give a private copy of the histogram

to each thread, each one will happily work with its copy, cache it in the private cache of

the core in which the thread is running, and therefore increment all the bins at the cache

speed (in the ideal case). No more false sharing, nor true sharing, nor nothing, because

the histogram vector is not shared any more.

Okay, but then… each thread will end up having a partial view of the histogram

because each thread has only visited some of the pixels of the full image. No problem,

now is when the reduction part of this implementation comes into play. The final

step after computing a privatized partial version of the histogram is to reduce all the

contributions of all the threads to get the complete histogram vector. There is still some

synchronization in this part because some threads have to wait for others that have not

finished their local/private computations yet, but in the general case, this solution ends

up being much less expensive than the other previously described implementations.

Figure 5-21 illustrates the privatization and reduction technique for our histogram

example.

Chapter 5 Synchronization: Why and How to Avoid It

164

TBB offers several alternatives to accomplish privatization and reduction operations,

some based on thread local storage, TLS, and a more user-friendly one based on the

reduction template. Let’s go first for the TLS version of the histogram computation.

�Thread Local Storage, TLS
Thread local storage, for our purposes here, refers to having a per-thread privatized copy

of data. Using TLS, we can reduce accesses to shared mutable state between threads and

also exploit locality because each private copy can be (sometimes partially) stored in the

local cache of the core on which the thread is running. Of course, copies take up space,

so they should not be used to excess.

An important aspect of TBB is that we do not know how many threads are being used

at any given time. Even if we are running on a 32-core system, and we use parallel_for

for 32 iterations, we cannot assume there will be 32 threads active. This is a critical factor

in making our code composable, which means it will work even if called inside a parallel

program, or if it calls a library that runs in parallel (see Chapter 9 for more details).

Therefore, we do not know how many thread local copies of data are needed even in

our example of a parallel_for with 32 iterations. The template classes for thread local

storage in TBB are here to give an abstract way to ask TBB to allocate, manipulate, and

combine the right number of copies without us worrying about how many copies that is.

This lets us create scalable, composable, and portable applications.

TBB provides two template classes for thread local storage. Both provide access to a

local element per thread and create the elements (lazily) on demand. They differ in their

intended use models:

Figure 5-21.  Each thread computes its local histogram, my_hist, that is later
reduced in a second step.

Chapter 5 Synchronization: Why and How to Avoid It

165

•	 Class enumerable_thread_specific, ETS, provides thread local

storage that acts like an STL container with one element per thread.

The container permits iterating over the elements using the usual

STL iteration idioms. Any thread can iterate over all the local copies,

seeing the other threads local data.

•	 Class combinable provides thread local storage for holding per-

thread subcomputations that will later be reduced to a single result.

Each thread can only see its local data or, after calling combine, the

combined data.

�enumerable_thread_specific, ETS
Let’s see first, how our parallel histogram computation can be implemented thanks

to the enumerable_thread_specific class. In Figure 5-22, we see the code needed to

process in parallel different chunks of the input image and have each thread write on a

private copy of the histogram vector.

Figure 5-22.  Parallel histogram computation on private copies using class
enumerable_thread_specific

Chapter 5 Synchronization: Why and How to Avoid It

166

We declare first an enumerable_thread_specific object, priv_h, of type

vector<int>. The constructor indicates that the vector size is num_bins integers. Then,

inside the parallel_for, an undetermined number of threads will process chunks

of the iteration space, and for each chunk, the body (a lambda in our example) of the

parallel_for will be executed. The thread taking care of a given chunk calls my_hist =

priv_h.local() that works as follows. If it is the first time this thread calls the local()

member function, a new private vector is created for this thread. If on the contrary, it is

not the first time, the vector was already created, and we just need to reuse it. In both

cases, a reference to the private vector is returned and assigned to my_hist, which is

used inside the parallel_for to update the histogram counts for the given chunk. That

way, a thread processing different chunks will create the private histogram for the first

chunk and reuse it for the subsequent ones. Quite neat, right?

At the end of the parallel_for, we end up with undetermined number of private

histograms that need to be combined to compute the final histogram, hist_p,

accumulating all the partial results. But how can we do this reduction if we do not even

know the number of private histograms? Fortunately, an enumerable_thread_specific

not only provides thread local storage for elements of type T, but also can be iterated

across like an STL container, from beginning to end. This is carried out at the end of

Figure 5-22, where variable i (of type priv_h_t::const_iterator) sequentially traverses

the different private histograms, and the nested loop j takes care of accumulating on

hist_p all the bin counts.

If we would rather show off our outstanding C++ programming skills, we can take

advantage of that fact that priv_h is yet another STL container and write the reduction as

we show in Figure 5-23.

Figure 5-23.  A more stylish way of implementing the reduction

Since the reduction operation is a frequent one, enumerable_thread_specific also

offers two additional member functions to implement the reduction: combine_each()

and combine(). In Figure 5-24, we illustrate how to use the member function combine_

each in a code snippet that is completely equivalent to the one in Figure 5-23.

Chapter 5 Synchronization: Why and How to Avoid It

167

The member function combine_each() has this prototype:

and as we see in Figure 5-24, Func f is provided as a lambda, where the STL transform

algorithm is in charge of accumulating the private histograms into hist_p. In general,

the member function combine_each calls a unary functor for each element in the

enumerate_thread_specific object. This combine function, with signature void(T) or

void(const T&), usually reduces the private copies into a global variable.

The alternative member function combine() does return a value of type T and has

this prototype:

where a binary functor f should have the signature T(T,T) or T(const T&,const T&).

In Figure 5-25, we show the reduction implementation using the T(T,T) signature that,

for each pair of private vectors, computes the vector addition into vector a and return it

for possible further reductions. The combine() member function takes care of visiting all

local copies of the histogram to return a pointer to the final hist_p.

Figure 5-24.  Using combine_each() to implement the reduction

Figure 5-25.  Using combine() to implement the same reduction

Chapter 5 Synchronization: Why and How to Avoid It

168

And what about the parallel performance?

 c++ -std=c++11 -O2 -o fig_5_22 fig_5_22.cpp -ltbb

 ./fig_5_22

 Serial: 0.668987, Parallel: 0.164948, Speed-up: 4.05574

Now we are talking! Remember that we run these experiments on a quad-core

machine, so the speedup of 4.05 is actually a bit super-linear (due to the aggregation of

L1 caches of the four cores). The three equivalent reductions shown in Figures 5-23,

5-24, and 5-25 are executed sequentially, so there is still room for performance

improvement if the number of private copies to be reduced is large (say that 64 threads

are computing the histogram) or the reduction operation is computationally intensive

(e.g., private histograms have 1024 bins). We will also address this issue, but first we want

to cover the second alternative to implement thread local storage.

�combinable
A combinable<T> object provides each thread with its own local instance, of type T,

to hold thread local values during a parallel computation. Contrary to the previously

described ETS class, a combinable object cannot be iterated as we did with priv_h in

Figures 5-22 and 5-23. However, combine_each() and combine() member functions

are available because this combinable class is provided in TBB with the sole purpose of

implementing reductions of local data storage.

In Figure 5-26, we re-implement once again the parallel histogram computation,

now relying on the combinable class.

Chapter 5 Synchronization: Why and How to Avoid It

169

In this case, priv_h is a combinable object where the constructor provides a lambda

with the function that will be invoked each time priv_h.local() is called. In this case,

this lambda just creates an empty vector of num_bins integers. The parallel_for, which

updates the per-thread private histograms, is quite similar to the implementation shown

in Figure 5-22 for the ETS alternative, except that my_hist is just a reference to a vector

of integers. As we said, now we cannot iterate the private histograms by hand as we did

in Figure 5-22, but to make up for it, member functions combine_each() and combine()

work pretty much the same as the equivalent member functions of the ETS class that we

saw in Figures 5-24 and 5-25. Note that this reduction is still carried out sequentially, so

it is only appropriate when the number of objects to reduce and/or the time to reduce

two objects is small.

ETS and combinable classes have additional member functions and advanced uses

which are documented in Appendix B.

Figure 5-26.  Re-implementing the histogram computation with a combinable
object

Chapter 5 Synchronization: Why and How to Avoid It

170

�The Easiest Parallel Implementation: Reduction
Template
As we covered in Chapter 2, TBB already comes with a high-level parallel algorithm to

easily implement a parallel_reduce. Then, if we want to implement a parallel reduction

of private histograms, why don’t we just rely on this parallel_reduce template? In

Figure 5-27, we see how we use this template to code an efficient parallel histogram

computation.

Figure 5-27.  Code listing with a better parallel implementation of the image
histogram computation that uses privatization and reduction

Chapter 5 Synchronization: Why and How to Avoid It

171

The first argument of parallel_reduce is just the range of iterations that will

be automatically partitioned into chunks and assigned to threads. Somewhat

oversimplifying what is really going on under the hood, the threads will get a private

histogram initialized with the identity value of the reduction operation, which in this

case is a vector of bins initialized to 0. The first lambda is taking care of the private and

local computation of the partial histograms that results from visiting just some of the

chunks of the image. Finally, the second lambda implements the reduction operation,

which in this case could have been expressed as

which is exactly what the std::transform STL algorithm is doing. The execution time is

similar to the one obtained with ETS and combinable:

 c++ -std=c++11 -O2 -o fig_5_27 fig_5_27.cpp -ltbb

 ./fig_5_27

 Serial: 0.594347, Parallel: 0.148108, Speed-up: 4.01293

In order to shed more light on the practical implications of the different

implementations of the histogram we have discussed so far, we collect in Figure 5-28 all

the speedups obtained on our quad-core processor. More precisely, the processor is a

Core i7-6700HQ (Skylake architecture, sixth generation) at 2.6 GHz, 6 MB L3 cache, and

16 GB RAM.

Figure 5-28.  Speedup of the different histogram implementations on an Intel Core
i7-6700HQ (Skylake)

We clearly identify three different sets of behaviors. Unsafe, fine-grained locking,

and atomic solutions are way slower with four cores than in sequential (way slower here

means more than one order of magnitude slower!). As we said, frequent synchronization

due to locks and false sharing/true sharing is a real issue, and having histogram

bins going back and forth from one cache to the other results in very disappointing

speedups. Fine-grained solution is the worst because we have false sharing and true

sharing for both the histogram vector and the mutex vector. As a single representative

Chapter 5 Synchronization: Why and How to Avoid It

172

of its own kind, the coarse-grained solution is just slightly worse than the sequential

one. Remember that this one is just a “parallelized-then-serialized” version in which

a coarse-grained lock obliges the threads to enter the critical section one by one. The

small performance degradation of the coarse-grained version is actually measuring

the overhead of the parallelization and mutex management, but we are free from

false sharing or true sharing now. Finally, privatization+reduction solutions (TLS and

parallel_reduction) are leading the pack. They scale pretty well, even more than

linearly, since the parallel_reduction, being a bit slower due to the tree-like reduction,

does not pay off in this problem. The number of cores is small, and the time required

for the reduction (adding to 256 int vectors) is negligible. For this tiny problem, the

sequential reduction implemented with TLS classes is good enough.

�Recap of Our Options
For the sake of backing up all the different alternatives that we have proposed to

implement just a simple algorithm like the histogram computation one, let’s recap and

elaborate on the pros and cons of each alternative. Figure 5-29 illustrates some of our

options with an even simpler vector addition of 800 numbers using eight threads.

The corresponding sequential code would be similar to

As in “The Good, the Bad and the Ugly,” the “cast” of this chapter are “The Mistaken,

the Hardy, the Laurel, the Nuclear, the Local and the Wise”:

Chapter 5 Synchronization: Why and How to Avoid It

173

Figure 5-29.  Avoid contention when summing 800 numbers with eight threads:
(A) atomic: protecting a global sum with atomic operations, (B) local: using
enumerable_thread_specific, (C) wise: use parallel_reduce.

Chapter 5 Synchronization: Why and How to Avoid It

174

•	 The Mistaken: We can have the eight threads incrementing a global

counter, sum_g, in parallel without any further consideration,

contemplation, or remorse! Most probably, sum_g will end up

being incorrect, and the cache coherence protocol will also ruin

performance. You have been warned.

•	 The Hardy: If we use coarse-grained locking, we get the right result,

but usually we also serialize the code unless the mutex implements

HTM (as the speculative flavor does). This is the easiest alternative

to protect the critical section, but not the most efficient one. For our

vector sum example, we will illustrate the coarse-grained locking by

protecting each vector chunk accumulation, thus getting a coarse-

grained critical section.

•	 The Laurel: Fine-grained locking is more laborious to implement

and typically requires more memory to store the different mutexes

that protect the fine-grained sections of the data structure. The

silver lining though is that the concurrency among threads is

increased. We may want to assess different mutex flavors to choose

the best one in the production code. For the vector sum, we don’t

have a data structure that can be partitioned so that each part

can be independently protected. Let’s consider a fine-grained

implementation the following one in which we have a lighter critical

section (in this case is as serial as the coarse-grained one, but threads

compete for the lock at finer granularity).

Chapter 5 Synchronization: Why and How to Avoid It

175

•	 The Nuclear: In some cases, atomic variables can come to our

rescue. For example, when the shared mutable state can be stored

in an integral type and the needed operation is simple enough.

This is less expensive than the fine-grained locking approach

and the concurrency level is on par. The vector sum example (see

Figure 5-29(A)) would be as follows, in this case, as sequential as

the two previous approaches and with the global variable as highly

contended as in the finer-grained case.

•	 The Local: Not always can we come up with an implementation in

which privatizing local copies of the shared mutable state saves the

day. But in such a case, thread local storage, TLS, can be implemented

thanks to enumerate_thread_specific, ETS, or combinable classes.

They work even when the number of collaborating threads is

unknown and convenient reduction methods are provided. These

classes offer enough flexibility to be used in different scenarios and

can suit our needs when a reduction over a single iteration space does

not suffice. To compute the vector sum, we present in the following

an alternative in which the private partial sums, priv_s, are later

accumulated sequentially, as in Figure 5-29(B).

Chapter 5 Synchronization: Why and How to Avoid It

176

•	 The Wise: When our computation fits into a reduction pattern, it is

highly recommendable to relay on the parallel_reduction template

instead of hand-coding the privatization and reduction using the

TBB thread local storage features. The following code may look more

intricate than the previous one, but wise software architects devised

clever tricks to fully optimize this common reduction operation.

For instance, in this case the reduction operation follows a tree-

like approach with complexity O(log n) instead of O(n), as we see

in Figure 5-29(C). Take advantage of what the library puts in your

hands instead of reinventing the wheel. This is certainly the method

that scales best for a large number of cores and a costly reduction

operation.

As with the histogram computation, we also evaluate the performance of the

different implementations of the vector addition of size 109 on our Core i7 quad-core

architecture, as we can see in Figure 5-30. Now the computation is an even finer-grained

one (just incrementing a variable), and the relative impact of 109 lock-unlock operations

or atomic increments is higher, as can be seen in the speedup (deceleration more

properly speaking!) of the atomic (Nuclear) and fine-grained (Laurel) implementations.

The coarse-grained (Hardy) implementation takes a slightly larger hit now than in

Chapter 5 Synchronization: Why and How to Avoid It

177

the histogram case. The TLS (Local) approach is only 1.86× faster than the sequential

code. Unsafe (Mistaken) is now 3.37× faster than sequential, and now the winner is the

parallel_reduction (Wise) implementation that delivers a speedup of 3.53× for four

cores.

Figure 5-30.  Speedup of the different implementations of the vector addition for
N=109 on an Intel Core i7-6700HQ (Skylake)

You might wonder why we went through all these different alternatives to end up

recommending the last one. Why did we not just go directly to the parallel_reduce

solution if it is the best one? Well, unfortunately, parallel life is hard, and not all

parallelization problems can be solved with a simple reduction. In this chapter, we

provide you with the devices to leverage synchronization mechanisms if they are really

necessary but also show the benefits of rethinking the algorithm and the data structure if

at all possible.

�Summary
The TBB library provides different flavors of mutexes as well as atomic variables to help

us synchronize threads when we need to access shared data safely. The library also

provides thread local storage, TLS, classes (as ETS and combinable) and algorithms (as

parallel_reduction) that help us avoid the need for synchronization. In this chapter,

we walked through the epic journey of parallelizing an image histogram computation.

For this running example, we saw different parallel implementations starting from

an incorrect one and then iterated through different synchronization alternatives,

like coarse-grained locking, fine-grained-locking, and atomics, to end up with some

alternative implementations that do not use locks at all. On the way, we stopped at some

remarkable spots, presenting the properties that allow us to characterize mutexes, the

different kinds of mutex flavors available in the TBB library, and common problems that

usually arise when relying on mutexes to implement our algorithms. Now, at the end of

the journey, the take-home message from this chapter is obvious: do not use locks unless

performance is not your target!

Chapter 5 Synchronization: Why and How to Avoid It

178

�For More Information
Here are some additional reading materials we recommend related to this chapter:

•	 C++ Concurrency in action, Anthony Williams, Manning

Publications, Second Edition, 2018.

•	 A Primer on Memory Consistency and Cache Coherence, Daniel

J. Sorin, Mark D. Hill, and David A. Wood, Morgan & Claypool

Publishers, 2011.

Photo of Ronda, Málaga, in Figure 5-1, taken by author Rafael Asenjo, used with

permission.

Memes shown within Chapter 5 figures used with permission from 365psd.com

“33 Vector meme faces.”

Traffic jam in Figure 5-17 drawn by Denisa-Adreea Constantinescu while a PhD student

at the University of Malaga, used with permission.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 5 Synchronization: Why and How to Avoid It

http://creativecommons.org/licenses/by-nc-nd/4.0/

179
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_6

CHAPTER 6

Data Structures
for Concurrency
In the previous chapter, we shared how much we dislike locks. We dislike them because

they tend to make our parallel programs less effective by limiting scaling. Of course, they

can be a “necessary evil” when needed for correctness; however, we are well advised

to structure our algorithms to minimize the need for locks. This chapter gives us some

tools to help. Chapters 1–4 focused on scalable algorithms. A common characteristic is

that they avoided or minimized locking. Chapter 5 introduced explicit synchronization

methods, including locks, for when we need them. In the next two chapters, we offer

ways to avoid using explicit synchronization by relying on features of TBB. In this

chapter, we will discuss data structures with a desire to avoid locks. This chapter

discusses concurrent containers to help address critical data structure considerations for

concurrency. A related topic, the use of thread local storage (TLS), was already covered

in Chapter 5.

This chapter and the next chapter cover the key pieces of TBB that help coordination

of data between threads while avoiding the explicit synchronization found in Chapter 5.

We do this to nudge ourselves toward coding in a manner that has proven ability to

scale. We favor solutions where the implementations have been carefully crafted by

the developers of TBB (to help motivate the importance of this for correctness, we

discuss the A-B-A problem starting on page 200). We should remain mindful that the

choice of algorithm can have a profound effect on parallel performance and the ease of

implementation.

180

CHOOSE ALGORITHMS WISELY: CONCURRENT CONTAINERS ARE NOT A CURE-ALL

Parallel data access is best when it stems from a clear parallelism strategy, a key part of

which is proper choice of algorithms. Controlled access, such as that offered by concurrent

containers, comes at a cost: making a container “highly concurrent” is not free and is not

even always possible. TBB offers concurrent containers when such support can work well in

practice (queues, hash tables, and vectors). TBB does not attempt to support concurrency for

containers such as “lists” and “trees,” where fine-grained sharing will not scale well – the

better opportunity for parallelism lies in revising algorithms and/or data structure choices.

Concurrent containers offer a thread-safe version for containers where concurrent

support can work well in parallel programs. They offer a higher performance alternative

to using a serial container with a coarse-grained lock around it, as discussed in the

previous chapter (Chapter 5). TBB containers generally provide fine-grained locking, or

lockless implementations, or sometimes both.

�Key Data Structures Basics
If you are familiar with hash tables, unordered maps, unordered sets, queues, and

vectors, then you may want to skip this section and resume reading with the “Concurrent

Containers”. To help review the key fundamentals, we provide a quick introduction to key

data structures before we jump into talking about how TBB supports these for parallel

programming.

�Unordered Associative Containers
Unordered associative containers, in simple English, would be called a collection. We

could also call them “sets.” However, technical jargon has evolved to use the words map,

set, and hash tables for various types of collections.

Associative containers are data structures which, given a key, can find a value,

associated with that key. They can be thought of as a fancy array, we call them an

“associative array.” They take indices that are more complex than a simple series of

numbers. Instead of Cost[1], Cost[2], Cost[3], we can think of Cost[Glass of Juice],

Cost[Loaf of Bread], Cost[Puppy in the Window].

Chapter 6 Data Structures for Concurrency

181

Our associative containers can be specialized in two ways:

	 1.	 Map vs. Set: Is there a value? Or just a key?

	 2.	 Multiple values: Can two items with the same keys be inserted in

the same collection?

�Map vs. Set
What we call a “map” is really just a “set” with a value attached. Imagine a basket of

fruits (Apple, Orange, Banana, Pear, Lemon). A set containing fruits could tell us if we

had a particular type of fruit in the basket. A simple yes or no. We could add a fruit type

into the basket or remove it. A map adds to this a value, often a data structure itself with

information. With a map of a fruit type into a collection (fruit basket), we could choose

to keep a count, a price, and other information. Instead of a simple yes or no, we can ask

about Cost[Apple] or Ripeness[Banana]. If the value is a structure with multiple fields,

then we could query multiple things such as cost, ripeness, and color.

�Multiple Values
Inserting something into a map/set using the same key as an item already in the map

is not allowed (ensuring uniqueness) in the regular “map” or “set” containers but is

allowed in the “multimap” and “multiset” versions. In the “multiple” versions, duplicates

are allowed, but we lose the ability to look up something like Cost[Apple] because the

key Apple is no longer unique in a map/set.

�Hashing
Everything we have mentioned (associative arrays, map/set, single/multiple)

is commonly implemented using hash functions. To understand what a hash

function is, it is best to understand its motivation. Consider an associative array

LibraryCardNumber[Name of Patron]. The array LibraryCardNumber returns the

library card number for a patron given the name (specified as a string of characters) that

is supplied as the index. One way to implement this associative array would be with a

linked list of elements. Unfortunately, looking up an element would require searching

the list one by one for a match. That might require traversing the entire list, which is

highly inefficient in a parallel program because of contention over access to the share list

Chapter 6 Data Structures for Concurrency

182

structure. Even without parallelism, when inserting an item verification that there is no

other entry with the same key requires searching the entire list. If the list has thousands

or millions of patrons, this can easily require excessive amounts of time. More exotic data

structures, such as trees, can improve some but not all these issues.

Imagine instead, a vast array in which to place data. This array is accessed by a

traditional array[integer] method. This is very fast. All we need, is a magical hash

function that takes the index for the associative array (Name of Patron) and turns it into

the integer we need.

�Unordered
We did start with the word unordered as a qualifier for the type of associative containers

that we have been discussing. We could certainly sort the keys and access these

containers in a given order. Nothing prevents that. For example, the key might be a

person’s name, and we want to create a phone directory in alphabetical order.

The word unordered here does not mean we cannot be programming with an

ordering in mind. It does mean that the data structure (container) itself does not maintain

an order for us. If there is a way to “walk” the container (iterate in C++ jargon), the only

guarantee is that we will visit each member of the container once and only once, but the

order is not guaranteed and can vary run-to-run, or machine-to-machine, and so on.

�Concurrent Containers
TBB provides highly concurrent container classes that are useful for all C++ threaded

applications; the TBB concurrent container classes can be used with any method of

threading, including TBB of course!

The C++ Standard Template Library was not originally designed with concurrency in

mind. Typically, C++ STL containers do not support concurrent updates, and therefore

attempts to modify them concurrently may result in corrupted containers. Of course, STL

containers can be wrapped in a coarse-grained mutex to make them safe for concurrent

access by letting only one thread operate on the container at a time. However, that

approach eliminates concurrency and thereby restricts parallel speedup if done in

performance critical code. Examples of protecting with mutexes were shown in Chapter 5,

to protect increments of elements in a histogram. Similar protection of non-thread-

safe STL routines can be done to avoid correctness issues. If not done in performance

Chapter 6 Data Structures for Concurrency

183

critical sections, then performance impact may be minimal. This is an important point:

conversion of containers to TBB concurrent containers should be motivated by need.

Data structures that are used in parallel should be designed for concurrency to enable

scaling for our applications.

The concurrent containers in TBB provide functionality similar to containers

provided by the Standard Template Library (STL), but do so in a thread-safe way. For

example, the tbb::concurrent_vector is similar to the std::vector class but lets us

safely grow the vector in parallel. We don’t need a concurrent container if we only read

from it in parallel; it is only when we have parallel code that modifies a container that we

need special support.

TBB offers several container classes, meant to replace corresponding STL containers

in a compatible manner, that permit multiple threads to simultaneously invoke certain

methods on the same container. These TBB containers offer a much higher level of

concurrency, via one or both of the following methods:

•	 Fine-grained locking: Multiple threads operate on the container by

locking only those portions they really need to lock (as the histogram

examples in Chapter 5 showed us). As long as different threads access

different portions, they can proceed concurrently.

•	 Lock-free techniques: Different threads account and correct for the

effects of other interfering threads.

It is worth noting that TBB concurrent containers do come at a small cost. They

typically have higher overheads than regular STL containers, and therefore operations

on them may take slightly longer than on the STL containers. When the possibility of

concurrent access exists, concurrent containers should be used. However, if concurrent

access is not possible, the use of STL containers is advised. This is, we use concurrent

containers when the speedup from the additional concurrency that they enable

outweighs their slower sequential performance.

The interfaces for the containers remain the same as in STL, except where a change

is required in order to support concurrency. We might jump ahead for a moment

and make this a good time to consider a classic example of why some interfaces are

not thread-safe – and this is an important point to understand! The classic example

(see Figure 6-9) is the need for a new pop-if-not-empty capability (called try_pop) for

queues in place of relying on a code sequence using STL test-for-empty followed by a

pop if the test returned not-empty. The danger in such STL code is that another thread

Chapter 6 Data Structures for Concurrency

184

might be running, empty the container (after original thread’s test, but before pop)

and therefore create a race condition where the pop may actually block. That means

the STL code is not thread-safe. We could throw a lock around the whole sequence

to prevent modification of the queue between our test and our pop, but such locks

are known to destroy performance when used in parallel parts of an application.

Understanding this simple example (Figure 6-9) will help illuminate what is required to

support parallelism well.

Like STL, TBB containers are templated with respect to an allocator argument. Each

container uses that allocator to allocate memory for user-visible items. The default

allocator for TBB is the scalable memory allocator supplied with TBB (discussed in

Chapter 7). Regardless of the allocator specified, the implementation of the container

may also use a different allocator for strictly internal structures.

TBB currently offers the following concurrent containers:

•	 Unordered associative containers

–– Unordered map (including unordered multimap)

–– Unordered set (including unordered multiset)

–– Hash table

•	 Queue (including bounded queue and priority queue)

•	 Vector

WHY DO TBB CONTAINERS ALLOCATOR ARGUMENTS DEFAULT TO TBB?

Allocator arguments are supported with all TBB containers, and they default to the TBB

scalable memory allocators (see Chapter 7).

The containers default to using a mix of tbb::cache_aligned_allocator and tbb:tbb_

allocator. We document the defaults in this chapter, but Appendix B of this book and the

TBB header files are resources for learning the defaults. There is no requirement to link in the

TBB scalable allocator library (see Chapter 7), as the TBB containers will silently default to

using malloc when the library is not present. However, we should link with the TBB scalable

allocator because the performance will likely be better from just linking in – especially easy

using it as a proxy library as explained in Chapter 7.

Chapter 6 Data Structures for Concurrency

185

�Concurrent Unordered Associative Containers
Unordered associative containers are a group of class templates that implement

hash table variants. Figure 6-1 lists these containers and their key differentiating

features. Concurrent unordered associative containers can be used to store arbitrary

elements, such as integers or custom classes, because they are templates. TBB

offers implementations of unordered associative containers that can perform well

concurrently.

A hash map (also commonly called a hash table) is a data structure that maps keys
to values using a hash function. A hash function computes an index from a key,
and the index is used to access the “bucket” in which value(s) associated with the
key are stored.

Choosing a good hash function is very important! A perfect hash function would
assign each key to a unique bucket so there will be no collisions for different keys.
In practice, however, hash functions are not perfect and will occasionally generate
the same index for more than one key. These collisions require some form of

Figure 6-1.  Comparison of concurrent unordered associative containers

Chapter 6 Data Structures for Concurrency

186

accommodation by the hash table implementation, and this will introduce some
overhead – hash functions should be designed to minimize collisions by hashing
inputs into a nearly even distribution across the buckets.

The advantage of a hash map comes from the ability to, in the average case, provide
O(1) time for searches, insertions, and keys. The advantage of a TBB hash map is
support for concurrent usage both for correctness and performance. This assumes
that a good hash function is being used – one that does not cause many collisions
for the keys that are used. The theoretical worst case of O(n) remains whenever an
imperfect hash function exists, or if the hash table is not well-dimensioned.

Often hash maps are, in actual usage, more efficient than other table lookup data
structures including search trees. This makes hash maps the data structure of
choice for many purposes including associative arrays, database indexing, caches,
and sets.

�concurrent_hash_map

TBB supplies concurrent_hash_map, which maps keys to values in a way that permits

multiple threads to concurrently access values via find, insert, and erase methods.

As we will discuss later, tbb:: concurrent_hash_map was designed for parallelism, and

therefore its interfaces are thread-safe unlike the STL map/set interfaces we will cover

later in this chapter.

The keys are unordered. There is at most one element in a concurrent_hash_map

for each key. The key may have other elements in flight but not in the map. Type

HashCompare specifies how keys are hashed and how they are compared for equality.

As is generally expected for hash tables, if two keys are equal, then they must hash

to the same hash code. This is why HashCompare ties the concept of comparison

and hashing into a single object instead of treating them separately. Another

consequence of this is that we need to not change the hash code of a key while the

hash table is nonempty.

Chapter 6 Data Structures for Concurrency

187

A concurrent_hash_map acts as a container of elements of type std::pair<const

Key,T>. Typically, when accessing a container element, we are interested in either

updating it or reading it. The template class concurrent_hash_map supports these

two purposes respectively with the classes accessor and const_accessor that act as

smart pointers. An accessor represents update (write) access. As long as it points to

an element, all other attempts to look up that key in the table block until the accessor

is done. A const_accessor is similar, except that it represents read-only access.

Multiple accessors can point to the same element at the same time. This feature can

greatly improve concurrency in situations where elements are frequently read and

infrequently updated.

We share a simple example of code using the concurrent_hash_map container in

Figures 6-2 and 6-3. We can improve the performance of this example by reducing

the lifetime of the element access. The methods find and insert take an accessor or

const_accessor as an argument. The choice tells concurrent_hash_map whether we are

asking for update or read-only access. Once the method returns, the access lasts until

the accessor or const_accessor is destroyed. Because having access to an element can

block other threads, try to shorten the lifetime of the accessor or const_accessor. To

do so, declare it in the innermost block possible. To release access even sooner than

the end of the block, use method release. Figure 6-5 shows a rework of the loop body

from Figure 6-2 that uses release instead of depending upon destruction to end thread

lifetime. The method remove(key) can also operate concurrently. It implicitly requests

write access. Therefore, before removing the key, it waits on any other extant accesses

on key.

Chapter 6 Data Structures for Concurrency

188

Figure 6-2.  Hash Table example, part 1 of 2

Chapter 6 Data Structures for Concurrency

189

Figure 6-3.  Hash Table example, part 2 of 2

Figure 6-4.  Output of the example program in Figures 6-2 and 6-3

Figure 6-5.  Revision to Figure 6-2 to reduce accessor lifetime hoping to improve
scaling

Chapter 6 Data Structures for Concurrency

190

PERFORMANCE TIPS FOR HASH MAPS

•	 Always specify an initial size for the hash table. The default of one will

scale horribly! Good sizes definitely start in the hundreds. If a smaller

size seems correct, then using a lock on a small table will have an

advantage in speed due to cache locality.

•	 Check your hash function – and be sure that there is good pseudo-

randomness in the low-order bits of the hash value. In particular,

you should not use pointers as keys because generally a pointer will

have a set number of zero bits in the low-order bits due to object

alignment. If this is the case, it is strongly recommended that the

pointer be divided by the size of the type it points too, thereby shifting

out the always zero bits in favor of bits that vary. Multiplication by a

prime number, and shifting out some low order bits, is a strategy to

consider. As with any form of hash table, keys that are equal must

have the same hash code, and the ideal hash function distributes

keys uniformly across the hash code space. Tuning for an optimal

hash function is definitely application specific, but using the default

supplied by TBB tends to work well.

•	 Do not use accessors if they can be avoided and limit their lifetime

as much as possible when accessors are needed (see example of this

in Figure 6-5). They are effectively fine-grained locks, inhibit other

threads while they exist, and therefore potentially limit scaling.

•	 Use the TBB memory allocator (see Chapter 7). Use scalable_

allocator as the template argument for the container if you want

to enforce its usage (not allow a fallback to malloc) – at least a good

sanity check during development when testing performance.

Chapter 6 Data Structures for Concurrency

191

�Concurrent Support for map/multimap and set/multiset
Interfaces

Standard C++ STL defines unordered_set, unordered_map, unordered_multiset, and

unordered_multimap. Each of these containers differs only by the constraints which are

placed on their elements. Figure 6-1 is a handy reference to compare the five choices we

have for concurrent map/set support including the tbb::concurrent_hash_map which

we used in our code examples (Figures 6-2 through 6-5).

STL does not define anything called “hash” because C++ did not originally define a

hash table. Interest in adding hash table support to STL was widespread, so there were

widely used versions of STL that were extended to include hash table support, including

those by SGI, gcc, and Microsoft. Without a standard, there ended up being variation

in what “hash table” or “hash maps” came to mean to C++ programmers in terms of

capabilities and performance. Starting with C++11, a hash table implementation was

added to the STL, and the name unordered_map was chosen for the class to prevent

confusion and collisions with pre-standard implementations. It could be said that the

name unordered_map is more descriptive as it hints at the interface to the class and the

unordered nature of its elements.

The original TBB hash table support predates C++11, called tbb::concurrent_

hash_map. This hash function remains quite valuable and did not need to change to

match the standard. TBB now includes support for unordered_map and unordered_set

support to mirror the C++11 additions, with the interfaces augmented or adjusted only

as needed to support concurrent access. Avoiding a few parallel-unfriendly interfaces

is part of the “nudging us” to effective parallel programming. Appendix B has an

exhaustive coverage of the details, but the three noteworthy adjustments for better

parallel scaling are as follows:

•	 Methods requiring C++11 language features (e.g., rvalue references)

are omitted.

•	 The erase methods for C++ standard functions are prefixed with

unsafe_ to indicate that they are not concurrency safe (because

concurrent erasure is only supported for concurrent_hash_map).

This does not apply to concurrent_hash_map because it does support

concurrent erasure.

Chapter 6 Data Structures for Concurrency

192

•	 The bucket methods (count of buckets, max count of buckets, size

of buckets, and support to iterate through the buckets) are prefixed

with unsafe_ as a reminder that they are not concurrency safe with

respect to insertion. They are supported for compatibility with STL

but should be avoided if possible. If used, they should be protected

from being used concurrently with insertions occurring. These

interfaces do not apply to concurrent_hash_map because the TBB

designers avoided such functions.

�Built-In Locking vs. No Visible Locking

The containers concurrent_hash_map and concurrent_unordered_* have some

differences concerning the locking of accessed elements. Therefore, they may behave

very differently under contention. The accessors of concurrent_hash_map are essentially

locks: accessor is an exclusive lock, and const_accessor is a shared lock. Lock-based

synchronization is built into the usage model for the container, protecting not only

container integrity but to some degree data integrity as well. Code in Figure 6-2 uses an

accessor when performing an insert into the table.

�Iterating Through These Structures Is Asking for Trouble

We snuck in some concurrency unsafe code at the end of Figure 6-3 when we iterated

through the hash table to dump it out. If insertions or deletions were made while we

walked the table, this could be problematic. In our defense, we will just say “it is debug

code – we do not care!” But, experience has taught us that it is all too easy for code like

this to creep into non-debug code. Beware!

The TBB designers left the iterators available for concurrent_hash_map for debug

purposes, but they purposefully did not tempt us with iterators as return values from

other members.

Unfortunately, STL tempts us in ways we should learn to resist. The concurrent_

unordered_* containers are different than concurrent_hash_map – the API follows the

C++ standard for associative containers (keep in mind, the original TBB concurrent_

hash_map predates any standardization by C++ for concurrent containers). The

operations to add or find data return an iterator, so this tempts us to iterate with it.

In a parallel program, we risk this being simultaneously with other operations on the

map/set. If we give into temptation, protecting data integrity is completely left to us

Chapter 6 Data Structures for Concurrency

193

as programmers, the API of the container does not help. One could say that the C++

standard containers offer additional flexibility but lack the built-in protection that

concurrent_hash_map offers. The STL interfaces are easy enough to use concurrently,

if we avoid the temptation to use the iterators returned from an add or find operation for

anything other than referencing the item we looked up. If we give into the temptation

(we should not!), then we have a lot of thinking to do about concurrent updates in our

application. Of course, if there are no updates happening – only lookups – then there are

no parallel programming issues with using the iterators.

�Concurrent Queues: Regular, Bounded, and Priority
Queues are useful data structures where items are added or removed from the queue

with operations known as push (add) and pop (remove). The unbounded queue

interfaces provide a “try pop” which tells us if the queue was empty and no value was

popped from the queue. This steers us away from writing our own logic to avoid a

blocking pop by testing empty – an operation that is not thread-safe (see Figure 6-9).

Sharing a queue between multiple threads can be an effective way to pass work items

from thread to thread – a queue holding “work” to do could have work items added to

request future processing and removed by tasks that want to do the processing.

Normally, a queue operates in a first-in-first-out (FIFO) fashion. If I start with an

empty queue, do a push(10) and then a push(25), then the first pop operation will

return 10, and the second pop will return a 25. This is much different than the behavior

of a stack, which would usually be last-in-first-out. But, we are not talking about stacks

here!

We show a simple example in Figure 6-6 which clearly shows that the pop operations

return the values in the same order as the push operations added them to the queue.

Chapter 6 Data Structures for Concurrency

194

Figure 6-6.  Example of using the simple (FIFO) queue

Chapter 6 Data Structures for Concurrency

195

There are two twists offered for queues: bounding and priorities. Bounding adds the

concept of enforcing a limit on the size of a queue. This means that a push might not be

possible if the queue is full. To handle this, the bounded queue interfaces offer us ways

to have a push wait until it can add to the queue, or have a “try to push” operation that

does the push if it can or lets us know the queue was full. A bounded queue is by default

unbounded! If we want a bounded queue, we need to use concurrent_bounded_queue

and call method set_capacity to set the size for the queue. We show in Figure 6-7 a

simple usage of bounded queue in which only the first six items pushed made it into

the queue. We could add a test on try_push and do something. In this case, we have the

program print *** when the pop operation finds that the queue was empty.

Figure 6-7.  This routine expands our program to show bounded queue usage

A priority adds a twist to first-in-first-out by effectively sorting items in the queue.

The default priority, if we do not specify one in our code, is std::less<T>. This means

that a pop operation will return the highest valued item in the queue.

Figure 6-8 shows two examples of priority usage, one defaulting to std:: less<int>

while the other specifying std::greater<int> explicitly.

Chapter 6 Data Structures for Concurrency

196

As our examples in the prior three figures show, to implement these three variations

on queues, TBB offers three container classes: concurrent_queue, concurrent_bounded_

queue, and concurrent_priority_queue. All concurrent queues permit multiple threads

to concurrently push and pop items. The interfaces are similar to STL std::queue or

std::priority_queue except where it must differ to make concurrent modification of a

queue safe.

Figure 6-8.  These routines expand our program to show priority queueing

Chapter 6 Data Structures for Concurrency

197

The fundamental methods on a queue are push and try_pop. The push method

works as it would with a std::queue. It is important to note that there is not support for

front or back methods because they would not be safe in a concurrent environment

since these methods return a reference to an item in the queue. In a parallel program,

the front or back of a queue could be changed by another thread in parallel making the

use of front or back meaningless.

Similarly, pop and testing for empty are not supported for unbounded queues –

instead the method try_pop is defined to pop an item if it is available and return a

true status; otherwise, it returns no item and a status of false. The test-for-empty and

pop methods are combined into a single method to encourage thread-safe coding. For

bounded queues, there is a non-blocking try_push method in addition to the potentially

blocking push method. These help us avoid the size methods to inquire about the size

of the queue. Generally, the size methods should be avoided, especially if they are

holdovers from a sequential program. Since the size of a queue can change concurrently

in a parallel program, the size method needs careful thought if it is used. For one thing,

TBB can return a negative value for size methods when the queue empty and there are

pending pop methods. The empty method is true when size is zero or less.

�Bounding Size

For concurrent_queue and concurrent_priority_queue, capacity is unbounded,

subject to memory limitations on the target machine. The concurrent_bounded_queue

offers controls over bounds – a key feature being that a push method will block until the

queue has room. A bounded queue is useful in slowing a supplier to match the rate of

consumption instead of allowing a queue to grow unconstrained.

concurrent_bounded_queue is the only concurrent_queue_* container that offers a

pop method. The pop method will block until an item becomes available. A push method

can be blocking only with a concurrent_bounded_queue so this container type also offers

a non-blocking method called try_push.

This concept of bounding to rate match, to avoid overflowing memory or

overcommitting cores, also exists in Flow Graph (see Chapter 3) through the use of a

limiter_node.

Chapter 6 Data Structures for Concurrency

198

�Priority Ordering

A priority queue maintains an ordering in the queue based on the priorities of individual

queued items. As we mentioned earlier, a normal queue has a first-in-first-out policy,

whereas a priority queue sorts its items. We can provide our own Compare to change the

ordering from the default of std::less<T>. For instance, using std::greater<T> causes

the smallest element to be the next to retrieved for a pop method. We did exactly that in

our example code in Figure 6-8.

�Staying Thread-Safe: Try to Forget About Top, Size,
Empty, Front, Back

It is important to note that there is no top method, and we probably should avoid using

size and empty methods. Concurrent usage means that the values from all three can

change due to push/pop methods in other threads. Also, the clear and swap methods,

while supported, are not thread-safe. TBB forces us to rewrite code using top when

converting a std::priority_queue usage to tbb::concurrent_priority_queue

because the element that would be returned could be invalidated by a concurrent

pop. Because the return values are not endangered by concurrency, TBB does support

std::priority_queue methods of size, empty, and swap. However, we recommend

carefully reviewing the wisdom of using either function in a concurrent application,

since a reliance on either is likely to be a hint that the code that needs rewriting for

concurrency.

Chapter 6 Data Structures for Concurrency

199

�Iterators

For debugging purposes alone, all three concurrent queues provide limited iterator

support (iterator and const_iterator types). This support is intended solely to

allow us to inspect a queue during debugging. Both iterator and const_iterator

types follow the usual STL conventions for forward iterators. The iteration order is

from least recently pushed to most recently pushed. Modifying a queue invalidates any

iterators that reference it. The iterators are relatively slow. They should be used only for

debugging. An example of usage is shown in Figure 6-10.

Figure 6-9.  Motivation for try_pop instead of top and pop shown in a side-by-
side comparison of STL and TBB priority queue code. Both will total 50005000 in
this example without parallelism, but the TBB scales and is thread-safe.

Chapter 6 Data Structures for Concurrency

200

�Why to Use This Concurrent Queue: The A-B-A Problem

We mentioned at the outset of this chapter that there is significant value in having

containers that have been written by parallelism experts for us to “just use.” None of

us should want to reinvent good scalable implementations for each application.

As motivation, we diverge to mention the A-B-A problem – a classic computer science

example of parallelism gone wrong! At first glance, a concurrent queue might seem

easy enough to simply write our own. It is not. Using the concurrent_queue from

TBB, or any other well-researched and well-implemented concurrent queue, is a

good idea. Humbling as the experience can be, we would not be the first to learn it is

not as easy as we could naively believe. The update idiom (compare_and_swap) from

Chapter 5 is inappropriate if the A-B-A problem (see sidebar) thwarts our intent. This

is a frequent problem when trying to design a non-blocking algorithm for linked data

structures, including a concurrent queue. The TBB designers have a solution to the

A-B-A problem already packaged in the solutions for concurrent queues. We can just

rely upon it. Of course, it is open source code so you can hunt around in the code to see

the solution if you are feeling curious. If you do look in the source code, you’ll see that

arena management (subject of Chapter 12) has to deal with the ABA problem as well.

Of course, you can just use TBB without needing to know any of this. We just wanted to

Figure 6-10.  Sample debugging code for iterating through a concurrent
queue – note the unsafe_ prefix on begin and end to emphasize the debug-only
non-thread-safe nature of these methods.

Chapter 6 Data Structures for Concurrency

201

emphasize that working out concurrent data structures is not as easy as it might appear –

hence the love we have for using the concurrent data structures supported by TBB.

THE A-B-A PROBLEM

Understanding the A-B-A problem is a key way to train ourselves to think through the

implications of concurrency when designing our own algorithms. While TBB avoids the A-B-A

problems while implementing concurrent queues and other TBB structures, it is a reminder

that we need to “Think Parallel.”

The A-B-A problem occurs when a thread checks a location to be sure the value is A and

proceeds with an update only if the value was A. The question arises whether it is a problem if

other tasks change the same location in a way that the first task does not detect:

	1.	A task reads a value A from globalx.

	2.	O ther tasks change globalx from A to B and then back to A.

	3.	 The task in step 1 does its compare_and_swap, reading A and thus not

detecting the intervening change to B.

If the task erroneously proceeds under an assumption that the location has not changed since the

task first read it, the task may proceed to corrupt the object or otherwise get the wrong result.

Consider an example with linked lists. Assume a linked list W(1)→X(9)→Y(7)→Z(4),

where the letters are the node locations and the numbers are the values in the nodes. Assume

that some task transverses the list to find a node X to dequeue. The task fetches the next

pointer, X.next (which is Y) with the intent to put it in W.next. However, before the swap is

done, the task is suspended for some time.

During the suspension, other tasks are busy. They dequeue X and then happen to reuse that

same memory and queue a new version of node X as well as dequeueing Y and adding Q at

some point in time. Now, the list is W(1)→X(2)→Q(3)→Z(4).

Once the original task finally wakes up, it finds that W.next still points to X, so it swaps out

W.next to become Y, thereby making a complete mess out of the linked list.

Atomic operations are the way to go if they embody enough protection for our algorithm.

If the A-B-A problem can ruin our day, we need to find a more complex solution.

tbb::concurrent_queue has the necessary additional complexity to get this right!

Chapter 6 Data Structures for Concurrency

202

�When to NOT Use Queues: Think Algorithms!

Queues are widely used in parallel programs to buffer consumers from producers. Before

using an explicit queue, we need to consider using parallel_do or pipeline instead (see

Chapter 2). These options are often more efficient than queues for the following reasons:

•	 Queues are inherently bottlenecks because they must maintain an

order.

•	 A thread that is popping a value will stall if the queue is empty until a

value is pushed.

•	 A queue is a passive data structure. If a thread pushes a value, it could

take time until it pops the value, and in the meantime the value (and

whatever it references) becomes cold in cache. Or worse yet, another

thread pops the value, and the value (and whatever it references)

must be moved to the other processor core.

In contrast, parallel_do and pipeline avoid these bottlenecks. Because their

threading is implicit, they optimize use of worker threads so that they do other work until

a value shows up. They also try to keep items hot in cache. For example, when another

work item is added to a parallel_do, it is kept local to the thread that added it unless

another idle thread can steal it before the hot thread processes it. This way, items are

more often processed by the hot thread thereby reducing delays in fetching data.

�Concurrent Vector
TBB offers a class called concurrent_vector. A concurrent_vector<T> is a dynamically

growable array of T. It is safe to grow a concurrent_vector even while other threads

are also operating on elements of it, or even growing it themselves. For safe concurrent

growing, concurrent_vector has three methods that support common uses of dynamic

arrays: push_back, grow_by, and grow_to_at_least.

Figure 6-11 shows a simple usage of concurrent_vector, and Figure 6-12 shows, in the

dump of the vector contents, the effects of parallel threads having added concurrently. The

outputs from the same program would prove identical if sorted into numerical order.

�When to Use tbb::concurrent_vector Instead of std::vector

The key value of concurrent_vector<T> is its ability to grow a vector concurrently and

its ability to guarantee that elements do not move around in memory.

Chapter 6 Data Structures for Concurrency

203

concurrent_vector does have more overhead than std::vector. So, we should

use concurrent_vector when we need the ability to dynamically resize it while other

accesses are (or might be) in flight or require that an element never move.

Figure 6-11.  Concurrent vector small example

Chapter 6 Data Structures for Concurrency

204

�Elements Never Move

A concurrent_vector never moves an element until the array is cleared, which can

be an advantage over the STL std::vector even for single-threaded code. Unlike a

std::vector, a concurrent_vector never moves existing elements when it grows.

The container allocates a series of contiguous arrays. The first reservation, growth,

or assignment operation determines the size of the first array. Using a small number

of elements as initial size incurs fragmentation across cache lines that may increase

element access time. shrink_to_fit() merges several smaller arrays into a single

contiguous array, which may improve access time.

�Concurrent Growth of concurrent_vectors

While concurrent growing is fundamentally incompatible with ideal exception safety,

concurrent_vector does offer a practical level of exception safety. The element type

must have a destructor that never throws an exception, and if the constructor can

throw an exception, then the destructor must be nonvirtual and work correctly on

zero-filled memory.

Figure 6-12.  The left side is output generated while using for (not parallel), and
the right side shows output when using parallel_for (concurrent pushing into the
vector).

Chapter 6 Data Structures for Concurrency

205

The push_back(x) method safely appends x to the vector. The grow_by(n) method

safely appends n consecutive elements initialized with T(). Both methods return an

iterator pointing to the first appended element. Each element is initialized with T(). The

following routine safely appends a C string to a shared vector:

grow_to_at_least(n) grows a vector to size n if it is shorter. Concurrent calls to the

growth methods do not necessarily return in the order that elements are appended to

the vector.

size() returns the number of elements in the vector, which may include elements

that are still undergoing concurrent construction by methods push_back, grow_by, or

grow_to_at_least. The previous example uses std::copy and iterators, not strcpy

and pointers, because elements in a concurrent_vector might not be at consecutive

addresses. It is safe to use the iterators while the concurrent_vector is being grown, as

long as the iterators never go past the current value of end(). However, the iterator may

reference an element undergoing concurrent construction. Therefore, we are required to

synchronize construction and access.

Operations on concurrent_vector are concurrency safe with respect to growing, not

for clearing or destroying a vector. Never invoke clear() if there are other operations in

flight on the concurrent_vector.

�Summary
In this chapter, we discussed three key data structures (hash/map/set, queues, and

vectors) that have support in TBB. This support from TBB offers thread-safety (okay to

run concurrently) as well as an implementation that scales well. We offered advice on

things to avoid, because they tend to cause trouble in parallel programs – including

using the iterators returned by map/set for anything other than the one item that was

looked up. We reviewed the A-B-A problem both as a motivation for using TBB instead of

writing our own and as an excellent example of the thinking we need to do when parallel

programs share data.

Chapter 6 Data Structures for Concurrency

206

As with other chapters, the complete APIs are detailed in Appendix B, and the code

shown in figures is all downloadable.

Despite all the wonderful support for parallel use of containers, we cannot

emphasize enough the concept that thinking through algorithms to minimize

synchronization of any kind is critical to high performance parallel programming. If

you can avoid sharing data structures, by using parallel_do, pipeline, parallel_

reduce, and so on, as we mentioned in the section “When to NOT Use Queues: Think

Algorithms!” – you may find your programs scale better. We mention this in multiple

ways throughout this book, because thinking this through is important for the most

effective parallel programming.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 6 Data Structures for Concurrency

http://creativecommons.org/licenses/by-nc-nd/4.0/

207
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_7

CHAPTER 7

Scalable Memory
Allocation
This chapter discusses a critical part of any parallel program: scalable memory

allocation, which includes use of new as well as explicit calls to malloc, calloc, and so

on. Scalable memory allocation can be used regardless of whether we use any other

part of Threading Building Blocks (TBB). In addition to interfaces to use directly, TBB

offers a “proxy” method to automatically replace C/C++ functions for dynamic memory

allocation, which is an easy, effective, and popular way to get a performance boost

without any code changes. This is important and workvs regardless of how “modern”

you are in your usage of C++, specifically whether you use the modern and encouraged

std::make_shared, or the now discouraged new and malloc. The performance benefits

of using a scalable memory allocator are significant because they directly address issues

that would otherwise limit scaling and risk false sharing. TBB was among the first widely

used scalable memory allocators, in no small part because it came free with TBB to help

highlight the importance of including memory allocation considerations in any parallel

program. It remains extremely popular today and is one of the best scalable memory

allocators available.

Modern C++ programming (which favors smart pointers), combined with parallel
thinking, encourages us to use TBB scalable memory allocators explicitly with
std::allocate_shared or implicitly with std::make_shared.

208

�Modern C++ Memory Allocation
While performance is especially interesting for parallel programming, correctness is a

critical topic for all applications. Memory allocation/deallocation issues are a significant

source of bugs in applications, and this has led many additions to the C++ standard and

a shift in what is considered modern C++ programming!

Modern C++ programming encourages use of managed memory allocation with

introduction of smart pointers in C++11 (make_shared, allocate_shared, etc.) and

discourages extensive use of malloc or new. We have used std::make_shared in examples

since the very first chapter of this book. The addition of std::aligned_alloc in C++17

provides for cache alignment to avoid false sharing but does not address scalable

memory allocation. Many additional capabilities are in the works for C++20, but without

explicit support for scalability.

TBB continues to offer this critical piece for parallel programmers: scalable memory

allocation. TBB does this in a fashion that fits perfectly with all versions of C++ and C

standards. The heart and soul of the support in TBB can be described as memory pooling by

threads. This pooling avoids performance degradations caused by memory allocations that

do not seek to avoid unnecessary shifting of data between caches. TBB also offers scalable

memory allocation combined with cache alignment, which offers the scalable attribute

above what one can expect from simply using std::aligned_alloc. Cache alignment is not

a default behavior because indiscriminate usage can greatly expand memory usage.

As we will discuss in this chapter, the use of scalable memory allocation can be

critical to performance. std::make_shared does not provide for the specification of

an allocator, but there is a corresponding std::allocate_shared, which does allow

specification of an allocator.

This chapter focuses on scalable memory allocators, which should then be used

in whatever manner of C++ memory allocation is chosen for an application. Modern

C++ programming, with parallel thinking, would encourage use to use std::allocate_

shared explicitly with TBB scalable memory allocators, or use std::make_shared

implicitly with TBB by overriding the default new to use the TBB scalable memory

allocator. Note, std::make_shared is not affected by the new operator for a particular

class because it actually allocates a larger block of memory to handle both the contents

for a class and its extra space for bookkeeping (specifically, the atomic that is added to

make it a smart pointer). That is why overriding the default new (to use the TBB allocator)

will be sufficient to affect std::make_shared.

Chapter 7 Scalable Memory Allocation

209

Figure 7-1.  Ways to use the TBB scalable memory allocator

�Scalable Memory Allocation: What
This chapter is organized to discuss the scalable memory capabilities of TBB in four

categories as listed in Figure 7-1. Features from all four categories can be freely mixed;

we break them into categories only as a way to explain all the functionality. The C/C++

proxy library is by far the most popular way to use the scalable memory allocator.

The scalable memory allocator is cleanly separate from the rest of TBB so that our

choice of memory allocator for concurrent usage is independent of our choice of parallel

algorithm and container templates.

�Scalable Memory Allocation: Why
While most of this book shows us how to improve our programs speed by doing work in

parallel, memory allocations and deallocations that are not thread-aware can undo our

hard work! There are two primary issues at play in making careful memory allocation

critical in a parallel program: contention for the allocator and cache effects.

When ordinary, nonthreaded allocators are used, memory allocation can become

a serious bottleneck in a multithreaded program because each thread competes for a

global lock for each allocation and deallocation of memory from a single global heap.

Programs that run this way are not scalable. In fact, because of this contention, programs

that make intensive use of memory allocation may actually slow down as the number

of processor cores increases! Scalable memory allocators solve this by using more

sophisticated data structures to largely avoid contention.

Chapter 7 Scalable Memory Allocation

210

The other issue, caching effects, happens because the use of memory has an underlying

mechanism in hardware for the caching of data. Data usage in a program will therefore

have an implication on where data needs to be cached. If we allocate memory for thread B

and the allocator gives us memory that was recently freed by thread A, it is highly likely that

we are inadvertently causing data to be copied from cache to cache, which may reduce the

performance of our application needlessly. Additionally, if memory allocations for separate

threads are placed too closely together they can share a cache line. We can describe this

sharing as true sharing (sharing the same object) or false sharing (no objects are shared, but

objects happen to fall in the same cache line). Either type of sharing can have particularly

dramatic negative consequences on performance, but false sharing is of particular interest

because it can be avoided since no sharing was intended. Scalable memory allocators avoid

false sharing by using class cache_aligned_allocator<T> to always allocate beginning on

a cache line and maintaining per-thread heaps, which are rebalanced from time to time if

needed. This organization also helps with the prior contention issue.

The benefits of using a scalable memory allocator can easily be a 20-30%

performance, and we have even heard of 4X program performance in extreme cases by

simply relinking with a scalable memory allocator.

�Avoiding False Sharing with Padding
Padding is needed if the internals of a data structure cause issues due to false

sharing. Starting in Chapter 5, we have used a histogram example. The buckets of

the histogram and the locks for the buckets are both possible data structures which

are packed tightly enough in memory to have more than one task updating data in a

single cache line.

The idea of padding, in a data structure, is to space out elements enough that we do

not share adjacent elements that would be updated via multiple tasks.

Regarding false sharing, the first measure we have to take is to rely on the

tbb::cache_aligned_allocator, instead of std::allocator or malloc, when declaring

the shared histogram (see Figure 5-20) as shown in Figure 7-2.

Figure 7-2.  Simple histogram vector of atomics

Chapter 7 Scalable Memory Allocation

211

However, this is just aligning the beginning of the histogram vector and ensuring

that hist_p[0] will land at the beginning of a cache line. This means that hist_p[0],

hist_p[1], ... , hist_p[15] are stored in the same cache line, which translates

into false sharing when a thread increments hist_p[0] and another thread increments

hist_p[15]. To solve this issue, we need to assure that each position of the histogram,

each bin, is occupying a full cache line, which can be achieved using a padding strategy

shown in Figure 7-3.

As we can see in Figure 7-3, the array of bins, hist_p, is now a vector of structs,

each one containing the atomic variable, but also a dummy array of 60 bytes that

will fill the space of a cache line. This code is, therefore, architecture dependent. In

nowadays Intel processors, the cache line is 64 bytes, but you can find false sharing safe

implementations that assume 128 bytes. This is because cache prefetching (caching line

“i+1” when cache line “i” is requested) is a common technique, and this prefetching is

somehow equivalent to cache lines of size 128 bytes.

Our false-sharing-free data structure does occupy 16 times more space than the

original one. It is yet another example of the space-time trade-off that frequently arises

in computer programming: now we occupy more memory, but the code is faster. Other

examples are smaller code vs. loop unrolling, calling functions vs. function inlining, or

processing of compressed data vs. uncompressed data.

Wait! was not the previous implementation of the bin struct a bit pedestrian? Well, it

certainly was! A less hardwired solution would be this one:

Figure 7-3.  Getting rid of false sharing using padding in the histogram vector of
atomics

Chapter 7 Scalable Memory Allocation

212

Since sizeof() is evaluated at compile time, we can use the same struct for other

padded data structures in which the actual payload (count in this case) has a different

size. But we know a better solution that is available in the C++ standard:

This warrants that each bin of hist_p is occupying a full cache line thanks to the

alignas() method. Just one more thing! We love to write portable code, right? What if

in a different or future architecture cache line size is different. No problem, the C++17

standard has the solution we are looking for:

Great, assuming that we have fixed the false sharing problem, what about the true

sharing one?

Two different threads will eventually increment the same bin, which will be ping-

pong from one cache to other. We need a better idea to solve this one! We showed how to

deal with this in Chapter 5 when we discussed privatization and reduction.

�Scalable Memory Allocation Alternatives: Which
These days, TBB is not the only option for scalable memory allocations. While we are

very fond of it, we will introduce the most popular options in this section. When using

TBB for parallel programming, it is essential that we use a scalable memory allocator

whether it is the one supplied by TBB or another. Programs written using TBB can utilize

any memory allocator solution.

Chapter 7 Scalable Memory Allocation

213

TBB was the first popular parallel programming method to promote scalable

memory allocation alongside the other parallel programming techniques because

the creators of TBB understood the importance of including memory allocation

considerations in any parallel program. The TBB memory allocator remains extremely

popular today and is definitely still one of the best scalable memory allocators available.

The TBB scalable memory allocator can be used regardless of whether we use any

other part of Threading Building Blocks (TBB). Likewise, TBB can operate with any

scalable memory allocator.

The most popular alternatives to the TBB scalable memory allocator are jemalloc

and tcmalloc. Like the scalable memory allocator in TBB, there are alternatives to

malloc that emphasize fragmentation avoidance while offering scalable concurrency

support. All three are available open source with liberal licensing (BSD or Apache).

There are some people who will tell you that they have compared tbbmalloc for

their application with tcmalloc and jeamalloc and have found it to be superior for

their application. This is very common. However, there are some people who choose

jemalloc or tcmalloc or llalloc even when using the rest of TBB extensively. This

works too. The choice is yours to make.

jemalloc is the FreeBSD libc allocator. More recently, additional developer support

features such as heap profiling and extensive monitoring/tuning hooks have been

added. jemalloc is used by Facebook.

tcmalloc is part of Google’s gperftools, which includes tcmalloc and some

performance analysis tools. tcmalloc is used by Google.

llalloc from Lockless Inc. is available freely as an open-source lockless memory

allocator or can be purchased for use with closed-source software.

The behavior of individual applications, and in particular patterns of memory

allocations and releases, make it impossible to pick a single fits-all winner from these

options. We are confident that any choice of TBBmalloc, jemalloc, and tcmalloc will

be far superior to a default malloc function or new operator if they are of the nonscalable

variety (FreeBSD uses jemalloc as its default malloc).

Chapter 7 Scalable Memory Allocation

214

�Compilation Considerations
When compiling with programs with the Intel compilers or gcc, it is best to pass in the

following flags:

-fno-builtin-malloc (on Windows: /Qfno-builtin-malloc)

-fno-builtin-calloc (on Windows: /Qfno-builtin-calloc)

-fno-builtin-realloc (on Windows: /Qfno-builtin-realloc)

-fno-builtin-free (on Windows: /Qfno-builtin-free)

This is because a compiler may make some optimizations assuming it is using its

own built-in functions. These assumptions may not be true when using other memory

allocators. Failure to use these flags may not cause a problem, but it is not a bad idea to

be safe. It might be wise to check the compiler documentation of your favorite compiler.

�Most Popular Usage (C/C++ Proxy Library): How
Using the proxy methods, we can globally replace new/delete and malloc/calloc/

realloc/free/etc. routines with a dynamic memory interface replacement technique.

This automatic way to replace malloc and other C/C++ functions for dynamic memory

allocation is by far the most popular way to use the TBB scalable memory allocator

capabilities. It is also very effective.

We can replace malloc/calloc/realloc/free/ etc. (see Figure 7-4 for a complete

list) and new/delete by using the tbbmalloc_proxy library. Using this method is easy

and sufficient for most programs. The details of the mechanism used on each operating

system vary a bit, but the net effect is the same everywhere. The library names are shown

in Figure 7-5; a summary of the methods is shown in Figure 7-6.

Chapter 7 Scalable Memory Allocation

215

Figure 7-4.  List of routines replaced by proxy

Figure 7-5.  Names of the proxy library

Figure 7-6.  Ways to use the proxy library

Chapter 7 Scalable Memory Allocation

216

�Linux: malloc/new Proxy Library Usage
On Linux, we can do the replacement either by loading the proxy library at program

load time using the LD_PRELOAD environment variable (without changing the executable

file, as shown in Figure 7-7), or by linking the main executable file with the proxy

library (-ltbbmalloc_proxy). The Linux program loader must be able to find the proxy

library and the scalable memory allocator library at program load time. For that, we

may include the directory containing the libraries in the LD_LIBRARY_PATH environment

variable or add it to /etc/ld.so.conf. There are two limitations for dynamic memory

replacement: (1) glibc memory allocation hooks, such as __malloc_hook, are not

supported, and (2) Mono (an open source implementation of Microsoft’s .NET Framework

based) is not supported.

�macOS: malloc/new Proxy Library Usage
On macOS, we can do the replacement either by loading the proxy library at program

load time using the DYLD_INSERT_LIBRARIES environment variable (without changing

the executable file, as shown in Figure 7-7), or by linking the main executable file with

the proxy library (-ltbbmalloc_proxy). The macOS program loader must be able to find

the proxy library and the scalable memory allocator library at program load time. For

that, we may include the directory containing the libraries in the DYLD_LIBRARY_PATH

environment variable.

Figure 7-7.  Environment variables to inject the TBB scalable memory allocator

Chapter 7 Scalable Memory Allocation

217

Implementation insight for the curious (not required reading): TBB has a clever
way of overcoming the fact that using DYLD_INSERT_LIBRARIES requires using
flat namespaces in order to access the shared library symbols. Normally, if an
application was built with two-level namespaces, this method would not work, and
forcing usage of flat namespaces would likely lead to a crash. TBB avoids this by
arranging things such that when the libtbbmalloc_proxy library is loaded into
the process; its static constructor is called and registers a malloc zone for TBB
memory allocation routines. This allows redirecting memory allocation routine calls
from a standard C++ library into TBB scalable allocator routines. This means that
the application does not need to use TBB malloc library symbols; it continues
to call standard libc routines. Thus, there are no problems with namespaces.
The macOS malloc zones mechanism also allows applications to have several
memory allocators (e.g., used by different libraries) and manage memory correctly.
This guarantees that Intel TBB will use the same allocator for allocations and
deallocations. It is a safeguard against crashes due to calling a deallocation routine
for a memory object allocated from another allocator.

�Windows: malloc/new Proxy Library Usage
On Windows, we must modify our executable. We can either force the proxy library to be

loaded by adding an #include in our source code, or use certain linker options as shown

in Figure 7-8. The Windows program loader must be able to find the proxy library and

the scalable memory allocator library at program load time. For that, we may include the

directory containing the libraries in the PATH environment variable.

Including tbbmalloc_proxy.h> to a source of any binary (which is loaded during

application startup):

#include <tbb/tbbmalloc_proxy.h>

Chapter 7 Scalable Memory Allocation

218

or add the following parameters to the linker options for the binary (which is loaded

during application startup). They can be specified for the EXE file or a DLL that is loaded

upon application startup:

�Testing our Proxy Library Usage
As a simple double check to see that our program is taking advantage of a faster

allocation, we can use the test program in Figure 7-9 on a multicore machine. In

Figure 7-10, we show how we run this little test and the timing differences we saw on a

quadcore virtual machine running Ubuntu Linux. In Figure 7-11, we show how we run

this little test and the timing difference we saw on a quadcore iMac. On Windows, using

the Visual Studio “Performance Profiler” on a quadcore Intel NUC (Core i7) we saw

times of 94ms without the scalable memory allocator and 50ms with it (adding #include

<tbb/tbbmalloc_proxy.h> into tbb_mem.cpp). All these runs show how this little test

can verify that the injection of the scalable memory allocator is working (for new/delete)

and yielding nontrivial performance boosts! A trivial change to use malloc() and free()

instead shows similar results. We include it as tbb_malloc.cpp in the sample programs

download associated with this book.

The example programs do use a lot of stack space, so “ulimit –s unlimited”

(Linux/macOS) or “/STACK:10000000” (Visual Studio: Properties > Configuration

Properties > Linker > System > Stack Reserve Size) will be important to avoid immediate

crashes.

Figure 7-8.  Ways to use the proxy library on Windows (note: win32 has an
additional underscore vs. win64)

Chapter 7 Scalable Memory Allocation

219

Figure 7-9.  Small test program (tbb_mem.cpp) for speed of new/delete

Figure 7-10.  Running and timing tbb_mem.cpp on a quadcore virtual Linux
machine

Figure 7-11.  Running and timing tbb_mem.cpp on a quadcore iMac (macOS)

Chapter 7 Scalable Memory Allocation

220

�C Functions: Scalable Memory Allocators for C
A set of functions, listed in Figure 7-12, provide a C level interface to the scalable

memory allocator. Since TBB programming uses C++, these interfaces are not here for

TBB users – they are here for use with C code.

Each allocation routine scalable_x behaves analogously to a library function x.

The routines form the two families shown in the Figure 7-13. Storage allocated by a

scalable_x function in one family must be freed or resized by a scalable_x function

in the same family, and not by a C standard library function. Similarly, any storage

allocated by a C standard library function, or C++ new, should not be freed or resized by a

scalable_x function.

These functions are defined by the specific #include <tbb/scalable_allocator.h>".

Figure 7-12.  Functions offered by the TBB scalable memory allocator

Chapter 7 Scalable Memory Allocation

221

�C++ Classes: Scalable Memory Allocators for C++
While the proxy library offers a blanket solution to adopting scalable memory allocation,

it is all based on specific capabilities that we might choose to use directly. TBB offers C++

classes for allocation in three ways: (1) allocators with the signatures needed by the C++

STL std::allocator<T>, (2) memory pool support for STL containers, and (3) a specific

allocator for aligned arrays.

Figure 7-13.  Coupling of allocate-deallocate functions by families

Figure 7-14.  Classes offered by the TBB scalable memory allocator

Chapter 7 Scalable Memory Allocation

222

�Allocators with std::allocator<T> Signature
A set of classes, listed in Figure 7-14, provide a C++ level interface to the scalable

memory allocator. TBB has four template classes (tbb_allocator, cached_aligned_

allocator, zero_allocator, and scalable_allocator) that support the same

signatures as std::allocator<T> per the C++ standards. This includes supporting

<void> in addition to <T>, per the C++11 and prior standards, which is deprecated in

C++17 and will likely be removed in C++20. This means they can be passed as allocation

routines to be used by STL templates such as vector. All four classes model an allocator

concept that meets all the “Allocator requirements” of C++, but with additional

guarantees required by the Standard for use with ISO C++ containers.

�scalable_allocator
The scalable_allocator template allocates and frees memory in a way that scales with

the number of processors. Using a scalable_allocator in place of std::allocator may

improve program performance. Memory allocated by a scalable_allocator should be

freed by a scalable_allocator, not by a std::allocator.

The scalable_allocator allocator template requires that the TBBmalloc library be

available. If the library is missing, calls to the scalable_allocator template will fail.

In contrast, if the memory allocator library is not available, the other allocators

(tbb_allocator, cached_aligned_allocator, or zero_allocator) fall back on malloc

and free.

This class is defined with #include <tbb/scalable_allocator.h> and is notably

not included by the (usually) all-inclusive tbb/tbb.h.

�tbb_allocator
The tbb_allocator template allocates and frees memory via the TBBmalloc library

if it is available; otherwise, it reverts to using malloc and free. The cache_alligned_

allocator and zero_allocator use tbb_allocator; therefore, they offer the same

fall back on malloc, but scalable_allocator does not and therefore will fail if the

TBBmalloc library is unavailable. This class is defined with #include <tbb/tbb_

allocator.h>

Chapter 7 Scalable Memory Allocation

223

�zero_allocator
The zero_allocator allocates zeroed memory. A zero_allocator<T,A> can be

instantiated for any class A that models the Allocator concept. The default for A is

tbb_allocator. The zero_allocator forwards allocation requests to A and zeros the

allocation before returning it. This class is defined with #include <tbb/tbb_allocator.h>.

�cached_aligned_allocator
The cached_aligned_allocator template offers both scalability and protection against

false sharing. It addresses false sharing by making sure each allocation is done on a

separate cache line.

Use cache_aligned_allocator only if false sharing is likely to be a real problem

(see Figure 7-2). The functionality of cache_aligned_allocator comes at some cost in

space because it allocates in multiples of cache-line-size memory chunks, even for a

small object. The padding is typically 128 bytes. Hence, allocating many small objects

with cache_aligned_allocator may increase memory usage.

Trying both tbb_allocator and the cache_aligned_allocator and measuring the

resulting performance for a particular application is a good idea.

Note that protection against false sharing between two objects is guaranteed only

if both are allocated with cache_aligned_allocator. For instance, if one object is

allocated by cache_aligned_allocator<T> and another object is allocated some other

way, there is no guarantee against false sharing because cache_aligned_allocator<T>

starts an allocation on a cache line boundary but does not necessarily allocate to the

end of a cache line. If an array or structure is being allocated, since only the start of

the allocation is aligned, the individual array or structure elements may land together

on cache lines with other elements. An example of this, along with padding to force

elements onto individual cache line, is show in Figure 7-3.

This class is defined with #include <tbb/cache_alligned_allocator.h>.

�Memory Pool Support: memory_pool_allocator
Pool allocators are an extremely efficient method for providing allocation of numerous

objects of fixed size P. Our first allocator usage is special and asks to reserve enough

memory to store T objects of size P. Thereafter, when the allocator is used to provide a

Chapter 7 Scalable Memory Allocation

224

chunk of memory, it returns an offset mod P into the allocated chunk. This is far more

efficient than calling operator new separately for each request because it avoids the

bookkeeping overhead required of a general-purpose memory allocator that services

numerous requests for different-sized allocations.

The class is mainly intended to enable memory pools within STL containers. This

is a “preview” feature as we write this book (likely to promote to a regular feature in the

future). Use #define TBB_PREVIEW_MEMORY_POOL 1 to enable while this is still a preview

feature.

Support is provided by tbb::memory_pool_allocator and tbb:: memory_pool_

allocator. These require

�Array Allocation Support: aligned_space
This template class (aligned_space) occupies enough memory and is sufficiently aligned

to hold an array T[N]. Elements are not constructed or destroyed by this class; the client

is responsible for initializing or destroying the objects. An aligned_space is typically

used as a local variable or field in scenarios where a block of fixed-length uninitialized

memory is needed. This class is defined with #include <tbb/aligned_space.h>.

�Replacing new and delete Selectively
There are a number of reasons one might develop custom new/delete operators,

including error checking, debugging, optimization, and usage statistics gathering.

We can think of new/delete as coming in variations for individual objects and for

arrays of objects. Additionally, C++11 defines throwing, nonthrowing, and placement

versions of each of these: either the global set (::operator new, ::operator new[],

::operator delete and ::operator delete[]) or the class specific sets (for class X, we

have X::operator new, X::operator new[], X::operator delete and X::operator

delete[]). Finally, C++17 adds an optional alignment parameter to all versions of new.

If we want to globally replace all the new/delete operators and do not have any

custom needs, we would use the proxy library. This also has the benefit of replacing

malloc/free and related C functions.

Chapter 7 Scalable Memory Allocation

225

For custom needs, it is most common to overload the class-specific operators rather

than the global operators. This section shows how to replace the global new/delete

operators as an example which can be customized for particular needs. We show

throwing and nonthrowing versions, but we did not override the placement versions

since they do not actually allocate memory. We also did not implement versions with

alignment (C++17) parameters. It is also possible to replace new/delete operators for

individual classes using the same concepts, in which case you may choose to implement

placement versions and alignment capabilities. All these are handled by TBB if the proxy

library is used.

Figures 7-15 and 7-16 together show a method to replace new and delete, and

Figure 7-17 demonstrates their usage. All versions of new and delete should be replaced

at once, which amounts to four versions of new and four versions of delete. Of course, it

is necessary to link with the scalable memory library.

Our example chooses to ignore any new handler because there are thread-safety

issues, and it always throws std::bad_alloc(). The variation of the basic signature

includes the additional parameter const std::nothrow_t& that means that this

operator will not throw an exception but will return NULL if the allocation fails. These four

nonthrowing exception operators can be used for C runtime libraries.

We do not have to initialize the task scheduler to be able to use the memory allocator.

We do initialize it in this example because it uses parallel_for in order to demonstrate

the use of memory allocation and deallocation in multiple tasks. Similarly, the only

header file that is required for the memory allocator is tbb/tbb_allocator.h.

Chapter 7 Scalable Memory Allocation

226

Figure 7-15.  Demonstration of replacement of new operators (tbb_nd.cpp)

Chapter 7 Scalable Memory Allocation

227

Figure 7-16.  Continuation from the previous figure, replacement of delete operators

Figure 7-17.  Driver program to demonstrate the new/delete replacements

Chapter 7 Scalable Memory Allocation

228

�Performance Tuning: Some Control Knobs
TBB offers some special controls regarding allocations from the OS, huge page support,

and flushing of internal buffers. Each of these is provided to fine-tune performance.

Huge pages (large pages on Windows) are used to improve the performance for

programs that utilize a very large amount of memory. In order to use huge pages, we

need a processor with support, an operating system with support, and then we need

to do something so our application takes advantage of huge pages. Fortunately, most

systems have all this available, and TBB includes support.

�What Are Huge Pages?
In most cases, a processor allocates memory 4K bytes at a time in what are commonly

called pages. Virtual memory systems use page tables to map addresses to actual

memory locations. Without diving in too deep, suffice to say that the more pages of

memory that an application uses, the more page descriptors are needed, and having a

lot of page descriptors flying around causes performance issues for a variety of reasons.

To help with this issue, modern processors support additional page sizes that are

much larger than 4K (e.g., 4 MB). For a program using 2 GB of memory, 524,288 page

descriptions are needed to describe the 2 GB of memory with 4K pages. Only 512 page

descriptions are needed using 4 MB descriptors and only two if 1 GB descriptors are

available.

�TBB Support for Huge Pages
To use huge pages with TBB memory allocation, it should be explicitly enabled by

calling scalable_allocation_mode(TBBMALLOC_USE_HUGE_PAGES,1), or by setting the

TBB_MALLOC_USE_HUGE_PAGES environment variable to 1. The environment variable is

useful when substituting the standard malloc routines with the tbbmalloc_proxy library.

These provide ways to tweak the algorithms used for all usages of the TBB scalable

memory allocator (regardless of the method of usage: proxy library, C functions, or C++

classes). The functions take precedence over any environment variable settings. These

are definitely not for casual use, they are here for self-proclaimed “control freaks” and

offer great ways to optimize performance for particular needs. We recommend careful

evaluation of the performance impact on an application, in the target environment,

when using these features.

Chapter 7 Scalable Memory Allocation

229

Of course, both methods assume that the system/kernel is configured to allocate

huge pages. The TBB memory allocator also supports pre-allocated and transparent

huge pages, which are automatically allocated by the Linux kernel when suitable. Huge

pages are not a panacea; they can have negative impact on performance if their usage is

not well considered.

The functions, as listed in Figure 7-18, are defined with #include

<tbb/tbb_allocator.h>.

�scalable_allocation_mode(int mode, intptr_t value)
The scalable_allocation_mode function may be used to adjust the behavior of the

scalable memory allocator. The arguments, described in the following two paragraphs,

control aspects of behavior of the TBB allocators. The function returns TBBMALLOC_OK

if the operation succeeded, TBBMALLOC_INVALID_PARAM if mode is not one of those

described in the following subsections, or if value is not valid for the given mode.

A return value of TBBMALLOC_NO_EFFECT is possible for conditions described when they

apply (see explanation of each function).

�TBBMALLOC_USE_HUGE_PAGES

scalable_allocation_mode(TBBMALLOC_USE_HUGE_PAGES,1)

This function enables the use of huge pages by the allocator if supported by the operating

system; a zero as the second parameter disables it. Setting the TBB_MALLOC_USE_

HUGE_PAGES environment variable to one has the same effect as calling scalable_

allocation_mode to enable this mode. The mode set with scalable_allocation_mode

Figure 7-18.  Ways to refine TBB scalable memory allocator behaviors

Chapter 7 Scalable Memory Allocation

230

takes priority over the environment variable. The function will return TBBMALLOC_NO_

EFFECT if huge pages are not supported on the platform.

�TBBMALLOC_SET_SOFT_HEAP_LIMIT
scalable_allocation_mode(TBBMALLOC_SET_SOFT_HEAP_LIMIT, size)

This function sets a threshold of size bytes on the amount of memory the allocator takes

from the operating systems. Exceeding the threshold will urge the allocator to release

memory from its internal buffers; however, it does not prevent the TBB scalable memory

allocator from requesting more memory when needed.

�int scalable_allocation_command(int cmd, void ∗param)
The scalable_allocation_command function may be used to command the scalable

memory allocator to perform an action specified by the first parameter. The second

parameter is reserved and must be set to zero. The function will return TBBMALLOC_OK if

the operation succeeded, TBBMALLOC_INVALID_PARAM if reserved is not equal to zero, or

if cmd is not a defined command (TBBMALLOC_CLEAN_ALL_BUFFERS or TBBMALLOC_CLEAN_

THREAD_BUFFERS). A return value of TBBMALLOC_NO_EFFECT is possible as we describe next.

�TBBMALLOC_CLEAN_ALL_BUFFERS
scalable_allocation_command(TBBMALLOC_CLEAN_ALL_BUFFERS, 0)

This function cleans internal memory buffers of the allocator and possibly reduces

memory footprint. It may result in increased time for subsequent memory allocation

requests. The command is not designed for frequent use, and careful evaluation of the

performance impact is recommended. The function will return TBBMALLOC_NO_EFFECT if

no buffers were released.

�TBBMALLOC_CLEAN_THREAD_BUFFERS
scalable_allocation_command(TBBMALLOC_CLEAN_THREAD_BUFFERS, 0)

This function cleans internal memory buffers but only for the calling thread. It may result

in increased time for subsequent memory allocation requests; careful evaluation of the

Chapter 7 Scalable Memory Allocation

231

performance impact is recommended. The function will return TBBMALLOC_NO_EFFECT if

no buffers were released.

�Summary
Using a scalable memory allocator is an essential element in any parallel program. The

performance benefits can be very significant. Without a scalable memory allocator,

serious performance issues often arise due to contention for allocation, false sharing,

and other useless cache to cache transfers. The TBB scalable memory allocation

(TBBmalloc) capabilities include use of new as well as explicit calls to malloc, and so on,

all of which can be used directly or they can all be automatically replaced via the proxy

library capability of TBB. The scalable memory allocation in TBB can be used regardless

of whether we use any other part of TBB; the rest of TBB can be used regardless of

which memory allocator is used (TBBmalloc, tcmalloc, jemalloc, malloc, etc.). The

TBBmalloc library remains extremely popular today and is definitely one of the best

scalable memory allocators available.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 7 Scalable Memory Allocation

http://creativecommons.org/licenses/by-nc-nd/4.0/

233
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_8

CHAPTER 8

Mapping Parallel Patterns
to TBB
It has been said that history does not repeat, it rhymes.

It could be said that software rhymes as well. While we may not write the same code

over and over, there are patterns that emerge in the problems we solve and the code we

write. We can learn from similar solutions.

This chapter takes a look at patterns that have proven to be effective in solving

problems in a scalable manner, and we connect them with how to implement them

using TBB (Figure 8-1). In order to achieve scalable parallelization, we should focus on

data parallelism; data parallelism is the best overall strategy for scalable parallelism.

Our coding needs to encourage the subdivision of any task into multiple tasks, with

the number of tasks able to grow with the overall problem size; an abundance of tasks

enables better scaling. Assisted best by the patterns we promote in this chapter, coding

to provide an abundance of tasks helps us achieve scalability in our algorithms.

We can learn to “Think Parallel” by seeing how others have done it effectively

already. Of course, we can stand on the shoulders of giants and reach ever further.

This chapter is about learning from prior experiences of parallel programmers, and

in the course of doing that, learning better how to use TBB. We talk in terms of patterns

as inspiration and useful tools for “Thinking Parallel.” We do not describe patterns to

form a perfect taxonomy of programming.

�Parallel Patterns vs. Parallel Algorithms
As we mentioned in Chapter 2, it has been suggested to us by reviewers of this book

that “TBB parallel algorithms” should be referred to as patterns instead of algorithms.

That may be true, but in order to align with the terminology that the TBB library has

234

been using for many years, we refer to these features as generic parallel algorithms

throughout this book and in the TBB documentation. The effect is the same – they offer

the opportunity for us to benefit from the experience of those who have explored optimal

solutions to these patterns before us – not only to use them, but to be encouraged to

prefer using these particular patterns (algorithms) over other possible approaches

because they tend work best (achieve better scaling).

Figure 8-1.  TBB templates that express important “Patterns that work”

Chapter 8 Mapping Parallel Patterns to TBB

235

�Patterns Categorize Algorithms, Designs, etc.
The value of object-oriented programming was described by the Gang of Four (Gamma,

Helm, Johnson, and Vlissides) and their landmark work Design Patterns: Elements

of Reusable Object-Oriented Software (Addison-Wesley). Many credit that book with

bringing more order to the world of object-oriented programming. Their book gathered

the collective wisdom of the community and boiled it down into simple “patterns” with

names, so people could talk about them.

Patterns for Parallel Programming by Mattson, Sanders, and Massingill (Addison-

Wesley) has similarly collected wisdom from the parallel programming community. Experts

use common tricks and have their own language to talk about techniques. With parallel

patterns in mind, programmers can quickly come up to speed in parallel programming just

as object-oriented programmers have done with the famous Gang-of-Four book.

Patterns for Parallel Programming is longer than this book, and very dense reading, but

with some help from author Tim Mattson, we can summarize how the patterns relate to TBB.

Tim et al. propose that programmers need to work through four design spaces to

develop a parallel program:

	 1.	 Finding concurrency.

For this design space, we work within our problem domain to

identify available concurrency and expose it for use in the algorithm

design. TBB simplifies this effort by encouraging us to find as

many tasks as we can without having to worry about how to map

them to hardware threads. We also provide information on how to

best make the tasks split in half when the task is considered large

enough. Using this information, TBB then automatically divides

large tasks repeatedly to help spread work evenly among processor

cores. An abundance of tasks leads to scalability for our algorithms.

	 2.	 Algorithm structures.

This design space embodies our high-level strategy for organizing a

parallel algorithm. We need to figure out how we want to organize

our workflow. Figure 8-1 lists important patterns that we can consult

to guide our selection toward a pattern that best suits our needs.

These “patterns that work” are the focus of Structured Parallel

Programming by McCool, Robison, and Reinders (Elsevier).

Chapter 8 Mapping Parallel Patterns to TBB

236

	 3.	 Supporting structures.

This step involves the details for turning algorithm strategy

into actual code. We consider how the parallel program will be

organized and the techniques used to manage shared (especially

mutable) data. These considerations are critical and have an

impact that reaches across the entire parallel programming

process. TBB is well designed to encourage the right level of

abstraction, so this design space is satisfied by using TBB well

(something we hope we teach in this book).

	 4.	 Implementation mechanisms.

This design space includes thread management and synchronization.

Threading Building Blocks handles all the thread management,

leaving us free to worry only about tasks at a higher level of design.

When using TBB, most programmers code to avoid explicit

synchronization coding and debugging. TBB algorithms (Chapter 2)

and flow graph (Chapter 3) aim to minimize explicit synchronization.

Chapter 5 discusses synchronization mechanisms for when we do

need them, and Chapter 6 offers containers and thread local storage to

help limit the need for explicit synchronization.

Using a pattern language can guide the creation of better parallel

programming environments and help us make the best use of TBB

to write parallel software.

�Patterns That Work
Armed with the language of patterns, we should regard them as tools. We emphasize

patterns that have proven useful for developing the most scalable algorithms. We

know that two prerequisites for achieving parallel scalability are good data locality and

avoidance of overhead. Fortunately, many good strategies have been developed for

achieving these objectives and are accessible using TBB (see table in Figure 8-1).

Consideration of the need to be well tuned, to real machines, details are already

provided for within TBB including issues related to the implementation of patterns such

as granularity control and good use of cache.

Chapter 8 Mapping Parallel Patterns to TBB

237

In these terms, TBB handles the details of implementation, so that we can program

at a higher level. This is what lets code written using TBB be portable, leaving machine-

specific tuning inside of TBB. TBB in turn, by virtue of algorithms such as task-stealing,

helps minimize the tuning needed to port TBB. The abstraction of the algorithm strategy

into semantics and implementation has proven to work extremely well in practice. The

separation makes it possible to reason about the high-level algorithm design and the

low-level (and often machine-specific) details separately.

Patterns provide a common vocabulary for discussing approaches to problem

solving and allow reuse of best practices. Patterns transcend languages, programming

models, and even computer architectures, and we can use patterns whether or not the

programming system we are using explicitly supports a given pattern with a specific

feature. Fortunately, TBB was designed to emphasize proven patterns that lead to well-

structured, maintainable, and efficient programs. Many of these patterns are in fact also

deterministic (or can be run in a deterministic mode – see Chapter 16), which means

they give the same result every time they are executed. Determinism is a useful property

since it leads to programs that are easier to understand, debug, test, and maintain.

�Data Parallelism Wins
The best overall strategy for scalable parallelism is data parallelism. Definitions of

data parallelism vary. We take a wide view and define data parallelism as any kind of

parallelism that grows as the data set grows or, more generally, as the problem size

grows. Typically, the data is split into chunks and each chunk processed with a separate

task. Sometimes, the splitting is flat; other times, it is recursive. What matters is that

bigger data sets generate more tasks.

Whether similar or different operations are applied to the chunks is irrelevant to our

definition. In general, data parallelism can be applied whether a problem is regular or

irregular. Because data parallelism is the best strategy for scalable parallelism, hardware

support for data parallelism is commonly found in all types of hardware – CPUs, GPUs,

ASIC designs, and FPGA designs. Chapter 4 discussed support for SIMD precisely to

connect with such hardware support.

The opposite of data parallelism is functional decomposition (also called task

parallelism), an approach that runs different program functions in parallel. At best,

functional decomposition improves performance by a constant factor. For example, if a

program has functions f, g, and h, running them in parallel at best triples performance,

Chapter 8 Mapping Parallel Patterns to TBB

238

and in practice less. Sometimes functional decomposition can deliver an additional bit

of parallelism required to meet a performance target, but it should not be our primary

strategy, because it does not scale.

Figure 8-2.  Nesting pattern: a compositional pattern that allows other patterns
to be composed in a hierarchy. Nesting is that any task block in a pattern can
be replaced with a pattern with the same input and output configuration and
dependencies.

�Nesting Pattern
Nesting (Figure 8-2) may seem obvious and normal, but in the parallel programming

world it is not. TBB makes life simple – nesting just works, without severe

oversubscription issues that other models such as OpenMP can have.

Two implications to emphasize what we get because of nesting support:

•	 We do not need to know if we are in a “parallel region” or a “serial

region” when choosing if we should invoke a TBB template.

Since using TBB just creates tasks, we do not have to worry about

oversubscription of threads.

•	 We do not need to worry about calling a library, which was written

with TBB, and controlling if it might use parallelism.

Nesting can be thought of as a meta-pattern because it means that patterns can

be hierarchically composed. This is important for modular programming. Nesting is

extensively used in serial programming for composability and information hiding but

Chapter 8 Mapping Parallel Patterns to TBB

239

can be a challenge to carry over into parallel programming. The key to implementing

nested parallelism is to specify optional, not mandatory, parallelism. This is one area

that TBB excels compared to other models.

The importance of nesting was well understood when TBB was introduced in 2006,

and it has always been well supported in all of TBB. In contrast, the OpenMP API was

introduced in 1997 when we did not adequately foresee the critical importance of the

nesting pattern for future machines. As a result, the nesting pattern is not supported

throughout OpenMP. This can make OpenMP much more difficult to use for anything

outside the world of applications which focus almost all work inside computationally

intensive loop nests. These are the application types that dominated our thinking when

creating OpenMP and its predecessors in the 1980s and 1990s. The nesting pattern, with

modularity and composability, was key in our thinking when TBB was created (we credit

the Cilk research work at MIT for the pioneering work that influenced our thinking

heavily – see Appendix A for many more comments on influences, including Cilk).

�Map Pattern
The map pattern (Figure 8-3) is the most optimal pattern for parallel programming

possible: dividing work into uniform independent parts that run in parallel with

no dependencies. This represents a regular parallelization that is referred to as

embarrassing parallelism. That is to say, the parallelism seems most obvious in cases

where there is independent parallel work to be done. There is nothing embarrassing

about getting great performance when an algorithm scales well! This quality makes

the map pattern worth using whenever possible since it allows for both efficient

parallelization and efficient vectorization.

Figure 8-3.  Map pattern: a function is applied to all elements of a collection,
usually producing a new collection with the same shape as the input.

Chapter 8 Mapping Parallel Patterns to TBB

240

A map pattern involves no shared mutable state between the parts; a map function

(the independent work parts) must be “pure” in the sense that it must not modify shared

state. Modifying shared (mutable) state would break perfect independence. This can

result in nondeterminism from data races and result in undefined behavior including

possible application failure. Hidden shared data can be present when using complex

data structures, for instance std::share_ptr, which may have sharing implications.

Usages for map patterns include gamma correction and thresholding in images,

color space conversions, Monte Carlo sampling, and ray tracing. Use parallel_for to

implement map efficiently with TBB (example in Figure 8-4). Additionally, parallel_

invoke can be used for a small amount of map type parallelism, but the limited amount

will not provide much scalability unless parallelism also exists at other levels (e.g., inside

the invoked functions).

�Workpile Pattern
The workpile pattern is a generalized map pattern where each instance (map function)

can generate more instances. In other words, work can be added to the “pile” of things to

do. This can be used, for example, in the recursive search of a tree, where we might want

to generate instances to process each of the children of each node of the tree. Unlike the

case with the map pattern, with the workpile pattern, the total number of instances of

the map function is not known in advance nor is the structure of the work regular.

This makes the workpile pattern harder to vectorize (Chapter 4) than the map pattern.

Use parallel_do (Chapter 2) to implement workpile efficiently with TBB.

Figure 8-4.  Map pattern realized in parallel with parallel_for

Chapter 8 Mapping Parallel Patterns to TBB

241

�Reduction Patterns (Reduce and Scan)
The reduce pattern (Figure 8-5) can be thought of as a map operation where each

subtask produces a subresult that we need to combine to form a final single answer.

A reduce pattern combines the multiple subresults using an associative “combiner

function.” Because of the associativity of the combiner function, different orderings of

the combining are possible run-to-run which is both a curse and a blessing. The blessing

is that an implementation is free to maximize performance by combining in any order

that is most efficient. The curse is that this offers a nondeterminism in the output if

there are variations run-to-run in results due to rounding or saturation. Combining to

find the maximum number or to find the boolean AND of all subresults does not suffer

from these issues. However, a global addition using floating-point numbers will be

nondeterministic due to rounding variations.

TBB offers both nondeterministic (highest performance) and deterministic (typically

only a slight performance penalty) for reduction operations. The term deterministic

refers only to the deterministic order of reduction run-to-run. If the combining function

is deterministic, such as boolean AND, then the nondeterministic order of parallel_

reduce will yield a deterministic result.

Typical combiner functions include addition, multiplication, maximum, minimum,

and boolean operations AND, OR, and XOR. We can use parallel_reduce (Chapter 2) to

implement nondeterministic reduction. We can use parallel_deterministic_reduce

(Chapter 16) to implement deterministic reduction. Both allow us the ability to define

our own combiner functions.

Figure 8-5.  Reduction pattern: subtasks produce subresults that are combined to
form a final single answer.

Chapter 8 Mapping Parallel Patterns to TBB

242

The scan pattern (Figure 8-6) computes a prefix computation (also known as a scan)

in parallel (y[i]=y[i-1] op x[i]). As with other reductions, this can be done in parallel

if op is associative. This can be useful in scenarios that appear to have inherently serial

dependencies. Many people are surprised that there is a scalable way to do this at all.

A sample of what serial code may look like is shown in Figure 8-7. A parallel version

requires more operations than a serial version, but it offers scaling. TBB parallel_scan

(Chapter 2) is used to implement scan operations.

Figure 8-6.  Scan pattern: the complexity gives a visualization of the extra
operations needed to offering scaling.

Figure 8-7.  Serial code doing a scan operation

Chapter 8 Mapping Parallel Patterns to TBB

243

�Fork-Join Pattern
The fork-join pattern (Figure 8-8) recursively subdivides a problem into subparts and

can be used for both regular and irregular parallelization. It is useful for implementing

a divide-and-conquer strategy (sometimes called a pattern itself) or a branch-and-
bound strategy (also, sometimes called a pattern itself). A fork-join should not be

confused with barriers. A barrier is a synchronization construct across multiple threads.

In a barrier, each thread must wait for all other threads to reach the barrier before any of

them leaves. A join also waits for all threads to reach a common point, but the difference

is that after a barrier, all threads continue, but after a join, only one does. Work that

runs independently for a while, then uses barriers to synchronize, and then proceeds

independently again is effectively the same as using the map pattern repeatedly with

barriers in between. Such programs are subject to Amdahl’s Law penalties (see more in

the Preface) because time is spent waiting instead of working (serialization).

Figure 8-8.  Fork-join pattern: allows control flow fork into multiple parallel flows
that rejoin later

Chapter 8 Mapping Parallel Patterns to TBB

244

We should consider parallel_for and parallel_reduce since they automatically

implement capabilities that may do what we need if our needs are not too irregular. TBB

templates parallel_invoke (Chapter 2), task_group (Chapter 10), and flow_graph

(Chapter 3) are ways to implement the fork-join pattern. Aside from these direct

coding methods, it is worth noting that fork-join usage and nesting support within the

implementation of TBB makes it possible to get the benefits of fork-join and nesting

without explicitly coding either. A parallel_for will automatically use an optimized

fork-join implementation to help span the available parallelism while remaining

composable so that nesting (including nested parallel_for loops) and other forms of

parallelism can be active at the same time.

�Divide-and-Conquer Pattern
The fork-join pattern can be considered the basic pattern, with divide-and-conquer

being a strategy in how we fork and join. Whether this is a distinct pattern is a matter of

semantics, and is not important for our purposes here.

A divide-and-conquer pattern applies if a problem can be divided into smaller

subproblems recursively until a base case is reached that can be solved serially. Divide-

and-conquer can be described as dividing (partitioning) a problem and then using the

map pattern to compute solutions to each subproblem in the partition. The resulting

solutions to subproblems are combined to give a solution to the original problem.

Divide-and-conquer lends itself to parallel implementation because of ease of which

work can be subdivided whenever more workers (tasks) would be advantageous.

The parallel_for and parallel_reduce implement capabilities that should be

considered first when divide-and-conquer is desired. Also, divide-and-conquer can be

implemented with the same templates which can serve as methods to implement the

fork-join pattern (parallel_invoke, task_group, and flow_graph).

�Branch-and-Bound Pattern
The fork-join pattern can be considered the basic pattern, with branch-and-bound

being a strategy in how we fork and join. Whether this is a distinct pattern is a matter of

semantics and is not important for our purposes here.

Chapter 8 Mapping Parallel Patterns to TBB

245

Branch-and-bound is a nondeterministic search method to find one satisfactory

answer when many may be possible. Branch refers to using concurrency, and bound

refers to limiting the computation in some manner – for example, by using an upper

bound (such as the best result found so far). The name “branch and bound” comes from

the fact that we recursively divide the problem into parts, then bound the solution in

each part. Related techniques, such as alpha-beta pruning, are also used in state-space

search in artificial intelligence including move evaluations for Chess and other games.

Branch-and-bound can lead to superlinear speedups, unlike many other parallel

algorithms. However, whenever there are multiple possible matches, this pattern

is nondeterministic because which match is returned depends on the timing of the

searches over each subset. To get a superlinear speedup, the cancellation of in-progress

tasks needs to be implemented in an efficient manner (see Chapter 15).

Search problems do lend themselves to parallel implementation, since there

are many points to search. However, because enumeration is far too expensive

computationally, the searches should be coordinated in some way. A good solution is to

use a branch-and-bound strategy. Instead of exploring all possible points in the search

space, we choose to repetitively divide the original problem into smaller subproblems,

evaluate specific characteristics of the subproblems so far, set up constraints (bounds)

according to the information at hand, and eliminate subproblems that do not satisfy the

constraints. This elimination is often referred to as “pruning.” The bounds are used to

“prune” the search space, eliminating candidate solutions that can be proven will not

contain an optimal solution. By this strategy, the size of the feasible solution space can

be reduced gradually. Therefore, we will need to explore only a small part of the possible

input combinations to find the optimal solution.

Branch-and-bound is a nondeterministic method and a good example of when

nondeterminism can be useful. To do a parallel search, the simplest approach is to

partition the set and search each subset in parallel. Consider the case where we only

need one result, and any data that satisfies the search criteria is acceptable. In that case,

once an item matching the search criteria is found, in any one of the parallel subset

searches, the searches in the other subsets can be canceled.

Branch-and-bound can also be used for mathematical optimization, with some

additional features. In mathematical optimization, we are given an objective function,

some constraint equations, and a domain. The function depends on certain parameters.

The domain and the constraint equations define legal values for the parameters. Within

the given domain, the goal of optimization is to find values of the parameters that

maximize (or minimize) the objective function.

Chapter 8 Mapping Parallel Patterns to TBB

246

The parallel_for and parallel_reduce implement capabilities that should be

considered first when branch-and-bound is desired. Also, divide-and-conquer can be

implemented with the same templates which can serve as methods to implement the

fork-join pattern (parallel_invoke, task_group and flow_graph). Understanding TBB

support for cancellation (see Chapter 15) may be particularly useful when implementing

branch-and-bound.

�Pipeline Pattern
The pipeline pattern (Figure 8-9) can be easily underestimated. The opportunities for

parallelism through nesting and pipelining are enormous. A pipeline pattern connects

tasks in a producer-consumer relationship in a regular, nonchanging data flow.

Conceptually, all stages of the pipeline are active at once, and each stage can maintain

state which can be updated as data flows through them. This offers parallelism through

pipelining. Additionally, each stage can have parallelism within itself thanks to nesting

support in TBB. TBB parallel_pipeline (Chapter 2) supports basic pipelines. More

generally, a set of stages could be assembled in a directed acyclic graph (a network). TBB

flow_graph (Chapter 3) supports both pipelines and generalized pipelines.

Figure 8-9.  Pipeline pattern: tasks connected in a regular nonchanging producer-
consumer relationship

Figure 8-10.  Event-based coordination pattern: tasks connected in a producer-
consumer relationship with an irregular, and possibly changing, interaction
between tasks

Chapter 8 Mapping Parallel Patterns to TBB

247

�Event-Based Coordination Pattern (Reactive
Streams)
The event-based coordination pattern (Figure 8-10) connects tasks in a producer-

consumer relationship with an irregular, and possibly changing, interaction between

tasks. Dealing with asynchronous activities is a common programming challenge.

This pattern can be easily underestimated for the same reasons many underestimate

the scalability of a pipeline. The opportunities for parallelism through nesting and

pipelining are enormous.

We are using the term “event-based coordination,” but we are not trying to

differentiate it from “actors,” “reactive streams,” “asynchronous data streams,” or “event-

based asynchronous.”

The unique control flow aspects needed for this pattern led to the development of

the flow_graph (Chapter 3) capabilities in TBB.

Examples of asynchronous events include interrupts from multiple real-time data

feed sources such as image feeds or Twitter feeds, or user interface activities such as

mouse events. Chapter 3 offers much more detail on flow_graph.

�Summary
TBB encourages us to think about patterns that exist in our algorithmic thinking, and in

our applications, and to map those patterns only onto capabilities that TBB offers. TBB

offers support for patterns that can be effective for scalable applications, while proving

an abstraction dealing with implementation details to keep everything modular and fully

composable. The “super pattern” of nesting is very well supported in TBB, and therefore

TBB offers composability not associated with many parallel programming models.

�For More Information
TBB can be used to implement additional patterns which we did not discuss. We

highlighted what we have found to be key patterns and their support in TBB, but one

chapter can hardly compete with entire books on patterns.

Chapter 8 Mapping Parallel Patterns to TBB

248

Structured Parallel Programming by McCool, Robison, and Reinders (Elsevier, 2012)

offers a hands-on coverage of “patterns that work.” This is a book for programmers

looking to have a more in-depth look at patterns with hands-on examples.

Patterns for Parallel Programming by Mattson, Sanders, and Massingill (Addison-

Wesley, 2004) offers a much deeper, and more academic, look at patterns and their

taxonomy and components.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 8 Mapping Parallel Patterns to TBB

http://creativecommons.org/licenses/by-nc-nd/4.0/

Part 2

251
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_9

CHAPTER 9

The Pillars
of Composability
In this chapter, we discuss composability: what it is, what characteristics make Threading

Building Blocks (TBB) a composable threading library, and how to use a library like TBB

to create scalable applications. C++ is a composable language, and TBB adds parallelism

in a way that maintains composability. Composability with TBB is highly valuable

because it means we are free to expose opportunities for parallelism without worrying

about overloading the system. If we do not expose parallelism, we limit scaling.

Ultimately, when we say that TBB is a composable parallel library, we mean that

developers can mix and match code that uses TBB freely anywhere they want. These uses

of TBB can be serial, one after the other; they can be nested; they can be concurrent;

they can be all within a single monolithic application; they can be spread across disjoint

libraries; or they can be in different processes that execute concurrently.

It might not be obvious that parallel programming models have often had

restrictions that were difficult to manage in complex applications. Imagine if we could

not use “while” statements within an “if” statement, even indirectly in functions we

call. Before TBB, equally difficult restrictions existed for some parallel programming

models, such as OpenMP. Even the newer OpenCL standard lacks full composability.

The most frustrating aspect of non-composable parallel programming models is that

there is such a thing as requesting too much parallelism. This is horrible, and something

TBB avoids. In our experience, naïve users of non-composable models often overuse

parallelism – and their programs crash from explosions in memory usage or they slow

down to a crawl due to unbearable synchronization overheads. Concern about these

issues can lead experienced programmers to expose too little parallelism, resulting in

load imbalances and poor scaling. Using a composable programming model avoids the

need to worry about this difficult balancing act.

252

Composability makes TBB extraordinarily reliable to use in both simple and complex

applications. Composability is a design philosophy that allows us to create programs

that are more scalable because we can expose parallelism without fear. In Chapter 1,

we introduced the idea of the three-layer cake of parallelism that is common in many

applications, reproduced here as Figure 9-1.

We covered the basics of the high-level interfaces shown in Figure 9-1 in the

generic parallel algorithms in Chapter 2, the flow graph in Chapter 3, and Parallel STL

in Chapter 4. Each of these high-level interfaces plays an important role in building up

these layers of parallelism. And because they are all implemented using TBB tasks, and

TBB is composable, we can safely combine them together to make complex, scalable

applications.

Figure 9-1.  The three layers of parallelism commonly found in applications and
how they map to the high-level TBB parallel execution interfaces

Chapter 9 The Pillars of Composability

253

�What Is Composability?
Composability is, unfortunately, not a simple yes-or-no property of a programming

model. Even though OpenMP has known composability issues for nested parallelism,

it would be incorrect to label OpenMP as a non-composable programming model.

If an application invokes OpenMP construct after OpenMP construct in series, this

serial composition works just fine. It would likewise be an overstatement to say that

TBB is a fully composable programming model that works well with all other parallel

programming models in all situations. Composability is more accurately thought of

as a measure of how well two programming models perform when composed in a

specific way.

For example, let’s consider two parallel programming models: model A and

model B. Let’s define TA as the throughput of a kernel when it uses model A to express

outer-level parallelism, and TB as the throughput of the same kernel when it uses model

B (without using model A) to express inner-level parallelism. If the programming models

are composable, we would expect the throughput of the kernel using both outer and

inner parallelism to be TAB >= max(TA, TB), How much greater TAB is than max(TA, TB)

depends both on how efficiently the models compose with each other and on the

physical properties of the targeted platform, such as the number of cores, the size of the

memory, and so on.

Figure 9-2 shows the three general types of composition that we can use to combine

software constructs: nested execution, concurrent execution, and serial execution.

We say that TBB is a composable threading library because when a parallel algorithm

using TBB is composed with other parallel algorithms in one of the three ways shown in

Figure 9-2, the resulting code performs well, that is TTBB+Other >= max(TTBB, TOther).

Chapter 9 The Pillars of Composability

254

Before we discuss the features of TBB that lead to good composability, let’s look at

each composition type, the issues that can arise, and what performance impacts we can

expect.

�Nested Composition
In a nested composition, the machine executes one parallel algorithm inside of another

parallel algorithm. The intention of a nested composition is almost always to add

additional parallelism, and it can even exponentially increase the amount of work

that can be executed in parallel as shown in Figure 9-3. Handling nested parallelism

effectively was a primary goal in the design of TBB.

…

…

… ……

nested concurrent serial

…… … …

Figure 9-2.  The ways in which software constructs can be composed

Chapter 9 The Pillars of Composability

255

In fact the algorithms provided by the TBB library in many cases depend on nested

parallelism in order to create scalable parallelism. For example, in Chapter 2, we

discussed how nested invocations of TBB’s parallel_invoke can be used to create a

scalable parallel version of quicksort. The Threading Building Blocks library is designed

from the ground up to be an effective executor of nested parallelism.

In contrast to TBB, other parallel models may perform catastrophically bad in the

presence of nested parallelism. A concrete example is the OpenMP API. OpenMP is

a widely used programming model for shared-memory parallelism – and it is very

effective for single level parallelism. However, it is a notoriously bad model for nested

parallelism because mandatory parallelism is an integral part of its definition. In

applications that have multiple levels of parallelism, each OpenMP parallel construct

creates an additional team of threads. Each thread allocates stack space and also needs

to be scheduled by the OS’s thread scheduler. If the number of threads is very large,

the application can run out of memory. If the number of threads exceeds the number

of logical cores, the threads must share cores. Once the number of threads exceeds

the number of cores, they tend to offer little benefit due to the oversubscription of the

hardware resources, adding only overhead.

The most practical choice for nested parallelism with OpenMP is typically to turn off

the nested parallelism completely. In fact, the OpenMP API provides an environment

variable, OMP_NESTED, for the purpose of turning on or off nested parallelism. Because

TBB has relaxed sequential semantics and uses tasks to express parallelism instead of

…

…

… … …
…

…

… … …
…

…

… … …
…

Figure 9-3.  Nested parallelism can lead to an exponential growth in the number
of available parallel tasks (or when using a non-composable library, threads)

Chapter 9 The Pillars of Composability

256

threads, it can flexibly adapt parallelism to the available hardware resources. We can

safely leave nested parallelism on with TBB – there’s no need for a mechanism to turn off

parallelism in TBB!

Later in this chapter, we discuss the key features of TBB that make it very effective at

executing nested parallelism, including its thread pool and work-stealing task scheduler.

In Chapter 8, we examine nesting as a very important recurring theme (pattern) in

parallel programming. In Chapter 12, we discuss features that allow us to influence

the behavior of the TBB library when executing nested parallelism in order to create

isolation and improve data locality.

�Concurrent Composition
As shown in Figure 9-4, concurrent composition is when the execution of parallel

algorithms overlap in time. Concurrent composition can be used to intentionally add

additional parallelism, or it can arise by happenstance when two unrelated applications

(or constructs in the same program) execute concurrently on the same system.

Concurrent and parallel execution are not always the same thing! As shown in Figure 9-3,

concurrent execution is when multiple constructs execute during the same time frame,

while parallel execution is when multiple constructs execute simultaneously. This means

that parallel execution is a form of concurrent execution but concurrent execution is not

always parallel execution. Concurrent composition improves performance when it is

effectively turned into parallel execution.

A concurrent composition of the two loops in Figure 9-5 is when a parallel

implementation of loop 1 executes concurrently with a parallel implementation of loop 2,

whether in two different processes or in two different threads in the same process.

timetime

parallel execution concurrent execution

Figure 9-4.  Parallel vs. concurrent execution

Chapter 9 The Pillars of Composability

257

When executing constructs concurrently, an arbitrator (a runtime library like TBB,

the operating system or some combination of systems) is responsible for assigning

system resources to the different constructs. If the two constructs require access to the

same resources at the same time, then access to these resources must be interleaved.

Good performance for a concurrent composition might mean that the wall-clock

execution time is as short as the time to execute the longest running construct, since all

of the other constructs can execute in parallel with it (like in the parallel execution in

Figure 9-4). Or, good performance might mean that the wall-clock execution time is no

longer than the sum of the execution times of all the constructs if the executions need

to be interleaved (like in the concurrent execution in Figure 9-4). But no system is ideal,

and sources of both destructive and constructive interference make it unlikely that we

get performance that exactly matches either of these cases.

First, there is the added cost of the arbitration. For example, if the arbitrator is the OS

thread scheduler, then this would include the overheads of the scheduling algorithm;

the overheads of preemptive multitasking, such as switching thread contexts; as well as

the overheads of the OS’s security and isolation mechanisms. If the arbitrator is a task

scheduler in a user-level library like TBB, this cost is limited to the overheads of scheduling

the tasks on to threads. If we express very fine-grained pieces of work, using many tasks

scheduled on to a small set of threads has much lower scheduling overheads than using

many threads directly, even though the tasks ultimately execute on top of threads.

Secondly, there is the performance impact from the concurrent use of shared system

resources, such as the functional units, memory, and data caches. The overlapped

execution of constructs can, for example, lead to changes in data cache performance –

often an increase in cache misses but, in rare cases of constructive interference, possibly

even a decrease in cache misses.

TBB’s thread pool and its work-stealing task scheduler, discussed later in this

chapter, help with concurrent composition as well, reduce arbitration overheads, and

in many cases lead to task distributions that optimize resource usage. If TBB’s default

behaviors are not satisfactory, the features described in Chapters 11–14 can be used to

mitigate negative impacts of resource sharing as needed.

Figure 9-5.  Two loops that execute concurrently

Chapter 9 The Pillars of Composability

258

�Serial Composition
The final way to compose two constructs is to execute them serially, one after the other

without overlapping them in time. This may seem like a trivial kind of composition

with no implications on performance, but (unfortunately) it is not. When we use serial

composition, we typically expect good performance to mean that there is no interference

between the two constructs.

For example, if we consider the loops in Figure 9-6, the serial composition is to

execute loop 3 followed by loop 4. We might expect that the time to complete each

parallel construct when executed in series is no different than the time to execute that

same construct alone. If the time it takes to execute loop 3 alone after parallelism is

added using a parallel programming model A is t3,A and the time to execute loop 4 alone

using a parallel programming model B is t4,B, then we would expect the total time for

executing the constructs in series is no more than the sum of the times of each construct,

t3,A + t4,B.

However, as with concurrent composition, there are sources of both destructive and

constructive interference that can arise and cause actual execution times to diverge from

this simple expectation.

In serial composition, the application must transition from one parallel construct

to the next. Figure 9-7 shows ideal and nonideal transitions between constructs when

using the same or different parallel programming models. In both ideal cases, there is no

overhead, and we move immediately from one construct to the next. In practice, there

is often some time required to clean up resources after executing a construct in parallel

as well as some time required to prepare resources before the execution of the next

construct.

Figure 9-6.  Two loops that are executed one after the other

Chapter 9 The Pillars of Composability

259

When the same model is used, as shown in Figure 9-7(b), a runtime library may

do work to shut down the parallel runtime only to have to immediately start it back up

again. In Figure 9-7(d), we see that if two different models are used for the constructs,

they may be unaware of each other, and so the shut-down of the first construct and

the start-up, and even execution, of the next construct can overlap, perhaps degrading

performance. Both of these cases can be optimized for – and TBB is designed with these

transitions in mind.

And as with any composition, performance can be impacted by the sharing

resources between the two constructs. Unlike with the nested or concurrent

compositions, the constructs do not share resources simultaneously or in an interleaved

fashion, but still, the ending state of the resources after one construct finishes can affect

the performance of the next construct. For example, in Figure 9-6, we can see that loop

3 writes to array b and then loop 4 reads from array b. Assigning the same iterations

in loop 3 and 4 to the same cores might increase data locality resulting in fewer cache

misses. In contrast, an assignment of the same iterations to different cores can result in

unnecessary cache misses.

�The Features That Make TBB a Composable Library
The Threading Building Blocks (TBB) library is a composable library by design. When

it was first introduced over 10 years ago, there was a recognition that as a parallel

programming library targeted at all developers – not just developers of flat, monolithic

applications – it had to address the challenges of composability head-on. The

applications that TBB is used in are often modular and make use of third-party libraries

time

time

time

time

(a) ideal transition, same model (b) transition with shutdown and startup, same model

(c) ideal transition, different models (d) transition with shutdown and startup, different models

Figure 9-7.  Transitioning between the executions of different constructs

Chapter 9 The Pillars of Composability

260

that may, themselves, contain parallelism. These other parallel algorithms may be

intentionally, or unintentionally, composed with algorithms that use the TBB library.

In addition, applications are typically executed in multiprogrammed environments,

such as on shared servers or on personal laptops, where multiple processes execute

concurrently. To be an effective parallel programming library for all developers, TBB has

to get composability right. And it does!

While it is not necessary to have a detailed understanding of the design of TBB in

order to create scalable parallel applications using its features, we cover some details

in this section for interested readers. If you are happy enough to trust that TBB does the

right thing and are not too interested in how, then you can safely skip the rest of this

section. But if not, read on to learn more about why TBB is so effective at composability.

�The TBB Thread Pool (the Market) and Task Arenas
The two features of the Threading Building Blocks library that are primarily responsible

for its composability are its global thread pool (the market) and task arenas. Figure 9-8

shows how the global thread pool and a single default task arena interact in an

application that has a single main thread; for simplicity, we will assume that there

are P=4 logical cores on the target system. Figure 9-8(a) shows that the application

has 1 application thread (the main thread) and a global thread pool of workers that is

initialized with P-1 threads. The workers in the global thread pool execute dispatchers

(represented by the solid boxes). Initially, each thread in the global thread pool sleeps

while waiting for an opportunity to participate in parallel work. Figure 9-8(a) also shows

that a single default task arena is created. Each application thread that uses TBB is given

its own task arena to isolate its work from the work of the other application threads. In

Figure 9-8(a), there is only a single task arena, since there is only a single application

thread. When the application thread executes a TBB parallel algorithm, it executes a

dispatcher tied to that task arena until the algorithm is complete. While waiting for the

algorithm to complete, the master thread can participate in executing tasks that are

spawned into the arena. The main thread is shown filling the slot reserved for a master

thread.

Chapter 9 The Pillars of Composability

261

When a master thread joins an arena and first spawns a task, the worker threads

sleeping in the global thread pool wake up and migrate to the task arena as shown in

Figure 9-8(b). When a thread joins a task arena, by filling one of its slots, its dispatcher

can participate in executing tasks that are spawned by other threads in that arena, as

well as spawn tasks that can be seen and stolen by the other threads’ dispatchers that are

connected to the arena. In Figure 9-8, there are just enough threads to fill the slots in the

task arena, since the global thread pool creates P-1 threads and the default task arena

has enough slots for P-1 threads. Typically, this is exactly the number of threads we want,

since the main thread plus P-1 worker threads will fully occupy the cores in the machine

without oversubscribing them. Once the task arena is fully occupied, the spawning of

tasks does not wake up additional threads waiting in the global thread pool.

Figure 9-8(c) shows that when a worker thread becomes idle and can find no more

work to do in its current task arena, it returns to the global thread pool. At that point,

application threads
(always master threads)

global thread pool / market
(worker threads*)

Task Arena

M

A master thread spawns a task and waits in the arena

By default, P-1 worker threads, where P
is the number of hardware threads

An arena slot
reserved for a
master thread

application threads
(always master threads)

global thread pool / market
(worker threads*)

Task Arena

M

There are available tasks and slots, so workers join the arena

Task Arena

M

global thread pool / market
(worker threads*)

application threads
(always master threads)

If a worker becomes idle and can find no more work in
the arena, it returns to the global thread pool

Task Arena

M

global thread pool / market
(worker threads*)

application threads
(always master threads)

If new tasks become available and a slot is available, the
worker will rejoin the task arena.

(a) (b)

(c) (d)

Figure 9-8.  In many applications, there is a single main thread, and the TBB
library, by default, creates P-1 worker threads to participate in the execution of
parallel algorithms

Chapter 9 The Pillars of Composability

262

the worker could join a different task arena that needs workers if one is available, but

in Figure 9-8, there is only a single task arena, so the thread will go back to sleep. If later

more tasks become available, the threads that have returned to the global thread pool

will wake back up and rejoin the task arena to assist with the additional work as shown in

Figure 9-8(d).

The scenario outlined in Figure 9-8 represents the very common case of an

application that has a single main thread and no additional application threads, and

where no advanced features of TBB are used to change any defaults. In Chapters 11 and 12,

we will discuss advanced TBB features that will allow us to create more complicated

examples like the one shown in Figure 9-9. In this more complicated scenario, there

are many application threads and several task arenas. When there are more task arena

slots than worker threads, as is the case in Figure 9-8, the worker threads are divided in

proportion to the need of each task arena. So, for example, a task arena with twice as

many open slots as another task arena will receive roughly twice as many worker threads.

Figure 9-9 highlights a few other interesting points about task arenas. By default,

there is one slot reserved for a master thread, like in Figure 9-8. However as shown by the

right two task arenas in Figure 9-9, a task arena can be created (using advanced features

that we discuss in later chapters) that reserves multiple slots for master threads or no

slots at all for master threads. A master thread can fill any slot, while threads that migrate

to an arena from the global thread pool cannot fill slots reserved for masters.

global thread pool / market

Task Arena

application threads

Task Arena

MM

Task Arena

M M

Task Arena

Masters can fill
any of the slots

Threads that join as
workers cannot fill a

slot reserved for a master

Task arenas may not
have any masters

Figure 9-9.  A more complicated application with many native threads and task arenas

Chapter 9 The Pillars of Composability

263

Regardless of how complicated our application though, there is always a single

global thread pool. When the TBB library is initialized, it allocates threads to the global

thread pool. In Chapter 11, we discuss features that allow us to change the number of

threads that are allocated to the global thread pool at initialization, or even dynamically,

if we need to. But this limited set of worker threads is one reason that TBB is composable,

since it prevents unintended oversubscription of the platform’s cores.

Each application thread also gets its own implicit task arena. A thread cannot steal a

task from a thread that is in another task arena, so this nicely isolates the work done by

different application threads by default. In Chapter 12, we will discuss how application

threads can choose to join other arenas if they want to – but by default they have their own.

The design of TBB makes applications and algorithms that use TBB tasks compose

well when executed nested, concurrently, or serially. When nested, TBB tasks generated

at all levels are executed within the same arena using only the limited set of worker

threads assigned to the arena by the TBB library, preventing an exponential explosion in

the number of threads. When run concurrently by different master threads, the worker

threads are split between the arenas. And when executed serially, the worker threads are

reused across the constructs.

Although the TBB library is not directly aware of the choices being made by other

parallel threading models, the limited number threads it allocates in its global thread

pool also limits its burden on those other models. We will discuss this in more detail later

in this chapter.

�The TBB Task Dispatcher: Work Stealing and More
The Threading Building Blocks scheduling strategy is often described as work stealing.

And this is mostly true. Work stealing is a strategy that is designed to work well in

dynamic environments and applications, where tasks are spawned dynamically and

execution occurs on a multiprogrammed system. When work is distributed by work

stealing, worker threads actively look for new work when they become idle, instead

of having work passively assigned to them. This pay-as-you-go approach to work

distribution is efficient because it does not force threads to stop doing useful work just

so they can distribute part of their work to other idle threads. Work stealing moves

these overheads on to the idle threads – which have nothing better to do anyway! Work-

stealing schedulers stand in contrast to work-sharing schedulers, which assign tasks to

worker threads up front when tasks are first spawned. In a dynamic environment, where

Chapter 9 The Pillars of Composability

264

tasks are spawned dynamically and some hardware threads may be more loaded than

others, work-stealing schedulers are more reactive, resulting in better load balancing and

higher performance.

In a TBB application, a thread participates in executing TBB tasks by executing a

task dispatcher that is attached to a specific task arena. Figure 9-10 shows some of the

important data structures that are maintained in each task arena and each per-thread

task dispatcher.

For the moment, let us ignore the shared queue in the task arena and the affinity

mailbox in the task dispatcher and focus only on the local deque1 in the task dispatcher.

It is the local deque that is used to implement the work-stealing scheduling strategy in

TBB. The other data structures are used to implement extensions to work stealing, and

we will come back to those later.

In Chapter 2, we discussed the different kinds of loops that are implemented by the

generic parallel algorithms included in the TBB library. Many of them depend on the

concept of a Range, a recursively divisible set of values that represent the iteration space

of the loop. These algorithms recursively divide a loop’s Range, using split tasks to divide

the Range, until they reach a good size to pair with the loop body to execute as a body

task. Figure 9-11 shows an example distribution of tasks that implement a loop pattern.

The top-level task t0 represents the splitting of the complete Range, which is recursively

split down to the leaves where the loop body is applied to each given subrange. With

1�Deque means double ended queue, a data structure, not to be confused with dequeue, which is
the action of removing items from a queue.

Task Arena

local deque
head

tail

affinity mailbox
head

shared queue

head

Task Dispatcher

Figure 9-10.  The queues in a task arena and in the per-thread task dispatchers

Chapter 9 The Pillars of Composability

265

the distribution shown in Figure 9-11, each thread executes body tasks that execute

across a contiguous set of iterations. Since nearby iterations often access nearby data,

this distribution tends to optimize for locality. And because threads execute tasks within

isolated task trees, once a thread gets an initial subrange to work on, it can execute on

that tree without interacting much with the other threads.

The TBB loop algorithms are examples of cache-oblivious algorithms. Perhaps,

ironically, cache-oblivious algorithms are designed to highly optimize the use of CPU

data caches – they just do this without knowing the details about cache or cache line

sizes. As with the TBB loop algorithms, these algorithms are typically implemented

using a divide-and-conquer approach that recursively divides data sets into smaller and

smaller pieces that eventually fit into the data caches regardless of their sizes. We cover

cache-oblivious algorithms in more detail in Chapter 16.

The TBB library task dispatchers use their local deques to implement a scheduling

strategy that is optimized to work with cache-oblivious algorithms and create

distributions like the one in Figure 9-11. This strategy is sometimes called a depth-first

work, breadth-first steal policy. Whenever a thread spawns a new task – that is, makes

it available to its task arena for execution – that task is placed at the head of its task

dispatcher’s local deque. Later, when it finishes the task it is currently working on and

needs a new task to execute, it attempts to take work from the head of its local deque,

Thread 1

t0

t1 t2

t3 t4

t7 t8

t5 t6

t11 t12

Thread 2

t9 t10 t13 t14

Thread 3 Thread 4

steal

steal steal

Figure 9-11.  A distribution of tasks that implements a loop pattern

Chapter 9 The Pillars of Composability

266

taking the task it most recently spawned as shown in Figure 9-12. If, however, there is no

task available in a task dispatcher’s local deque, it looks for nonlocal work by randomly

selecting another worker thread in its task arena. We call the selected thread a victim

since the dispatcher is planning to steal a task from it. If the victim’s local deque is not

empty, the dispatcher takes a task from the tail of the victim thread’s local deque, as

shown in Figure 9-12, taking the task that was least recently spawned by that thread.

Figure 9-13 shows a snapshot of how tasks may be distributed by the TBB scheduling

policy when executed using only two threads. The tasks shown in Figure 9-13 are a

simplified approximation of a TBB loop algorithm. The TBB algorithm implementations

are highly optimized and so may divide some tasks recursively without spawning tasks or

use techniques like scheduler bypass (as described in Chapter 10). The example shown

in Figure 9-13 assumes that each split and body task is spawned into the task arena –

this is not really the case for the optimized TBB algorithms; however, this assumption is

useful for illustrative purposes here.

pop from head
(newest task)

steal from tail
(oldest task)

Figure 9-12.  The policy used by the task dispatcher to take local tasks from the
head of the local deque but steal tasks from the tail of a victim thread’s deque

Chapter 9 The Pillars of Composability

267

In Figure 9-13, Thread 1 starts with the root task and initially splits the Range into

two large pieces. It then goes depth-first down one side of the task tree, splitting tasks

until it reaches the leaf where it applies the body to a final subrange. Thread 2, which

is initially idle, steals from the tail of Thread 1’s local deque, providing itself with the

second large piece that Thread 1 created from the original Range. Figure 9-13(a) is a

snapshot in time, for example tasks t4 and t6 have not yet been taken by any thread.

If two more worker threads are available, we can easily imagine that we get the

distribution shown in Figure 9-11. At the end of the timeline in Figure 9-13(b), Thread

1 and 2 still have tasks in their local deques. When they pop the next task, they will grab

the leaves that are contiguous with the tasks they just completed.

Figure 9-13.  A snapshot of how tasks may be distributed across two threads
and the actions the two task dispatchers took to acquire the tasks. Note: the
actual implementations of TBB loop patterns use scheduler bypass and other
optimizations that remove some spawns. Even so, the stealing and execution order
will be similar to this figure.

(a) tasks as distributed by work

(b) the Task Dispatcher actions that acquire the tasks

stealing across two threads

Chapter 9 The Pillars of Composability

268

We shouldn’t forget when looking at Figures 9-11 and 9-13 that the distribution

shown is only one possibility. If the work per iteration is uniform and none of the cores

are oversubscribed, we will likely get the equal distributions shown. Work stealing,

however, means that if one of the threads is executing on an overloaded core, it will steal

less often and subsequently acquire less work. The other threads will then pick up the

slack. A programming model that only provides a static, equal division of iterations to

cores would be unable to adapt to such a situation.

As we noted earlier, the TBB task dispatchers however are not just work-stealing

schedulers. Figure 9-14 provides a simplified pseudo-code representation of the entire

task dispatch loop. We can see lines commented as “execute the task,” “take a task

spawned by this thread,” and “steal a task.” These points implement the work-stealing

strategy that we just outlined here, but we can see that there are other actions interleaved

in the task dispatch loop as well.

The line labeled “scheduler bypass” implements an optimization used to avoid

task scheduling overheads. If a task knows exactly which task the calling thread should

execute next, it can directly return it, avoiding some of the overheads of task scheduling.

As users of TBB, this is likely something we will not need to use directly, but you can

learn more about in Chapter 10. The highly optimized TBB algorithms and flow graph do

not use straightforward implementations like that shown in Figure 9-13 but instead rely

on optimizations, like scheduler bypass, to provide best performance.

The line labeled “take a task with affinity for this thread” looks into the task

dispatcher’s affinity mailbox to find a task before it attempts to steal work from a random

victim. This feature is used to implement task-to-thread affinity, which we describe in

detail in Chapter 13.

And the line labeled “take a task from the arena’s shared queue” in Figure 9-14 is

used to support enqueued tasks – tasks that are submitted to the task arena outside of

the usual spawning mechanism. These enqueued tasks are used for work that needs to

be scheduled in a roughly first-in-first out order or for fire-and-forget tasks that need to

be eventually executed but are not part of a structured algorithm. Task enqueuing will be

covered in more detail in Chapter 10.

Chapter 9 The Pillars of Composability

269

The TBB dispatcher shown in Figure 9-14 is a user-level, nonpreemptive task

scheduler. An OS thread scheduler is much more complex, since it will need to deal with

not only a scheduling algorithm but also thread preemption, thread migration, isolation,

and security.

Figure 9-14.  Pseudo-code for an approximation of the TBB task dispatch loop

Chapter 9 The Pillars of Composability

270

�Putting It All Together
The previous sections describe the design that allows TBB algorithms and tasks to

execute efficiently when composed in various ways. Earlier, we also claimed that TBB

performs well when mixed with other parallel models too. With our newly acquired

knowledge, let’s revisit our composition types to convince ourselves that TBB is in fact a

composable model because of its design.

In this discussion, we will compare against a hypothetical non-composable thread

library, the Non-Composable Runtime (NCR). Our fictional NCR includes parallel

constructs that require mandatory parallelism. Each NCR construct will require a team

of P threads, which need to be exclusively used for the construct until it is finished – they

cannot be shared by other concurrently executing or nested NCR constructs. NCR will

also create its threads at the first use of a NCR construct but will not put its threads to

sleep after its constructs end – it will keep them actively spinning, using up CPU cycles,

so that they can respond as quickly as possible if another NCR construct is encountered.

Behaviors like these are not uncommon in other parallel programming models. OpenMP

parallel regions do have mandatory parallelism, which can lead to big trouble when

the environment variable OMP_NESTED is set to “true.” The Intel OpenMP runtime

library also provides the option to keep the worker threads actively spinning between

regions by setting the environment variable OMP_WAIT_POLICY to “active.” To be fair, we

should make it clear that the Intel OpenMP runtime defaults are OMP_NESTED=false and

OMP_WAIT_POLICY=passive, so these non-composable behaviors are not the default. But

as a point of comparison, we use NCR as a strawman to represent a very badly behaved,

non-composable model.

Now, let’s look out how well TBB composes with itself and with NCR. As a proxy for

performance, we will look at oversubscription since the more oversubscribed a system

is, the more scheduling and destructive sharing overheads it will likely incur. Figure 9-15

shows how our two models nest with themselves. When a TBB algorithm is nested inside

of a TBB algorithm, all of the generated tasks will execute in the same arena and share

the P threads. However, NCR shows an explosion in threads since each nested construct

will need to assemble its own team of P threads, ultimately needing P2 threads for even a

two-level deep nesting.

Chapter 9 The Pillars of Composability

271

Figure 9-16 shows what happens when we combine the models. It doesn’t matter how

many threads execute TBB algorithms concurrently – the number of TBB worker threads

will remain capped at P-1! When TBB is nested inside of NCR, we therefore use at most

only 2P-1 threads: P threads from NCR, which will act like master threads in the nested

TBB algorithms, and the P-1 TBB worker threads. If a NCR construct is nested inside of

TBB however, each TBB task that executes a NCR construct will need to assemble a team

of P threads. One of the threads might be the thread executing the outer TBB task, but

the other P-1 threads will need to be created by or obtained from the NCR library. We

therefore wind up with the P threads from TBB each executing in parallel and each using

an additional P-1 threads, for a total of P2 threads. We can see from Figures 9-15 and 9-16

that when TBB is nested inside of even a badly performed model, it behaves well – unlike

a non-composable model like NCR.

TBB
tasks tasks tasks tasks NCR

TBB
tasks

NCR

Figure 9-15.  The number of threads used for TBB nested in TBB and for a non-
composable runtime (NCR) nested in NCR

NCR

TBB
tasks tasks tasks tasks

TBB
tasks

NCR

Task Arena

M

Task Arena

M

Task Arena

M

Task Arena

M

Task Arena

M

(a) TBB nested in NCR (b) NCR nested in TBB

Figure 9-16.  When TBB and a non-composable runtime (NCR) are nested inside
of each other

Chapter 9 The Pillars of Composability

272

When we look at concurrent execution, we need to consider both single-process

concurrent, when parallel algorithms are executed by different threads in the same

process concurrently, and multiprocess concurrency. The TBB library has single

global thread pool per process – but does not share the thread pool across processes.

Figure 9-17 shows the number of threads used for different combinations of concurrent

executions for the single-process case. When TBB executes concurrently with itself in

two threads, each thread gets its own implicit task arena, but these arenas share the

P-1 worker threads; the total number of threads therefore is P+1. NCR uses a team of P

threads per construct, so it uses 2P threads. And likewise, since TBB and NCR do not

share thread pools, they will use 2P threads when executing concurrently in a single

process.

Figure 9-18 shows the number of threads used for different combinations of

concurrent executions for the multiprocess case. Since TBB creates a global thread pool

per-process, it no longer has an advantage in this case over NCR. In all three cases, 2P

threads are used.

NCR

process

NCR

TBB
tasks

process

TBB
tasks

TBB
tasks

process

NCR

Task Arena

M

Task Arena

M

Task Arena

M

(a) TBB executing concurrently with TBB in a single process

(b) NCR executing concurrently with NCR in a single process

(c) NCR executing concurrently with TBB in a single process

Figure 9-17.  The number of threads used for concurrent executions of TBB
algorithms and non-composable runtime (NCR) constructs in a single process

Chapter 9 The Pillars of Composability

273

Finally, let’s consider the serial composition case, when one algorithm or construct

is executed after another. Both TBB and NCR will compose well serially with other uses

of their own libraries. If the delay is short, the TBB threads will still be in the task arena,

since they actively search for work for a very short time once they run out of work. If the

delay is long between TBB algorithms, the TBB worker threads will return to the global

thread pool and migrate back to the task arena when new work becomes available.

The overhead for this migration is very small, but non-negligible. Even so, typically the

negative impact will be very low. Our hypothetical non-composable runtime (NCR)

never sleeps, so it will always be ready to execute the next construct – no matter how

long the delay. From a composability perspective, the more interesting cases are when

we combine NCR and TBB together as shown in Figure 9-17. TBB quickly puts its threads

to sleep after an algorithm ends, so it will not negatively impact an NCR construct that

follows it. In contrast, the exceptionally responsive NCR library will keep it threads

active, so a TBB algorithm that follows an NCR construct will be forced to fight these

spinning threads for processor resources. TBB is clearly the better citizen because its

design accounts for serial composability with other parallel models.

NCR

process

NCR

process

(a) TBB executing concurrently with TBB in two different processes

(b) NCR executing concurrently with NCR in two different processes

(c) NCR executing concurrently with TBB in two different processes

TBB
tasks

process

TBB
tasks

process

TBB
tasks

process

NCR

process

Task Arena

M

Task Arena

M

Task Arena

M

Figure 9-18.  The number of threads used for concurrent executions of TBB
constructs and NCR constructs in two different processes

Chapter 9 The Pillars of Composability

274

Figures 9-15 through 9-19 demonstrate that TBB composes well with itself and its

negative impact on other parallel models is limited due to its composable design. TBB

algorithms efficiently compose with other TBB algorithms – but also are good citizens in

general.

�Looking Forward
In later chapters, we cover a number of topics that expand on themes raised in this

chapter.

�Controlling the Number of Threads
In Chapter 11, we describe how to use the task_scheduler_init, task_arena, and

global_control classes to change the number of threads in the global thread pool and

control the number of slots allocated to task arenas. Often, the defaults used by TBB are

the right choice, but we can change these defaults if needed.

�Work Isolation
In this chapter, we saw that each application thread gets its own implicit task arena by

default to isolate its work from the work of other application threads. In Chapter 12, we

discuss the function this_task_arena::isolate, which can be used in the uncommon

global thread pool

NCR Construct

global thread pool

Task Arena

M
NCR (ac�ve)

(a) TBB before NCR (b) NCR before TBB

TBB Algorithm

TBB (sleeping)TBB (ac�ve)

Task Arena

M

NCR (spinning)

NCR construct 1 TBB Algorithm

NCR (ac�ve)

Figure 9-19.  The number of threads used for consecutive executions of TBB
constructs and constructs that use mandatory parallelism

Chapter 9 The Pillars of Composability

275

situations when work isolation is necessary for correctness. We will also discuss class

task_arena, which is used to create explicit task arenas that can be used to isolate work

for performance reasons.

�Task-to-Thread and Thread-to-Core Affinity
In Figure 9-10, we saw that each task dispatcher not only has a local deque but also has

an affinity mailbox. We also saw in Figure 9-14 that when a thread has no work left in its

local deque, it checks this affinity mailbox before it attempts random work stealing. In

Chapter 13, we discuss ways to create task-to-thread affinity and thread-to-core-affinity

by using the low-level features exposed by TBB tasks. In Chapter 16, we discuss features

like Ranges and Partitioners that are used by the high-level TBB algorithms to exploit

data locality.

�Task Priorities
In Chapter 14, we discuss task priorities. By default, the TBB task dispatchers view all

tasks as equally important and simply try to execute tasks as quickly as possible, favoring

no specific tasks over others. However, the TBB library does allow developers to assign

low, medium, and high priorities to tasks. In Chapter 14, we will discuss how to use these

priorities and their implications on scheduling.

�Summary
In this chapter, we stressed the importance of composability and highlighted that

we get it automatically if we use TBB as our parallel programming model. We started

this chapter by discussing the different ways in which parallel constructs might be

composed with each other and the issues that stem from each type of composition. We

then described the design of the TBB library and how this design leads to composable

parallelism. We concluded by revisiting the different composition types and compared

TBB to a hypothetical non-composable runtime (NCR). We saw that TBB composes well

with itself but also is a good citizen when combined with other parallel models.

Chapter 9 The Pillars of Composability

276

�For More Information
Cilk is a parallel model and platform that was one of key inspirations for the initial TBB

scheduler. It provides a space efficient implementation of a work-stealing scheduler as

described in

Robert D. Blumofe and Charles E. Leiserson. 1993. Space-efficient

scheduling of multithreaded computations. In Proceedings of the

twenty-fifth annual ACM symposium on Theory of computing

(STOC ’93). ACM, New York, NY, USA, 362–371.

TBB provides generic algorithms implemented using tasks that execute on top of

threads. By using TBB, developers can use these high-level algorithms instead of using

low-level threads directly. For a general discussion of why using threads directly as a

programming model should be avoided, see

Edward A. Lee, “The Problem with Threads.” Computer, 39,

5 (May 2006), 33–42.

In some ways, we’ve used the OpenMP API as a strawman non-composable model in

this chapter. OpenMP is in fact a very effective programming model that has a wide user

base and is especially effective in HPC applications. You can learn more about OpenMP at

www.openmp.org

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 9 The Pillars of Composability

http://www.openmp.org
http://creativecommons.org/licenses/by-nc-nd/4.0/

277
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_10

CHAPTER 10

Using Tasks to Create
Your Own Algorithms
One of the things that we like the most from TBB is its “multiresolution” nature. In the

context of parallel programming models, multiresolution means that we can choose

among different levels of abstraction to code our algorithm. In TBB, we have high-level

templates, such as parallel_for or pipeline (see Chapter 2), that are ready to use when

our algorithms fit into these particular patterns. But what if our algorithm is not that

simple? Or what if the available high-level abstraction is not squeezing out the last drop

of performance of our parallel hardware? Should we just give up and remain prisoners

of the high-level features of the programing model? Of course not! There should be

a capability to get closer to the hardware, a way to build our own templates from the

ground up, and a way to thoroughly optimize our implementation using low-level and

more tunable characteristics of the programming model. And in TBB, this capability

exists. In this chapter, we will focus on one of the most powerful low-level features of

TBB, the task programming interface. As we have said throughout the book, tasks are

at the heart of TBB, and tasks are the building blocks used to construct the high-level

templates such as parallel_for and pipeline. But there is nothing that prevents us

from venturing into these deeper waters and starting to code our algorithms directly with

tasks, from building our own high-level templates for future use on top of tasks, or as we

describe in the next chapters, from fully optimizing our implementation by fine tuning

the way in which tasks are executed. In essence, this is what you will learn by reading this

chapter and the ones that follow. Enjoy the deep dive!

278

�A Running Example: The Sequence
Task-based TBB implementations are particularly appropriate for algorithms in which

a problem can be recursively divided into smaller subproblems following a tree-like

decomposition. There are plenty of problems like these. The divide-and-conquer

and branch-and-bound parallel patterns (Chapter 8) are examples of classes of such

algorithms. If the problem is big enough, it usually scales well on a parallel architecture

because it is easy to break it into enough tasks to fully utilize hardware and avoid load

unbalance.

For the purpose of this chapter, we have chosen one of the simplest problems

that can be implemented following a tree-like approach. The problem is known as

the Fibonacci sequence, and it consists in computing the integer sequence that starts

with zero and one, and afterward, every number in the sequence is the sum of the two

preceding ones:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Mathematically, the nth number in the sequence, Fn, can be computed recursively as

Fn = Fn-1 + Fn-2

with initial values F0=0 and F1=1. There are several algorithms that compute Fn, but in the

interest of illustrating how TBB tasks work, we chose the one presented in Figure 10-1,

although it is not the most efficient one.

Figure 10-1.  Recursive implementation of the computation of Fn

Chapter 10 Using Tasks to Create Your Own Algorithms

279

Fibonacci number computation is a classic computer science example for showing
recursion, but it is also a classic example in which a simple algorithm is inefficient.
A more efficient method would be to compute

Fn

n

=
é

ë
ê

ù

û
ú

-
1 1

1 0

1

and take the upper-left element. The exponentiation over the matrix can be done
quickly via repeated squaring. But, we’ll go ahead in this section and use the
classic recursion example for teaching purposes.

The code presented in Figure 10-1 clearly resembles the recursive equation to

compute Fn = Fn-1 + Fn-2. While it may be easy to understand, we clarify it further in

Figure 10-2 where we depict the recursive calling tree when calling fib(4).

The if (n<2) line at the beginning of the serial code of Figure 10-1 caters for what is

called the base case, that is always needed in recursive codes to avoid infinite recursion,

which is nice because we don’t want to nuke the stack, do we?

We will parallelize this first sequential implementation using different task-based

approaches, from simpler to more elaborated and optimized versions. The lessons we

learn with these examples can be mimicked in other tree-like or recursive algorithms,

and the optimizations we show can also be put to work to make the most out of our

parallel architecture in similar situations.

Figure 10-2.  Recursive calling tree for fib(4)

Chapter 10 Using Tasks to Create Your Own Algorithms

280

�The High-Level Approach: parallel_invoke
In Chapter 2, we already presented a high-level class that suits our needs when it comes

to spawning parallel tasks: parallel_invoke. Relying on this class, we can come up with

a first parallel implementation of the Fibonacci algorithm that we present in Figure 10-3.

The parallel_invoke member function recursively spawns parallel_fib(n-1) and

parallel_fib(n-2) returning the result in stack variables x and y that are captured by

reference in the two lambdas. When these two tasks finish, the caller task simply returns

the sum of x+y. The recursive nature of the implementation keeps invoking parallel tasks

until the base case is reached when n<2. This means that TBB will create a task even for

computing parallel_fib(1) and parallel_fib(0), that just return 1 and 0 respectively.

As we have said throughout the book, we want to expose enough parallelism to the

architecture creating a sufficiently large number of tasks, but at the same time tasks

must also have a minimum degree of granularity (>1 microsecond, as we discuss in

Chapters 16 and 17) so that task creation overhead pays off. This trade-off is usually

implemented in this kind of algorithm using a “cutoff” parameter as we show in

Figure 10-4.

Figure 10-3.  Parallel implementation of Fibonacci using parallel_invoke

Chapter 10 Using Tasks to Create Your Own Algorithms

281

The idea is to modify the base case so that we stop creating more tasks when n is not

large enough (n<cutoff), and in this case we resort to the serial execution. Computing

a suitable cutoff value requires some experimentation so it is advisable to write our

code so that cutoff can be an input parameter to ease the search of a suitable one.

For example, in our test bed, fib(30) only takes around 1 millisecond so this is a

fine-grained-enough task to discourage further splitting. Thus, it makes sense to set

cutoff=30, which results in calling the serial version of the code for tasks that receive

n=29 and n=28, as we can see in Figure 10-5.

Figure 10-4.  Cutoff version of the parallel_invoke implementation

ParF(32)
ParF(31) ParF(30)

ParF(30) ParF(29)

ParF(29) ParF(28)

fib(29)fib(29) fib(28)

ParF(29) ParF(28)

fib(29) fib(28)
cutoff

Figure 10-5.  Calling tree after invoking parallel_fib(32) – ParF(32) in the
figure for the sake of saving space – fib() is the base case serially implemented

If after looking at Figure 10-5 you think that it is silly to compute fib(29) in

three different tasks and fib(28) in two additional ones, you are right, it is silly! As a

disclaimer, we already said that this is not the optimal implementation but a commonly

used recursive example that serves our educational interests. A clear optimization would

Chapter 10 Using Tasks to Create Your Own Algorithms

282

be to implement recursion in a manner such that already computed Fibonacci numbers

are not recomputed again, thus achieving the optimal O(log n) complexity, but this is

not our goal today.

You may also be thinking, after looking at Figure 10-4, why in the world we are once

again revisiting the parallel_invoke that was already covered way back in Chapter 2.

Have we really reached the second, more advanced, section of this book? Yes! Well…

where are the advanced features, the low-level knobs that we may need and the

optimization opportunities that we love??? Okay, let’s start diving into deeper waters!!!

�The Highest Among the Lower: task_group
If we can get by without some of the task knobs and optimization features that will be

presented later on, the task_group class can serve us well. This is a higher-level and

easier to use class, a medium-level abstraction, if you will. A possible re-implementation

of the Fibonacci code that relies on task_group is presented in Figure 10-6.

Figure 10-6.  Parallel Fibonacci based on task_group

Apparently, this is just a more verbose way of implementing the code of Figure 10-4

where we used parallel_invoke. However, we would like to underscore that, differently

from the parallel_invoke alternative, now we have a handle to a group of tasks, g, and

as we will discuss later, this enables some additional possibilities as task cancellation.

Also, by explicitly calling the member functions g.run() and g.wait(), we spawn

the new tasks and wait for them to finish their computation at two different program

Chapter 10 Using Tasks to Create Your Own Algorithms

283

points, whereas the parallel_invoke function has an implicit task barrier after the task

spawning. To begin with, this separation between run() and wait() would allow for

the caller thread to do some computation between spawning some tasks and waiting

for them in the blocking call wait(). In addition, this class also offers other interesting

member functions that can come handy in some situations:

•	 void run_and_wait(const Func& f), which is equivalent to

{run(f); wait();}, but guarantees that f runs on the current thread.

We will see later (in section “The Low-Level Task Interface: Part Two –

Task Continuation”) that there is a convenient trick to bypass the TBB

scheduler. If we first call run(f), we basically spawn a task that gets

enqueued in the worker thread local queue. When calling wait(), we

call the scheduler that dequeues the just enqueued task if nobody

else has stolen it in the meantime. The purpose of run_and_wait

is twofold: first, we avoid the overhead of enqueueing-scheduling-

dequeuing steps, and second, we avoid the potential stealing that can

happen while the task is in the queue.

•	 void cancel(), which cancels all tasks in this task_group. Maybe

the computation was triggered from a user interface, UI, that also

includes a “cancel” button. If the user now presses this button, there

is a way to stop the computation. In Chapter 15, we further elaborate

on cancellation and exception handling.

•	 task_group_status wait(), which returns the final status of task

group. Return values can be: complete (all tasks in the group have

finished); canceled (task_group received a cancellation request);

not_completed (not all tasks in the group have completed).

Note that, in our parallel implementation of Figure 10-6, each call to parallel_fib

creates a new task_group so it is possible to cancel one branch without affecting

the others, as we will see in Chapter 15. Having a single task_group also poses an

additional downside: creating too many tasks in that single group results in task creation

serialization and the ensuing loss of scalability. Consider for example we are tempted to

write a code like this:

Chapter 10 Using Tasks to Create Your Own Algorithms

284

As we see, n tasks will be spawn one after the other and by the same thread. The

other worker threads will be forced to steal every task created by the one executing

g.run(). This will certainly kill the performance, especially if foo() is a fine-grained task

and the number of worker threads, nth, is high. The recommended alternative is the one

used in Figure 10-6 where a recursive deployment of tasks is exercised. In that approach,

the worker threads steal at the beginning of the computation, and ideally, in log2(nth)

steps all nth worker threads are working in their own tasks that in turn enqueue more

tasks in their local queues. For example, for nth=4, the first thread, A, spawns two tasks

and starts working in one while thread B steals the other. Now, threads A and B spawn

two tasks each (four in total) and start working in two of them, but the other two are

stolen by threads C and D. From now on, all four threads are working and enqueueing

more tasks in their local queues and stealing again only when they run out of local tasks.

BEWARE! ENTER AT YOUR OWN RISK: THE LOW-LEVEL TASKING INTERFACE

The task class has lots of features, which means there are lots of ways to make mistakes too.

If the required parallel pattern is a common one, there is certainly an already available high-

level template, implemented and optimized by clever developers on top of the tasking interface.

This high-level algorithm is the recommended way to go in most cases. The purpose of the rest

of the chapter is therefore serving two goals. In the first place, it provides you with the means

to develop your own task-based parallel algorithm or high-level template if the ones already

provided by TBB do not suit your needs. The second one is to uncover the low-level details of the

TBB machinery so that you can understand some optimizations and tricks that will be mentioned

in future chapters. For example, later chapters will refer back to this chapter to explain the way

the parallel_pipeline and Flow Graph can better exploit locality thanks to a scheduling-

bypassing technique. Here, we explain how this technique works and why it is beneficial.

�The Low-Level Task Interface:
Part One – Task Blocking
The TBB task class has plenty of features and knobs to fine-tune the behavior of

our task-based implementation. Slowly but surely, we will introduce the different

member functions that are available, progressively increasing the complexity of our

Fibonacci implementation. As a starter, Figures 10-7 and 10-8 show the code required

Chapter 10 Using Tasks to Create Your Own Algorithms

285

to implement the Fibonacci algorithms using low-level tasks. This is our baseline, using

task blocking style, that will be optimized in subsequent versions.

The code of Figure 10-7 involves the following distinct steps:

	 1.	 Allocate space for the task. Tasks must be allocated by special

member functions so that the space can be efficiently recycled

when the task completes. Allocation is done by a special

overloaded new and task::allocate_root member function.

The _root suffix in the name denotes the fact that the task created

has no parent. It is the root of a task tree.

	 2.	 Construct the task with the constructor FibTask{n,&sum} (the task

definition is presented in the next figure), invoked by new. When

the task is run in step 3, it computes the nth Fibonacci number

and stores it into sum.

	 3.	 Run the task to completion with task::spawn_root_and_wait.

Figure 10-7.  parallel_fib re-implementation using the task class

Chapter 10 Using Tasks to Create Your Own Algorithms

286

The real work is done inside the class FibTask defined in Figure 10-8.

This is a relatively larger piece of code, compared to fib and the two previous

parallel implementations of parallel_fib. We were advised, this is a lower-level

implementation, and as such it is not as productive or friendly as a high-level

abstraction. To make up for the extra burden, we will see later how this class allows us to

get our hands dirty tweaking under the hood and tuning the behavior and performance

at our will.

Like all tasks scheduled by TBB, FibTask is derived from the class tbb::task. The

fields n and sum hold the input value and the pointer to the output, respectively. These are

initialized with the arguments passed to the constructor FibTask(long n_, long ∗sum_).

The execute member function does the actual computation. Every task must

provide a definition of execute that overrides the pure virtual member function

tbb::task::execute. The definition should do the work of the task and return either

Figure 10-8.  Definition of the FibTask class that is used in Figure 10-7

Chapter 10 Using Tasks to Create Your Own Algorithms

287

nullptr or a pointer to the next task to run, as we saw in Figure 9-14. In this simple

example, it returns nullptr.

The member function FibTask::execute() does the following:

	 1.	 Checks whether n<cutoff and resorts to the sequential version in

this case.

	 2.	 Otherwise, the else branch is taken. The code creates and runs

two child tasks that compute Fn-1 and Fn-2 respectively. Here,

the inherited member function allocate_child() is used to

allocate space for the task. Remember that the top-level routine

parallel_fib used allocate_root() to allocate space for a task.

The difference is that here the task is creating child tasks. This

relationship is indicated by the choice of allocation method. The

different allocation methods are listed in Appendix B, Figure B-76.

	 3.	 Calls set_ref_count(3). The number 3 represents the two

children and an additional implicit reference that is required by

the member function spawn_and_wait_for_all. This set_ref_

count member function initializes the ref_count attribute of each

TBB task. Each time a child ends its computation, it decrements

the ref_count attribute of its parent. Make sure to call set_

reference_count(k+1) before spawning the k children if the task

uses wait_for_all to be resumed after the children complete.

Failure to do so results in undefined behavior. The debug version

of the library usually detects and reports this type of error.

	 4.	 Spawns two child tasks. Spawning a task indicates to the

scheduler that it can run the task whenever it chooses, possibly

in parallel with executing other tasks. The first spawning, by the

tbb::task::spawn(b) member function, returns immediately

without waiting for the child task to start executing. The second

spawning, by the member function tbb::task::spawn_and_

wait_for_all(a), is equivalent to tbb::task::spawn(a);

tbb::task::wait_for_all(). The last member function causes

the parent to wait until all currently allocated child tasks are

finished. For this reason, we say this implementation follows what

we call a task blocking style.

Chapter 10 Using Tasks to Create Your Own Algorithms

288

	 5.	 After the two child tasks complete, the ref_count attribute of the

parent task has been decremented twice and now its value is one.

This causes the parent task to resume just after the spawn_and_

wait_for_all(a) call, so it computes x+y and stores it in ∗sum.

In Figure 10-9, we illustrate this task creation and execution when spawning the

root_task FibTask(8, &sum) having set cutoff=7. Assuming a single thread executing

all the tasks, and some simplification in the way the stack is used, in Figure 10-9 we have

a streamlined representation of the computations carried out. When parallel_fib(8)

is invoked, the variable sum is stored in the stack, and the root task is allocated on the

heap and constructed with FibTask(8, &sum). This root task is executed by a worker

thread which runs the overridden execute() member function. Inside this member

function, two stack variables x and y are declared, and two new child tasks, a and b, are

allocated and enqueued in the worker thread’s local deque. In the constructor of these

two tasks, we pass FibTask(7, &x) and FibTask(6, &y), which means that the variable

member sum of the newly created tasks will point to FibTask(8) stack variables x and y,

respectively.

new root FibTask(8,&sum)Stack
parallel_fib sum=21

FibTask(8) x = 13

FibTask(8) y = 8

FibTask(7) x = 8

FibTask(7) y = 5

8 &sum

7 &sum

6 &sum

6 &sum

5 &sum

new child FibTask(7,&x) new child FibTask(6,&y)

new child FibTask(5,&y)new child FibTask(6,&x)

cutoff=7

a b

a b

Figure 10-9.  Recursive calling tree for parallel_fib(8) with cutoff=7

Chapter 10 Using Tasks to Create Your Own Algorithms

289

The member function execute() continues by setting ref_count of the task to 3,

spawning first b and then a and waiting for both. At this point, the root task is suspended

until it has no pending child. Remember that this is the task blocking style. The worker

thread returns to the scheduler, where it will first dequeue task a (because it was enqueued

last). This task a (FibTask(7,&x)) will recursively repeat the same process, suspending

itself after allocating a new x and y on the stack and spawning FibTask(5,&x) and

FibTask(6,&y). Since cutoff=7, these two new tasks will resort to the base case and call

fib(5) and fib(6), respectively. FibTask(6,&x) is dequeued first, writes 8 to ∗sum (where

sum points to x in FibTask(7) stack), and returns nullptr. Then, the FibTask(6,&x) is

destroyed, but in the process, the ref_cont variable of the parent task (FibTask(7,&x)) is

first decremented. The worker thread then dequeues FibTask(5,&y) that writes 5 to ∗sum

(now alias of y in the stack) and also returns nullptr. This results in ref_count reaching

the value 1, which wakes up the parent thread FibTask(7,&x) that just has to add 5+8,

write it to ∗sum (alias of x in FibTask(8)) stack, and return nullptr. This decrements

ref_count of the root task to 2. Next, the worker thread dequeues FibTask(6,&y) that

calls fib(6), writes y=8 on the stack, returns, and dies. This finally leaves the root task

without children (ref_count=1) so it can continue the execution just after the spawn_and_

wait_for_all() member function, add 8+13, write to ∗sum (alias of sum in the stack of

parallel_fib), and get destroyed. If you are exhausted after reading the description of all

this process, so are we, but there is even a bit more so hold on for one more second. Now,

imagine that there is more than one worker thread. Each one will have its own stack and

fight to steal tasks. The result, 21, will be the same and, in essence, the same tasks will be

executed, though now we don’t know which thread will take care of each task. What we do

know is that if the problem size and the number of tasks are large enough and if the cutoff

is wisely set, then this parallel code will run faster than the sequential one.

Note A s we have seen, the TBB work-stealing scheduler evaluates a task
graph. The graph is a directed graph where each node is a task. Each task points
to its parent, also called successor, which is another task that is waiting on it
to complete. If a task has no parent/successor, its parent reference points to
nullptr. Method tbb::task::parent() gives you read-only access to the
successor pointer. Each task has a ref_count that accounts for the number of
tasks that have it as a successor (i.e., the number of children that the parent has to
wait for before it can be triggered for execution).

Chapter 10 Using Tasks to Create Your Own Algorithms

290

And where are the much-vaunted knobs and tuning possibilities? Well, it is true that

the code based on low-level tasks that we just discussed is doing pretty much the same

as what we already implemented with the parallel_invoke and task_group classes, but

at higher programming cost. Then, where is the bang for the buck? The task class has

more member functions that will be covered soon, and the implementation discussed

in this section is just the foundation on which more optimized version will be built. Stick

with us and keep reading.

�The Low-Level Task Interface: Part Two – Task
Continuation
The task blocking style that we just presented can pose a problem if the body of the

task requires many local variables. These variables sit on the stack and stay there until

the task is destroyed. But the task is not destroyed until all its children are done. This

is a potential showstopper if the problem is very large, and it is difficult to find a cutoff

value without limiting the amount of available parallelism. This can happen when facing

Branch and Bound problems that are used to find an optimal value by wisely traversing

a search space following a tree-based strategy. There are cases in which the tree can be

very large, unbalanced (some tree branches are deeper than other), and the depth of

the tree is unknown. Using the blocking style for these problems can easily result in an

explosion of the number of tasks and too much use of the stack space.

Another subtle inconvenience of the blocking style is due to the management of

the worker thread that encounters the wait_for_all() call in a parent task. There is no

point in wasting this worker thread waiting for the children tasks to finish, so we entrust

it with the execution of other tasks. This means that when the parent task is ready to run

again, the original worker thread that was taking care of it may be distracted with other

duties and cannot respond immediately.

Note  Continuation, continuation, continuation!!! The authors of TBB, and other
parallelism experts, love to encourage continuation style programming. Why???
It turns out that using it can be the difference between a working program that is
relatively easy to write, and one that crashes from stack overflow. Worst yet, other
than using continuations, code to solve such crashes can be hard to understand
and gives parallel programming a bad name. Fortunately, TBB is designed to use

Chapter 10 Using Tasks to Create Your Own Algorithms

291

continuations and encourages us to use continuations by default. Flow Graph
(Chapters 3 and 17) encourages use of continue_node (and other nodes with
potentials for scheduler bypass). The power of continuations (and task recycling,
which we cover next) is worth knowing as a parallel programmer – you’ll never
want to let a task sit around waiting again (and wasting precious resources)!

To avoid this problem, we can adopt a different coding style, known as continuation

passing. Figure 10-10 shows the definition of a new task that we call continuation task,

and Figure 10-11 underscores in boxes the required changes in FibTask to implement

the continuation-passing style.

The continuation task FibCont also has an execute() member function, but now it

only includes the code that has to be done once the children tasks are complete. For our

Fibonacci example, after the children completion, we only need to add the results that

they bring and return, and these are the only two lines of code after the spawn_and_wait_

for_all(a) in the code of Figure 10-8. The continuation task declares three member

variables: a pointer to the final sum and the partial sum from the two children, x and y.

The constructor FibCont(long∗ sum) initializes the pointer adequately. Now we have to

modify our FibTask class to properly create and initialize the continuation task FibCont.

Figure 10-10.  Continuation task FibCont for the Fibonacci example

Chapter 10 Using Tasks to Create Your Own Algorithms

292

In Figure 10-11, besides the base case that does not change, we identify in the else

part of the code that now, x and y private variables are not declared anymore and have

been commented out. However, there is now a new task c of type FibCont&. This task

is allocated using the allocate_continuation() function that is similar to allocate_

child(), except that it transfers the parent reference of the calling task (this) to c and

sets the parent attribute of this to nullptr. The reference count, ref_count, of this’s

parent does not change since the parent still has the same number of children, although

one of the children has suddenly been mutated from the FibTask type to the FibCont

one. If you are a happy parent, don’t try this at home!

Figure 10-11.  Following the continuation-passing style for parallel Fibonacci

Chapter 10 Using Tasks to Create Your Own Algorithms

293

At this point, FibTask is still alive but we will do away with it soon. FibTask does

not have a parent anymore, but it is in charge of some chores before dying. FibTask first

creates two FibTask children, but watch out!

•	 The new tasks a and b are now children of c (not of this) because we

allocate them using c.allocate_child() instead of just allocate_

child(). In other words, c is now the successor of both a and b.

•	 The result of the children is not written in stack-stored variables

any more. When initializing a, the constructor invoked now is

FibTask(n-1,&c.x), so the pointer sum in the child task a (a.sum) is

actually pointing to c.x. Likewise, b.sum points to c.y.

•	 The reference count of c (sort of an internal and private c.ref_count)

is only set to two (c.set_ref_count(2)) since FibCont c has actually

only two children (a and b).

Now children tasks a and b are ready to be spawned, and that’s all the duties of

FibTask. Now it can die in peace, and the memory it was occupying can be safely

reclaimed. R.I.P.

Note A s we mentioned in the previous section, when following the blocking
style, if a task A spawns k children and waits for them using the wait_for_all
member function, A.ref_count has to be set to k+1. The extra “1” accounts
for the additional work that task A has to finish before ending and dispatching A’s
parent. This extra “1” is not needed when following the continuation-passing style
because A transfers the additional work to the continuation task C. In this case,
C.ref_count has to be set exactly to k if it has k children.

To better illustrate how all this works now that we follow the continuation-passing

style, Figures 10-12 and 10-13 contain some snapshots of the process.

Chapter 10 Using Tasks to Create Your Own Algorithms

294

In the upper part of Figure 10-12, the root FibTask(8,&sum) has already created the

continuation FibCont(sum) and tasks FibTask(7,&c.x) and FibTask(6,&c.y), which

are actually children of FibCont. In the stack, we see that we are only storing the final

result sum that is local to parallel_fib function because x and y are not using stack

space using this style. Now, x and y are member variables of FibCont and are stored

in the heap. In the bottom part of this figure, we see that the original root task has

disappeared with all the memory that it was using. In essence, we are trading stack space

for heap space and FibTask’s objects by FibCont’s ones, which is beneficial if FibCont

objects are smaller. We also see that the parent reference from FibTask(7,&c.x) to the

root FibCont(&sum) has been transferred to the younger FibCont.

root FibTask(8,&sum)
Stack

parallel_fib sum = ?
8 &sum &sum x y

FibCont (sum)

7 &sum 6 &sum

child FibTask(7,&c.x) child FibTask(6,&c.y)

Task
creation

Pointer

Parent
relation

Le
ge

nd

Stack
parallel_fib sum = ?

&sum x y

FibCont (sum)

7 &sum

6 &sum

child FibTask(7,&c.x)

child FibTask(6,&c.y)&sum x y

FibCont (sum)

6 &sum

child FibTask(6,&c.x)

5 &sum

child FibTask(5,&c.y)

Snapshot just
before

FibTask(8,&sum)
dies

Snapshot just
before

FibTask(7,&c.x)
dies

parent reference has
been transferred from

FibTask to FibCont

Figure 10-12.  The continuation-passing style for parallel_fib(8) with cutoff=7

Chapter 10 Using Tasks to Create Your Own Algorithms

295

Stack
parallel_fib sum = ?

&sum x y

FibCont (sum)

6 &sum

child FibTask(6,&c.y)&sum 8 5

FibCont (sum)

6 &sum

child FibTask(6,&c.x)

5 &sum

child FibTask(5,&c.y)

Stack
parallel_fib sum = ?

&sum 13 8

FibCont (sum)

6 &sum

child FibTask(6,&c.y)&sum 8 5

FibCont (sum)

Snapshot if
FibTask(6,&c.x)

and
FibTask(5,&c.y)

end together

Snapshot if
FibCont(&sum)

and
FibTask(5,&c.y)

end together

Figure 10-13.  The continuation-passing style example (continuation!!)

In the top part of Figure 10-13, we start the unwinding part of the recursive

algorithm. There is no trace of FibTask objects any more. Child tasks FibTask(6,&c.x)

and FibTask(5,&c.y) have resorted to the base case (n<cutoff, assuming cutoff=7)

and are about to return after having written ∗sum with 8 and 5, respectively. Each one of

the children will return nullptr, so the worker thread takes control again and goes back

to the work-stealing scheduler, decrements ref_count of the parent task, and checks

whether or not ref_count is 0. In such a case, following the high-level description of the

TBB task dispatch loop presented in Figure 9-14 of Chapter 9, the next task to take is the

parent one (FibCont in this case). Contrary to the blocking style, this is now performed

right away. In the bottom part of Figure 10-13, we see the two children of the original

root task that have already written their results.

Chapter 10 Using Tasks to Create Your Own Algorithms

296

You may be wondering if the parallel_fib function is still waiting in the spawn_

root_and_wait(a) to the first root task that was created, since this original FibTask

was replaced by the first FibCont object and then died (see Figure 10-12). Well, indeed

parallel_fib is still waiting because spawn_root_and_wait is designed to work

correctly with continuation-passing style. An invocation of spawn_root_and_wait(x)

does not actually wait for x to complete. Instead, it constructs a dummy successor of x

and waits for the successor’s ref_count to become 0. Because allocate_continuation

forwards the parent reference to the continuation, the dummy successor’s ref_count

is not decremented until the continuation FibCont completes. This is illustrated in

Figure 10-14.

parent reference
has been

transferred from
FibTask to
FibCont

root FibTask(8,&sum)
Stack

parallel_fib sum = ?
8 &sum

dummy task
ref_count=1

spawn_root_and_wait()
is actually waiting for this

ref_count to become 0

root FibTask(8,&sum)
Stack

parallel_fib sum = ?
8 &sum

dummy task
ref_count=1

when the continuation
task is created, the
parent reference is

transferred to FibCont

&sum x y

FibCont (sum)

Figure 10-14.  parallel_fib waits for FibCont to complete thanks to a dummy
task that has its own ref_count

Chapter 10 Using Tasks to Create Your Own Algorithms

297

�Bypassing the Scheduler
Scheduler bypass is an optimization in which you directly specify the next task to run

instead of letting the scheduler pick. Continuation-passing style often opens up an

opportunity for scheduler bypass. For instance, in the continuation-passing example, it

turns out that once FibTask::execute() returns, by the getting rules of the work-stealing

scheduler described in Chapter 9, task a is always the next task taken from the ready pool

because it was the last one being spawned (unless it has been stolen by another worker

thread). More precisely, the sequence of events is as follows:

•	 Push task a onto the thread’s deque.

•	 Return from member function execute().

•	 Pop task a from the thread’s deque, unless it is stolen by another

thread.

Putting the task into the deque and then getting it back out incurs some overhead

that can be avoided, or worse yet, permits stealing that can hurt locality without adding

significant parallelism. To avoid both problems, make sure that execute does not spawn

the task but instead returns a pointer to it as the result. This approach guarantees that

the same worker thread immediately executes a, not some other thread. To that end, in

the code of Figure 10-11, we need to replace these two lines as follows:

spawn(a);

return nullptr;

➜ //spawn(a); commented out!

return &a;

�The Low-Level Task Interface: Part Three – Task
Recycling
In addition to bypassing the scheduler, we might also want to bypass task allocation and

deallocation. This opportunity frequently arises for recursive tasks that do scheduler

bypass because the child is initiated immediately upon return just as the parent

completes. Figure 10-15 shows the changes required to implement task recycling in the

Fibonacci example.

Chapter 10 Using Tasks to Create Your Own Algorithms

298

The child that was previously called a is now the recycled this. The call recycle_as_

child_of(c) has several effects:

•	 It marks this not to be automatically destroyed when execute

returns.

•	 It sets the successor of this to be c. To prevent reference-counting

problems, recycle_as_child_of has a prerequisite that this must

have a nullptr successor (this’s parent reference should point to

nullptr). This is the case after allocate_continuation occurs.

Member variables have to be updated to mimic what was previously implemented

using the constructor FibTask(n-1,&c.x). In this case, this->n is decremented

(n -=1;), and this->sum is initialized to point to c.x.

Figure 10-15.  Following the task recycling style for parallel Fibonacci

Chapter 10 Using Tasks to Create Your Own Algorithms

299

When recycling, ensure that this’s member variables are not used in the current

execution of the task after the recycled task is spawned. This is the case in our example

since the recycled task is actually not spawned and will only run after returning the

pointer this. You can spawn the recycled task instead (i.e., spawn (∗this); return
nullptr;), as long as none of its member variables is used after the spawning. This

restriction applies even to const member variables, because after the task is spawned, it

might run and be destroyed before the parent progresses any further. A similar member

function, task::recycle_as_continuation(), recycles a task as a continuation instead

of as a child.

In Figure 10-16, we show the effect of recycling FibTask(8,&sum) as child of FibCont

once the child has updated the member variables (8 becomes 7 and sum points to c.x).

root FibTask(8,&sum)
Stack

parallel_fib sum = ?
8 &sum &sum x y

FibCont (sum)

6 &sum

child FibTask(6,&c.y)

Task
creation

Pointer

Parent
relation

Le
ge

nd

Stack
parallel_fib sum = ?

&sum x y

FibCont (sum)

7 &sum 6 &sum

FibTask recycled
as child child FibTask(6,&c.y)FibTask(8,&sum)

is recylced as
child of FibCont

Figure 10-16.  Recycling FibTask(8,&sum) as a child of FibCont

Chapter 10 Using Tasks to Create Your Own Algorithms

300

Note  Greener (and easier) parallel programming ☺ T he embracing of
composability, continuations, and task recycling has a powerful impact on making
parallel programming much easier simply by using TBB. Consider that recycling
has gained favor around the world, and recycling of tasks really does help conserve
energy too! Join the movement for greener parallel programming – it doesn’t hurt
that it makes effective programming easier too!

Scheduler bypassing and task recycling are powerful tools that can result in

significant improvements and code optimizations. They are actually used to implement

the high-level templates that were presented in Chapters 2 and 3, and we can also exploit

them to design other tailored high-level templates that cater to our needs. Flow Graph

(Chapter 3 and more coming in Chapter 17) encourages use of continue_node (and

other nodes with potentials for scheduler bypass). In the next section, we present an

example in which we leverage the low-level task API and evaluate its impact, but before

that, check out our “checklist.”

�Task Interface Checklist
Resorting to the task interface is advisable for fork-join parallelism with lots of forks,

so that the task stealing can cause sufficient breadth-first behavior to occupy threads,

which then conduct themselves in a depth-first manner until they need to steal more

work. In other words, the task scheduler’s fundamental strategy is “breadth-first theft

and depth-first work.” The breadth-first theft rule raises parallelism sufficiently to keep

threads busy. The depth-first work rule keeps each thread operating efficiently once it

has sufficient work to do.

Remember though that it is not the simplest possible API, but one particularly

designed for speed. In many cases, we face a problem that can be tackled using a higher-

level interface, as the templates parallel_for, parallel_reduce, and so on do. If this

is not the case and you need the extra performance offered by the task API, some of the

details to remember are

•	 Always use new(allocation_method) T to allocate a task, where

allocation_method is one of the allocation methods of class task

(see Appendix B, Figure B-76). Do not create local or file-scope

instances of a task.

Chapter 10 Using Tasks to Create Your Own Algorithms

301

•	 All siblings should be allocated before any start running, unless you

are using allocate_additional_child_of. We will elaborate on this

in the last section of the chapter.

•	 Exploit continuation passing, scheduler bypass, and task recycling to

squeeze out maximum performance.

•	 If a task completes, and was not marked for re-execution (recycling),

it is automatically destroyed. Also, its successor’s reference count

is decremented, and if it hits zero, the successor is automatically

spawned.

�One More Thing: FIFO (aka Fire-and-Forget) Tasks
So far, we have seen how tasks are spawned and the result of spawning a task: the thread

that enqueues the task is likely the one dequeuing it in a LIFO (Last-in First-out) order

(if no other thread steals the spawned task). As we said, this behavior has some

beneficial implications in terms of locality and in restraining the memory footprint

thanks to the “depth-first work.” However, a spawned task can become buried in the local

queue of the thread if a bunch of tasks are also spawned afterward.

If we prefer FIFO-like execution order, a task should be enqueued using the enqueue

function instead of the spawn one, as follows:

Our example FifoTask class derives from tbb::task and overrides the execute()

member function as every normal task does. The four differences with spawned tasks are

•	 A spawned task can be postponed by the scheduler until it is waited

upon, but an enqueued task will be eventually executed even if there

is no thread explicitly waiting on the task. Even if the total number of

worker threads is zero, a special additional worker thread is created

to execute enqueued tasks.

Chapter 10 Using Tasks to Create Your Own Algorithms

302

•	 Spawned tasks are scheduled in a LIFO like order (most recently

spawned is started next), but enqueued tasks are processed in

roughly (not precisely) FIFO order (started in approximately the

order they entered the queue – the “approximation” gives TBB some

flexibility to be more efficient than a strict policy would allow).

•	 Spawned tasks are ideal for recursive parallelism in order to save

memory space thanks to a depth-first traversal, but enqueued tasks

can prohibitively consume memory for recursive parallelism since

the recursion will expand in a breadth-first traversal.

•	 Spawned parent tasks should wait for their spawned children to

complete, but enqueued tasks should not be waited upon because

other enqueued tasks from unrelated parts of the program might

have to be processed first. The recommended pattern for using an

enqueued task is to have it asynchronously signal its completion.

Essentially, enqueued tasks should be allocated as root, instead of as

children that are then waited upon.

In Chapter 14, enqueued tasks are also illustrated in the context of prioritizing some

tasks over others. Two additional use cases are also described in the Threading Building

Blocks Design Patterns manual (see “For More Information” at the end of the chapter).

There are two design patterns in which enqueued tasks come in handy. In the first one,

a GUI thread must remain responsive even when a long running task is launched by the

user. In the proposed solution, the GUI thread enqueues a task but does not wait for it to

finish. The task does the heavy lifting and then notifies the GUI thread with a message

before dying. The second design pattern is also related with assigning nonpreemptive

priorities to different tasks.

�Putting These Low-Level Features to Work
Let’s switch to a more challenging application to evaluate the impact of different task-

based implementation alternatives. Wavefront is a programming pattern that appears

in scientific applications such as those based in dynamic programming or sequence

alignment. In such a pattern, data elements are distributed on multidimensional grids

representing a logical plane or space. The elements must be computed in order because

they have dependencies among them. One example is the 2D wavefront that we show

Chapter 10 Using Tasks to Create Your Own Algorithms

303

in Figure 10-17. Here, computations start at a corner of the matrix, and a sweep will

progress across the plane to the opposite corner following a diagonal trajectory. Each

antidiagonal represents the number of computations or elements that could be executed

in parallel without dependencies among them.

i

0

1

2

3

\j 0 1 2 3 i

0

1

2

3

\j 0 1 2 3

0 1 1

1 2 2

1 2 2

Task spaceData space

Figure 10-17.  Typical 2D wavefront pattern (a) and dependencies translated into
a matrix of atomic counters (b)

In the code of Figure 10-18, we compute a function for each cell of a nxn 2D

grid. Each cell has a data dependence with two elements of the adjacent cells. For

example, in Figure 10-17(a), we see that cell (2,3) depends on the north (1,3) and west

(2,2) ones, since on each iteration of the i and j loops, cells that were calculated in

previous iterations are needed: A[i,j] depends on A[i-1,j] (north dependency) and

A[i,j-1] (west dependency). In Figure 10-18, we show the sequential version of the

computation where array A has been linearized. Clearly, the antidiagonal cells are totally

independent, so they can be computed in parallel. To exploit this parallelism (loops “i”

and “j”), a task will carry out the computations corresponding to each cell inside the

iteration space (or task space from now on), and independent tasks will be executed in

parallel.

Chapter 10 Using Tasks to Create Your Own Algorithms

304

In our task parallelization strategy, the basic unit of work is the computation

performed by function foo at each (i,j) cell of the matrix. Without loss of generality, we

assume that the computational load for each cell will be controlled by the gs (grainsize)

parameter of the foo function. That way, we can define the granularity of the tasks,

and therefore, we can study the performance of different implementations depending

on the task granularity, as well as situations with homogeneous or heterogeneous task

workloads.

In Figure 10-17(b), the arrows show the data dependence flow for our wavefront

problem. For example, after the execution of the upper left task (1, 1), which does not

depend on any other task, two new tasks can be dispatched (the one below (2, 1) and

the one to the right (1, 2)). This dependence information can be captured by a 2D

matrix with counters, like the one we show in Figure 10-17(b). The value of the counters

points out to how many tasks we have to wait for. Only the tasks with the corresponding

counter nullified can be dispatched.

An alternative to implement this kind of wavefront computation is covered in the Intel

TBB Design Patterns (see “For More Information”) in which a General Graph of Acyclic

tasks is implemented. This version is available along with the sources of this chapter

under the name wavefront_v0_DAG.cpp. However, that version requires that all the tasks

are preallocated beforehand and the implementation that we present next is more flexible

and can be tuned to better exploit locality as we will see later. In Figure 10-19, we show

our first task-based implementation that we call wavefront_v1_addchild. Each ready

task first executes the task body, and then it will decrement the counters of the tasks

depending on it. If this decrement operation ends up with a counter equal to 0, the task is

also responsible of spawning the new independent task. Note that the counters are shared

and will be modified by different tasks that are running in parallel. To account for this

issue, the counters are atomic variables (see Chapter 5).

Figure 10-18.  Code snippet for a 2D wavefront problem. Array A is the linearized
view of the 2D grid.

Chapter 10 Using Tasks to Create Your Own Algorithms

305

Note that in Figure 10-19, we use allocate_additional_child_of(∗parent()) as

the allocation method for the new tasks. By using this allocation method, we can add

children while others are running. On the positive side, this allow us to save some coding

that would have been necessary to ensure that all child tasks are allocated before any

of them is spawned (since this depends on whether the east task, the south, or both are

ready to be dispatched). On the negative side, this allocation method requires that the

parent’s ref_count is atomically updated (incremented when one “additional_child”

is allocated and decremented when any child dies). Since we are using allocate_

additional_child_of(∗parent()), all created tasks will be children of the same parent.

The first task of the task space is task (1, 1), and it is spawned with

Figure 10-19.  Excerpt from the code of the wavefront_v1_addchild version

Chapter 10 Using Tasks to Create Your Own Algorithms

306

and the parent of this root task is the dummy task that we already introduced in

Figure 10-14. Then, all the tasks created in this code atomically update the ref_count of

the dummy task.

Another caveat on using the allocate_additional_child_of allocation method

is that the user (we) has to ensure that the parent’s ref_count does not prematurely

reach 0 before the additional child is allocated. Our code already accounts for this

eventuality since a task, t, allocating an additional child, c, is already guaranteeing that

the t parent’s ref_count is at least one since t will only decrement its parent’s ref_count

when dying (i.e., after allocating c).

In Chapter 2, the parallel_do_feeder template was already presented to illustrate

a different wavefront application: the forward substitution. This template essentially

implements a work-list algorithm, in such a way that new tasks can be added

dynamically to the work-list by invoking the parallel_do_feeder::add() member

function. We call wavefront_v2_feeder to a version of the wavefront code that relies on

parallel_do_feeder and, as in Figure 2-19 in Chapter 2, uses feeder.add() instead of

the spawn calls in Figure 10-19.

If we want to avoid all child tasks pending from a single parent and fighting to

atomically update its ref_count, we can implement a more elaborated version that

mimics the blocking style explained earlier. Figure 10-20 shows the execute() member

function in this case, where we first annotate whether the east, south, or both cells are

ready to dispatch and then allocate and dispatch the corresponding tasks. Note that

now we use the allocate_child() method, and each task has at most two descendants

to wait upon. Although the atomic update of a single ref_count is not a bottleneck

anymore, more tasks are in flight waiting for their children to finish (and occupying

memory). This version will be named wavefront_v3_blockstyle.

Chapter 10 Using Tasks to Create Your Own Algorithms

307

Now, let’s also exploit continuation-passing and task recycling styles. In our

wavefront pattern, each task has the opportunity to spawn two new tasks (east and south

neighbors). We can avoid the spawn of one of them by returning a pointer to the next

task, so instead of spawning a new task, the current task recycles into the new one. As we

have explained, with this we achieve two goals: reducing the number of task allocations,

calls to spawn(), as well as saving the time for getting new tasks from the local queue.

The resulting version is called wavefront_v4_recycle, and the main advantage is that

it reduces the number of spawns from n x n − 2n (the number of spawns in previous

versions) to n − 2 (approximately the size of a column). See the companion source code

to have a look at the complete implementation.

In addition, when recycling we can provide hints to the scheduler about how to

prioritize the execution of tasks to, for example, guarantee a cache-conscious traversal

of the data structure, which might help to improve data locality. In Figure 10-21, we see

the code snippet of the wavefront_v5_locality version that features this optimization.

We set the flag recycle_into_east if there is a ready to dispatch task to the east of the

executing task. Otherwise, we set the flag recycle_into_south, if the south task is ready

Figure 10-20.  execute() member function of the wavefront_v3_blockstyle version

Chapter 10 Using Tasks to Create Your Own Algorithms

308

to dispatch. Later, according to these flags, we recycle the current task into the east or

south tasks. Note that, since in this example the data structure is stored by rows, if both

east and south tasks are ready, the data cache can be better exploited by recycling into

the east task. That way, the same thread/core executing the current task is going to take

care of the task traversing the neighbor data, so we make the most out of spatial locality.

So, in that case, we recycle into the east task and spawn a new south task that would be

executed later.

Figure 10-21.  execute() member function of the wavefront_v5_locality version

For huge wavefront problems, it may be relevant to reduce the footprint of each

allocated task. Depending on whether or not you feel comfortable using global variables,

you can consider storing the shared global state of all the tasks (n, gs, A, and counters)

in global variables. This alternative is implemented in wavefront_v6_global, and it is

provided in the directory with the source code of this chapter’s examples.

Chapter 10 Using Tasks to Create Your Own Algorithms

309

Using the parameter gs that sets the number of floating-point operations per task,

we found that for coarse-grained tasks that execute more than 2000 floating-point

operations (FLOPs), there is not too much difference between the seven versions and the

codes scale almost linearly. This is because the parallel overheads vanish in comparison

with the large enough time needed to compute all the tasks. However, it is difficult to

find real wavefront codes with such coarse-grained tasks. In Figure 10-22, we show the

speedup achieved by versions 0 to 5 on a quad-core processor, more precisely, a Core

i7-6700HQ (Skylake architecture, 6th generation) at 2.6 GHz, 6 MB L3 cache, and 16 GB

RAM. Grain size, gs, is set to only 200 FLOPs and n=1024 (for this n, version 6 performs as

version 5).

It is clear that TBB v5 is the best solution in this experiment. In fact, we measured

speedups for other finer-grained sizes finding that the finer the granularity, the better the

improvement of v4 and v5 in comparison with v1 and v2. Besides, it is interesting to see

that a great deal of the improvement contribution is due to the recycling optimization,

pointed out by the v4 enhancement over the v1 version. A more elaborated study was

conducted by A. Dios in the papers that are listed at the end of the chapter.

Since the performance of the wavefront algorithms decreases as the task workload

grain becomes finer, a well-known technique to counteract this trend is tiling (see the

Glossary for a brief definition). By tiling, we achieve several goals: to better exploit

locality since each task works within a space confined region of data for some time; to

reduce the number of tasks (and therefore, the number of allocations and spawns); and

to save some overhead in wavefront bookkeeping (memory space and the initialization

time of the counter/dependence matrix, which is now smaller due to it requiring a

counter per block-tile, and not one per matrix element). After coarsening the grain of the

tasks via tiling, we are again free to go for v1 or v2 implementations, right? However,

Figure 10-22.  Speedup on four cores of the different versions

Chapter 10 Using Tasks to Create Your Own Algorithms

310

the downside of tiling is that it reduces the amount of independent task (they are coarser,

but there are fewer of them). Then, if we need to scale our application to a large number

of cores and the problem does not grow in size at the same pace, we probably have to

squeeze until the last drop of available performance out of the TBB low-level features.

In challenging situations like these, we have to demonstrate our outstanding command

of TBB and that we have successfully honed our parallel programming skills.

�Summary
In this chapter, we have delved into the task-based alternatives that can be particularly

useful to implement recursive, divide and conquer, and wavefront applications,

among others. We have used the Fibonacci sequence as a running example that we

first implemented in parallel with the already discussed high-level parallel_invoke.

We then started diving into deeper waters by using a medium-level API provided by

the task_group class. It is though the task interface the one offering the larger degree

of flexibility to cater for our specific optimization needs. TBB tasks are underpinning

the other high-level templates that were presented in the first part of the book, but we

can also get our hands on them to build our own patterns and algorithms, leveraging

continuation passing, scheduler bypassing, and task recycling advanced techniques.

For even more demanding developers, more possibilities are available thanks to task

priorities, task affinity, and task enqueue features that will we cover in the next chapter.

We can’t wait to see what you can create and develop out of these powerful tools that are

now in your hands.

�For More Information
Here are some additional reading materials we recommend related to this chapter:

•	 A. Dios, R. Asenjo, A. Navarro, F. Corbera, E.L. Zapata, A case study

of the task-based parallel wavefront pattern, Advances in Parallel

Computing: Applications, Tools and Techniques on the Road to

Exascale Computing, ISBN: 978-1-61499-040-6, Vol. 22, pp. 65–72,

IOS Press BV, Amsterdam, 2012 (extended version available here:

www.ac.uma.es/~compilacion/publicaciones/UMA-DAC-11-02.pdf).

Chapter 10 Using Tasks to Create Your Own Algorithms

http://www.ac.uma.es/~compilacion/publicaciones/UMA-DAC-11-02.pdf

311

•	 A. Dios, R. Asenjo, A. Navarro, F. Corbera, E.L. Zapata High-level

template for the task-based parallel wavefront pattern, IEEE Intl.

Conf. on High Performance Computing (HiPC 2011), Bengaluru

(Bangalore), India, December 18–21, 2011. Implement a high-level

template on top of TBB task to ease the implementation of wavefront

algorithms.

•	 González Vázquez, Carlos Hugo, Library-based solutions for

algorithms with complex patterns of parallelism, PhD report, 2015.

http://hdl.handle.net/2183/14385. Describes three complex

parallel patterns and addresses them by implementing high-level

templates on top of TBB tasks.

•	 Intel TBB Design Patterns:

•	 GUI thread: http://software.intel.com/en-us/node/506119

•	 Priorities: http://software.intel.com/en-us/node/506120

•	 Wavefront: http://software.intel.com/en-us/node/506110

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 10 Using Tasks to Create Your Own Algorithms

http://hdl.handle.net/2183/14385
http://software.intel.com/en-us/node/506119
http://software.intel.com/en-us/node/506120
http://software.intel.com/en-us/node/506110
http://creativecommons.org/licenses/by-nc-nd/4.0/

313
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_11

CHAPTER 11

Controlling the Number
of Threads Used for
Execution
By default, the TBB library initializes its scheduler with what is typically the right number

of threads to use. It creates one worker thread fewer than the number of logical cores on

the platform, leaving one of the cores available to execute the main application thread.

Because the TBB library implements parallelism using tasks that are scheduled on to

these threads, this is usually the right amount of threads to have – there is exactly one

software thread for each logical core, and the scheduling algorithms in TBB efficiently

distribute tasks to these software threads using work stealing as described in Chapter 9.

Nevertheless, there are many scenarios in which we may justifiably want to change

the default. Perhaps we are running scaling experiments and want to see how well

our application performs with different numbers of threads. Or perhaps we know that

several applications will always execute on our system in parallel, so we want to use

only a subset of the available resources in our application. Or perhaps we know that our

application creates extra native threads for rendering, AI, or some other purpose and we

want to restrict TBB so that it leaves room on the system for those other native threads. In

any case, if we want to change the default, we can.

There are three classes that can be used to influence how many threads participate

in executing a specific TBB algorithm or flow graph. The interactions between these

classes can be very complicated though! In this chapter, we focus on the common

cases and best-known practices that will likely be enough for all but the most

complicated applications. This level of detail will be sufficient for most readers, and the

recommendations we make will be enough for almost all situations. Even so, readers

314

who want to understand the lowest level nuts-and-bolts of TBB are welcome to wade

into the weeds in the TBB documentation to get into all of the details of the possible

interactions between these classes if they choose. But if you follow the patterns outlined

in this chapter, we don’t think that will be necessary.

�A Brief Recap of the TBB Scheduler Architecture
Before we begin talking about controlling the number of threads used in executing

parallel algorithms, let’s refresh our memory on the structure of the TBB scheduler

shown in Figure 11-1. A more in-depth description of the TBB scheduler is found in

Chapter 9.

The global thread pool (market) is where all of the worker threads start before migrating

to task arenas. Threads migrate to task arenas that have tasks available to execute, and if

there are not enough threads to fill all of the slots in all of the arenas, the threads fill slots

in proportion to the number of slots in the arenas. For example, a task arena with twice as

many slots as another arena will receive roughly twice as many workers.

Note  If task priorities are in use, worker threads will fully satisfy the requests
from task arenas with higher priority tasks before filling slots in task arenas with
lower priority tasks. We discuss task priorities in more detail in Chapter 14. For the
rest of this chapter, we assume all tasks are of equal priority.

Chapter 11 Controlling the Number of Threads Used for Execution

315

Task arenas are created in one of two ways: (1) each master thread gets its own arena

by default when it executes a TBB algorithm or spawns tasks and (2) we can explicitly

create task arenas using class task_arena as described in more detail in Chapter 12.

If a task arena runs out of work, its worker threads return to the global thread pool to

look for work to do in other arenas, or to sleep if there’s no work in any arena.

�Interfaces for Controlling the Number of Threads
The TBB library was first released over a decade ago, and it has evolved over that time

to keep pace with the evolution of platforms and workloads. Now, TBB offers three

ways to control threads: task_scheduler_init, task_arena, and global_control. In

simple applications, we might be able to use just one of these interfaces to accomplish

everything we need, but in more complex applications, we may need to use a

combination of these interfaces.

�Controlling Thread Count with task_scheduler_init
When the TBB library was first released, there was only a single interface for controlling

the number of threads in an application: class task_scheduler_init. The interface of

this class is shown in Figure 11-2.

Figure 11-1.  The architecture of the TBB task scheduler

Chapter 11 Controlling the Number of Threads Used for Execution

316

A task_scheduler_init object can be used to (1) control when the task arena

associated with a master thread is constructed and destroyed; (2) set the number of

worker slots in that thread’s arena; (3) set the stack size for each worker thread in the

arena; and, if needed, (4) set an initial soft limit (see the side bar) on the number of

threads available in the global thread pool.

�Controlling Thread Count with task_arena
Later, as TBB was used on larger systems and in more complex applications, class

task_arena was added to the library to create explicit task arenas as a way to isolate work.

Work isolation is discussed in more detail in Chapter 12. In this chapter, we focus on how

class task_arena lets us set the number of slots available in those explicit arenas. The

functions in class task_arena used in this chapter are shown in Figure 11-3.

Figure 11-2.  The task_scheduler_init class interface

Chapter 11 Controlling the Number of Threads Used for Execution

317

Using the task_arena constructor, we can set the total number of slots in the arena

using the max_concurrency argument and the number of slots reserved exclusively for

master threads using the reserved_for_masters argument. When we pass a functor to

the execute method, the calling thread attaches to the arena, and any tasks spawned

from within the functor are spawned into that arena.

SOFT AND HARD LIMITS

The global thread pool has both a soft limit and a hard limit. The number of worker threads

available for parallel execution is equal to the minimum of the soft limit value and the hard

limit value.

The soft limit is a function of the requests made by the task_scheduler_init and

global_control objects in the application. The hard limit is a function of the number of

logical cores, P, on the system. At the time of the writing of this book, there is a hard limit of

256 threads for platforms where P <= 64, 4P for platforms where 64 < P <= 128, and 2P

for platforms where P > 128.

TBB tasks are executed non-preemptively on the TBB worker threads. So, oversubscribing a

system with many more TBB threads than logical cores doesn’t make a lot of sense – there

are just more threads for the OS to manage. If we want more TBB threads than the hard limit

allows, it is almost guaranteed that we are either using TBB incorrectly or trying to accomplish

something that TBB was not designed for.

Figure 11-3.  The task_arena class interface

Chapter 11 Controlling the Number of Threads Used for Execution

318

�Controlling Thread Count with global_control
After class task_arena was introduced to the library, TBB users began requesting an

interface to directly control the number of threads available in the global thread pool.

The class global_control was only a preview feature until TBB 2019 Update 4

(it is now a full feature - meaning it is available by default without needing to enable with

a preview macro definition) and is used to change the value of global parameters used

by the TBB task scheduler – including the soft limit on the number of threads available in

the global thread pool.

The class definition for class global_control is shown in Figure 11-4.

�Summary of Concepts and Classes
The concepts used in this chapter and the effects of the various classes are summarized

in this section. Don’t worry too much about understanding all of the details presented

here. In the next section, we present best-known methods for using these classes

to achieve specific goals. So, while the interactions described here may appear

complicated, typical usage patterns are much simpler.

The scheduler: The TBB scheduler refers to the global thread pool and at least one

task arena. Once a TBB scheduler is constructed, additional task arenas may be added

to it, incrementing a reference count on the scheduler. As task arenas are destroyed, they

decrement the reference count on the scheduler. If the last task arena is destroyed, the

TBB scheduler is destroyed, including the global thread pool. Any future uses of TBB

tasks will require construction of a new TBB scheduler. There is never more than one

TBB scheduler active in a process.

Figure 11-4.  The global_control class interface

Chapter 11 Controlling the Number of Threads Used for Execution

319

The hard thread limit: There is a hard limit on the total number of worker threads

that will be created by a TBB scheduler. This is a function of the hardware concurrency of

the platform (see Soft and Hard Limits for more details).

The soft thread limit: There is a dynamic soft limit on the number of worker threads

available to a TBB scheduler. A global_control object can be used to change the

soft limit directly. Otherwise, the soft limit is initialized by the thread that creates the

scheduler (see Soft and Hard Limits for more details).

The default soft thread limit: If a thread spawns a TBB task, whether directly by

using the low-level interface or indirectly by using a TBB algorithm or flow graph, a

TBB scheduler will be created if none exists at that time. If no global_control objects

have set an explicit soft limit, the soft limit is initialized to P-1, where P is the platform’s

hardware concurrency.

global_control objects: A global_control object affects, during its lifetime,

the soft limit on the number of worker threads that a TBB scheduler can use. At any

point in time, the soft limit is the minimum value of all of the max_concurrency_limit

values requested by the active global_control objects. If the soft limit was initialized

before any of the active global_control objects were constructed, this initial value

is also considered when finding the minimum value. When a global_control object

is destroyed, the soft limit may increase if the destroyed object was the limiting max_

concurrency_limit value. Creation of a global_control object does not initialize

the TBB scheduler nor increment the reference count on the scheduler. When the last

global_control object is destroyed, the soft limit is reset to the default soft thread limit.

task_scheduler_init objects: A task_scheduler_init object creates the task arena

associated with a master thread, but only if one does not already exist for that thread.

If one already exists, the task_scheduler_init object increments the reference count

of the task arena. When a task_scheduler_init object is destroyed, it decrements

the reference count, and if the new count is zero, the task arena is destroyed. If a TBB

scheduler does not exist when a task_scheduler_init object is constructed, a TBB

scheduler is created, and if the soft thread limit has not been set by a global_control

object, it is initialized using the constructor’s max_threads argument shown as follows:

P-1, where P is the number of logical cores if max_threads <= P - 1

max_threads otherwise

Chapter 11 Controlling the Number of Threads Used for Execution

320

task_arena objects: A task_arena object creates an explicit task arena that is not

associated with a specific master thread. The underlying task arena is not initialized

immediately during the constructor but lazily on first use (in our illustrations in

this chapter, we show the construction of the object not the underlying task arena

representation). If a thread spawns or enqueues a task into an explicit task_arena before

that thread has initialized its own implicit task arena, this action acts like a first use of the

TBB scheduler for that thread – including all of the side effects of a default initialization

of its implicit task arena and possible initialization of the soft limit.

�The Best Approaches for Setting the Number
of Threads
The combination of the task_scheduler_init, task_arena, and global_control classes

provides a powerful set of tools for controlling the number of threads that can participate

in the execution of parallel work in TBB.

The interaction of these objects can be confusing when combined in ways that fall

outside of the expected patterns. Therefore, in this section, we focus on common scenarios

and provide recommended approaches for using these classes. For simplicity in the figures

that we show in this section, we assume that we are executing on a system that supports

four logical cores. On such a system, the TBB library will, by default, create three worker

threads, and there will be four slots in any default task arenas, with one slot reserved for

a master thread. In our figures, we show the number of threads that are available in the

global thread pool and the number of slots in the task arena(s). To reduce clutter in the

figures, we do not show workers being assigned to slots. Downward arrows are used to

indicate the lifetimes of objects. A large “X” indicates the destruction of an object.

�Using a Single task_scheduler_init Object
for a Simple Application
The simplest, and perhaps most common, scenario is that we have an application with

a single main thread and no explicit task arenas. The application may have many TBB

algorithms, including use of nested parallelism, but does not have more than one user-

created thread – that is, the main thread. If we do nothing to control the number of

threads managed by the TBB library, an implicit task arena will be created for the main

thread when it first interacts with the TBB scheduler by spawning a task, executing a

Chapter 11 Controlling the Number of Threads Used for Execution

321

TBB algorithm, or by using a TBB flow graph. When this default task arena is created, the

global thread pool will be populated with one thread fewer than the number of logical

cores in the system. This most basic case, with all default initializations, is illustrated for

a system with four logical cores in Figure 11-5.

#include <tbb/tbb.h>

int main() {

tbb::parallel_for(…

);

flow::graph g;
/* construct and use graph */
g.wait_for_all();

tbb::parallel_for(…

};

return 0;

} X XDestroyed at end of program

first thread to
use scheduler

task arena created
for master thread

global thread pool

soft limit = 3

M

Task Arena

Figure 11-5.  Default initialization of the global thread pool and a single task
arena for the main thread

The sample code is available at Github in ch11/fig_11_05.cpp and is instrumented

so that it prints a summary of how many threads participate in each section of the code.

Many of the examples in this chapter are instrumented similarly. This instrumentation

is not shown in the source code in the figures but is available in the code at Github.

Running this example on a system with four logical cores results in output similar to

There are 4 logical cores.

4 threads participated in 1st pfor

4 threads participated in 2nd pfor

4 threads participated in flow graph

Chapter 11 Controlling the Number of Threads Used for Execution

322

If we want different behavior in this simplest scenario, class task_scheduler_

init is sufficient for controlling the number of threads. All we need to do is create a

task_scheduler_init object before our first use of TBB tasks and pass to it the desired

number of threads we want our application to use. An example of this is shown in

Figure 11-6. The construction of this object creates the task scheduler, populates the

global thread pool (market) with an appropriate number of threads (at least enough to

fill the slots in the task arena1), and constructs a single arena for the main thread with

the requested number of slots. This TBB scheduler is destroyed when the single task_

scheduler_init object is destroyed.

1�This is a slight oversimplification. See the earlier sidebar on soft and hard limits in this chapter to
learn more.

#include <tbb/tbb.h>

int main() {
tbb::task_scheduler_init init(8);

tbb::parallel_for(…

);

flow::graph g;
/* construct and use graph */
g.wait_for_all();

tbb::parallel_for(…

};

return 0;
} X X

Destroyed at end of scope

no global thread
pool exists

task arena created
for master thread

global thread pool

soft limit = 7

M

Task Arena

Figure 11-6.  Using a single task_scheduler_init object for a simple application

Chapter 11 Controlling the Number of Threads Used for Execution

323

Executing the code for Figure 11-6 will result in an output:

There are 4 logical cores.

8 threads participated in 1st pfor

8 threads participated in 2nd pfor

8 threads participated in flow graph

Note O f course, statically coding the number of threads to use is a really bad
idea. We are illustrating capabilities with easy to follow examples with specific
numbers. In order to write portable and more timeless code, we would almost
never recommend coding specific numbers.

�Using More Than One task_scheduler_init Object
in a Simple Application
A slightly more complicated use case is when we still have only a single application

thread but we want to execute with different numbers of threads during different phases

of the application. As long as we don’t overlap the lifetimes of task_scheduler_init

objects, we can change the number of threads during an application’s execution by

creating and destroying task_scheduler_init objects that use different max_threads

values. A common scenario where this is used is in scaling experiments. Figure 11-7

shows a loop that runs a test on 1 through P threads. Here, we create and destroy a series

of task_scheduler_init objects, and therefore TBB schedulers, that support different

numbers of threads.

Chapter 11 Controlling the Number of Threads Used for Execution

324

In Figure 11-7, each time we create the task_scheduler_init object init, the library

creates a task arena for the main thread with one slot reserved for a master thread and

i-1 additional slots. At the same time, it sets the soft limit and populates the global

thread pool with at least i-1 worker threads (remember that that if max_threads is < P-1,

it still creates P-1 threads in the global thread pool). When init is destroyed, the TBB

scheduler is destroyed, including the single task arena and the global thread pool.

The output from a run of the sample code, in which run_test() contains a

parallel_for with 400 milliseconds of work, results in output similar to

Test using 1 threads took 0.401094seconds

Test using 2 threads took 0.200297seconds

Test using 3 threads took 0.140212seconds

Test using 4 threads took 0.100435seconds

Figure 11-7.  A simple timing loop that runs a test using 1 through P threads

Chapter 11 Controlling the Number of Threads Used for Execution

325

�Using Multiple Arenas with Different Numbers of Slots
to Influence Where TBB Places Its Worker Threads
Let’s now explore even more complicated scenarios, where we have more than one task

arena. The most common way this situation arises is that our application has more than

one application thread. Each of these threads is a master thread and gets its own implicit

task arena. We can also have more than one task arena because we explicitly create

arenas using class task_arena as described in Chapter 12. Regardless of how we wind

up with multiple task arenas in an application, the worker threads migrate to task arenas

in proportion to the number of slots they have. And the threads only consider task arenas

that have tasks available to execute. As we noted earlier, we are assuming in this chapter

that tasks are all of equal priority. Task priorities, which can affect how threads migrate

to arenas, are described in more detail in Chapter 14.

Figure 11-8 shows an example with a total of three task arenas: two task arenas that

are created for master threads (the main thread and thread t) and one explicit task

arena, a. This example is contrived but shows code that is complicated enough to get our

points across.

In Figure 11-8, there is no attempt to control the number of threads in the application

or the number of slots in the task arenas. Therefore, each arena is constructed with the

default number of slots, and the global thread pool is initialized with the default number

of worker threads as shown in Figure 11-9.

Figure 11-8.  An application with three task arenas: the default arena for the main
thread, an explicit task_arena a, and a default task arena for master thread t

Chapter 11 Controlling the Number of Threads Used for Execution

326

tbb::parallel_for(…

);

tbb::task_arena a;

a.execute([]() {
tbb::parallel_for(

);
});

tbb::parallel_for(…

);

time

main thread

thread t

task arena
for t

first thread to
use scheduler

task arena a

acts like first
use of
scheduler
by main thread

X X

X

Xend of scope

end of scope

M

Task Arena

Task Arena

M

global thread pool

soft limit = 3

M

Task Arena

Figure 11-9.  A possible execution of the example with three task arenas

Because we now have more than one thread, we use the vertical position in

Figure 11-9 to indicate time; objects lower in the figure are constructed after objects

higher in the figure. The figure shows one possible execution order, and in our

illustration thread t is the first thread to spawn a task, by using a parallel_for, and so

it creates the TBB scheduler and the global thread pool. As complicated as the example

appears, the behavior is well defined.

As shown in Figure 11-9, the execution of the parallel_for algorithms in thread

t and task arena a might overlap. If so, the three threads in the global thread pool are

divided between them. Since there are three worker threads, one arena will initially get

one worker thread and the other one will initially get two worker threads. Which arena

gets fewer threads is up to the library’s discretion, and when either of these arenas runs

out of work, the threads can migrate to the other arena to help finish the remaining work

there. After the call to a.execute completes in the main thread in Figure 11-9, the final

parallel_for executes within the main thread’s default arena, with the main thread

filling its master slot. If at this point, the parallel_for in thread t is also complete, then

all three worker threads can migrate to the main thread’s arena to work on the final

algorithm.

Chapter 11 Controlling the Number of Threads Used for Execution

327

The default behavior shown in Figure 11-9 makes a lot of sense. We only have four

logical cores in our system, so TBB initializes the global thread pool with three threads.

When each task arena is created, TBB doesn’t add more threads to the global thread pool

because the platform still has the same number of cores. Instead, the three threads in the

global thread pool are dynamically shared among the task arenas.

The TBB library assigns threads to task arenas in proportion to the number of slots

they have. But we don’t have to settle for task arenas with the default number of slots. We

can control the number of slots in the different arenas by creating a task_scheduler_

init object for each application thread and/or by passing in a max_concurrency

argument to explicit task_arena objects. A modified example that does this is shown in

Figure 11-10.

Figure 11-10.  An application with three task arenas: the default arena for the
main thread will have a max concurrency of 4, the explicit task_arena a has
a max concurrency of 3, and the default arena for master thread t has a max
concurrency of 2.

Now when we execute the application, the TBB library will only be able to provide

at most one worker thread to thread t’s arena since it only has a single slot for a worker,

and the remaining two can be assigned to the parallel_for in arena a. We can see an

example execution that shows this in Figure 11-11.

Chapter 11 Controlling the Number of Threads Used for Execution

328

An execution of the sample code from Github, which tracks how many threads

participates in each section, shows an output of

There are 4 logical cores.

3 threads participated in arena pfor

4 threads participated in main pfor

2 threads participated in std::thread pfor

Because we have limited the number of slots available to thread t, the other threads

can no longer migrate from task_arena a to thread t after they finish their work.

We need to be prudent when we limit slots. In this simple example, we have skewed

execution in favor of task_arena a but have also restricted how many idle threads can

assist thread t.

We have now controlled the number of slots for threads in task arenas but still relied

on the default number of threads that TBB allocates in the global thread pool to fill these

slots. If we want to change the number of threads that are available to the fill the slots, we

need to turn to the class global_control.

tbb::task_scheduler_init i2(2);

tbb::parallel_for(…

);

tbb::task_scheduler_init i4(4);

tbb::task_arena a(3);

a.execute([]() {
tbb::parallel_for(

);
});

tbb::parallel_for(…

);

time

main thread

thread t

task arena a

task arena
for main

thread

first task_scheduler_init creates the global
thread pool and initializes the soft limit

X X Xend of scope

X
end of scope

M

Task Arena

M

Task Arena

M

global thread pool

soft limit = 3

Task Arena

Figure 11-11.  A possible execution of the example with three task arenas after we
have explicitly set the number of slots in the various arenas

Chapter 11 Controlling the Number of Threads Used for Execution

329

�Using global_control to Control How Many Threads Are
Available to Fill Arena Slots
Let’s revisit the example from the previous section one more time, but double the

number of threads in the global thread pool. Our new implementation is shown in

Figure 11-12.

We now use a global_control object to set the number of threads in the global

thread pool. Remember that a global_control object is used to affect global parameters

used by the scheduler; in this case, we are changing the max_allowed_parallelism

parameter. We also use a task_scheduler_init object in thread t and an argument to

the task_arena constructor to set the maximum number of threads that can be assigned

to each task arena. Figure 11-13 shows an example execution on our four-core machine.

The application now creates seven worker threads (eight total threads minus the already

available master thread), and the worker threads are divided up unequally between the

Figure 11-12.  An application with three task arenas and a global_control object

Chapter 11 Controlling the Number of Threads Used for Execution

330

explicit task_arena a and the default arena for thread t. Since we do nothing special for

the main thread, the final parallel_for uses its default task arena with P slots.

Executing the sample code for Figure 11-13 yields an output similar to

There are 4 logical cores.

6 threads participated in arena pfor

4 threads participated in main pfor

2 threads participated in std::thread pfor

�Using global_control to Temporarily Restrict
the Number of Available Threads
Another common scenario is to use a global_control object to temporarily change the

number of threads for a specific phase of an application as shown in Figure 11-14. In

this example, the master thread creates a thread pool and task arena that can support 12

worker threads by constructing a task_scheduler_init object. But a global_control

object is used to restrict a specific parallel_for to only seven worker threads. While the

task arena retains 12 slots during the whole application, the number of threads available

in the thread pool is temporarily reduced, so at most seven of the slots in the task arena

can be filled with workers.

tbb::task_scheduler_init i2(nt/4);

tbb::parallel_for(…

);

// mp is max_allow_parallelism
// nt is 8
tbb::global_control gc(mp, nt);

tbb::task_arena a(3*nt/4);

a.execute([]() {
tbb::parallel_for(

);
});

tbb::parallel_for(…

);

time

main thread

thread t

soft limit = 7

first thread to use scheduler,
but soft limit is set

X
end of scope

task arena a

acts like first
use of
scheduler
by main thread

X X Xend of scope

M
Task Arena

M
Task Arena

global thread pool

soft limit = 7M

Task Arena

Figure 11-13.  A possible execution of the example with three task arenas after we
have explicitly set the soft limit using a global_control object

Chapter 11 Controlling the Number of Threads Used for Execution

331

When the global_control object is destroyed, the soft limit is recalculated, using

any remaining global_control objects. Since there are none, the soft limit is set to the

default soft limit. This perhaps unexpected behavior is important to note, since we need

to create an outer global_control object if we want to maintain 11 threads in the global

thread pool. We show this in Figure 11-15.

In Figures 11-14 and 11-15, we cannot use a task_scheduler_init object to

temporarily change the number of threads because a task arena already exists for the

main thread. If we create another task_scheduler_init object in the inner scope, it

only increments the reference count on that task arena and does not create a new one.

Therefore, we use a global_control object to restrict the number of threads that are

available instead of reducing the number of arena slots.

If we execute the code in Figure 11-14, we see an output similar to

There are 4 logical cores.

12 threads participated in 1st pfor

8 threads participated in 2nd pfor

4 threads participated in 3rd pfor

#include <tbb/tbb.h>

int main() {

tbb::task_scheduler_init i1(12);

tbb::parallel_for(…

);
{
tbb::global_control g2(mp, 8);

tbb::parallel_for(…

);
}

tbb::parallel_for(…

);
return 0;

}

no global thread
pool exists

task arena created
for master thread

changes
max_allowed_
parallelism

Xend of scope X

end of scope (max_allowed_parallelism=8 removed
returns to default soft limit)

time

M

Task Arena

global thread pool

soft limit = 11

global thread pool

soft limit = 7

global thread pool

soft limit = 3

Figure 11-14.  Using a global_control object to temporarily change the number
of threads available for a specific algorithm instance and then return to default
setting

Chapter 11 Controlling the Number of Threads Used for Execution

332

After adding an outer global_control object, as done in Figure 11-15, the resulting

output is

There are 4 logical cores.

12 threads participated in 1st pfor

8 threads participated in 2nd pfor

12 threads participated in 3rd pfor

�When NOT to Control the Number of Threads
When implementing a plugin or a library, its best to avoid using global_control objects.

These objects affect global parameters, so our plugin or library function will change the

number of threads available to all of the components in the application. Given the local

view of a plugin or library, that’s probably not something it should do. In Figure 11-14, we

temporarily changed the number of threads in the global thread pool. If we did something

like this from inside a library call, it would not only affect the number of threads available

in the task arena of the calling thread, but every task arena in our application. How can a

library function know this is the right thing to do? It very likely cannot.

#include <tbb/tbb.h>

int main() {
tbb::global_control gc1(mp, 12);
tbb::task_scheduler_init i1(12);

tbb::parallel_for(…

);
{
tbb::global_control g2(mp, 8);

tbb::parallel_for(…

);
}

tbb::parallel_for(…

);
return 0;

}

no global thread
pool exists

task arena created
for master thread

changes
max_allowed_
parallelism

X
end of scope

X

end of scope (max_allowed_parallelism=8 removed
max_allowed_parallelism=12)

soft limit = 11

time

M

Task Arena

global thread pool

soft limit = 11

global thread pool

soft limit = 11

global thread pool

soft limit = 7

Figure 11-15.  Using global_control objects to temporarily change the number of
threads available for a specific algorithm instance

Chapter 11 Controlling the Number of Threads Used for Execution

333

We recommend that libraries do not meddle with global parameters and leave that

only to the main program. Developers of applications that allow plugins should clearly

communicate to plugin writers what the parallel execution strategy of the application is,

so that they can implement their plugins appropriately.

SETTING THE STACK SIZE FOR WORKER THREADS

The task_scheduler_init and global_control classes can also be used to set the

stack size for the worker threads. The interaction of multiple objects are the same as when

used to set the number of threads, with one exception. When there is more than one global_

control object that sets the stack size, the stack size is the maximum, not the minimum,

of the requested values.

The second argument to the task_scheduler_init object is thread_stack_size.

A value of 0, which is the default, instructs the scheduler to use the default for that platform.

Otherwise, the provided value is used.

The global_control constructor accepts a parameter and value. If the parameter argument

is thread_stack_size, then the object changes the value for the global stack size

parameter. Unlike the max_allowed_paralleism value, the global thread_stack_size

value is the maximum of the requested values.

Why change the default stack size?

A thread’s stack has to be large enough for all of memory that is allocated on its stack,

including all of the local variables on its call stack. When deciding how much stack is needed,

we have to consider the local variables in our task bodies but also how recursive execution of

task trees might lead to deep recursion, especially if we have implemented our own task-

based algorithms using task blocking. If we don’t remember how this style can lead to an

explosion in stack usage, we can look back at the section, The low-level task interface: part
one/task blocking in Chapter 10.

Since the proper stack size is application dependent, there is unfortunately no good rule of

thumb to share. TBB’s OS-specific default is already a best guess at what a thread typically

needs.

Chapter 11 Controlling the Number of Threads Used for Execution

334

�Figuring Out What’s Gone Wrong
The task_scheduler_init, task_arena, and global_control classes were introduced

over time into the TBB library to solve specific problems. The task_scheduler_init

class was sufficient in the early days of TBB, when few applications were parallel, and

when they were, there was often only a single application thread. The task_arena class

helped users manage isolation in applications as they became more complex. And the

global_control class gave users better control of the global parameters used by the

library to further manage complexity. Unfortunately, these features were not created

together as part of one cohesive design. The result is that when used outside of the

scenarios we have previously outlined, their behaviors can sometimes be nonintuitive,

even if they are well defined.

The two most common sources of confusion are (1) knowing when a TBB scheduler

is created by default and (2) races to set the global thread pool’s soft limit.

If we create a task_scheduler_init object it either creates a TBB scheduler or else

increments the reference count on the scheduler if it already exists. Which interfaces in

the TBB library act like a first use of the TBB scheduler can be hard to keep straight. It’s

very clear that executing any of the TBB algorithms, using a TBB flow graph or spawning

tasks, is a use of the TBB scheduler. But as we noted early, even executing tasks in an

explicit task_arena is treated as a first use of the TBB scheduler, which impacts not only

the explicit task arena, but may impact the calling thread’s default task arena. What about

using thread local storage or using one of the concurrent containers? These do not count.

The best advice, other than paying close attention to the implications of the interfaces

being used, is that if an application uses an unexpected number of threads – especially if

it uses the default number of threads when you think you have changed the default – is to

look for places where a default TBB scheduler may have been inadvertently initialized.

The second common cause of confusion is races to set the soft limit on the number

of available threads. For example, if two application threads execute in parallel and both

create a task_scheduler_init object, the first one to create its object will set the soft

limit. In Figure 11-16, two threads executing concurrently in the same application

both create task_scheduler_init objects – one requesting max_threads=4 and the other

max_threads=8. What happens with the task arenas is simple: each master thread gets

its own task arena with the number of slots it requested. But what if the soft limit on the

number of threads in the global thread pool has not been set yet? How many threads

does the TBB library populate the global thread pool with? Should it create 3 or 7 or

3+7=10 or P-1 or …?

Chapter 11 Controlling the Number of Threads Used for Execution

335

As we outlined in our description of task_scheduler_init, it does none of these

things. Instead, it uses whichever request comes first. Yes, you read that right! If thread

1 just so happens to create its task_scheduler_init object first, we get a TBB scheduler

with a global thread pool with three worker threads. If thread 2 creates its task_

scheduler_init object first, we get a thread pool with seven worker threads. Our two

threads may be sharing three worker threads or seven worker threads; it all depends on

which one wins the race to create the TBB scheduler first!

We shouldn’t despair though; almost all of the potential pitfalls that come along with

setting the number of threads can be addressed by falling back to the common usage

patterns described earlier in this chapter. For example, if we know that our application

may have a race like that shown in Figure 11-16, we can make our desires crystal clear by

setting the soft limit in the main thread using a global_control object.

�Summary
In this chapter, we provided a brief recap of the structure of the TBB scheduler before

introducing the three classes used to control the number of threads used for parallel

execution: class task_scheduler_init, class task_arena, and class global_

control. We then described common use cases for controlling the number of threads

used by parallel algorithms – working from simple cases where there is a single main

thread and a single task arena to more complex cases where there are multiple master

threads and multiple task arenas. We concluded by pointing out that while there are

potential gotchas in using these classes, we can avoid these by carefully using the classes

to make our intention clear without relying on default behaviors or the winners of races.

tbb::task_scheduler_init i1(4);

tbb::parallel_for(…

);

time

end of scope

tbb::task_scheduler_init i1(8);

tbb::parallel_for(…

);

end of scope

thread 1 thread 2

when ref count
reaches zero

M

Task Arena
M

Task Arena

global thread pool

soft limit = ?

XXX

Figure 11-16.  The concurrent use of two task_scheduler_init objects

Chapter 11 Controlling the Number of Threads Used for Execution

336

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 11 Controlling the Number of Threads Used for Execution

http://creativecommons.org/licenses/by-nc-nd/4.0/

337
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_12

CHAPTER 12

Using Work Isolation
for Correctness and
Performance
Anyone who has been around children (or who acts like a child) knows that sometimes

the only way to stop children from bothering each other is to separate them. The same

thing can be said of TBB tasks and algorithms. When tasks or algorithms just can’t get

along, we can separate them using work isolation.

For example, when using nested parallelism, we need – in some limited situations –

to create work isolation in order to ensure correctness. In this chapter, we walk through

scenarios where this need arises and then provide a set of rules for determining when

we need isolation for correctness. We also describe how the isolate function is used to

create work isolation.

In other cases, we may want to create work isolation so that we can constrain where

tasks execute for performance reasons by using explicit task arenas. Creating isolation in

these cases is a double-edged sword. On one hand, we will be able to control things like

the number of threads that will participate in different task arenas as a way to favor some

tasks over others, or to use hooks in the TBB library to pin the threads to specific cores

to optimize for locality. On the other hand, explicit task arenas make it more difficult for

threads to participate in work outside of the arena they are currently assigned to. We discuss

how to use class task_arena when we want to create isolation for performance reasons.

We will also caution that while class task_arena can be used to create isolation to address

correctness problems too, its higher overhead makes it less desirable for that purpose.

Work isolation is a valuable feature when required and used properly, but, as we will

see throughout this chapter it needs to be used cautiously.

338

�Work Isolation for Correctness
The TBB scheduler is designed to keep worker threads, and their underlying cores, as

busy as possible. If and when a worker thread becomes idle, it steals work from another

thread so that it has something to do. When it steals, a thread is not aware of what

parallel algorithm, loop or function originally created the task that it steals. Usually,

where a task comes from is irrelevant, and so the best thing for the TBB library to do is to

treat all available tasks equally and process them as quickly as possible.

However, if our application uses nested parallelism, the TBB library can steal tasks

in a way that leads to an execution order that might not be expected by a developer. This

execution order is not inherently dangerous; in fact, in most cases, it is exactly what

we would like to happen. But if we make incorrect assumptions about how tasks may

execute, we can create patterns that lead to unexpected or even disastrous results.

A small example that demonstrates this issue is shown in Figure 12-1. In the code,

there are two parallel_for loops. In the body of the outer loop, a lock on mutex m

is acquired. The thread that acquires this lock calls a second nested parallel_for

loop while holding the lock. A problem arises if the thread that acquires the lock on m

becomes idle before its inner loop is done; this can happen if worker threads steal away

iterations but have not yet finished them when the master thread runs out of work.

The master thread cannot simply exit the parallel_for, since it’s not done yet. To be

efficient, this thread doesn’t just idly spin, waiting for the other threads to finish their

work; who knows how long that could take? Instead, it keeps its current task on its stack

and looks for additional work to keep itself busy until it can pick up where it left off. If

this situation arises in Figure 12-1, there are two kinds of tasks in the system at the point

that the thread is looking for work to steal – inner loop tasks and outer loop tasks. If the

thread happens to steal and execute a task from the outer parallel_for, it will attempt

to acquire a lock on m again. Since it already holds a lock on m, and a tbb::spin_mutex is

not a recursive lock, there is a deadlock. The thread is trapped waiting for itself to release

the lock!

Chapter 12 Using Work Isolation for Correctness and Performance

339

After seeing this example, two questions commonly arise: (1) does anyone really

write code like this? And, (2) can a thread really wind up stealing a task from the outer

loop? The answer to both of these questions is, unfortunately, yes.

People in fact do write code like this – almost always unintentionally though. One

common way this pattern might arise is if a lock is held while a library function is

called. A developer may assume they know what a function does, but if they are not

familiar with its implementation, they can be wrong. If the library call contains nested

parallelism, the case shown in Figure 12-1 can be the result.

And yes, work stealing can cause this example to deadlock. Figure 12-2 shows how

our example might fall into this terrible state.

Figure 12-1.  Holding a lock while executing a nested parallel_for

Chapter 12 Using Work Isolation for Correctness and Performance

340

In Figure 12-2(a), thread t0 starts the outer loop and acquires the lock on m. Thread

t0 then starts the nested parallel_for and executes the left half of its iteration space.

While thread t0 is busy, three other threads t1, t2, and t3 participate in the execution of

tasks in the arena. Threads t1 and t2 steal outer loop iterations and are blocked waiting to

acquire the lock on m, which t0 currently holds. Meanwhile, thread t3 randomly selects

t0 to steal from and starts executing the right half of its inner loop. This is where things

start to get interesting. Thread t0 completes the left half of the inner loop’s iterations and

therefore will steal work to prevent itself from becoming idle. At this point it has two

split outer
parallel_for

split outer
parallel_for

split outer
parallel_for

outer parallel_for
lock l(m);

split inner
parallel_for

split inner
parallel_for

split inner
parallel_for

… …

outer parallel_for
lock l(m);

outer parallel_for
lock l(m);

outer parallel_for

t0

t1t2

t3

t0?

split outer
parallel_for

split outer
parallel_for

split outer
parallel_for

outer parallel_for
lock l(m);

split inner
parallel_for

split inner
parallel_for

split inner
parallel_for

… …

outer parallel_for
lock l(m);

outer parallel_for
lock l(m);

outer parallel_for
lock l(m);

t0

t1t2

t3

t0

t0

Deadlock!!!

Figure 12-2.  One potential execution of the task tree generated by the code in
Figure 12-1

Chapter 12 Using Work Isolation for Correctness and Performance

341

options: (1) if it randomly chooses thread t3 to steal from, it will execute more of its own

inner loop or (2) if it randomly chooses thread t1 to steal from, it will execute one of the

outer loop iterations. Remember that by default, the scheduler treats all tasks equally,

so it doesn’t prefer one over the other. Figure 12-2(b) shows the unlucky choice where it

steals from thread t1 and becomes deadlocked trying to acquire the lock it already holds

since its outer task is still on its stack.

Another example that shows correctness issues is shown in Figure 12-3. Again, we

see a set of nested parallel_for loops, but instead of a deadlock, we get unexpected

results because of the use of thread local storage. In each task, a value is written to a

thread local storage location, local_i, an inner parallel_for loop is executed, and then

the thread local storage location is read. Because of the inner loop, a thread may steal

work if it becomes idle, write another value to the thread local storage location, and then

return to the outer task.

Figure 12-3.  Nested parallelism that can cause unexpected results due to the use
of thread local storage

Chapter 12 Using Work Isolation for Correctness and Performance

342

The TBB development team uses the term moonlighting1 for situations in which a

thread has unfinished child tasks in flight and steals unrelated tasks to keep itself busy.

Moonlighting is usually a good thing! It means that our threads are not sitting around

idle. It’s only in limited situations when things go awry. In both of our examples, there

was a bad assumption. They both assumed – not surprisingly – that because TBB has

a non-preemptive scheduler, the same thread could never be executing an inner task

and then start executing an outer task before it completed the inner task. As we’ve seen,

because a thread can steal work while it’s waiting in nested parallelism, this situation can

in fact occur. This typically benign behavior is only dangerous if we incorrectly depend

on the thread executing the tasks in a mutually exclusive way. In the first case, a lock was

held while executing nested parallelism – allowing the thread to pause the inner task and

pick up an outer task. In the second case, the thread accessed thread local storage before

and after nested parallelism and assumed the thread would not moonlight in between.

As we can see, these examples are different but share a common misconception. In

the blog “The Work Isolation Functionality in Intel Threading Building Blocks” that is

listed in the “For More Information” section at the end of this chapter, Alexei Katranov

provides a three-step checklist for deciding when work isolation is needed to ensure

correctness:

	 1.	 Is nested parallelism used (even indirectly, through third party

library calls)? If not, isolation is not needed; otherwise, go to the

next step.

	 2.	 Is it safe for a thread to reenter the outer level parallel tasks (as if

there was recursion)? Storing to a thread local value, re-acquiring

a mutex already acquired by this thread, or other resources

that should not be used by the same thread again can all cause

problems. If reentrance is safe, isolation is not needed; otherwise,

go to the next step.

	 3.	 Isolation is needed. Nested parallelism has to be called inside an

isolated region.

1�From Collins Dictionary: to work at a secondary job, esp. at night, and often illegitimately.

Chapter 12 Using Work Isolation for Correctness and Performance

343

�Creating an Isolated Region with
this_task_arena::isolate
When we need isolation for correctness, we can use one of the isolate functions in the

this_task_arena namespace:

Figure 12-4 shows how to use this function to add an isolated region around the

nested parallel_for from Figure 12-1. Within an isolated region, if a thread becomes

idle because it must wait – for example at the end of a nested parallel_for – it will only

be allowed to steal tasks spawned from within its own isolated region. This fixes our

deadlock problem, because if a thread steals while waiting at the inner parallel_for in

Figure 12-4, it will not be allowed to steal an outer task.

Chapter 12 Using Work Isolation for Correctness and Performance

344

When a thread becomes blocked within an isolated region, it will still randomly

choose a thread from its task arena to steal from, but now must inspect tasks in that

victim thread’s deque to be sure it steals only tasks that originated from within its

isolated region.

The main properties of this_task_arena::isolate are nicely summarized, again in

Alexei’s blog, as follows:

•	 The isolation only constrains threads that enter or join an isolated

region. Worker threads outside of an isolated region can take any task

including a task spawned in an isolated region.

•	 When a thread without isolation executes a task spawned in an

isolated region, it joins the region of this task and becomes isolated

until the task is complete.

Figure 12-4.  Using the isolate function to prevent moonlighting in the case of
nested parallelism

Chapter 12 Using Work Isolation for Correctness and Performance

345

•	 Threads waiting inside an isolated region cannot process tasks

spawned in other isolated regions (i.e., all regions are mutually

isolated). Moreover, if a thread within an isolated region enters a

nested isolated region, it cannot process tasks from the outer isolated

region.

�Oh No! Work Isolation Can Cause Its Own Correctness Issues!

Unfortunately, we can’t just indiscriminately apply work isolation. There are

performance implications, which we will get to later, but more importantly, work

isolation itself can cause deadlock if used incorrectly! Here we go again…

In particular, we have to be extra careful when we mix work isolation with TBB

interfaces that separate spawning tasks from waiting for tasks – such as task_group and

flow graphs. A task that calls a wait interface in one isolated region cannot participate in

tasks spawned in a different isolated region while it waits. If enough threads get stuck in

such a position, the application might run out of threads and forward progress will stop.

Let’s consider the example function shown in Figure 12-5. In the function

splitRunAndWait, M tasks are spawned in task_group tg. But each spawn happens

within a different isolated region.

Chapter 12 Using Work Isolation for Correctness and Performance

346

Figure 12-5.  A function that calls run and wait on task_group tg. The call to run
is made from within an isolated region.

If we call function fig_12_5 directly, as is done in Figure 12-5, there is no problem.

The call to tg.wait in splitRunAndWait is not inside of an isolated region itself, so the

master thread and the worker threads can help with the different isolated regions and

then move to other ones when they are finished.

But what if we change our main function to the one in Figure 12-6?

Chapter 12 Using Work Isolation for Correctness and Performance

347

Now, the calls to splitRunAndWait are each made inside of different isolated regions,

and subsequently the calls to tg.wait are made in those isolated regions. Each thread

that calls tg.wait has to wait until its tg is finished but cannot steal any of the tasks

that belong to its tg or any other task_group, because those tasks were spawned from

different isolated regions! If M is large enough, we will likely wind up with all of our

threads waiting in calls to tg.wait, with no threads left to execute any of the related

tasks. So our application deadlocks.

Figure 12-6.  A function that calls run and wait on task_group tg. The call to run
is made from within an isolated region.

Chapter 12 Using Work Isolation for Correctness and Performance

348

If we use an interface that separates spawns from waits, we can avoid this issue by

making sure that we always wait in the same isolated region from which we spawn the

tasks. We could, for example, rewrite the code from Figure 12-6 to move the call to run

out into the outer region as shown in Figure 12-7.

Now, even if our main function uses a parallel loop and isolation, we no longer

have a problem, since each thread that calls tg.wait will be able to execute the tasks

from its tg:

Figure 12-7.  A function that calls run and wait on task_group tg. The calls to
run and wait are now both made outside of the isolated region.

Chapter 12 Using Work Isolation for Correctness and Performance

349

�Even When It Is Safe, Work Isolation Is Not Free

In addition to potential deadlock issues, work isolation does not come for free from a

performance perspective either, so even when it is safe to use, we need to use it judiciously. A

thread that is not in an isolated region can choose any task when it steals, which means it can

quickly pop the oldest task from a victim thread’s deque. If the victim has no tasks at all, it

can also immediately pick another victim. However, tasks spawned in an isolated region, and

their children tasks, are tagged to identify the isolated region they belong to. A thread that is

executing in an isolated region must scan a chosen victim’s deque to find the oldest task that

belongs to its isolated region – not just any old task will do. And the thread only knows if a

victim thread has no tasks from its isolated region after scanning all of the available tasks and

finding none from its region. Only then will it pick another victim to try to steal from. Threads

stealing from within an isolated region have more overhead because they need to be pickier!

�Using Task Arenas for Isolation: A Double-Edged
Sword
Work isolation restricts a thread’s options when it looks for work to do. We can isolate

work using the isolate function as described in the previous section, or we can use

class task_arena. The subset of the class task_arena interface relevant to this

chapter is shown in Figure 12-8.

Figure 12-8.  A subset of the class task_arena public interface

Chapter 12 Using Work Isolation for Correctness and Performance

350

It almost never makes sense to use class task_arena instead of the isolate

function to create isolation solely to ensure correctness. That said, there are still

important uses for class task_arena. Let’s look at the basics of class task_arena and,

while doing so, uncover its strengths and weaknesses.

With the task_arena constructor, we can set the total number of slots for threads

in the arena using the max_concurrency argument and the number of those slots that

are reserved exclusively for master threads using the reserved_for_masters argument.

More details on how task_arena can be used to control the number of threads used by

computations are provided in Chapter 11.

Figure 12-9 shows a small example where a single task_arena ta2 is created, with

max_concurrency=2, and a task that executes a parallel_for is executed in that arena.

When a thread calls a task_arena’s execute method, it tries to join the arena as a

master thread. If there are no available slots, it enqueues the task into the task arena.

Otherwise, it joins the arena and executes the task in that arena. In Figure 12-9, the

thread will join task_arena ta2, start the parallel_for, and then participate in

executing tasks from the parallel_for. Since the arena has a max_concurrency of 2, at

most, one additional worker thread can join in and participate in executing tasks in that

task arena. If we execute the instrumented example from Figure 12-9 available at Github,

we see

There are 4 logical cores.

2 threads participated in ta2

Already we can start to see differences between isolate and class task_arena.

It is true that only threads in ta2 will be able to execute tasks in ta2, so there is work

isolation, but we were also able to set the maximum number of threads that can

participate in executing the nested parallel_for.

Figure 12-9.  A task_arena that has a maximum concurrency of 2

Chapter 12 Using Work Isolation for Correctness and Performance

351

Figure 12-10 takes this a step further by creating two task arenas, one with a

max_concurrency of 2 and the other with a max_concurrency of 6. A parallel_invoke

is then used to create two tasks, one that executes a parallel_for in ta2 and another

that executes a parallel_for in ta6. Both parallel_for loops have the same number of

iterations and spin for the same amount of time per iteration.

We have effectively divided up our eight threads into two groups, letting two of the

threads work on the parallel_for in ta2 and six of the threads work on the parallel_

for in ta6. Why would we do this? Perhaps we think the work in ta6 is more critical.

Figure 12-10.  Using two task_arena objects to use six threads for one loop and
two for another

Chapter 12 Using Work Isolation for Correctness and Performance

352

If we execute the code in Figure 12-10 on a platform with eight hardware threads, we

will see output similar to

ta2_time == 0.500409

ta6_time == 0.169082

There are 8 logical cores.

2 threads participated in ta2

6 threads participated in ta6

This is the key difference between using isolate and task_arena to create isolation.

When using task_arena, we are almost always more concerned with controlling the

threads that participate in executing the tasks, rather than in the isolation itself.

The isolation is not created for correctness but instead for performance. An explicit

task_arena is a double-edged sword – it lets us control the threads that participate in the

work but also builds a very high wall between them. When a thread leaves an isolated region

created by isolate, it is free to participate in executing any of the other tasks in its arena.

When a thread runs out of work to do in an explicit task_arena, it must travel back to the

global thread pool and then find another arena that has work to do and has open slots.

Note  We just offered a KEY rule of thumb: Use isolate primarily to aid in
correctness; use task_arenas primarily for performance.

Let’s consider our example in Figure 12-10 again. We created more slots in

task_arena ta6. As a result, the parallel_for in ta6 completed much faster than the

parallel_for in ta2. But after the work is done in ta6, the threads assigned to that arena

return to the global thread pool. They are now idle but unable to help with the work in

ta2 – the arena has only two slots for threads and they are already full!

The class task_arena abstraction is very powerful, but the high wall it creates

between threads limits its practical applications. Chapter 11 discusses in more detail

how class task_arena can be used alongside class task_scheduler_init and class

global_control to control the number of threads that are available to specific parallel

algorithms in a TBB application. Chapter 20 shows how we can use task_arena objects

to partition work and schedule the work on specific cores in a Non-Uniform Memory

Access (NUMA) platform to tune for data locality. In both chapters, we will see that

task_arena is very useful but has drawbacks.

Chapter 12 Using Work Isolation for Correctness and Performance

353

�Don’t Be Tempted to Use task_arenas to Create Work
Isolation for Correctness
In the specific use cases described in Chapters 11 and 20, the number of threads and

even their placement on to particular cores are tightly controlled – and therefore we

want to have different threads in the different arenas. In the general case though, the

need for task_arena objects to manage and migrate threads just creates overhead.

As an example, let’s again look at a nested set of parallel_for loops, but now without

a correctness problem. We can see the code and a possible task tree in Figure 12-11. If we

execute this set of loops, all of the tasks will be spawned into the same task arena. When

we used isolate in the previous section, all of the tasks were still kept in the same arena,

but threads isolated themselves by inspecting tasks before they stole them to make sure

they were allowed to take them according to isolation constraints.

split outer
parallel_for

split outer
parallel_for

split outer
parallel_for

outer parallel_for body

split inner
parallel_for

split inner
parallel_for

split inner
parallel_for

… … … …

outer parallel_for body

split inner
parallel_for

split inner
parallel_for

split inner
parallel_for

… … … …

outer parallel_for body

split inner
parallel_for

split inner
parallel_for

split inner
parallel_for

… … … …

outer parallel_for body

split inner
parallel_for

split inner
parallel_for

split inner
parallel_for

… … … …

Figure 12-11.  An example of two nested parallel_for loops: (a) the source code
and (b) the task tree

Chapter 12 Using Work Isolation for Correctness and Performance

354

Now, let’s modify this simple nested loop example to create isolation using explicit

task arena objects. If we want each thread that executes an iteration in the outer loop to

only execute tasks from its own inner loop, which we easily achieved by using isolate in

Figure 12-4, we can create local nested explicit task_arena instances within each outer

body as shown in Figure 12-12(a) and Figure 12-12(b).

split outer
parallel_for

split outer
parallel_for

split outer
parallel_for

outer parallel_for body

split inner
parallel_for

split inner
parallel_for

split inner
parallel_for

… … … …

outer parallel_for body

split inner
parallel_for

split inner
parallel_for

split inner
parallel_for

… … … …

outer parallel_for body

split inner
parallel_for

split inner
parallel_for

split inner
parallel_for

… … … …

outer parallel_for body

split inner
parallel_for

split inner
parallel_for

split inner
parallel_for

… … … …

local nested

outer default arena

local nested local nested local nested

Figure 12-12.  Creating an explicit task_arena for each outer loop body execution.
Now, while executing in the inner arena, threads will be isolated from the outer
work and unrelated inner loops.

Chapter 12 Using Work Isolation for Correctness and Performance

355

If M == 4, there will be a total of five arenas, and when each thread calls

nested.execute, it will be isolated from outer loop tasks as well as unrelated inner loop

tasks. We have created a very elegant solution, right?

Of course not! Not only are we creating, initializing, and destroying several

task_arena objects, these arenas need to be populated with worker threads. As

described in Chapter 11, worker threads fill task arenas in proportion to the number of

slots they have. If we have a system with four hardware threads, each arena will only get

one thread! What’s the point in that? If we have more threads, they will be evenly divided

among the task arenas. As each inner loop finishes, its threads will return to the global

thread pool and then migrate to another task arena that has not yet finished. This is not a

cheap operation!

Having many task arenas and migrating threads between them is simply not an

efficient way to do load balancing. Our toy example in Figure 12-12(b) is shown with only

four outer iterations; if there were many iterations, we would create and destroy task_

arenas in each outer task. Our four worker threads would scramble around from task

arena to task arena looking for work! Stick with the isolate function for these cases!

�Summary
We have now learned how to separate TBB tasks and algorithms when they just can’t get

along. We saw that nested parallelism combined with the way that stealing occurs in TBB

can lead to dangerous situations if we are not careful. We then saw that the this_task_

arena::isolate function can be used to address these situations, but it too must be

used carefully or else we can create new problems.

We then discussed how we can use class task_arena when we want to create

isolation for performance reasons. While class task_arena can be used to create

isolation to address correctness, its higher overheads make it less desirable for that

purpose. However, as we see in Chapters 11 and 20, class task_arena is an essential

part of our toolbox when we want to control the number of threads used by an algorithm

or to control the placement of threads on to cores.

Chapter 12 Using Work Isolation for Correctness and Performance

356

�For More Information
Alexei Katranov, “The Work Isolation Functionality in Intel Threading Building Blocks

(Intel TBB),” https://software.intel.com/en-us/blogs/2018/08/16/the-work-

isolation-functionality-in-intel-threading-building-blocks-intel-tbb.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 12 Using Work Isolation for Correctness and Performance

https://software.intel.com/en-us/blogs/2018/08/16/the-work-isolation-functionality-in-intel-threading-building-blocks-intel-tbb
https://software.intel.com/en-us/blogs/2018/08/16/the-work-isolation-functionality-in-intel-threading-building-blocks-intel-tbb
http://creativecommons.org/licenses/by-nc-nd/4.0/

357
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_13

CHAPTER 13

Creating Thread-to-Core
and Task-to-Thread
Affinity
When developing parallel applications with the Threading Building Blocks library, we

create tasks by using the high-level execution interfaces or the low-level APIs. These

tasks are scheduled by the TBB library onto software threads using work stealing. These

software threads are scheduled by the Operating System (OS) onto the platform’s cores

(hardware threads). In this chapter, we discuss the features in TBB that let us influence

the scheduling choices made by the OS and by TBB. Thread-to-core affinity is used when

we want to influence the OS so that it schedules the software threads onto particular

core(s). Task-to-thread affinity is used when we want to influence the TBB scheduler so

that it schedules tasks onto particular software threads. Depending on what we are trying

to achieve, we may be interested in one kind of affinity or the other, or a combination

of both.

There can be different motivations for creating affinity. One of the most common

motivations is to take advantage of data locality. As we have repeatedly noted in this

book, data locality can have a huge impact on the performance of a parallel application.

The TBB library, its high-level execution interfaces, its work-stealing scheduler, and

its concurrent containers have all been designed with locality in mind. For many

applications, using these features will lead to good performance without any manual

tuning. Sometimes though, we will need to provide hints or take matters completely into

our own hands so that the schedulers, in TBB and the OS, more optimally schedule work

near its data. In addition to data locality, we might also be interested in affinity when

using heterogeneous systems, where the capabilities of cores differ, or when software

threads have different properties, such as higher or lower priorities.

358

In Chapter 16, the high-level features for data locality that are exposed by the

TBB parallel algorithms are presented. In Chapter 17, the features for tuning cache

and memory use in TBB flow graphs are discussed. In Chapter 20, we showed how

to use features of the TBB library to tune for Non-Uniform Memory Access (NUMA)

architectures. For many readers, the information in those chapters will be sufficient

to accomplish the specific tasks they need to perform to tune their applications. In

this chapter, we focus on the lower-level, fundamental support provided by the TBB’s

scheduler and tasks that are sometimes abstracted by the high-level features described

in those chapters or sometimes used directly in those chapters to create affinity.

�Creating Thread-to-Core Affinity
All of the major operating systems provide interfaces that allow users to set the affinity of

software threads, including pthread_setaffinity_np or sched_setaffinity on Linux

and SetThreadAffinityMask on Windows. In Chapter 20, we use the Portable Hardware

Locality (hwloc) package as a portable way to set affinity across platforms. In this

chapter, we do not focus on the mechanics of setting affinity – since these mechanics will

vary from system to system – instead we focus on the hooks provided by the TBB library

that allow us to use these interfaces to set affinity for TBB master and worker threads.

The TBB library by default creates enough worker threads to match the number of

available cores. In Chapter 11, we discussed how we can change those defaults. Whether

we use the defaults or not, the TBB library does not automatically affinitize these threads

to specific cores. TBB allows the OS to schedule and migrate the threads as it sees fit.

Giving the OS flexibility in where it places TBB threads is an intentional design choice in

the library. In a multiprogrammed environment, an environment in which TBB excels,

the OS has visibility of all of the applications and threads. If we make decisions about

where threads should execute from within our limited view inside of a single application,

we might make choices that lead to poor overall system resource utilization. Therefore, it

is often better to not affinitize threads to cores and instead allow the OS to choose where

the TBB master and worker threads execute, including allowing it to dynamically migrate

threads during a program’s execution.

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

359

However, like we will see in many chapters of this book, the TBB library provides

features that let us change this behavior if we wish. If we want to force TBB threads to

have affinity for cores, we can use the task_scheduler_observer class to do so (see

Observing the scheduler with the task_scheduler_observer class). This class lets an

application define callbacks that are invoked whenever a thread enters and leaves the

TBB scheduler, or a specific task arena, and use these callbacks to assign affinity. The

TBB library does not provide an abstraction to assist with making the OS-specific calls

required to set thread affinity, so we have to handle these low-level details ourselves

using one of the OS-specific or portable interfaces we mentioned earlier.

OBSERVING THE SCHEDULER WITH THE TASK_SCHEDULER_OBSERVER CLASS

The task_scheduler_observer class provides a way to observe when a thread starts or

stops participating in task scheduling. The interface of this class is shown as follows:

To use the class, we create our own class that inherits from task_scheduler_observer

and implements the on_scheduler_entry and on_scheduler_exit callbacks. When an

instance of this class is constructed and its observe state is set to true, the entry and exit

functions will be called whenever a master or worker thread enters or exits the global TBB

task scheduler.

A recent extension to the class now allows us to pass a task_arena to the constructor. This

extension was a preview feature prior to TBB 2019 Update 4 but is now fully supported. When

a task_arena reference is passed, the observer will only receive callbacks for threads that

enter and exit that specific arena:

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

360

Figure 13-1 shows a simple example of how to use a task_scheduler_observer

object to pin threads to cores on Linux. In this example, we use the sched_setaffinity

function to set the CPU mask for each thread as it joins the default arena. In Chapter 20,

we show an example that assigns affinity using the hwloc software package. In the

example in Figure 13-1, we use tbb::this_task_arena::max_concurrency() to find the

number of slots in the arena and tbb::this_task_arena::current_thread_index() to

find the slot that the calling thread is assigned to. Since we know there will be the same

number of slots in the default arena as the number of logical cores, we pin each thread to

the logical core that matches its slot number.

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

361

Figure 13-1.  Using a task_scheduler_observer to pin threads to cores on a
Linux platform

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

362

We can of course create more complicated schemes for assigning logical cores to

threads. And, although we don’t do this in Figure 13-1, we can also store the original CPU

mask for each thread so that we can restore it when the thread leaves the arena.

As we discuss in Chapter 20, we can use the task_scheduler_observer class,

combined with explicit task_arena instances, to create isolated groups of threads that

are restricted to the cores that share the same local memory banks in a Non-Uniform-

Memory Access (NUMA) system, a NUMA node. If we also control data placement, we

can greatly improve performance by spawning the work into the arena of the NUMA

node on which its data resides. See Chapter 20 for more details.

We should always remember that if we use thread-to-core affinity, we are preventing

the OS from migrating threads away from oversubscribed cores to less-used cores as it

attempts to optimize system utilization. If we do this in production applications, we need

to be sure that we will not degrade multiprogrammed performance! As we’ll mention

several more times, only systems dedicated to running a single application (at a time) are

likely to have an environment in which limiting dynamic migration can be of benefit.

�Creating Task-to-Thread Affinity
Since we express our parallel work in TBB using tasks, creating thread-to-core affinity,

as we described in the previous section, is only one part of the puzzle. We may not get

much benefit if we pin our threads to cores, but then let our tasks get randomly moved

around by work stealing!

When using the low-level TBB tasking interfaces introduced in Chapter 10, we can

provide hints that tell the TBB scheduler that it should execute a task on the thread in

a particular arena slot. Since we will likely use the higher-level algorithms and tasking

interfaces whenever possible, such as parallel_for, task_group and flow graphs, we

will rarely use these low-level interfaces directly however. Chapter 16 shows how the

affinity_partitioner and static_partitioner classes can be used with the TBB loop

algorithms to create affinity without resorting to these low-level interfaces. Similarly,

Chapter 17 discusses the features of TBB flow graphs that affect affinity.

So while task-to-thread affinity is exposed in the low-level task class, we will

almost exclusively use this feature through high-level abstractions. Therefore using the

interfaces we describe in this section is reserved for TBB experts that are writing their

own algorithms using the lowest-level tasking interfaces. If you’re such an expert, or

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

363

want to have a deeper understanding of how the higher-level interfaces achieve affinity,

keep reading this section.

Figure 13-2 shows the functions and types provided by the TBB task class that we

use to provide affinity hints.

The type affinity_id is used to represent the slot in an arena that a task has

affinity for. A value of zero means the task has no affinity. A nonzero value has an

implementation-defined value that maps to an arena slot. We can set the affinity of

task to an arena slot before spawning it by passing an affinity_id to its set_affinity

function. But since the meaning of affinity_id is implementation defined, we don’t

pass a specific value, for example 2 to mean slot 2. Instead, we capture an affinity_id

from a previous task execution by overriding the note_affinity callback function.

The function note_affinity is called by the TBB library before it invokes a task’s

execute function when (1) the task has no affinity but will execute on a thread other

than the one that spawned it or (2) the task has affinity but it will execute on a thread

different than the one specified by its affinity. By overriding this callback, we can track

TBB stealing behavior so we can provide hints to the library to recreate this same stealing

behavior in a subsequent execution of the algorithm, as we will see in the next example.

Finally, the affinity function lets us query a task’s current affinity setting.

Figure 13-3 shows a class that inherits from tbb::task and uses the task affinity

functions to record affinity_id values into a global array a. It only records the value

when its doMakeNotes variable is set to true. The execute function prints the task id,

the slot of the thread it is executing on, and the value that was recorded in the array for

this task id. It prefixes its reporting with “hmm” if the task’s doMakeNotes is true (it will

then record the value), “yay!” if the task is executing in the arena slot that was recorded

in array a (it was scheduled onto the same thread again), and “boo!” if it is executing

in a different arena slot. The details of the printing are contained in the function

printExclaim.

Figure 13-2.  The functions in tbb::task that are used for task to thread affinity

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

364

Figure 13-3.  Using the task affinity functions

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

365

While the meaning of affinity_id is implementation defined, TBB is open source,

and so we peaked at the implementation. We therefore know that the affinity_id is 0

if there is no affinity, but otherwise it is the slot index plus 1. We should not depend on

this knowledge in production uses of TBB, but we depend on it in our example’s execute

function so we can assign the correct exclamation “yay!” or “boo!”.

The function fig_13_3 in Figure 13-3 builds and executes three task trees, each with

eight tasks, and assigns them ids from 0 to 7. This sample uses the low-level tasking

interfaces we introduced in Chapter 10. The first task tree uses note_affinity to track

when a task has been stolen to execute on some other thread than the master. The

second task tree executes without noting or setting affinities. Finally, the last task tree

uses set_affinity to recreate the scheduling recorded during the first run.

When we executed this example on a platform with eight threads, we recorded the

following output:

note_affinity

id:slot:a[i]

hmm. 7:0:-1

hmm. 0:1:1

hmm. 1:6:6

hmm. 2:3:3

hmm. 3:2:2

hmm. 4:4:4

hmm. 5:7:7

hmm. 6:5:5

without set_affinity

id:slot:a[i]

yay! 7:0:-1

boo! 0:4:1

boo! 1:3:6

boo! 4:5:4

boo! 3:7:2

boo! 2:2:3

boo! 5:6:7

boo! 6:1:5

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

366

with set_affinity

id:slot:a[i]

yay! 7:0:-1

yay! 0:1:1

yay! 4:4:4

yay! 5:7:7

yay! 2:3:3

yay! 3:2:2

yay! 6:5:5

yay! 1:6:6

From this output, we see that the tasks in the first tree are distributed over the eight

available threads, and the affinity_id for each task is recorded in array a. When the

next set of tasks is executed, the recorded affinity_id for each task is not used to set

affinity, and the tasks are randomly stolen by different threads. This is what random

stealing does! But, when we execute the final task tree and use set_affinity, the thread

assignments from the first run are repeated. Great, this worked out exactly as we wanted!

However, set_affinity only provides an affinity hint and the TBB library is actually

free to ignore our request. When we set affinity using these interfaces, a reference to the

task-with-affinity is placed in the targeted thread’s affinity mailbox (see Figure 13-4).

But the actual task remains in the local deque of the thread that spawned it. The task

dispatcher only checks the affinity mailbox when it runs out of work in its local deque,

as shown in the task dispatch loop in Chapter 9. So, if a thread does not check its affinity

mailbox quickly enough, another thread may steal or execute its tasks first.

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

367

To demonstrate this, we can change how task affinities are assigned in our small

example, as shown in Figure 13-5. Now, foolishly, we set all of the affinities to the same

slot, the one recorded in a[2].

Task Arena

local deque
head

tail

affinity mailbox
head

Task Dispatcher

M

local deque
head

tail

affinity mailbox
head

Task Dispatcher

Figure 13-4.  The affinity mailbox holds reference to a task that remains in the
local deque of the thread that spawned the task

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

368

If the TBB scheduler honors our affinity requests, there will be a large load imbalance

since we have asked it to mail all of the work to the same worker thread. But if we execute

this new version of the example, we see:

Figure 13-5.  A function that first runs different groups of tasks, sometimes noting
affinities and sometimes setting affinities. An example output is also shown.

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

369

Because affinity is only a hint, the other idle threads still find tasks, stealing them

from the master thread’s local deque before the thread in slot a[2] is able to drain its

affinity mailbox. In fact, only the first task spawned, id==0, is executed by the thread in

the slot previously recorded in a[2]. So, we still see our tasks distributed across all eight

of the threads.

The TBB library has ignored our request and instead avoided the load imbalance

that would have been created by sending all of these tasks to the same thread. This weak

affinity is useful in practice because it lets us communicate affinities that should improve

performance, but it still allows the library to adjust so that we don’t inadvertently create

a large load imbalance.

While we can use these task interfaces directly, we see in Chapter 16 that the loop

algorithms provide a simplified abstraction, affinity_partitioner that luckily hides us

from most of these low-level details.

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

370

�When and How Should We Use the TBB Affinity
Features?
We should use task_scheduler_observer objects to create thread-to-core affinity only

if we are tuning for absolute best performance on a dedicated system. Otherwise, we

should let the OS do its job and schedule threads as it sees fit from its global viewpoint.

If we do choose to pin threads to cores, we should carefully weigh the potential impact

of taking this flexibility away from the OS, especially if our application runs in a

multiprogrammed environment.

For task-to-thread affinity, we typically want to use the high-level interfaces, like

affinity_partitioner described in Chapter 16. The affinity_partitioner uses the

features described in this chapter to track where tasks are executed and provide hints to

the TBB scheduler to replay the partitioning on subsequent executions of the loop. It also

tracks changes to keep the hints up to date.

Because TBB task affinities are just scheduler hints, the potential impact of misusing

these interfaces is far less – so we don’t need to be as careful when we use task affinities.

In fact, we should be encouraged to experiment with task affinity, especially through the

higher-level interfaces, as a normal part of tuning our applications.

�Summary
In this chapter, we discussed how we can create thread-to-core and task-to-thread

affinity from within our TBB applications. While TBB does not provide an interface for

handling the mechanics of setting thread-to-core affinity, its class task_scheduler_

observer provides a callback mechanism that allows us to insert the necessary calls

to our own OS-specific or portable libraries that assign affinities. Because the TBB

work-stealing scheduler randomly assigns tasks to software threads, thread-to-core

affinity is not always sufficient on its own. We therefore also discussed the interfaces

in TBB’s class task that lets us provide affinity hints to the TBB scheduler about what

software thread we want a task to be scheduled onto. We noted that we will most likely

not use these interfaces directly, but instead use the higher-level interfaces described in

Chapters 16 and 17. For readers that are interested in learning more about these low-

level interfaces though, we provided examples that showed how we can use the note_

affinity and set_affinity functions to implement task-to-thread affinity for code that

uses the low-level TBB tasking interface.

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

371

Like with many of the optimization features of the TBB library, affinities need to

be used carefully. Using thread-to-core affinity incorrectly can degrade performance

significantly by restricting the Operating System’s ability to balance load. Using the

task-to-thread affinity hints, being just hints that the TBB scheduler can ignore, might

negatively impact performance if used unwisely, but much less so.

�For More Information
•	 Posix set/get CPU affinity of a thread, http://man7.org/linux/

man-pages/man3/pthread_setaffinity_np.3.html

•	 SetThreadAffinityMask function, https://docs.microsoft.

com/en-us/windows/desktop/api/winbase/

nf-winbase-setthreadaffinitymask

•	 Portable Hardware Locality (hwloc),

www.open-mpi.org/projects/hwloc/

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

http://man7.org/linux/man-pages/man3/pthread_setaffinity_np.3.html
http://man7.org/linux/man-pages/man3/pthread_setaffinity_np.3.html
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-setthreadaffinitymask
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-setthreadaffinitymask
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-setthreadaffinitymask
http://www.open-mpi.org/projects/hwloc/
http://creativecommons.org/licenses/by-nc-nd/4.0/

373
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_14

CHAPTER 14

Using Task Priorities
The Threading Building Blocks scheduler is not a real-time scheduler, and therefore it is

not suitable for use in hard real-time systems. In real-time systems, a task can be given a

deadline by which it must complete, and the usefulness of the task degrades if it misses

its deadline. In hard real-time systems, a missed deadline can lead to a total system

failure. In soft real-time systems, a missed deadline is not catastrophic but leads to a

decrease in quality of service. The TBB library has no support for assigning deadlines

to tasks, but it does have support for task priorities. These priorities might be of use in

applications that have soft real-time requirements. Whether or not they are sufficient

requires understanding both the soft real-time demands of the application and the

properties of TBB tasks and task priorities.

Beyond soft real-time use, task priorities can have other uses as well. For example,

we may want to prioritize some tasks over others because doing so will improve

performance or responsiveness. Perhaps we want to prioritize tasks that free memory

over tasks that allocate memory, so that we reduce the memory footprint of our

application. Or perhaps, we want to prioritize tasks that touch data already in our caches

over tasks that will load new data into our caches.

In this chapter, we describe task priorities as supported by TBB tasks and the TBB

task scheduler. Readers that are considering TBB for soft real-time applications can use

this information to determine if TBB is sufficient for their requirements. Other readers

might find this information useful if needed to implement performance optimizations

that benefit from task priorities.

374

�Support for Non-Preemptive Priorities in the TBB
Task Class
Just like with the support for task affinities described in Chapter 13, TBB’s support for

priorities is enabled by functions in the low-level task class. The TBB library defines

three priority levels: priority_normal, priority_low, and priority_high as shown in

Figure 14-1.

In general, TBB executes tasks that are higher priority before tasks that are lower

priority. But there are caveats.

The most important caveat is that TBB tasks are executed non-preemptively by

TBB threads. Once a task has started to execute, it will execute to completion – even if a

higher priority task has been spawned or enqueued. While this behavior may seem like

a weakness, since it may delay the application’s switch to higher priority tasks, it is also

a strength because it helps us avoid some dangerous situations. Imagine if, for example,

a task t0 holds a lock on a shared resource and then higher priority tasks are spawned.

If TBB doesn’t allow t0 to finish and release its lock, the higher priority tasks can deadlock

if they block on the acquisition of a lock on this same resource. A more complicated

but similar issue, priority inversion, was famously the cause of problems with the Mars

Pathfinder rover in the late 1990s. In “What Happened on Mars?”, Mike Jones suggests

priority inheritance as a way to address these situations. With priority inheritance, a task

Figure 14-1.  The types and functions in class task that support priorities

Chapter 14 Using Task Priorities

375

that blocks higher priority tasks inherits the priority of the highest task it blocks. The TBB

library does not implement priority inheritance or other complicated approaches since

it avoids many of these issues due to its use of non-preemptive priorities.

The TBB library does not provide any high-level abstraction for setting thread
priorities. Because there is no high-level support in TBB for thread priorities, if we want

to set thread priorities, we need to use OS-specific code to manage them – just as we

did for thread-to-core affinity in Chapter 13. And just as with thread-to-core affinity, we

can use task_scheduler_observer objects and invoke these OS-specific interfaces in

the callbacks as threads enter and exit the TBB task scheduler, or a specific task arena.

However, we warn developers to use extreme caution when using thread priorities.

If we introduce thread priorities, which are preemptive, we also invite back in all of the

known pathologies that come with preemptive priorities, such as priority inversion.

Critical Rule of Thumb  Do not set different priorities for threads operating in the
same arena. Weird things can and will happen because TBB treats threads within
an arena as equals.

Beyond the non-preemptive nature of TBB task execution, there are a few other

important limitations to mention about its support for task priorities. First, changes may

not come into effect immediately on all threads. It’s possible that some lower priority

tasks may start executing even if there are higher priority tasks present. Second, worker

threads may need to migrate to another arena to gain access to the highest priority

tasks, and as we’ve noted before in Chapter 12, this can take time. Once workers have

migrated, this may leave some arenas (that do not have high priority tasks) without

worker threads. But, because master threads cannot migrate, the master threads will

remain in those arenas, and they themselves are not stalled – they can continue to

execute tasks from their own task arena even if they are of a lower priority.

Task priorities are not hints like TBB’s support for task-to-thread affinity described in

Chapter 13. Still, there are enough caveats to make task priorities weaker in practice than

we may desire. In addition, the support for only three priority levels, low, normal, and

high, can be quite limiting in complex applications. Even so, we will continue in the next

section by describing the mechanics of using TBB task priorities.

Chapter 14 Using Task Priorities

376

�Setting Static and Dynamic Priorities
Static priorities can be assigned to individual tasks that are enqueued to the shared

queue (see enqueued tasks in Chapter 10). And dynamic priorities can be assigned

to groups of tasks, through either the set_group_priority function or through

a task_group_context object’s set_priority function (see the task_group_context

sidebar).

TASK_GROUP_CONTEXT: EVERY TASK BELONGS TO A GROUP

A task_group_context represents a group of tasks that can be canceled, or have their

priority level set, together. All tasks belong to some group, and a task can be a member of only

one of these groups at a time.

In Chapter 10, we allocated TBB tasks using special functions such as allocate_root().

There is an overload of this function that lets us assign a task_group_context to a newly

allocated root task:

A task_group_context is also an optional argument to TBB high-level algorithms and to

the TBB flow graph, for example:

We can assign groups at the task level during allocation but also through the higher-level

interfaces, such as TBB algorithms and flow graphs. There are other abstractions, such as

task_group, that let us group tasks for execution purposes. The purpose of task_group_

context groups is to support cancellation, exception handling, and priorities.

Chapter 14 Using Task Priorities

377

When we use the task::enqueue function to provide a priority, the priority affects

only that single task and cannot be changed afterward. When we assign a priority to a

group of tasks, the priority affects all of the tasks in the group and the priority can be

changed at any time by subsequent calls to task::set_group_priority or task_group_

context::set_priority.

The TBB scheduler tracks the highest priority of ready tasks, including both

enqueued and spawned tasks, and postpones (the earlier caveats aside) execution of

lower priority tasks until all higher priority tasks are executed. By default, all tasks and

groups of tasks are created with priority_normal.

�Two Small Examples
Figure 14-2 shows an example that enqueues 25 tasks on a platform with P logical

cores. Each task actively spins for a given duration. The first task in the task_

priority function is enqueued with normal priority and is set to spin for roughly 500

milliseconds. The for-loop in the function then creates P low priority, P normal priority,

and P high priority tasks, each of which will actively spin for roughly 10 ms. When each

task executes, it records a message into a thread-local buffer. The high-priority task

ids are prefixed with H, the normal task ids with N and the low priority tasks ids with

L. At the end of the function, all of the thread local buffers are printed, providing an

accounting of the order in which tasks were executed by the participating threads. The

complete implementation of this example is available in the Github repository.

Chapter 14 Using Task Priorities

378

Figure 14-2.  Enqueuing tasks with different priorities

Chapter 14 Using Task Priorities

379

Executing this example on a system with eight logical cores, we see the following

output:

N:0 ← thread 1

H:7 H:5 N:3 L:7 ← thread 2

H:2 H:1 N:8 L:5 ← thread 3

H:6 N:1 L:3 L:2 ← thread 4

H:0 N:2 L:6 L:4 ← thread 5

H:3 N:4 N:5 L:0 ← thread 6

H:4 N:7 N:6 L:1 ← thread 8

In this output, each row represents a different TBB worker thread. For each thread,

the tasks it executes are ordered from left to right. The master thread never participates

in the execution of these tasks at all, since it doesn’t call wait_for_all, and so we only

see seven rows. The first thread executes only the first long, normal priority task that

executed for 500 milliseconds. Because TBB tasks are non-preemptive, this thread

cannot abandon this task once it starts, so it continues to execute this task even when

higher priority tasks become available. Otherwise though, we see that even though the

for-loop mixes together the high, normal, and low priority task enqueues, the high

priority tasks are executed first by the set of worker threads, then the normal tasks and

finally the low priority tasks.

Figure 14-3 shows code that executes two parallel_for algorithms in parallel

using two native threads, t0 and t1. Each parallel_for has 16 iterations and uses a

simple_partitioner. As described in more detail in Chapter 16, a simple_partitioner

divides the iteration space until a fixed grainsize is reached, the default being a grainsize

of 1. In our example, each parallel_for will result in 16 tasks, each of which will spin

for 10 milliseconds. The loop executed by thread t0 first creates a task_group_context

and sets its priority to priority_high. The loop executed by the other thread, t1, uses a

default task_group_context that has a priority_normal.

Chapter 14 Using Task Priorities

380

An example output from the sample when executed on a platform with eight logical

cores follows:

Normal

High

High

High

High

High

High

Figure 14-3.  Executing algorithms with different priorities

Chapter 14 Using Task Priorities

381

Normal

High

High

High

High

High

High

High

High

Normal

High

High

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Initially, there are seven “High” tasks executed for every one “Normal” task. This is

because thread t1, which started the parallel_for with normal priority, cannot migrate

away from its implicit task arena. It can only execute the “Normal” tasks. The other seven

threads however, execute only the “High” tasks until they are all completed. Once the

high priority tasks are completed, the worker threads can migrate to thread t1’s arena

and help out.

Chapter 14 Using Task Priorities

382

�Implementing Priorities Without Using TBB Task
Support
What if low, normal, and high are not enough? One workaround is to spawn generic

wrapper tasks that look to a priority queue, or other data structure, to find the work they

should do. With this approach, we rely on the TBB scheduler to distribute these generic

wrapper tasks across the cores, but the tasks themselves enforce priorities through a

shared data structure.

Figure 14-4 shows an example that uses a task_group and a concurrent_priority_

queue. When a piece of work needs to be done, two actions are taken: (1) a description

of the work is pushed into the shared queue and (2) a wrapper task is spawned in the

task_group that will pop and execute an item from the shared queue. The result is that

there is exactly one task spawned per work item – but the specific work item that a task

will process is not determined until the task executes.

Chapter 14 Using Task Priorities

383

A concurrent_priority_queue by default relies on operator< to determine ordering

and so when we define work_item::operator< as shown in Figure 14-4, we will see an

output that shows the items executing in decreasing order, from 15 down to 0:

WorkItem: 15

WorkItem: 14

WorkItem: 13

WorkItem: 12

Figure 14-4.  Using a concurrent priority queue to feed work to wrapper tasks

Chapter 14 Using Task Priorities

384

WorkItem: 11

WorkItem: 10

WorkItem: 9

WorkItem: 8

WorkItem: 7

WorkItem: 6

WorkItem: 5

WorkItem: 4

WorkItem: 3

WorkItem: 2

WorkItem: 1

WorkItem: 0

If we change the operator to return true if (priority > b.priority), then we will

see the tasks execute in increasing order from 0 to 15.

Using the generic-wrapper-task approach provides increased flexibility because

we have complete control over how priorities are defined. But, at least in Figure 14-4,

it introduces a potential bottleneck – the shared data structure accessed concurrently

by the threads. Even so, when TBB task priorities are insufficient we might use this

approach as a backup plan.

�Summary
In this chapter, we provided an overview of task priority support in TBB. Using

mechanisms provided by class task, we can assign low, normal, and high priorities

to tasks. We showed that we can assign static priorities to tasks that are enqueued and

dynamic priorities to groups of tasks using task_group_context objects. Since TBB tasks

are executed non-preemptively by the TBB worker threads, the priorities in TBB are also

non-preemptive. We briefly discussed the benefits and drawbacks of non-preemptive

priorities, and also highlighted some of the other caveats we need to be aware of when

using this support. We then provided a few simple examples that demonstrated how task

priorities can be applied to TBB tasks and to algorithms.

Since there are many limitations to the task priority support in the library, we

concluded our discussion with an alternative that used wrapper tasks and a priority

queue.

Chapter 14 Using Task Priorities

385

The TBB scheduler is not a hard real-time scheduler. We see in this chapter though

that there is some limited support for prioritizing tasks and algorithms. Whether these

features are useful or not for soft real-time applications, or to apply performance

optimizations, needs to be considered by developers on a case-by-case basis.

�For More Information
Mike Jones, “What Happened on Mars?” a note sent on December 5, 1997. www.cs.cmu.

edu/afs/cs/user/raj/www/mars.html.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An Approach

to Real-Time Synchronization. In IEEE Transactions on Computers, vol. 39, pp. 1175-1185,

Sep. 1990.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 14 Using Task Priorities

http://www.cs.cmu.edu/afs/cs/user/raj/www/mars.html
http://www.cs.cmu.edu/afs/cs/user/raj/www/mars.html
http://creativecommons.org/licenses/by-nc-nd/4.0/

387
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_15

CHAPTER 15

Cancellation and
Exception Handling
More or less frequently, we all get bitten by run-time errors, either in our sequential or

parallel developments. To try to assuage the pain, we have learnt to capture them using

error codes or a more high-level alternative like exception handling. C++, as most OO

languages, supports exception handling, which, when conveniently exercised, enables

the development of robust applications. Now, considering that TBB adds task-based

parallelism on top of C++, it is perfectly understandable that developers should expect

that exception handling is well supported. As we will see in this chapter, exception

handling is indeed well and automatically supported in TBB. This means that in case

of an error, perish the thought, our code can resort to an exception handler if such is

available, or terminate the whole work otherwise. Implementing support in TBB was

certainly nontrivial considering that

	 1.	 Exceptions can be thrown inside of tasks that are executed by a

number of threads.

	 2.	 Cancellation of tasks has to be implemented in order to terminate

the work that threw the exception.

	 3.	 TBB composability has to be preserved.

	 4.	 Exception management should not affect performance if no

exception arises.

The implementation of exceptions within TBB meets all these requirements,

including the support of task cancellation. As we said, task cancellation support is

necessary since throwing an exception can result in the need to cancel the execution of

388

the parallel algorithm that has generated the exception. For example, if a parallel_for

algorithm incurs in an out-of-bound or division by zero exception, the library may need

to cancel the whole parallel_for. This requires TBB to cancel all of the tasks involved

in processing chunks of the parallel iteration space and then jump to the exception

handler. TBB’s implementation of task cancellation seamlessly achieves the necessary

cancellation of tasks involved in the offending parallel_for without affecting tasks that

are executing unrelated parallel work.

Task cancellation is not only a requirement for exception handling but has a

value in its own. Therefore, in this chapter, we begin by showing how cancellation

can be leveraged to speed up some parallel algorithms. Although cancellation of TBB

algorithms just work out-of-the-box, advanced TBB developers might want to know how

to get full control of task cancellation and how it is implemented in TBB. We also try to

satisfy advanced developers in this chapter (remember this is the advanced part of the

book). The second part of this chapter moves on to cover exception handling. Again,

exception handling “just works” without any added complication: relying on our well-

known try-catch construction (as we do in sequential codes) is all we need to be ready to

capture standard C++ predefined exceptions plus some additional TBB ones. And again,

we don’t settle for the basics in this respect either. To close the chapter, we describe how

to build our own custom TBB exceptions and delve into how TBB exception handling

and TBB cancellation interplay under the hood.

Even if you are skeptical of exception handling because you belong to the “error

code” school of thought, keep reading and discover if we end up convincing you of the

advantages of TBB exception handling when developing reliable, fault-tolerant parallel

applications.

�How to Cancel Collective Work
There are situations in which a piece of work has to be canceled. Examples range from

external reasons (the user cancels the execution by pressing a GUI button) to internal

ones (an item has been found, which alleviates the need for any further searching). We

have seen such situations in sequential code, but they also arise in parallel applications.

For example, some expensive global optimization algorithms follow a branch-and-

bound parallel pattern in which the search space is organized as a tree and we may wish

to cancel the tasks traversing some branches if the solution is likely to be found in a

different branch.

Chapter 15 Cancellation and Exception Handling

389

Let’s see how we can put cancellation to work with a somewhat contrived example:

we want to find the position of the single -2 in a vector of integers, data. The example

is contrived because we set data[500]=-2, so we do know the output beforehand

(i.e., where –2 is stored). The implementation uses a parallel_for algorithm as we see

in Figure 15-1.

The idea is to cancel all other concurrent tasks collaborating in the parallel_for

when one of them finds that data[500]==-2. So, what does task::self().cancel_

group_execution()? Well, task::self() returns a reference to the innermost task that

the calling thread is running. Tasks have been covered in several chapters, but details

were provided in Chapters 10–14. In those chapters, we saw some of the member

functions included in the task class, and cancel_group_execution() is just one more.

As the name indicates, this member function does not cancel just the calling task, but all
the tasks belonging to the same group.

In this example, the group of tasks consists of all the tasks collaborating in the

parallel_for algorithm. By canceling this group, we are stopping all its tasks and

essentially interrupting the parallel search. Picture the task that finds data[500]==-2

shouting to the other sibling tasks “Hey guys, I got it! don’t search any further!”. In

general, each TBB algorithm creates its own group of tasks, and every task collaborating

in this TBB algorithm belongs to this group. That way, any task of the group/algorithm

can cancel the whole TBB algorithm.

Figure 15-1.  Finding the index in which –2 is stored

Chapter 15 Cancellation and Exception Handling

390

For a vector of size n=1,000,000,000, this loop consumes 0.01 seconds, and the

output can be like

Index 500 found in 0.01368 seconds!

However, if task::self().cancel_group_execution() is commented out, the

execution time goes up to 1.56 seconds on the laptop on which we happen to be writing

these lines.

That’s it. We are all set. That is all we need to know to do (basic) TBB algorithm

cancellation. However, now that we have a clear motivation for canceling tasks (more

than 100× speedup in the previous example!), we can also (optionally) dive into how task

cancellation is working and some considerations to fully control which tasks actually get

canceled.

�Advanced Task Cancellation
In Chapter 14, the task_group_context concept was introduced. Every task belongs

to one and only one task_group_context that, for brevity, we will call TGC from now

on. A TGC represents a group of tasks that can be canceled or have their priority level

set. In Chapter 14, some examples illustrated how to change the priority level of a TGC.

We also said that a TGC object can optionally be passed to high-level algorithms like

the parallel_for or flow graph. For instance, an alternative way to write the code of

Figure 15-1 is sketched in Figure 15-2.

Figure 15-2.  Alternative implementation of the code in Figure 15-1

Chapter 15 Cancellation and Exception Handling

391

In this code, we see that a TGC, tg, is created and passed as the last argument of

the parallel_for, and also used to call tg.cancel_group_execution() (now using a

member function of the task_group_context class).

Note that the codes of Figures 15-1 and 15-2 are completely equivalent. The optional

TGC parameter, tg, passed as the last argument of the parallel_for, just opens the door

to more elaborated developments. For example, say that we also pass the same TGC

variable, tg, to a parallel_pipeline that we launch in a parallel thread. Now, any task

collaborating either in the parallel_for or in the parallel_pipeline can call

tg.cancel_group_execution() to cancel both parallel algorithms.

A task can also query the TGC to which it belongs by calling the member function

group() that returns a pointer to the TGC. That way, we can safely add this line inside the

lambda of the parallel_for in Figure 15-2: assert(task::self().group()==&tg);.

This means that the following three lines are completely equivalent and can be

interchanged in the code of Figure 15-2:

 tg.cancel_group_execution();

 tbb::task::self().group()->cancel_group_execution();

 tbb::task::self().cancel_group_execution();

When a task triggers the cancellation of the whole TGC, spawned tasks waiting

in the queues are finalized without being run, but already running tasks will not be

canceled by the TBB scheduler because, as you certainly remember, the scheduler is

non-preemptive. This is, before passing the control to the task::execute() function,

the scheduler checks the cancellation flag of the task’s TGC and then decides if the task

should be executed or the whole TGC canceled. But if the task already has the control,

well, it has the control until it deigns to return it to the scheduler. However, in case we

want to also do away with running tasks, each task can pool the canceling status using

one of these two alternatives:

Chapter 15 Cancellation and Exception Handling

392

Next question: to which TGC are the new tasks assigned? Of course, we have the

devices to fully control this mapping, but there is also a default behavior that is advisable

to know. First, we cover how to manually map tasks into a TGC.

�Explicit Assignment of TGC
As we have seen, we can create TGC objects and pass them to the high-level parallel

algorithms (parallel_for,...) and to the low-level tasking API (allocate_root()).

Remember that in Chapter 10 we also presented the task_group class as a medium-

level API to easily create tasks sharing a TGC that can be canceled or assigned a priority

simultaneously with a single action. All the tasks launched using the same task_

group::run() member function will belong to the same TGC, and therefore one of the

tasks in the group can cancel the whole gang.

As an example, consider the code of Figure 15-3 in which we rewrite the parallel

search of a given value “hidden” in a data vector, and get the index in which it is stored.

This time, we use a manually implemented divide-and-conquer approach using the

task_group features (the parallel_for approach is actually doing something similar

under the hood, even if we don’t see it).

Chapter 15 Cancellation and Exception Handling

393

Figure 15-3.  Manual implementation of the parallel search using task_group
class

Chapter 15 Cancellation and Exception Handling

394

For the sake of expediency, the vector, data, the resulting index, myindex, and the

task_group, g, are global variables. This code recursively bisections the search space

until a certain grainsize (a cutoff value as we saw in Chapter 10). The function

ParallelSearch(begin,end) is the one used to accomplish this parallel partitioning.

When the grainsize becomes small enough (100 iterations in our example), the

SequentialSearch(begin,end) is invoked. If the value we were looking for, –2, is found

in one of the ranges traversed inside the SequentialSearch, all spawned tasks are

canceled using g.cancel(). In our laptop with four cores, and for N equal to 10 million,

this is the output of our algorithm:

 SerialSearch: 5000000 Time: 0.012667

 ParallelSearch: 5000000 Time: 0.000152 Speedup: 83.3355

5000000 is the index of the -2 value we have found. Looking at the speedup, we can

be baffled by it running 83× faster than the sequential code. However, this is one of the

situations in which we are witness to a parallel implementation having to carry out less

work than the sequential counterpart: once a task finds the key, no more traversal of

the vector Data is needed. In our run, the key is in the middle of the vector, N/2, and the

sequential version has to get to that point, whereas the parallel version starts searching

in parallel at different positions, for example, 0, N/4, N/2, N·3/4, and so on.

If your mind was blown by the achieved speedup, wait and see because we can

do even better. Remember that cancel() cannot terminate already running tasks. But

again, we can query from within a running task to check if a different task in the TGC

has canceled the execution. To achieve this using the task_group class, we just need to

insert:

at the beginning of the ParallelSearch() function. This apparently minor mod results

in these execution times:

SerialSearch: 5000000 Time: 0.012634

ParallelSearch: 5000000 Time: 2e-06 Speedup: 6317

We wish we could always get that kind of parallel speedup in a quad-core machine!!

Chapter 15 Cancellation and Exception Handling

395

Note A dvanced and seldom needed: In addition to explicitly creating a task_
group, setting the TGC for a TBB parallel algorithm, and setting the TCG for a root
task using allocate_root, we can also change the TGC of any task using its
member function:

void task::change_group(task_group_context& ctx);

and because we can query any task’s TGC using task::group(), we have full
control to move any task to the TGC of any other task. For example, if two tasks
have access to a TGC_X variable (say you have a global task_group_context
∗TGC_X) and a first task has previously executed this:

TGC_X=task::self().group();

then a second one can execute this:

task::self().change_group(∗TGC_X);

�Default Assignment of TGC
Now, what happens if we do not explicitly specify the TGC? Well, the default behavior has

some rules:

•	 A thread that creates a task_scheduler_init (either explicitly or

implicitly by using a TBB algorithm) creates its own TGC, tagged as

“isolated.” The first task executed by this thread belongs to that TGC

and subsequent child tasks inherit the same parent’s TGC.

•	 When one of these tasks invokes a parallel algorithm without

explicitly passing a TGC as optional argument (e.g., parallel_for,

parallel_reduce, parallel_do, pipeline, flow graph, etc.), a new

TGC, now tagged as “bound,” is implicitly created for the new tasks

that will collaborate in this nested algorithm. This TGC is therefore a

child bound to the isolated parent TGC.

•	 If tasks of a parallel algorithm invoke a nested parallel algorithm, a

new bound child TGC is created for this new algorithm, where the

parent is now the TGC of the invoking task.

Chapter 15 Cancellation and Exception Handling

396

An example of a forest of TGC trees automatically built by a hypothetical TBB code is

depicted in Figure 15-4.

In our hypothetical TBB code, the user wants to nest several TBB algorithms but

knows nothing about TGCs so he just calls the algorithms without passing the optional

and explicit TGC object. In one master thread, there is a call to a parallel_invoke, which

automatically initializes the scheduler creating one arena and the first isolated TGC, A.

Then, inside the parallel_invoke, two TBB algorithms are created, a flow graph and a

pipeline. For each of these algorithms, a new TGC, B and C in this case, is automatically

created and bound to A. Inside one of the flow graph nodes, a task_group is created, and

a parallel_for is instantiated in a different flow graph node. This results in two newly

created TGCs, D and E, that are bound to B. This forms the first tree of our TGC forest, with

an isolated root and where all the other TGCs are bound, that is, they have a parent. The

second tree is built in a different master thread that creates a parallel_for with just two

parallel ranges, and for each one a nested parallel_for is called. Again, the root of the

tree is an isolated TGC, F, and the other TGCs, G and H, are bound. Note that the user just

wrote the TBB code, nesting some TBB algorithms into other TBB algorithms. It is the

TBB machinery creating the forest of TGCs for us. And do not forget about the tasks: there

are several tasks sharing each TGC.

Figure 15-4.  A forest of TGC trees automatically created when running a
hypothetical TBB code

Chapter 15 Cancellation and Exception Handling

397

Now, what happens if a task gets canceled? Easy. The rule is that the whole TGC

containing this task is canceled, but the cancellation also propagates downward. For

example, if we cancel a task of the flow graph (TGC B), we will also cancel the task_group

(TGC D) and the parallel_for (TGC E), as shown in Figure 15-5. It makes sense: we

are canceling the flow graph, and everything created from there on. The example is

somewhat contrived since it may be difficult to find a real application with this nesting of

algorithms. However, it serves to illustrate how different TGCs are automatically linked in

order to deal with the much vaunted TBB’s composability.

But wait, we may want to cancel the flow graph and the task_group but keep the

parallel_for (TGC E) alive and kicking. Fine, this is also possible by manually creating

an isolated TGC object and passing it as the last argument of the parallel for. To that end,

we can write code similar to the one of Figure 15-6, where a function_node of the flow

graph, g, exploits this possibility.

Figure 15-5.  Cancel is called from a task belonging to TGC B

Figure 15-6.  Alternative to detach a nested algorithm from the tree of TGCs

Chapter 15 Cancellation and Exception Handling

398

The isolated TGC object, TGC_E, is created on the stack and passed as the last

argument to the parallel_for. Now, as depicted in Figure 15-7, even if a task of the flow

graph cancels its TGC B, the cancellation propagates downward till TGC D but cannot

reach TGC E because it has been created detached from the tree.

More precisely, the isolated TGC E can now be the root of another tree in our forest of

TGCs because it is an isolated TGC and it can be the parent of new TGCs created for deeper

nested algorithms. We will see an example of this in the next section.

Summarizing, if we nest TBB algorithms without explicitly passing a TGC object

to them, the default forest of TGCs will result in the expected behavior in case of

cancellation. However, this behavior can be controlled at our will by creating the

necessary number of TGC objects and passing them to the desired algorithms. For

example, we can create a single TGC, A, and pass it to all the parallel algorithms invoked

in the first thread of our hypothetical TBB example. In such a case, all tasks collaborating

in all algorithms will belong to that TGC A, as depicted in Figure 15-8. If now a task of the

flow graph gets canceled, not only the nested task_group and parallel_for algorithms

are also canceled, but all the algorithms sharing the TGC A.

Figure 15-7.  TGC E is now isolated and won’t be canceled

Chapter 15 Cancellation and Exception Handling

399

As a final note regarding cancellation, we want to underscore that efficiently keeping

track of the forest of TGCs and how they get linked is quite challenging. The interested

reader can have a look at the paper of Andrey Marochko and Alexey Kukanov (see

the “For More Information” section) in which they elaborate on the implementation

decisions and internal details. The main take-away is that great care was taken to ensure

that TGC bookkeeping does not affect performance if cancellation is not required.

�Exception Handling in TBB

Note I f C++ exception is not completely familiar, here is an example to help
illustrate the fundamentals:

Figure 15-8.  After modifying our hypothetical TBB code so that we pass a single
TGC A to all the parallel algorithms

Chapter 15 Cancellation and Exception Handling

400

The output after running this code is

Re-throwing value: 5

Value caught: 5

As we can see, the first try block includes a nested try catch. This one throws as
an exception as an integer with value 5. Since the catch block matches the type,
this code becomes the exception handler. Here, we only print the value received
and re-throw the exception upward. At the outer level there are two catch blocks,
but the first one is executed because the argument type matches the type of
the thrown value. The second catch in the outer level receives an ellipsis (…) so
it becomes the actual handler if the exception has a type not considered in the
preceding chain of catch functions. For example, if we throw 5.0 instead of 5, the
output message would be “Exception occurred.”

Now that we understand cancellation as the keystone mechanism supporting TBB

exception management, let’s go into the meat of the matter. Our goal is to master the

development of bulletproof code that exercise exceptions, as the one in Figure 15-9.

Okay, maybe it is not completely bulletproof yet, but for a first example it is good

enough. The thing is that the vector data has only 1000 elements, but the parallel_for

algorithm insists on walking till position 2000-1. To add insult to injury, data is not

accessed using data[i], but using Data.at(i), which, contrary to the former, adds

Figure 15-9.  Basic example of TBB exception handling

Chapter 15 Cancellation and Exception Handling

401

bound-checking and throws std::out_of_range objects if we don’t toe the line.

Therefore, when we compile and run the code of Figure 15-9, we will get

Out_of_range: vector

As we know, several tasks will be spawned to increment data elements in parallel.

Some of them will try to increment at positions beyond 999. The task that first touches an

out-of-range element, for example, data.at(1003)++, clearly has to be canceled. Then,

the std::vector::at() member function instead of incrementing the inexistent 1003

position throws std::out_of_range. Since the exception object is not caught by the task,

it is re-thrown upward, getting to the TBB scheduler. Then, the scheduler catches the

exception and proceeds to cancel all concurrent tasks of the corresponding TGC

(we already know how the whole TGC gets canceled). In addition, a copy of the exception

object is stored in the TGC data structure. When all TGC tasks are canceled, the TGC is

finalized, which re-throws the exception in the thread that started the TGC execution. In

our example, this is the thread that called parallel_for. But the parallel_for is in a

try block with a catch function that receives an out_of_range object. This means that

the catch function becomes the exception handler which finally prints the exception

message. The ex.what() member function is responsible of returning a string with some

verbose information about the exception.

Note I mplementation detail. The compiler is not aware of the threading nature of
a TBB parallel algorithm. This means that enclosing such algorithm in a try block
results in only the calling thread (master thread) being guarded, but the worker
threads will be executing tasks that can throw exceptions too. To solve this, the
scheduler already includes try-catch blocks so that every worker thread is able to
intercept exceptions escaping from its tasks.

The argument of the catch() function should be passed by reference. That way,

a single catch function capturing a base class is able to capture objects of all derived

types. For example, in Figure 15-9, we could have written catch(std::exception& ex)

instead of catch(std::out_of_range& ex) because std::out_of_range is derived from

std::logic_failure that in turn is derived from the base class std::exception and

capturing by reference captures all related classes.

Chapter 15 Cancellation and Exception Handling

402

Not all C++ compilers support the exception propagation feature of C++11. More

precisely, if the compiler does not support std::exception_ptr (as happen in a

pre-C++11 compiler), TBB cannot re-throw an exact copy of the exception object.

To make up for it, in such cases, TBB summarizes the exception information into a

tbb::captured_exception object, and this is the one that can be re-thrown. There are

some additional details regarding how different kinds of exceptions (std::exception,

tbb::tbb_exception, or others) are summarized. However, since nowadays it is

becoming difficult to get our hands on a compiler not supporting C++11, we will not pay

extra attention to this TBB backward compatibility feature.

�Tailoring Our Own TBB Exceptions
The TBB library already comes with some predefined exception classes that are listed in

the table of Figure B-77.

However, in some cases, it is good practice to derive our own specific TBB

exceptions. To this end, we could use the abstract class tbb::tbb_exception that we

see in Figure 15-10. This abstract class is actually an interface since it declares five pure

virtual functions that we are forced to define in the derived class.

The details of the pure virtual functions of the tbb_exception interface are

•	 move() should create a pointer to a copy of the exception object

that can outlive the original. It is advisable to move the contents of

the original, especially if it is going to be destroyed. The function

specification throw() just after move() (as well as in destroy(),

what(), and name()) is only to inform the compiler that this function

won’t throw anything.

•	 destroy() should destroy a copy created by move().

Figure 15-10.  Deriving our own exception class from tbb::tbb_exception

Chapter 15 Cancellation and Exception Handling

403

•	 throw_self() should throw ∗this.

•	 name() typically returns the RTTI (Run-time type information) name

of the originally intercepted exception. It can be obtained using the

typeid operator and std::type_info class. For example, we could

return typeid(∗this).name().

•	 what() returns a null-terminated string describing the exception.

However, instead of implementing all the virtual functions required to derive from

tbb_exception, it is easier and recommended to build our own exception using the TBB

class template, tbb::movable_exception. Internally, this class template implements

for us the required virtual functions. The five virtual functions described before are now

regular member functions that we can optionally override or not. There are however

other available functions as we see in an excerpt of the signature:

The movable_exception constructor and the data() member function will be

explained with an example. Let’s say that division by 0 is an exceptional event that we

want to explicitly capture. In Figure 15-11, we present how we create our own exception

with the help of the class template tbb::movable_exception.

Chapter 15 Cancellation and Exception Handling

404

We create our custom class div_ex with the data that we want to move along with the

exception. In this case, the payload is the integer it that will store the position at which

division by 0 occurs. Now we are able to create an object, de, of the movable_exception

class instantiated with the template argument div_ex as we do in the line:

tbb::movable_exception<div_ex> de{div_ex{i}};

Figure 15-11.  Convenient alternative to configure our own movable exception

Chapter 15 Cancellation and Exception Handling

405

where we can see that we pass a constructor of div_ex, div_ex{i}, as the argument to

the constructor of movable_exception<div_ex>.

Later, in the catch block, we capture the exception object as ex, and use the ex.

data() member function to get a reference to the div_ex object. That way, we have

access to the member variables and member functions defined in div_ex, as name(),

what(), and it. The output of this example when input parameter n=1000000 is

Exception name: div_ex

Exception: Division by 0! at position: 500000

Although we added what() and name() as member functions of our custom div_ex

class, now they are optional, so we can get rid of them if we don’t need them. In such a

case, we can change the catch block as follows:

since this exception handler will be executed only if receiving movable_

exception<div_ex> which only happens when a division by 0 is thrown.

�Putting All Together: Composability, Cancellation,
and Exception Handling
To close this chapter, let us go back to the composability aspects of TBB with a final

example. In Figure 15-12, we have a code snippet showing a parallel_for that would

traverse the rows of a matrix Data, were it not for the fact that it throws an exception

(actually the string “oops”) in the first iteration!! For each row, a nested, parallel_for

should traverse the columns of Data also in parallel.

Chapter 15 Cancellation and Exception Handling

406

Say that four different tasks are running four different iterations i of the outer loop

and calling to the inner parallel_for. In that case, we may end up with a tree of TGCs

similar to the one of Figure 15-13.

Figure 15-13.  A possible tree of TGCs for the code of Figure 15-12

Figure 15-12.  A parallel_for nested in an outer parallel_for that throws an
exception

Chapter 15 Cancellation and Exception Handling

407

This means that when in the first iteration of the outer loop we get to the throw

keyword, there are several inner loops in flight. However, the exception in the outer level

propagates downward also canceling the inner parallel loops no matter what they are

doing. The visible result of this global cancellation is that some rows that were in the

process of changing the value from false to true were interrupted so these rows will have

some true values and some false values.

But look, there is, per-row, an isolated task_group_context named root, thanks to

this line:

tbb::task_group_context root(task_group_context::isolated);

Now, if we pass this TGC root as the last argument of the inner parallel_for

uncommenting this line:

We get a different configuration of the TGC, as depicted in Figure 15-14.

In this new situation, the exception provokes cancellation of the TGC in which it is

thrown, TGC A, but there are no children of TGC A to cancel. Now, if we check the values

of the array data we will see that rows either have all true or all false elements, but not a

mix as in the previous case. This is because once an inner loop starts setting a row with

true values, it won’t be canceled halfway.

Figure 15-14.  Different configuration of the TGC

Chapter 15 Cancellation and Exception Handling

408

In a more general case, if we can say so of our forest of TGC trees of Figure 15-4,

what happens if a nested algorithm throws an exception that is not caught at any level?

For example, let’s suppose that in the tree of TGCs of Figure 15-15 an exception is thrown

inside the flow graph (TGC B).

Of course, TGC B and descendent TGCs D and E are also canceled. We know that. But

the exception propagates upward, and if at that level it is not caught either, it will provoke

also the cancellation of the tasks in the TGC A, and because cancellation propagates

downward, TGC C dies as well. Great! This is the expected behavior: a single exception,

no matter at what level it is thrown, can gracefully do away with the whole parallel

algorithm (as it would do with a serial one). We can prevent the chain of cancellations by

either catching the exception at the desired level or by configuring the required nested

algorithm in an isolated TGC. Isn’t it neat?

Figure 15-15.  The effect of an exception thrown in a nested TBB algorithm

Chapter 15 Cancellation and Exception Handling

409

�Summary
In this chapter, we saw that canceling a TBB parallel algorithm and using exception

handling to manage run-time error are straightforward. Both features just work right-

out-of-the-box as expected if we resort to the default behavior. We also discussed

an important feature of TBB, the task group context, TGC. This element is key in

the implementation of the cancellation and exception handling in TBB and can be

manually leveraged to get a closer control of these two features. We started covering

the cancellation operation, explaining how a task can cancel the whole TGC to which

it belongs. Then we reviewed how to manually set the TGC to which a task is mapped

and the rules that apply when this mapping is not specified by the developer. The

default rules result in the expected behavior: if a parallel algorithm is canceled, so are

all the nested parallel algorithms. Then we moved on to exception handling. Again, the

behavior of TBB exceptions resemble exceptions in sequential code, though the internal

implementation in TBB is way more complex since an exception thrown in one task

executed by one thread may end up being captured by a different thread. When the

compiler supports C++11 features, an exact copy of the exception can be moved between

threads, otherwise, a summary of the exception is captured in a tbb::captured_

exception so that it can be re-thrown in a parallel context. We also described how to

configure our own exception classes using the class template tbb::movable_exception.

Finally, we closed the chapter by elaborating on how composability, cancellation, and

exception handling interplay.

�For More Information
Here are some additional reading materials we recommend related to this chapter:

•	 A. Marochko and A. Kukanov, Composable Parallelism Foundations

in the Intel Threading Building Blocks Task Scheduler, Advances in

Parallel Computing, vol 22, 2012.

•	 Deb Haldar, Top 15 C++ Exception handling mistakes and how

to avoid them. www.acodersjourney.com/2016/08/top-15-c-

exception-handling-mistakes-avoid/.

Chapter 15 Cancellation and Exception Handling

http://www.acodersjourney.com/2016/08/top-15-c-exception-handling-mistakes-avoid/
http://www.acodersjourney.com/2016/08/top-15-c-exception-handling-mistakes-avoid/

410

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 15 Cancellation and Exception Handling

http://creativecommons.org/licenses/by-nc-nd/4.0/

411
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_16

CHAPTER 16

Tuning TBB Algorithms:
Granularity, Locality,
Parallelism, and
Determinism
In Chapter 2, we described the generic parallel algorithms provided by the TBB library

and gave a few examples to show how they can be used. While doing so, we noted that

the default behavior of the algorithms was often good enough but claimed that there

were ways to tune performance if needed. In this chapter, we back up that claim by

revisiting some TBB algorithms and talk about important features that can be used to

change their default behaviors.

There are three concerns that will dominate our discussions. The first is granularity –

the amount of work that a task does. The TBB library is efficient at scheduling tasks, but

we need to think about the size of the tasks that our algorithms will create since task

size can have a significant impact on performance, especially if the tasks are extremely

small or extremely large. The second issue is data locality. As discussed in detail in the

Preface, how an application uses caches and memory can make or break an application’s

performance. And the final issue is available parallelism. Our goal when using TBB

is to introduce parallelism of course, but we cannot do it blindly without considering

granularity and locality. Tuning an application’s performance is often an exercise in

balancing the trade-offs between these three concerns.

412

One of the key differences between the TBB algorithms and other interfaces like

Parallel STL is that the TBB algorithms provide hooks and features that let us influence

their behavior around these three concerns. The TBB algorithms are not just black boxes

over which we have no control!

In this chapter, we will first discuss task granularity and arrive at a rule of thumb

about how big is big enough when it comes to task size. We will then focus on the simple

loop algorithms and how to use Ranges and Partitioners to control task granularity

and data locality. We also have a brief discussion about determinism and its impact

on flexibility when tuning for performance. We conclude the chapter by turning our

attention to the TBB pipeline algorithm and discuss how its features affect granularity,

data locality, and maximum parallelism.

�Task Granularity: How Big Is Big Enough?
To let the TBB library have maximum flexibility in balancing the load across threads,

we want to divide the work done by an algorithm into as many pieces as possible. At the

same time, to minimize the overheads of work stealing and task scheduling, we want to

create tasks that are as large as possible. Since these forces oppose each other, the best

performance for an algorithm is found somewhere in the middle.

To complicate matters, the exact best task size varies by platform and application,

and therefore there is no exact guideline that applies universally. Still, it is useful to have

a ballpark number that we can use as a crude guideline. With these caveats in mind, we

therefore offer the following rule of thumb:

RULE OF THUMB  TBB tasks should be on average greater than 1 microsecond to
effectively hide the overheads of work stealing. This translates to several thousand
CPU cycles – if you prefer using cycles, we suggest a 10,000 cycle rule of thumb.

It’s important to keep in mind that not every task needs to be greater than 1

microsecond – in fact, that’s often not possible. In divide and conquer algorithms for

example, we might use small tasks to divide up the work and then use larger tasks at the

leaves. This is how the TBB parallel_for algorithms works. TBB tasks are used to both

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

413

split the range and to apply the body to the final subranges. The split tasks typically do

very little work, while the loop body tasks are much larger. In this case, we can’t make all

of the tasks larger than 1 microsecond, but we can aim to make the average of the task

sizes larger than 1 microsecond.

When we use algorithms like parallel_invoke or use TBB tasks directly, we are in

complete control of the size of our tasks. For example, in Chapter 2, we implemented a

parallel version of quicksort using a parallel_invoke and directed the recursive parallel

implementation to a serial implementation once the array size (and therefore task

execution time) fell below a cutoff threshold:

When we use simple loop algorithms, like parallel_for, parallel_reduce, and

parallel_scan, their range and partitioner arguments provide us with the control we

need. We talk about these in more detail in the next section.

�Choosing Ranges and Partitioners for Loops
As introduced in Chapter 2, a Range represents a recursively divisible set of values –

typically a loop’s iteration space. We use Ranges with the simple loop algorithms:

parallel_for, parallel_reduce, parallel_deterministic_reduce, and parallel_

scan. A TBB algorithm partitions its range and applies the algorithm’s body object(s)

to these subranges using TBB tasks. Combined with Partitioners, Ranges provide a

simple, but powerful way to represent iterations spaces and control how they should be

partitioned into tasks and assigned to worker threads. This partitioning can be used to

tune task granularity and data locality.

To be a Range, a class must model the Range Concept shown in Figure 16-1. A Range

can be copied, can be split using a splitting constructor, and may optionally provide a

proportional splitting constructor. It also must provide methods to check if it is empty

or divisible and provide a boolean constant that is true if it defines the proportional

splitting constructor.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

414

While we can define our own Range types, the TBB library provides the blocked

ranges shown in Figure 16-2, which will cover most situations. For example, we can

represent the iteration space of the following nested loop with a blocked_range2d<int,

int> r(i_begin, i_end, j_begin, j_end):

Figure 16-1.  The Range concept

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

415

For interested readers, we describe how to define a custom range type in the “Deep

in the Weeds” section at the end of this chapter.

�An Overview of Partitioners
Along with Ranges, TBB algorithms support Partitioners that specify how an algorithm

should partition its Range. The different Partitioner types are shown in Figure 16-3.

Figure 16-2.  The blocked ranges provided by the TBB library

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

416

A simple_partitioner is used to recursively divide a Range until its is_divisible

method returns false. For the blocked range types, this means the range will be divided

until its size is less than or equal to its grainsize. If we have highly tuned our grainsize

(and we will talk about this in the next section), we want to use a simple_partitioner

since it ensures that the final subranges respect the provided grainsizes.

An auto_partitioner uses a dynamic algorithm to sufficiently split a range to

balance load, but it does not necessarily divide a range as finely as is_divisible allows.

When used with the blocked range classes, the grainsize still provides a lower bound on

the size of the final chunks but is much less important since the auto_partitioner can

decide to use larger grainsizes. It is therefore commonly acceptable to use a grainsize

of 1 and just let the auto_partitioner determine the best grainsize. In TBB 2019, the

default Partitioner type used for parallel_for, parallel_reduce, and parallel_scan is

an auto_partitioner with a grainsize of 1.

A static_partitioner distributes the range over the worker threads as uniformly

as possible without the possibility for further load balancing. The work distribution and

mapping to threads is deterministic and only depends on the number of iterations, the

grainsize, and the number of threads. The static_partitioner has the lowest overhead

of all partitioners, since it makes no dynamic decisions. Using a static_partitioner

can also result in improved cache behavior since the scheduling pattern will be

Figure 16-3.  The partitioners provided by the TBB library

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

417

repeated across executions of the same loop. A static_partitioner however severely

restricts load balancing so it needs to be used judiciously. In section “Using a static_

partitioner,” we will highlight the strengths and weaknesses of static_partitioner.

The affinity_partitioner combines the best from auto_partitioner and

static_partitioner and improves cache affinity if the same partitioner object is reused

when a loop is re-executed over the same data set. The affinity_partitioner, like

static_partitioner, initially creates a uniform distribution but allows for additional

load balancing. It also keeps a history of which thread executes which chunk of the range

and tries to recreate this execution pattern on subsequent executions. If a data set fits

completely within the processors’ caches, repeating the scheduling pattern can result in

significant performance improvements.

�Choosing a Grainsize (or Not) to Manage Task Granularity
At the beginning of this chapter, we talked about how important task granularity can be.

When we use a blocked range type, we should always then highly tune our grainsize,

right? Not necessarily. Selecting the right grainsize when using a blocked range can be

extremely important – or almost irrelevant – it all depends on the Partitioner being used.

If we use a simple_partitioner, the grainsize is the sole determinant of the size

of the ranges that will be passed to the body. When a simple_partitioner is used, the

range is recursively subdivided until is_divisible returns false. In contrast, all of the

other Partitioners have their own internal algorithms for deciding when to stop dividing

ranges. Choosing a grainsize of 1 is typically sufficient for these other partitioners that

use is_divisible as only a lower bound.

To demonstrate the impact of grainsize on the different Partitioners, we can use a

simple parallel_for microbenchmark and vary the number of iterations in the loop (N),

the grainsize, the execution time per loop iteration, and the Partitioner.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

418

All performance results presented in this chapter were collected on a single socket

server with an Intel Xeon Processor E3-1230 with four cores supporting two hardware

threads per core; the processor has a base frequency of 3.4 GHz, a shared 8 MB L3

cache, and per-core 256 KB L2 caches. The system was running SUSE Linux Enterprise

Server 12. All samples were compiled using the Intel C++ Compiler 19.0 with Threading

Building Blocks 2019, using the compiler flags “–std=c++11 –O2 –tbb”.

Figure 16-5 shows the results of the program in Figure 16-4 when executed for N=218

using each of the Partitioner types available in TBB and with a range of grainsizes. We

can see that for a very small time_per_iteration of 10 ns, the simple_partitioner

approaches the other partitioner’s maximum performance when the grainsize is

>= 128. As the time-per-iteration increases, the simple_partitioner approaches the

maximum performance more quickly, since fewer iterations are needed to overcome

scheduling overheads.

Figure 16-4.  A function used to measure the time to execute a parallel_for with
N iterations using a partitioner (p), a grainsize (gs), and time-per-iteration (tpi)

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

419

For all of the Partitioner types shown in Figure 16-5 except simple_partitioner,

we see maximum performance from a grainsize of 1 until 4096. Our platform has 8

logical cores and therefore we need a grainsize less than or equal to 218/8 == 32,768 to

provide at least one chunk to each thread; consequently, all of the Partitioners begin

to tail off after a grainsize of 32768. We might also note that at a grainsize of 4096, the

auto_partitioner and affinity_partitioner show drops in performance in all of

the figures. This is because picking large grainsizes limits the choices available to these

algorithms, interfering with their ability to complete their automated partitioning.

This small experiment confirms that the grainsize is critically important for simple_

partitioner. We can use a simple_partitioner to manually select the size of our tasks,

but when we do so, we need to be more accurate in our choices.

A second take-away is that efficient execution, with a speedup close to the linear

upper bound, is seen when the body size approaches 1 us (10ns x 128 = 1.28 us). This

result reinforces the rule of thumb we presented earlier in the chapter! This should not

be surprising since experience and experiments like these are the reason for our rule

of thumb in the first place.

Figure 16-5.  Speedup for different Partitioner types and increasing grainsizes.
The total number of iterations in the loop being tested is 218 == 262144

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

420

�Ranges, Partitioners, and Data Cache Performance
Ranges and Partitioners can improve data cache performance by enabling cache-

oblivious algorithms or by enabling cache affinity. Cache-oblivious algorithms are

useful when a data set is too large to fit into the data caches, but reuse of data within

the algorithm can be exploited if it is solved using a divide and conquer approach.

In contrast, cache affinity is useful when the data set completely fits into the caches.

Cache affinity is used to repeatedly schedule the same parts of a range onto the same

processors – so that the data that fits in the cache can be accessed again from the same

cache.

�Cache-Oblivious Algorithms

A cache-oblivious algorithm is an algorithm that achieves good (or even optimal) use of

data caches without depending upon knowledge of the hardware’s cache parameters.

The concept is similar to loop tiling or loop blocking but does not require an accurate tile

or block size. Cache-oblivious algorithms often recursively divide problems into smaller

and smaller subproblems. At some point, these small subproblems begin to fit into a

machine’s caches. The recursive subdivision might continue all the way down to the

smallest possible size or there may be a cutoff point for efficiency – but this cutoff point

is not related to the cache size and typically creates patterns that access data sized well

below any reasonable cache size.

Because Cache-oblivious algorithms are not at all disinterested in cache
performance, we’ve heard many other suggested names, such as cache agnostic
since these algorithms optimize for whatever cache they encounter; and cache
paranoid, since they assume there can be infinite levels of caches. But cache
oblivious is the name used in the literature and it has stuck.

Here, we will use matrix transposition as an example of an algorithm that can benefit

from a cache-oblivious implementation. A non-cache-oblivious serial implementation

of matrix transposition is shown in Figure 16-6.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

421

For simplicity, let’s assume that four elements fit in a cache line in our machine.

Figure 16-7 shows the cache lines that will be accessed during the transposition of the

first two rows of the N×N matrix a. If the cache is large enough, it can retain all of the

cache lines accessed in b during that transposition of the first row of a and not need to

reload these during that transposition of the second row of a. But if it is not large enough,

these cache lines will need to be reloaded – resulting in a cache miss at each access to

the matrix b. In the figure, we show a 16×16 array but imagine if it was very large.

A cache-oblivious implementation of this algorithm reduces the amount of data

accessed between reuses of the same cache line or data item. As shown in Figure 16-8, if

we focus on transposing only a small block of matrix a before moving on to other blocks

of matrix a, we can reduce the number of cache lines that hold elements of b that need to

be retained in the cache to get performance gains due to cache line reuse.

Figure 16-6.  A serial implementation of a matrix transposition

b[j*N+0] a[0*N+j] b[j*N+1] a[1*N+j]

Figure 16-7.  The cache lines accessed when transposing the first two rows of the
matrix a. For simplicity, we show four items in each cache line.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

422

A serial implementation of a cache-oblivious implementation of matrix transposition

is shown in Figure 16-9. It recursively subdivides the problem along the i and j

dimensions and uses a serial for-loop when the range drops below a threshold.

Because the implementation alternates between dividing in the i and j direction,

the matrix a is transposed using the traversal pattern shown in Figure 16-10, first

completing block 1, then 2, then 3, and so on. If gs is 4 and our cache line size is 4,

b[j*N+0] a[0*N+j] b[j*N+1] a[1*N+j]

Figure 16-8.  Transposing a block at a time reduces the number of cache lines that
need to be retained to benefit from reuse

Figure 16-9.  A serial cache-oblivious implementation of a matrix transposition

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

423

we get the reuse within each block that we showed in Figure 16-8. But if our cache line

is 8 items instead of 4 (which is much more likely for real systems), we would get reuse

not only within the smallest blocks but also across blocks. For example, if the data cache

can retain all of the cache lines loaded during blocks 1 and 2, these will be reused when

transposing blocks 3 and 4.

This is the true power of cache-oblivious algorithms – we don’t need to exactly know

the sizes of the levels of the memory hierarchy. As the subproblems get smaller, they fit

in progressively smaller parts of the memory hierarchy, improving reuse at each level.

The TBB loop algorithms and the TBB scheduler are designed to specifically support

cache-oblivious algorithms. We can therefore quickly implement a cache-oblivious

parallel implementation of matrix transposition using a parallel_for, a blocked_

range2d, and a simple_partitioner as shown in Figure 16-11. We use a blocked_

range2d because we want the iteration space subdivided into two-dimensional blocks.

Figure 16-10.  A traversal pattern that computes the transpose for sub-blocks of a
before moving on to other blocks

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

424

And we use a simple_partitioner because we only get the benefits from reuse if the

blocks are subdivided down to sizes smaller than the cache size; the other Partitioner

types optimize load balancing and so may choose larger range sizes if those are sufficient

to balance load.

Figure 16-12 shows that the way the TBB parallel_for recursively subdivides ranges

creates the same blocks that we want for our cache-oblivious implementation. The

depth-first work and breadth-first stealing behavior of the TBB scheduler also means

that the blocks will execute in an order similar to the one shown in Figure 16-10.

Figure 16-11.  A cache-oblivious parallel implementation of matrix transposition
that uses a simple_partitioner, a blocked_range2d, and a grainsize (gs)

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

425

Figure 16-13 shows the performance of the serial cache-oblivious implementation in

Figure 16-9, the performance of an implementation using a 1D blocked_range, and the

performance of a blocked_range2d implementation similar to the one in Figure 16-11.

We implemented our parallel versions so that we could change the grainsize and

partitioner easily. The code for all of the versions is available in fig_16_11.cpp.

In Figure 16-13, we show the speedup of our implementations on an 8192×8192

matrix compared to the simple serial implementation from Figure 16-6.

r

r r

r r rr

split rows

split
columns

split
columns

Figure 16-12.  The recursive subdivision of the blocked2d_range provides
a division that matches the blocks we want for our cache-oblivious parallel
implementation

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

426

Matrix transposition is limited by the speed at which we can read and write data –

there is no compute whatsoever. We can see from Figure 16-13 that our 1D blocked_

range parallel implementations perform worse than our simple serial implementation,

regardless of the grainsize we use. The serial implementation is already limited by the

memory bandwidth – adding additional threads simply adds more pressure on the

already-stressed memory subsystem and does nothing to help matters.

Our serial cache-oblivious algorithm reorders memory accesses, reducing the

number of cache misses. It significantly outperforms the simple version. When we use

a blocked_range2d in our parallel implementation, we similarly get 2D subdivisions.

But as we see in Figure 16-13, only when we use a simple_partitioner does it fully

behave like a cache-oblivious algorithm. In fact, our cache-oblivious parallel algorithm

with a blocked_range2d and a simple_partitioner reduces pressure on the memory

hierarchy to such a degree that now using multiple threads can improve performance

over the serial cache-oblivious implementation!

Not all problems have cache-oblivious solutions, but many common problems do.

It is worth the time to research problems to see if a cache-oblivious solution is possible

and worthwhile. If so, the blocked range types and the simple_partitioner will make it

very easy to implement one with TBB algorithms.

Figure 16-13.  The speedup on our test machine for N=8192 with various
grainsizes and partitioners

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

427

�Cache Affinity

Cache-oblivious algorithms improve cache performance by breaking problems, which

have data locality but do not fit into the cache, down into smaller problems that do fit

into the cache. In contrast, cache affinity addresses the repeated execution of ranges

across data that already fit in the cache. Since the data fits in the cache, if the same

subranges are assigned to the same processors on subsequent executions, the cached

data can be accessed more quickly. We can use either an affinity_partitioner or a

static_partitioner to enable cache affinity for the TBB loop algorithms. Figure 16-14

shows a simple microbenchmark that adds a value to each element in a 1D array. The

function receives a reference to the Partitioner – we need to receive the Partitioner as a

reference to record history in the affinity_partitioner object.

To see the impact of cache affinity we can execute this function repeatedly, sending

in the same value for N and the same array a. When using an auto_partitioner, the

scheduling of the subranges to threads will vary from invocation to invocation. Even if

array a completely fits into the processors’ caches, the same region of a may not fall on

the same processor in subsequent executions:

If we use an affinity_partitioner however, the TBB library will record the task

scheduling and use affinity hints to recreate it on each execution (see Chapter 13 for

more information on affinity hints). Because the history is recorded in the Partitioner,

Figure 16-14.  A function that uses a TBB parallel_for to add a value to all of
the elements of a 1D array

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

428

we must pass the same Partitioner object on subsequent executions, and cannot simply

create a temporary object like we did with auto_partitioner:

Finally, we can also use a static_partitioner to create cache affinity. Because the

scheduling is deterministic when we use a static_partitioner, we do not need to pass

the same partitioner object for each execution:

We executed this microbenchmark on our test machine using N=100,000 and

M=10,000. Our array of doubles will be 100,000 × 8 = 800 K in size. Our test machine has

four 256 K L2 data caches, one per core. When using an affinity_partitioner, the

test completed 1.4 times faster than when using the auto_partitioner. When using a

static_partitioner, the test completed 2.4 times faster than when using the auto_

partitioner! Because the data was able to fit into the aggregate L2 cache size

(4 × 256 K = 1 MB), replaying the same scheduling had a significant impact on the

execution time. In the next section, we’ll discuss why the static_partitioner

outperformed the auto_partitioner in this case and why we shouldn’t be too surprised,

or excited about that. If we increase N to 1,000,000 elements, we no longer see a large

difference in the execution times since array a is now too large to fit in the caches of

our test system – in this case, re-thinking the algorithm to implement tiling/blocking to

exploit cache locality is necessary.

�Using a static_partitioner
The static_partitioner is the lowest overhead partitioner, and it quickly provides

a uniform distribution of a blocked range across the threads in an arena. Since the

partitioning is deterministic, it also can improve cache behavior when a loop or a series

of loops are executed repeatedly on the same range. In the previous section, we saw

that it out-performed affinity_partitioner significantly for our microbenchmark.

However, because it creates just enough chunks to provide one to each thread in the

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

429

arena, there is no opportunity for work stealing to balance the load dynamically. In

effect, the static_partitioner disables the TBB library’s work-stealing scheduling

approach.

There is a good reason though for TBB to include static_partitioner. As the

number of cores increase, random work stealing becomes costlier; especially when

transitioning from a serial part of an application to a parallel part. When the master

thread first spawns new work into the arena, all of the worker threads wake up and

as a thundering herd try to find work to do. To make matters worse, they don’t know

where to look and start randomly peeking into not only the master thread’s deque, but

each other’s local deques too. Some worker thread will eventually find the work in the

master and subdivide it, and another worker will eventually find this subdivided piece,

subdivide it, and so on. And after a while, things will settle down and all of the workers

will find something to do and will happily work from their own local deques.

But, if we already know that the workload is well balanced, that the system is not

oversubscribed, and all our cores are equally powerful – do we really need all of this

work-stealing overhead to just get a uniform distribution across the workers? Not if we

use a static_partitioner! It is designed for just this case. It pushes tasks that uniformly

distribute the range to the worker threads so that they don’t have to steal tasks at all.

When it applies, static_partitioner is the most efficient way to partition a loop.

But don’t get too excited about static_partitioner! If the workload is not

uniform or any of the cores are oversubscribed with additional threads, then using a

static_partitioner can wreck performance. For example, Figure 16-15 shows the

same microbenchmark configuration we used in Figure 16-5(c) to examine the impact of

grainsize on performance. But Figure 16-15 shows what happens if we add a single extra

thread running on one of the cores. For all but the static_partitioner, there is a small

impact due to the extra thread. The static_partitioner however assumes that all of the

cores are equally capable and uniformly distributes the work among them. As a result, the

overloaded core becomes a bottleneck and the speedup takes a huge performance hit.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

430

Figure 16-16 shows a loop where the work increases with each iteration. If a static_

partitioner is used, the thread that gets the lowest set of iterations will have much less

work to do than the unlucky thread that gets the highest set of iterations.

Figure 16-16.  A loop where the work increases in each iteration

Figure 16-15.  Speedup for different Partitioner types and increasing grainsizes
when an additional thread executes a spin loop in the background. The time-
per-iteration is set to 1 us.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

431

If we run the loop in Figure 16-16 ten times using each partitioner type with N=1000,

we see the following results:

auto_partitioner = 0.629974 seconds

affinity_partitioner = 0.630518 seconds

static_partitioner = 1.18314 seconds

The auto_partitioner and affinity_partitioner are able to rebalance the load

across the threads, while the static_partitioner is stuck with its initial uniform, but

unfair distribution.

The static_partitioner is therefore almost exclusively useful in High Performance

Computing (HPC) applications. These applications run on systems with many cores and

often in batch mode, where a single application is run at a time. If the work load does

not need any dynamic load balancing, then static_partitioner will almost always

outperform the other partitioners. Unfortunately, well-balanced workloads and single-

user, batch-mode systems are the exception and not the rule.

�Restricting the Scheduler for Determinism
In Chapter 2, we discussed Associativity and floating-point types. We noted that any

implementation of floating-point numbers is an approximation, and so parallelism

can lead to different results when we depend on properties like associativity or

commutativity – those results aren’t necessarily wrong; they are just different. Still, in

the case of reduction, TBB provides a parallel_deterministic_reduce algorithm if we

want to ensure that we get the same results for each execution on the same input data

when executed on the same machine.

As we might guess, parallel_deterministic_reduce only accepts simple_

partitioner or static_partitioner, since the number of subranges is deterministic

for both of these partitioner types. The parallel_deterministic_reduce also always

executes the same set of split and join operations on a given machine no matter

how many threads dynamically participate in execution and how tasks are mapped

to threads – the parallel_reduce algorithm may not. The result is that parallel_

deterministic_reduce will always return the same result when run on the same

machine – but sacrifices some flexibility to do so.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

432

Figure 16-17 shows the speedup for the pi calculation example from Chapter 2 when

implemented using parallel_reduce (r-auto, r-simple, and r-static) and parallel_

deterministic_reduce (d-simple and d-static). The maximum speedup is similar

for both; however, the auto_partitioner performs very well for parallel_reduce,

and that is simply not an option with parallel_deterministic_reduce. If needed, we

can implement a deterministic version of our benchmark but then must deal with the

complications of choosing a good grainsize.

While parallel_deterministic_reduce will have some additional overhead

because it must perform all of the splits and joins, this overhead is typically small. The

bigger limitation is that we cannot use any of the partitioners that automatically find a

chunk size for us.

Figure 16-17.  Speedup for the pi example from Chapter 2 using parallel_reduce
with an auto_partitioner (r-auto), a simple_partitioner (r-simple), and a
static_partitioner (r-static); and parallel_deterministic_reduce with a
simple_partitioner (d-simple) and a static_partitioner (d-static).
We show results for grainsizes ranging from 1 to N.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

433

�Tuning TBB Pipelines: Number of Filters, Modes,
and Tokens
Just as with the loop algorithms, the performance of TBB pipelines is impacted by

granularity, locality, and available parallelism. Unlike the loop algorithms, TBB pipelines

do not support Ranges and Partitioners. Instead, the controls used to tune pipelines

include the number of filters, the filter execution modes, and the number of tokens

passed to the pipeline when it is run.

TBB pipeline filters are spawned as tasks and scheduled by the TBB library, and

therefore, just as with the subranges created by the loop algorithms, we want the

filter bodies to execute long enough to mitigate overheads but we also want ample

parallelism. We balance these concerns by how we break our work into filters. The filters

should also be well balanced in execution time since the slowest serial stage will be a

bottleneck.

As described in Chapter 2, pipeline filters are also created with an execution mode:

serial_in_order, serial_out_of_order, or parallel. When using serial_in_order

mode, a filter can process at most one item at a time, and it must process them in the

same order that the first filter generated them in. A serial_out_of_order filter is

allowed to execute the items in any order. A parallel filter is allowed to execute on

different items in parallel. We will look at how these different modes limit performance

later in this section.

When run, we need to provide a max_number_of_live_tokens argument to a TBB

pipeline, which constrains the number of items that are allowed to flow through the

pipeline at any given time.

Figure 16-18 shows the structure of the microbenchmarks we will use to explore

these different controls. In the figure, both pipelines are shown with eight filters – but

we will vary this number in our experiments. The top pipeline has filters that use the

same execution mode, and all have the same spin_time – so this represents a very well-

balanced pipeline. The bottom pipeline has one filter than spins for imbalance * spin_

time – we will vary this imbalance factor to see the impact of imbalance on speedup.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

434

�Understanding a Balanced Pipeline
Let’s first consider how well our rule of thumb for task sizes applies to pipelines. Is a filter

body of 1 microsecond sufficient to mitigate overheads? Figure 16-19 shows the speedup

of our balanced pipeline microbenchmark when fed 8000 items while using only a single

token. The results are shown for various filter execution times. Since there is only a single

token, only a single item will be allowed to flow through the pipeline at a time. The result

is a serialized execution of the pipeline (even when the filter execution mode is set to

parallel).

Figure 16-19.  The overhead seen by different filter execution modes when
executing a balanced pipeline with eight filters, a single token, and 8000 items on
our test machine

mode
spin_time

mode
spin_time

mode
spin_time

mode
spin_time

mode
spin_time

mode
spin_time

mode
spin_time

mode
spin_time

mode
spin_time

mode
spin_time

mode
spin_time

mode
imbalance * spin_time

mode
spin_time

mode
spin_time

mode
spin_time

mode
spin_time

Figure 16-18.  A balanced pipeline microbenchmark and an imbalanced pipeline
microbenchmark

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

435

When compared to a true serial execution, where we execute the proper number

of spins in a for-loop, we see the impact of managing the work as a TBB pipeline. In

Figure 16-19, we see that when the spin_time approaches 1 microsecond, the overhead

is fairly low, and we get very close to the execution time of the true serial execution. It

seems that our rule of thumb applies to a TBB pipeline too!

Now, let’s look at how the number of filters affects performance. In a serial pipeline,

the parallelism comes only from overlapping different filters. In a pipeline with parallel

filters, parallelism is also obtained by executing the parallel filters simultaneously on

different items. Our target platform supports eight threads, so we should expect at most a

speedup of 8 for a parallel execution.

Figure 16-20 shows the speedup of our balanced pipeline microbenchmark when

setting the number of tokens to 8. For both serial modes, the speedup increases with the

number of filters. This is important to remember, since the speedup of a serial pipeline

does not scale with the data set size like the TBB loop algorithms do. The balanced

pipeline that contains all parallel filters however has a speedup of 8 even with only a

single filter. This is because the 8000 input items can be processed in parallel in that

single filter – there is no serial filter to become a bottleneck.

In Figure 16-21, we see the speedup for our balanced pipeline when using eight

filters but with varying numbers of tokens. Because our platform has eight threads,

if we have fewer than eight tokens, there are not enough items in flight to keep all of

Figure 16-20.  The speedup achieved by the different filter execution modes when
executing a balanced pipeline with eight tokens, 8000 items, and an increasing
number of filters. The filters spin for 100 microseconds.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

436

the threads busy. Once we have at least eight items in the pipeline, all threads can

participate. Increasing the number of tokens past eight has little impact on performance.

�Understanding an Imbalanced Pipeline
Now, let’s look at the performance of the imbalanced pipeline from Figure 16-18. In this

microbenchmark, all of the filters spin for spin_time seconds except for one of the filters

that spins for spin_time * imbalance seconds. The work required to process N items as

they pass through our imbalanced pipeline with eight filters is therefore

	 T N spin time spin time imbalance1 7= * * + *()_ _ 	

In the steady state, a serial pipeline is limited by the slowest serial stage. The critical

path length of this same pipeline when the imbalanced filter executes with serial mode is

equal to

	 T N spin time spin time imbalance¥ = * *()max _ _, 	

Figure 16-22 shows the results of our imbalanced pipeline when executed on our

test platform with different imbalance factors. We also include the theoretical maximum

speedup, labeled as “work/critical path,” calculated as

Figure 16-21.  The speedup achieved by the different filter execution modes when
executing a balanced pipeline with eight filters, 8000 items, and an increasing
number of tokens. The filters spin for 100 microseconds.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

437

	
Speedupmax

_ _

max _
=

* + *7 spin time spin time imbalance

spin time, spinn time imbalance_ *() 	

Not unexpectedly, Figure 16-22 shows that serial pipelines are limited by their

slowest filters – and the measured results are close to what our work/critical path length

calculation predicts.

In contrast, the parallel pipeline in Figure 16-22 is shown to not be limited by the

slowest stage because the TBB scheduler can overlap the execution of the slowest

filter with other invocations of that same filter. You may be wondering if increasing the

number of tokens beyond eight will help, but in this case, no. Our test system has only

eight threads, so we can at most overlap eight instances of the slowest filter. While there

may be cases where a temporary load imbalance can be smoothed out by having more

tokens than the number of threads, in our microbenchmark where the imbalance is

a constant factor, we are in fact limited by the critical path length and the number of

threads – and any number of additional tokens will not change that.

However, there are algorithms in which an insufficient number of tokens will hamper

the automatic load balancing feature of the work-stealing TBB scheduler. This is the

case when the stages are not well balanced and there are serial stages stalling the pipe.

A. Navarro et al. demonstrated (see the “For More Information” section at the end of the

Figure 16-22.  The speedup achieved by the different filter execution modes when
executing an imbalanced pipeline with eight filters, 8000 items, and different
imbalance factors. Seven of the filters spin for 100 microseconds, and the other
spins for imbalance * 100 microseconds.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

438

chapter) that a pipeline algorithm implemented in TBB can yield optimal performance if

appropriately configured with the right number tokens. She devised an analytical model

based on queueing theory that helps in finding this key parameter. A major take-away

of the paper is that when the number of tokens is sufficiently large, the work stealing

in TBB emulates a global queue that is able to feed all the threads (in queueing theory,

a theoretical centralized system with a single global queue served by all the resources

is known to be the ideal case). However, in reality, a global single queue would exhibit

contention when it is served by a large number of threads. The fundamental advantage

of the TBB implementation is that it resorts to a distributed solution with one queue

per thread that behaves as a global queue thanks to the work-stealing scheduler. This is,

the decentralized TBB implementation performs like the ideal centralized system but

without the bottleneck of the centralized alternative.

�Pipelines and Data Locality and Thread Affinity
With the TBB loop algorithms, we used the blocked range types affinity_partitioner

and static_partitioner to tune cache performance. The TBB parallel_pipeline

function and the pipeline class have no similar options. But all is not lost! The execution

order built into TBB pipelines is designed to enhance temporal data locality without the

need to do anything special.

When a TBB master or worker thread completes the execution of a TBB filter, it

executes the next filter in the pipeline unless that filter cannot be executed due to

execution mode constraints. For example, if a filter f0 generates an item i and its output

is passed to the next filter f1, the same thread that ran f0 will move on to execute f1 –

unless that next filter is a serial_out_of_order filter and it is currently processing

something else, or if it is a serial_in_order filter and item i is not the next item in

line. In those cases, the item is buffered in the next filter and the thread will look for

other work to do. Otherwise to maximize locality, the thread will follow the data it just

generated and process that item by executing the next filter.

Internally, the processing of one item in the filter f0 is implemented as a task

executed by a thread/core. When the filter is done, the task recycles itself (see task

recycling in Chapter 10) to execute the next filter f1. Essentially, the dying task f0

reincarnates into the new f1 task, bypassing the scheduler – the same thread/core that

executed f0 will also execute f1. In terms of data locality and performance, this is way

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

439

better than what a regular/naive pipeline implementation would do: filter f0 (served by

one or several threads) enqueuing the item in filter f1’s queue (where f1 is also served

by one or several threads). This naive implementation wrecks locality because the item

processed by filter f0 on one core is likely to be processed on a different core by filter f1.

In TBB, if f0 and f1 fulfil the conditions mentioned previously, this will never happen. As

a result, the TBB pipeline is biased toward finishing items that are already in-flight before

injecting more items at the beginning of the pipeline; this behavior not only exploits data

locality but uses less memory by reducing the size of the queues that are necessary for

serial filters.

Unfortunately, TBB pipeline filters do not support affinity hints. There is no way

to hint that we want a particular filter to execute on a particular worker thread. But,

perhaps surprisingly, there is a hard affinity mechanism, thread_bound_filter. Using

thread_bound_filter however requires using the more error-prone, type-unsafe

tbb::pipeline interface, which we describe as part of the next section, “Deep in the

Weeds.”

�Deep in the Weeds
This section covers some features that are rarely used by TBB users, but when needed,

they can be extremely helpful. You might choose to skip this section and read it on

demand if you ever need to create your own Range type or use a thread_bound_filter

in a TBB pipeline. Or, if you really want to know as much as possible about TBB, read on!

�Making Your Own Range Type
As mentioned earlier in this chapter, the blocked range types capture most common

scenarios. Over our years of using TBB, we have personally only encountered a handful

of situations in which it made sense to implement our own Range type. But if we need

to, we can create our own range types by implementing classes that model the Range

Concept described in Figure 16-1.

As an example of a useful but atypical range type, we can revisit the quicksort

algorithm again, as shown in Figure 16-23.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

440

Here, we will parallelize quicksort not as a recursive algorithm at all, but instead

use a parallel_for and our own custom ShuffleRange. Our pforQuicksort

implementation is shown in Figure 16-24.

Figure 16-23.  The implementation of a serial quicksort

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

441

Figure 16-24.  Implementing a parallel quicksort using a parallel_for and a
custom ShuffleRange that implements a Range

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

442

In Figure 16-24, we can see that the parallel_for body lambda expression is

the base case, where we call a serialQuicksort. We also use a simple_partitioner,

which means that our range will be recursively divided until it returns false from its

is_divisible method. All of the shuffling magic of quicksort therefore needs to happen

in the ShuffleRange class as it splits itself into subranges. The class definition of

ShuffleRange is also shown in Figure 16-24.

The ShuffleRange models the Range concept, defining a copy constructor, a splitting

constructor, an empty method, an is_divisible method, and an is_splittable_in_

proportion member variable that is set to false. This class also holds begin and end

iterators that delineate the elements of the array and a cutoff value.

Let’s start with empty. The range is empty if its begin iterator is at or past its end

iterator.

We use our cutoff value to determine if the range should be further divided.

Remember, we are using a simple_partitioner, so the parallel_for will keep dividing

the ranges until is_divisible returns false. So, the ShuffleRange is_divisible

implementation is just a check against this cutoff value.

Ok, now we can look at the heart of our implementation, the ShuffleRange splitting

constructor shown in Figure 16-24. It receives a reference to the original ShuffleRange

r that needs to be split and a tbb::split object that is used to distinguish this

constructor from the copy constructor. The body of the constructor is the basic pivot and

shuffle algorithm. It updates the original range r to be the left partition and the newly

constructed ShuffleRange to be the right partition.

Executing our pforQuicksort on our test platform yields performance results

that are very similar to the parallel_invoke implementation from Chapter 2. But this

example shows just how flexible the Range Concept is. We may think of the recursive

division of the range as negligible in a parallel_for, but in our pforQuicksort

implementation it is not. We rely on the splitting of the ShuffleRange to do a substantial

portion of the work.

�The Pipeline Class and Thread-Bound Filters
As we noted in our earlier discussions in this chapter, affinity hints are not supported

by tbb::parallel_pipeline. We cannot express that we prefer that a particular filter

execute on a specific thread. However, there is support for thread-bound filters if we

use the older, thread-unsafe tbb::pipeline class! These thread-bound filters are not

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

443

processed at all by TBB worker threads; instead, we need to explicitly process items in

these filters by calling their process_item or try_process_item functions directly.

Typically, a thread_bound_filter is not used to improve data locality, but instead

it is used when a filter must be executed on a particular thread – perhaps because

only that thread has the rights to access the resources required to complete the action

implemented by the filter. Situations like this can arise in real applications when, for

example, a communication or offload library requires that all communication happen

from a particular thread.

Let’s consider a contrived example that mimics this situation, where only the main

thread has access to an opened file. To use a thread_bound_filter, we need to use the

type unsafe class interfaces of tbb::pipeline. We cannot create a thread_bound_filter

when using the tbb::parallel_pipeline function. We will soon see why it would

never make sense to use a thread_bound_filter with the parallel_pipeline interface

anyway.

In our example, we create three filters. Most of our filters will inherit from

tbb::filter, overriding the operator() function:

Our SourceFilter, shown in Figure 16-25, is a serial_in_order filter that inherits

from tbb::filter and generates a series of numbers. The type unsafe interfaces

implemented by tbb::pipeline require that we return the output of each filter as a void

*. NULL is used to indicate the end of the input stream. We can easily see why the newer

parallel_pipeline interface is preferred when it applies.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

444

The second filter type we create, MultiplyFilter, multiplies the incoming value by 2

and returns it. It too will be a serial_in_order filter and inherit from tbb::filter.

Finally, BadWriteFilter implements a filter that will write the output to a file. This

class also inherits from tbb::filter as shown in Figure 16-25.

The function fig_16_25 puts all of these classes together – while purposely

introducing an error. It creates a three-stage pipeline using our filter classes and the

tbb::pipeline interface. It creates a pipeline object and then adds each of the filters,

one after the other. To run the pipeline, it calls void pipeline::run(size_t max_

number_of_live_tokens) passing in eight tokens.

As we should expect when we run this example, the BadWriteFilter wf sometimes

executes on a thread other than the master, so we see the output

Error!

Done.

While this example may appear contrived, remember that we are trying to mimic

real situations when execution on a specific thread is required. In this spirit, let’s assume

that we cannot simply make the ofstream accessible to all of the threads, but instead we

must do the writes on the main thread.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

445

Figure 16-25.  A buggy example that fails if the BadWriteFilter tries to write to
output from a worker thread

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

446

Figure 16-26 shows how we can use a thread_bound_filter to work around this

limitation. To do so, we create a filter class, ThreadBoundWriteFilter, that inherits from

thread_bound_filter. In fact, other than changing what the class inherits from, the

implementation of the filter class is the same as BadWriteFilter.

While the classes implementations are similar, our use of the filter must change

significantly as shown in function fig_16_26. We now run the pipeline from a separate

thread – we need to do this, because we must keep the main thread available to service

the thread-bound filter. We also add a while-loop that repeatedly calls the process_item

function on our ThreadBoundWriteFilter object. It is here that the filter is executed.

The while-loop continues until a call to process_item returns tbb::thread_bound_

filter::end_of_stream indicating that there are no more items to process.

Running the example in Figure 16-26, we see that we have fixed our problem:

Done.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

447

Figure 16-26.  An example that writes to output only from the master thread

�Summary
In this chapter, we delved deeper into the features that can be used to tune TBB

algorithms. We formed our discussion around the three common concerns when tuning

TBB applications: task granularity, available parallelism, and data locality.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

448

For the loop algorithms, we focused on the blocked range types and the different

Partitioner types. We found that we can use 1 microsecond as a general guide for how

long tasks should execute to mitigate the overheads of task scheduling. This rough

guideline holds true for both loop algorithms, like parallel_for, and also for the filter

sizes in parallel_pipeline.

We discussed how the blocked range types can be used to control granularity

but also to optimize for the memory hierarchy. We used blocked_range2d and a

simple_partitioner to implement a cache-oblivious implementation of matrix

transposition. We then showed how affinity_partitioner or static_partitioner

can be used to replay the scheduling of range so that the same pieces of data are

accessed repeatedly by the same threads. We showed that while static_partitioner

is the best performing partitioner for well-balanced workloads when executing in batch

mode, as soon as the load is imbalanced or the system is oversubscribed, it suffers from

its inability to dynamically balance the load through work stealing. We then briefly

revisited determinism, describing how deterministic_parallel_reduce can provide

deterministic results, but only by forcing us to use a simple_partitioner and carefully

choose a grainsize, or use a static_partitioner and sacrifice dynamic load balancing.

We next turned our attention to parallel_pipeline and how the number of filters,

the execution modes, and the number of tokens impact performance. We discussed

how balanced and imbalanced pipelines behave. Finally, we also noted that while TBB

pipelines do not offer hooks for us to tune for cache affinity, it is designed to enable

temporal locality by having threads follow items as they flow through a pipeline.

We concluded the chapter with some advanced topics, including how to create our

own Range types and how to use a thread_bound_filter.

�For More Information
For more information on cache-oblivious algorithms:

Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar

Ramachandran. 2012. Cache-Oblivious Algorithms. ACM Trans.

Algorithms 8, 1, Article 4 (January 2012), 22 pages.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

449

For a more in-depth discussion on pipeline parallelism:

Angeles Navarro et al. “Analytical Modeling of Pipeline

Parallelism,” ACM-IEEE International Conference on Parallel

Architectures and Compilation Techniques (PACT’09). 2009.

For more information on the thundering herd problem:

https://en.wikipedia.org/wiki/Thundering_herd_problem

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

https://en.wikipedia.org/wiki/Thundering_herd_problem
http://creativecommons.org/licenses/by-nc-nd/4.0/

451
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_17

CHAPTER 17

Flow Graphs: Beyond
the Basics
This chapter contains some key tips on getting top performance from flow graphs in

TBB. The less structured nature of the TBB flow graph APIs offers an expressiveness that

requires some thinking to get the best scalable performance – we dive into details in this

chapter that let us tune flow graphs to their full potential.

In Chapter 3, we introduced the classes and functions in the tbb::flow namespace

and how they can be used to express simple data flow and dependency graphs. In this

chapter, we discuss some of the more advanced questions and issues that arise when

using TBB flow graphs. As in Chapter 16, much of our discussion will revolve around

granularity, effective memory use, and creating sufficient parallelism. But because

the flow graph APIs let us express parallelism that is less structured than the parallel

algorithms described in Chapter 16, we will also discuss some dos and don’ts to be

aware of when architecting a flow graph.

The section “Key FG Advice: Dos and Don’ts,” starting on page 480, gives very

specific rules of thumb that are invaluable when using flow graphs with TBB.

We conclude this chapter with a brief overview of the Flow Graph Analyzer (FGA),

a tool available within Intel Parallel Studio XE. It has strong support for the graphical

design and analysis of TBB flow graphs. While using FGA is not required when working

with flow graphs, visualizing graphs during design and analysis can be very helpful.

The tool is freely available to everyone, and we highly recommend it for anyone doing

serious TBB flow graph work.

452

�Optimizing for Granularity, Locality, and Parallelism
In this section, we focus on the same three concerns that drove our discussions in

Chapter 16. We first look at the impact of node granularity on performance. Because flow

graphs are used for less structured algorithms, we need to consider how parallelism is

introduced as we discuss granularity – does the structure require a significant amount of

stealing or is the generation of tasks spread well across the threads? Also, we may want to

use some very small nodes in a flow graph simply because they make the design clearer –

in such cases, we describe how a node with a lightweight execution policy can be used

to limit overheads. The second issue we will address is data locality. Unlike the TBB

parallel algorithms, the flow graph API does not provide abstractions like Ranges and

Partitioners; instead, it is designed to enhance locality naturally. We will discuss how

threads follow data to exploit locality. Our third issue is creating sufficient parallelism.

Just as in Chapter 16, optimizing for granularity and locality sometimes comes at the cost

of restricted parallelism – we need to be sure we walk this tightrope carefully.

�Node Granularity: How Big Is Big Enough?
In Chapter 16, we discussed Ranges and Partitioners and how these can be used to

ensure that the tasks created by the TBB generic algorithms are large enough to amortize

scheduling overheads while still being small enough to provide enough independent

work items for scalability. The TBB flow graph does not have support for Ranges and

Partitioners, but we still need to be concerned about task granularity.

To see if our rule of thumb for 1 microsecond tasks that we introduced in Chapter 16

applies as well to flow graph nodes as it does to parallel algorithm bodies, we will explore

a few simple microbenchmarks that capture the extremes that can exist in flow graphs.

We will compare the execution times of four functions and use different amounts of work

per node execution. We will refer to these functions as Serial, FG loop, Master loop, and

FG loop per worker.

It is our belief that studying these examples (Figures 17-1 to 17-4) is critical to

having an intuitive grasp of some key issues that differentiate highly scalable flow graph

usage and disappointing uses of flow graph. The APIs themselves, fully documented

in Appendix B, do not provide this education – we hope you will study these examples

enough to grasp the concepts as we believe this will make you much better at getting

the most out of using TBB flow graphs (peek at Figure 17-5 to see a quantification of the

benefits on performance of understanding these!).

Chapter 17 Flow Graphs: Beyond the Basics

453

The Serial loop is our baseline and contains a for-loop that calls an active spin-wait

function N times, as shown in Figure 17-1.

The FG loop function is shown in Figure 17-2. This function builds a flow graph

that has a single multifunction_node with an edge from its output to its input. A single

message starts the cycle and the node then spin-waits and sends a message back to its

input. The cycle repeats N-1 times. Because the node spins before sending the message

back to its input, this graph is still a mostly serial loop – the bulk of the work in the body

tasks will not overlap. However, because the message is sent before the body returns,

there is still a small-time gap during which another thread can steal the task that the

try_put generates. We can use this graph to see the basic overhead of the flow graph

infrastructure.

Figure 17-1.  Serial: A function that times the baseline serial loop

Chapter 17 Flow Graphs: Beyond the Basics

454

Our next microbenchmarking function, Master loop shown in Figure 17-3, does

not create a cycle. It instead sends all N messages to the multifunction_node directly

from the master thread in a serial loop. Since the multifunction_node has unlimited

parallelism and the serial for-loop will send messages very quickly, there are a lot of

parallel tasks created. However, because the master thread is the only thread that calls

the try_put method on node n, all body tasks are spawned into the master thread’s local

deque. Worker threads that participate in executing this graph will be forced to steal each

Figure 17-2.  FG loop: A function that times a serial flow graph

Chapter 17 Flow Graphs: Beyond the Basics

455

task they execute – and only after they have randomly selected the master as their victim.

We can use this graph to see the behavior of a flow graph with sufficient parallelism but

that requires an extreme amount of work-stealing.

Finally, Figure 17-4 shows the FG loop per worker function. This function spreads

the tasks across the master and worker threads’ local deques, since once a thread has

stolen its initial task, it will then spawn tasks into its own local deque. We can use this

graph to see the behavior of a flow graph with a very small amount of stealing.

Figure 17-3.  Master loop: A function that submits messages only from the master
thread; workers must steal every task they execute

Chapter 17 Flow Graphs: Beyond the Basics

456

Unless otherwise noted, all performance results presented in this chapter were

collected on a single socket server with an Intel Xeon Processor E3-1230 with four cores

supporting two hardware threads per core; the processor has a base frequency of 3.4 GHz,

Figure 17-4.  FG loop per worker: A function that creates just enough parallelism
to satisfy the number of workers. Once a worker has stolen its initial task, it will
execute the remainder of its tasks from its local deque.

Chapter 17 Flow Graphs: Beyond the Basics

457

a shared 8 MB L3 cache, and per-core 256 KB L2 caches. The system was running SUSE

Linux Enterprise Server 12. All samples were compiled using the Intel C++ Compiler 19.0

with Threading Building Blocks 2019, using the compiler flags “–std=c++11 –O2 –tbb”.

We ran these microbenchmarks using N=65,536 and spin-wait times of 100 ns, 1 us,

10 us, and 100 us. We collected their average execution times over 10 trials and present

the results in Figure 17-5. From these results, we can see that when the task sizes are

very small, 100 nanoseconds for example, the overhead of the flow graph infrastructure

leads to degraded performance in all cases. With task sizes of at least 1 microsecond,

we begin to profit from parallel execution. And by the time we reach a task size of 100

microseconds, we are able to reach close to perfect linear speedups.

We can further understand the performance of our microbenchmarks by collecting a

trace and viewing the results in Flow Graph Analyzer (FGA) – FGA is described in more

detail at the end of this chapter. Figure 17-6 shows per-thread timelines for the different

functions when using a spin-wait time of 1 microsecond. These timelines, which are

all of the same length, show the work done by each thread over time. The gaps (in

gray) in the timelines indicate when a thread is not actively executing a node’s body. In

Figure 17-6(a), we see the behavior of FG loop, which acts like a serial loop. But we can

see that the small gap between the try_put in the body and the exit from the task allows

the tasks to ping-pong between the threads since they are able to steal each task as it

Figure 17-5.  The speedups Tserial/Tbenchmark for different spin wait times

Chapter 17 Flow Graphs: Beyond the Basics

458

is spawned. This partially explains the fairly large overheads for this microbenchmark

shown in Figure 17-5. As we explain later in this chapter, most functional nodes

use scheduler bypass to follow their data to the next node when possible (see the

discussion on Pipelines and data locality and thread affinity in Chapter 16 for a more

detailed discussion of why scheduler bypass improves cache performance). Since a

multifunction_node puts output messages to its output ports directly inside of the body

implementation, it cannot immediately follow the data to the next node using scheduler

bypass – it has to finish its own body first! A multifunction_node therefore does not use

scheduler bypass to optimize for locality. In any case, this makes the performance in

Figure 17-6(a) a worst-case overhead, since scheduler bypass is not used.

In Figure 17-6(b), we see the case where the master thread is generating all of the

tasks and the workers must steal each task, but tasks can be executed in parallel once

they are stolen. Because the worker threads must steal each task, they are much slower

at finding tasks than the master thread. The master thread is continually busy in

Figure 17-6(b) – it can quickly pop a next task from its local deque – while the worker

threads’ timelines show gaps during which they are fighting with each other to steal their

next task from the master’s local deque.

Figure 17-6(c) shows the good behavior of FG loop per worker, where each thread

is able to quickly pop its next task from its local deque. Now we see very few gaps in the

timelines.

Figure 17-6.  Two millisecond regions of the timelines for each microbenchmark
when using a spin wait of 1 microsecond

Chapter 17 Flow Graphs: Beyond the Basics

459

Looking at these extremes of behavior and noting the performance in Figure 17-5, we

feel comfortable recommending a similar rule of thumb for flow graph nodes. While a

pathological case, like Master loop, shows a limited speedup of 2.8 with a 1 microsecond

body, it still shows a speedup. If the work is more balanced, such as with FG loop per
worker, a 1 microsecond body provides a good speedup. With these caveats in mind, we

again recommend a 1 microsecond execution time as a crude guideline:

RULE OF THUMB  Flow graph nodes should be at least 1 microsecond in
execution time in order to profit from parallel execution. This translates to several
thousand CPU cycles – if you prefer using cycles, we suggest a 10,000 cycle
rule of thumb.

Just like with the TBB algorithms, this rule does not mean that we must avoid nodes

smaller than 1 microsecond at all costs. Only if our flow graph’s execution time is

dominated by small nodes do we really have a problem. If we have a mix of nodes with

different execution times, the overhead introduced by the small nodes may be negligible

compared to the execution time of the larger nodes.

�What to Do If Nodes Are Too Small

If some of the nodes in a flow graph are smaller than the recommended 1 microsecond

threshold, there are three options: (1) do nothing at all if the node does not have

significant impact on the total execution time of the application, (2) merge the node with

other surrounding nodes to increase granularity, or (3) use the lightweight execution

policy.

If the node’s granularity is small, but its contribution to total execution time is also

small, then the node can be safely ignored; just leave it as it is. In these cases, clarity of

design may trump any inconsequential efficiency gained.

If the node’s granularity has to be addressed, one option is to merge it with

surrounding nodes. Does the node really need to be encapsulated separately from its

predecessors and successors? If the node has a single predecessor or a single successor

and the same concurrency level, it might be easily combined with those nodes. If it has

multiple predecessors or successors, then perhaps the operations that are performed by

the node can be copied into each of the nodes. In any case, merging the nodes together

can be an option if the merging does not change the semantics of the graph.

Chapter 17 Flow Graphs: Beyond the Basics

460

Finally, the node can be changed to use a lightweight execution policy via a template

argument when the node is constructed. For example:

This policy indicates that the body of the node contains a small amount of work and

should, if possible, be executed without the overhead of scheduling a task.

There are three lightweight policies to choose from: queueing_lightweight,

rejecting_lightweight, and lightweight. These policies are described in detail

in Appendix B. All of the functional nodes, except source_node, support lightweight

policies. A lightweight node may not spawn a task to execute the body, but instead

execute the body immediately inside of the try_put within the context of the calling

thread. This means that the overheads of spawning are removed – but there is no

opportunity for other threads to steal the task, so parallelism is restricted!

Figure 17-7 shows two simple graphs that we can use to demonstrate the benefits

and risks of the lightweight policies: the first is a chain multifunction_node objects

and the second is a multifunction_node object that is connected to two chains of

multifunction_node objects.

Figure 17-7.  Flow graph used to examine the impacts of the lightweight policies

Chapter 17 Flow Graphs: Beyond the Basics

461

Figure 17-8 shows the impact of using the lightweight policy on the graphs

shown in Figure 17-7 using chains of 1000 nodes, all using the same execution policy

(lightweight or not). We send a single message through each graph and vary the time

each node spins from 0 to 1 millisecond. We should note that the single chain does not

allow for any parallelism when only one message is sent, while with two chains we can

achieve a maximum speedup of 2.

The lightweight policy cannot limit parallelism for the one chain case, since

there is no parallelism in this graph to begin with. We therefore see in Figure 17-8 that

it improves performance for all cases, although its impact becomes less significant

as the node granularity increases. For the one chain case, the ratio approaches 1.0 as

the overhead of spawning tasks becomes negligible compared to the body’s spin time.

The two-chain case does have potential parallelism. However, if all of the nodes use a

lightweight policy, both chains will be executed by the thread that executes the first

multifunction_node and the potential parallelism will be eliminated. As we might

expect then, as we approach our rule of thumb execution time of 1 microsecond, the

benefits of the lightweight policy are overshadowed by the restricted parallelism. Even

if the nodes spin for 0.1 microsecond, the ratio drops below 1. The ratio approaches 0.5

Figure 17-8.  The impact of using a lightweight policy for the one chain and two
chains samples. A value greater than 1 means that the lightweight policy improved
performance.

Chapter 17 Flow Graphs: Beyond the Basics

462

as the serialization of the graph results in the complete loss of our expected speedup of 2

when using two chains.

Addressing granularity issues through merging of nodes, or by using the lightweight

policy, can decrease overheads, but as we see, they can also limit scalability. These

“optimizations” can result in significant improvements, but must be applied judiciously

or else they may do more harm than good.

�Memory Usage and Data Locality
Unlike the TBB parallel algorithms that iterate over data structures, a flow graph passes

data structures from node to node. The messages can be primitive types, objects,

pointers or, in the case of a dependence graph, tbb::flow::continue_msg objects.

For best performance, we need to consider both data locality and memory consumption.

We will discuss both of these issues in this section.

�Data Locality in Flow Graphs

Data passes between nodes, and when a node receives a message, it executes its body

on the message as a TBB task. The task is scheduled using the same work-stealing

dispatchers used by all TBB tasks. In Figure 17-6(a) when a serial loop was executed as

a flow graph, we saw that a task spawned by one thread may be executed by another. We

noted however that this was due in part to the microbenchmark using multifunction_

node objects, which do not use scheduler bypass to optimize for performance.

In general, the other functional nodes, including source_node, function_node, and

continue_node, use scheduler bypass if one of the successors can be immediately run.

If the data accessed by one of these nodes fits into a data cache, then it can be reused by

the same thread when it executes the successor.

Since we can benefit from locality in a flow graph, it is worth considering data size

and even breaking the data into smaller pieces that can benefit from locality through

scheduler bypass. For example, we can revisit the matrix transposition kernel that we

used in Chapter 16 as an example to demonstrate this effect. We will now pass three pairs

of a, b matrices using the FGMsg structure shown in Figure 17-9. You can see the serial,

cache oblivious and parallel_for implementations of the matrix transposition kernel in

Chapter 16 in Figure 16-6 through Figure 16-13.

Chapter 17 Flow Graphs: Beyond the Basics

463

Our first implementation that does not break the arrays into small pieces is also

shown in Figure 17-9. The source_node, initialize, sends three messages, each being

one of three matrix pairs. This node is connected to a single function_node, transpose,

that has an unlimited concurrency. The transpose node invokes the simple, serial

matrix transposition function from Chapter 16. A final node, check, confirms that the

transposition is done correctly.

Figure 17-9.  A graph that sends a series of matrices to transpose, each of which is
transposed using the simple serial matrix transposition from Chapter 16

Chapter 17 Flow Graphs: Beyond the Basics

464

Our simple implementation sends the full matrices, and these are processed, in a

non-cache-oblivious fashion, by transpose. As we might expect, this does not perform

well. On our test machine, it was only 8% faster than executing the non-cache-oblivious

serial implementation of our matrix transposition from Chapter 16 three times in a row,

once on each pair of matrices. This isn’t very surprising since the benchmark is memory

bound – trying to execute multiple transpositions in parallel doesn’t help much when

we can’t feed one transposition with the data it needs from memory. If we compare our

simple flow graph to the serial cache-oblivious transposition from Chapter 16, it looks

even worse, taking 2.5 times longer to process the three pairs of matrices when executed

on our test machine. Luckily, there are many options for improving the performance of

this flow graph. For example, we can use a serial cache-oblivious implementation in the

transpose node. Or, we can use the parallel_for implementation from Chapter 16 that

uses a blocked_range2d and simple_partitioner in the transpose node. We will see

shortly that each of these will greatly improve our base case speedup of 1.08.

However, we might also send blocks of the matrices as messages instead of sending

each pair of a and b matrices as a single big message. To do so, we extend our message

structure to include a blocked_range2d:

We can then construct an implementation in which the initialize node sends

blocks of the a and b matrices as messages; sending all of the blocks from one pair of

matrices before moving on to the next. Figure 17-10 shows one possible implementation.

In this implementation, a stack is maintained by the source_node to mimic the depth-

first subdivision and execution of the blocks that would come about through the

recursive subdivision of ranges performed by a TBB parallel_for. We will not describe

the implementation in Figure 17-10 in depth. Instead, we will simply note that it sends

blocks instead of full matrices.

Chapter 17 Flow Graphs: Beyond the Basics

465

Figure 17-10.  A graph that sends a series of tiles of matrices to transpose,
leveraging the blocked_range2d described in Chapter 16 (Advanced Algorithms)

Chapter 17 Flow Graphs: Beyond the Basics

466

Figure 17-11 shows the speedup of several variants of matrix transposition

when executed on our test machine. We can see that our first implementation, labeled

“flow graph,” shows the small 8% improvement. The pfor-br2d implementation is the

parallel_for based implementation from Figure 16-11, with blocked_range2d and

simple_partitioner, executed three times, once on each pair of matrices. The remaining

bars all correspond to optimized flow graph versions: “flow graph + oblivious” is similar

to Figure 17-9 but calls the serial cache-oblivious implementation of matrix transposition

from within the body of the transpose node; “flow graph + pfor-br2d” uses a parallel_for

in the transpose body; “tiled flow graph” is our implementation from Figure 17-10; and

“tiled flow graph + pfor2d” is similar to Figure 17-10 but uses a parallel_for to process its

tiles. The tiled flow graph from Figure 17-10 performed the best.

It might be surprising that the tiled flow graph version with nested parallel_fors

did not perform as well as the tiled flow graph without nested parallelism. In Chapter 9,

we claimed that we can use nested parallelism with impunity in TBB – so what went

wrong? The harsh reality is that once we start tuning the performance of our TBB

applications – we often need to trade away full composability for performance (see the

Aspects of Composability Sidebar). In this case, the nested parallelism interfered with

the cache optimizations we were carefully trying to implement. Each node was sent a tile

to process that was a good fit for its data cache – with nested parallelism, we then undid

this perfect fit by sharing the tile with other threads.

Figure 17-11.  The speedup of the different variants of matrix transposition.
We use 32×32 tiles since this performed best on our test system.

Chapter 17 Flow Graphs: Beyond the Basics

467

ASPECTS OF COMPOSABILITY

We can break down composability into three desires:

	(1)	 Correctness (as an absolute)

	(2)	A bility to use (as a practical matter)

	(3)	P erformance (as an aspiration)

In the first, we hope we can mix and match code without concerns that it will suddenly

malfunction (get the wrong answer). TBB gives us this ability, and it is largely a solved

problem – the one wrinkle being that nondeterministic order-of-execution will make answers

vary when using finite precision math such as native floating-point arithmetic. We discuss that

in Chapter 16 offering approaches to maintain the “correctness” aspects of composability in

this light.

In the second, we hope that the program will not crash. This is a practical matter in many

cases, because the most common problem (unbounded memory usage) could be theoretically

solved with infinite sized memories. ☺ TBB largely solves this aspect of composability, giving

it an advantage of programming models that do not (such as OpenMP). TBB does need more

help here for the less structured flow graphs, so we discuss using limiter_nodes with flow

graphs to keep memory usage in check – especially important in large flow graphs.

Finally, for optimal performance, we know of no general solution to full performance

composability. The reality is that highly optimized code competing with other code running

on the same hardware will interfere with the optimal performance of either code. This means

we can benefit from manually tuning the code. Fortunately, TBB gives us control to tune, and

tools like Flow Graph Analyzer help give us insights to guide our tuning. Once tuned, it is our

experience that code can work well and feel composable – but the technology to blindly use

code and get top performance does not exist. “Good enough” performance may happen often,

but “great” requires work.

Chapter 17 Flow Graphs: Beyond the Basics

468

We shouldn’t get too focused on the specifics of the results in Figure 17-11 – this is,

after all, a single memory-bound microbenchmark. But it does make clear that we can

benefit by considering the size of our nodes, not only from a granularity perspective, but

also from a data locality perspective. When we moved from a naïve implementation that

sent whole arrays and did not implement tuned kernels in the nodes to our more

cache-aware tiled flow graph version, we saw a significant performance improvement.

�Picking the Best Message Type and Limiting the Number
of Messages in Flight

As we allow messages into a graph, or make copies as we split them along multiple paths

through a flow graph, we consume more memory. In addition to worrying about locality,

we may also need to limit memory growth.

When a message is passed to a node in a data flow graph, it may be copied into the

internal buffers in that node. For example, if a serial node needs to defer the spawning

of task, it holds incoming messages in a queue until it is legal to spawn a task to process

them. If we pass very large objects around in our flow graph, this copying can be

expensive! Therefore, when possible, it is better to pass around pointers to large objects

instead of the objects themselves.

The C++11 standard introduced classes (in namespace std) unique_ptr and

shared_ptr, which are very useful for simplifying memory management of objects

passed by pointer in a flow graph. For example, in Figure 17-12, let us assume that a

BigObject is large and slow to construct. By passing the object using a shared_ptr, only

the shared_ptr is copied into the serial node n’s input buffer not the entire BigObject.

Also, since a shared_ptr is used, each BigObject is automatically destroyed once it

reaches the end of the graph and its reference count reaches zero. How convenient!

Chapter 17 Flow Graphs: Beyond the Basics

469

Of course, we need to be careful when we use pointers to objects. By passing

pointers and not objects, multiple nodes may have access to the same object at the same

time through the shared_ptr. This is especially true if your graph relies on functional

parallelism, where the same message is broadcast to multiple nodes. The shared_ptr

will correctly handle the increments and decrements of the reference counts, but we

need to be sure that we are properly using edges to prevent any potential race conditions

when accessing the object that is pointed to.

Figure 17-12.  Using a std::shared_ptr to avoid slow copies while simplifying
memory management

Chapter 17 Flow Graphs: Beyond the Basics

470

As we saw in our discussion of how nodes map to tasks, when messages arrive at

functional nodes, tasks may be spawned or messages may be buffered. When designing

a data flow graph, we should not forget about these buffers and tasks, and their memory

footprint.

For example, let’s consider Figure 17-13. There are two nodes, serial_node and

unlimited_node; both contain a long spin loop. The for loop quickly allocates a large

number of inputs for both nodes. Node serial_node is serial and so its internal buffer

will grow quickly as it receives messages faster than its tasks complete. In contrast,

node unlimited_node will immediately spawn tasks as each message arrives – quickly

flooding the system with a very large number of tasks – many more than the number

of worker threads. These spawned tasks will be buffered in the internal worker thread

queues. In both cases, our graph might quickly consume a large amount of memory

because they allow BigObject messages to enter the graph more quickly than they can be

processed.

Our example uses an atomic counter, bigObjectCount, to track how many

ObjectCount objects are currently allocated at any given time. At the end of the

execution, the example prints the maximum value. When we ran the code in Figure 17-13

with A_VERY_LARGE_NUMBER=4096, we saw a "maxCount == 8094". Both the serial_node

and the unlimited_node quickly accumulate BigObject objects!

Chapter 17 Flow Graphs: Beyond the Basics

471

Figure 17-13.  An example with a serial function_node, serial_node, and an
unlimited function_node, unlimited_node

Chapter 17 Flow Graphs: Beyond the Basics

472

There are three common approaches to managing resource consumption in a flow

graph: (1) use a limiter_node, (2) use concurrency limits, and/or (3) use a token-

passing pattern.

We use a limiter_node to set a limit on the number of messages that can flow

through a given point in a graph. A subset of the interface of limiter_node is shown in

Figure 17-14.

A limiter_node maintains an internal count of the messages that pass through it.

A message sent to the decrement port on a limiter_node decrements the count, allowing

additional messages to pass through. If the count is equal to the node’s threshold, any

new messages that arrive at its input port are rejected.

In Figure 17-15, a source_node source generates a large number of BigObjects.

A source_node only spawns a new task to generate a message once its previously

generated message is consumed. We insert a limiter_node limiter, constructed with

a limit of 3, between source and unlimited_node to limit the number of messages that

are sent to unlimited_node. We also add an edge from unlimited_node back to the

limiter_node’s decrement port. The number of messages sent through limiter will now

at most be 3 more than the number of messages sent back through limiter’s decrement

port.

Figure 17-14.  The subset of limiter_node interface used by the examples

Chapter 17 Flow Graphs: Beyond the Basics

473

Figure 17-15.  Using a limiter_node to allow only three BigObjects to reach
unlimited_node at a time

Chapter 17 Flow Graphs: Beyond the Basics

474

We can also use the concurrency limits on nodes to limit resource consumption

as shown in Figure 17-16. In the code, we have a node that can safely execute with an

unlimited concurrency, but we choose a smaller number to limit the number of tasks

that will be spawned concurrently.

Figure 17-16.  Using a tbb::flow::rejecting policy and a concurrency_limit
to allow only three BigObjects to reach the limited_to_3_node at a time

Chapter 17 Flow Graphs: Beyond the Basics

475

We can turn off the internal buffering for a function_node by constructing it with an

execution policy, flow::rejecting or flow::rejecting_lightweight. The source_node

in Figure 17-16 continues to generate new outputs only if they are being consumed.

The final common approach for limiting resource consumption in a data flow graph

is to use a token-based system. As described in Chapter 2, tbb::parallel_pipeline

algorithm uses tokens to limit the maximum number of items that will be in flight in

a pipeline. We can create a similar system using tokens and a reserving join_node as

shown in Figure 17-17. In this example, we create a source_node source and buffer_

node token_buffer. These two nodes are connected to the inputs of a reserving join_

node join. A reserving join_node, join_node< tuple< BigObjectPtr, token_t >,

flow::reserving >, only consumes items when it can first reserve inputs at each of its

ports. Since a source_node stops generating new messages when its previous message

has not been consumed, the availability of tokens in the token_buffer limits the number

of items that can be generated by the source_node. As tokens are returned to the token_

buffer by node unlimited_node, they can be paired with additional messages generated

by the source, allowing new source tasks to be spawned.

Figure 17-18 shows the speedup of each approach over a serial execution of the node

bodies. In this figure, the spin time is 100 microseconds, and we can see that the token

passing approach has a slightly higher overhead, although all three approaches show

speedups close to 3, as we would expect.

Chapter 17 Flow Graphs: Beyond the Basics

476

Figure 17-17.  A token passing pattern uses tokens and a tbb::flow::reserving
join_node to limit the items that can reach node unlimited_node

Chapter 17 Flow Graphs: Beyond the Basics

477

In Figure 17-18, we use int as the token type. In general, we can use any type as a

token, even large objects or pointers. For example, we could use BigObjectPtr objects

as the tokens if we want to recycle BigObject objects instead of allocating them for each

new input.

�Task Arenas and Flow Graph
Both implicit and explicit task arenas impact the behavior of TBB tasks and the TBB

generic parallel algorithms. The arena in which tasks are spawned controls which

threads can participate in executing the tasks. In Chapter 11, we saw how we can use

implicit and explicit arenas to control the number of threads that participate in executing

parallel work. In Chapters 12–14, we saw that explicit task arenas can be used with task_

sheduler_observer objects to set the properties of threads as they join arenas. Because

of the impact of task arenas on available parallelism and data locality, in this section, we

take a closer look at how task arenas mix with flow graphs.

�The Default Arena Used by a Flow Graph

When we construct a tbb::flow::graph object, the graph object captures a reference

to the arena of the thread that constructed the object. Whenever a task is spawned to

execute work in the graph, the tasks are spawned in this arena, not in the arena of the

thread that caused the task to be spawned.

Figure 17-18.  All three approaches limit the speedup since only three items are
allowed into node n at a time

Chapter 17 Flow Graphs: Beyond the Basics

478

Why?

Well, TBB flow graphs are less structured than TBB parallel algorithms. TBB

algorithms use fork-join parallelism and the behavior of TBB task arenas matches this

pattern well – each master thread has its own default arena and so if different master

threads execute algorithms concurrently, their tasks are isolated from each other in

different task arenas. But with a TBB flow graph, there may be one or more master

threads explicitly putting messages into the same graph. If the tasks related to these

interactions are spawned in each master thread’s arena, some tasks from a graph would

be isolated from other tasks from the same graph. This is very likely not the behavior we

would like.

So instead, all tasks are spawned into a single arena, the arena of the thread that

constructed the graph object.

�Changing the Task Arena Used by a Flow Graph

We can change the task arena used by a graph by calling the graph’s reset() function.

This reinitializes the graph, including recapturing the task arena. We demonstrate this

in Figure 17-19 by constructing a simple graph with one function_node that prints the

number of slots in the arena in which its body task executes. Since the main thread

constructs the graph object, the graph will use the default arena, which we initialize with

eight slots.

Chapter 17 Flow Graphs: Beyond the Basics

479

In the first three calls to n.try_put in Figure 17-19, we do not reset that graph g, and

we can see that the tasks execute in the default arena with eight slots.

Without reset:

default : 8

a2 : 8

a4 : 8

Figure 17-19.  Using graph::reset to change the task arena used by a graph

Chapter 17 Flow Graphs: Beyond the Basics

480

But in the second set of calls, we call reset to reinitialize the graph, and the node

executes first in the default arena, then in arena a2, and finally in arena a4.

With reset:

default : 8

a2 : 2

a4 : 4

�Setting the Number of Threads, Thread-to-Core Affinities, etc.

Now that we know how to associate task arenas with flow graphs, we can use all of the

performance tuning optimizations described in Chapters 11–14 that rely on task arenas.

For example, we can use task arenas to isolate one flow graph from another. Or, we can

pin threads to cores for a particular task arena using a task_scheduler_observer object

and then associate that arena with a flow graph.

�Key FG Advice: Dos and Don’ts
The flow graph API is flexible – maybe too flexible. When first working with flow graph,

the interface can be daunting since there are so many options. In this section, we provide

several dos and don’ts that capture some of our experience when using this high-level

interface. However, just like with our rule of thumb for node execution time, these are

just suggestions. There are many valid patterns of usage that are not captured here, and

we’re sure that some of the patterns we say to avoid may have valid use cases. We present

these best-known methods, but your mileage may vary.

�Do: Use Nested Parallelism
Just like with a pipeline, a flow graph can have great scalability if it uses parallel

(flow::unlimited) nodes but can have limited scalability if it has serial nodes. One way

to increase scaling is to use nested parallel algorithms inside of TBB flow graph nodes.

TBB is all about composability, so we should use nested parallelism when possible.

Chapter 17 Flow Graphs: Beyond the Basics

481

�Don’t: Use Multifunction Nodes in Place of Nested
Parallelism
As we have seen throughout this book, the TBB parallel algorithms such as parallel_

for and parallel_reduce are highly optimized and include features like Ranges and

Partitioners that let us optimize performance even more. We have also seen that the flow

graph interface is very expressive – we can express graphs that include loops and use nodes

like multifunction_node to output many messages from each invocation. We should

therefore be on the lookout for cases where we create patterns in our graphs that are better

expressed using nested parallelism. One simple example is shown in Figure 17-20.

In Figure 17-20, for each message that the multifunction_node receives, it generates

many output messages that flow into a function_node with unlimited concurrency. This

graph will act a lot like a parallel loop, with the multifunction_node acting as the control

loop and the function_node as the body. But it will require a lot of stealing to distribute

the work like the Master loop from Figures 17-3 and 17–5. While there may be valid uses

of this pattern, it is likely more efficient to use a highly optimized parallel loop algorithm

instead. This entire graph might be collapsed into a single node that contains a nested

parallel_for, for example. Of course, whether or not this replacement is possible or

desirable depends on the application.

�Do: Use join_node, sequencer_node, or
multifunction_node to Reestablish Order in a
Flow Graph When Needed
Because a flow graph is less structured than a simple pipeline, we may sometimes need

to establish an ordering of messages at points in the graph. There are three common

approaches for establishing order in a data flow graph: use a key-matching join_node,

use a sequencer_node, or use a multifunction_node.

Figure 17-20.  A multifunction_node that sends many messages for each message
it receives. This pattern may be better expressed as a nested parallel_for loop.

Chapter 17 Flow Graphs: Beyond the Basics

482

For example, in Chapter 3, the parallelism in our stereoscopic 3D flow graph allowed

the left and right images to arrive out of order at the mergeImageBuffersNode. In that

example, we ensured that the correct two images were paired together as inputs to the

mergeImageBuffersNode by using a tag-matching join_node. A tag-matching join_node

is a type of key-matching join_node. By using this join_node type, inputs can arrive in

different orders at the two input ports but will still be properly matched based on their

tag or key. You can find more information on the different join policies in Appendix B.

Another way to establish order is to use a sequencer_node. A sequencer_node is a

buffer that outputs messages in sequence order, using a user-provided body object to

obtain the sequence number from the incoming message.

In Figure 17-21, we can see a three-node graph, with nodes first_node, sequencer,

and last_node. We use a sequencer_node to reestablish the input order of the messages

before the final serial output node last_node. Because function_node first_node is

unlimited, its tasks can finish out of order and send their output as they complete. The

sequencer_node reestablishes the input order by using the sequence number assigned

when each message was originally constructed.

If we execute a similar example without a sequencer node and N=10, the output is

scrambled as the messages pass each other on their way to last_node:

9 no sequencer

8 no sequencer

7 no sequencer

0 no sequencer

1 no sequencer

2 no sequencer

6 no sequencer

5 no sequencer

4 no sequencer

3 no sequencer

Chapter 17 Flow Graphs: Beyond the Basics

483

Figure 17-21.  A sequencer_node is used to ensure that the messages print in the
order dictated by their my_seq_no member variables

Chapter 17 Flow Graphs: Beyond the Basics

484

When we execute the code in Figure 17-21, we see the output:

0 with sequencer

1 with sequencer

2 with sequencer

3 with sequencer

4 with sequencer

5 with sequencer

6 with sequencer

7 with sequencer

8 with sequencer

9 with sequencer

As we can see, a sequencer_node can reestablish the order of the messages, but

it does require us to assign the sequence number and also to provide a body to the

sequencer_node that can obtain that number from an incoming message.

A final approach to establishing order is to use a serial multifunction_node.

A multifunction_node can output zero or more messages on any of its output ports

for a given input message. Since it is not forced to output a message for each incoming

message, it can buffer incoming messages and hold them until some user-defined

ordering constraint is met.

For example, Figure 17-22 shows how we can implement a sequencer_node using

a multifunction_node by buffering incoming messages until the next message in

sequencer order has arrived. This example assumes that at most N messages are sent to

a node sequencer and that the sequence numbers start at 0 and are contiguous up to

N-1. Vector v is created with N elements initialized as empty shared_ptr objects. When

a message arrives at sequencer, it is assigned to the corresponding element of v. Then

starting at the last sent sequence number, each element of v that has a valid message is

sent and the sequence number is incremented. For some incoming messages, no output

message will be sent; for others, one or more messages may be sent.

Chapter 17 Flow Graphs: Beyond the Basics

485

While Figure 17-22 shows how a multifunction_node can be used to reorder

messages by sequence order, in general, any user-defined ordering or bundling of

messages can be used.

�Do: Use the Isolate Function for Nested Parallelism
In Chapter 12, we talked about how we may sometimes need to create isolation for

performance or correctness reasons when using TBB algorithms. The same is true

for flow graphs, and as with the generic algorithms, this can be especially true with

nested parallelism. The implementation of the graph in Figure 17-23 shows a simple

graph with nodes source and unlimited_node, and nested parallelism inside node

unlimited_node. A thread may moonlight (see Chapter 12) while waiting for the nested

parallel_for loop in node unlimited_node to complete, and pick up another instance

of node unlimited_node. The node unlimited_node prints “X started by Y”, where X is

the node instance number and Y is the thread id.

Figure 17-22.  A multifunction_node is used to implement a sequencer_node

Chapter 17 Flow Graphs: Beyond the Basics

486

Figure 17-23.  A graph with nested parallelism

Chapter 17 Flow Graphs: Beyond the Basics

487

On our test system with eight logical cores, one output showed that our thread 0 was

so bored it pick up not just one, but three different instances of unlimited_node, while

waiting for its first parallel_for algorithm to finish as shown in Figure 17-24.

As we discussed in Chapter 12, moonlighting is typically benign, which is the case

here since we’re not computing anything real. But as we highlighted in our previous

discussions about isolation, this behavior is not always benign and can lead to

correctness issues, or decreased performance, in some cases.

We can address moonlighting in a flow graph just as we did with general tasks in

Chapter 12, with the this_task_arena::isolate function or with explicit task arenas.

For example, instead of calling the parallel_for directly in the node body, we can

invoke it inside of an isolate call:

tbb::this_task_arena::isolate([P,spin_time]() {

 tbb::parallel_for(0, P-1, [spin_time](int i) {

 spinWaitForAtLeast((i+1)∗spin_time);
 });

});

After changing our code to use this function, we see that the threads no longer

moonlight and each thread stays focused on a single node until that node is complete as

shown in Figure 17-25.

Figure 17-24.  An output from the example in Figure 17-23 is shown on the
left, with a diagram showing the overlapped executions on the right. Thread 0
participates in the execution of three different node invocations concurrently.

Chapter 17 Flow Graphs: Beyond the Basics

488

�Do: Use Cancellation and Exception Handling in Flow
Graphs
In Chapter 15, we discussed task cancellation and exception handling when using TBB

tasks in general. Since we are already familiar with this topic, we will only highlight the

flow graph related aspects in this section.

�Each Flow Graph Uses a Single task_group_context

A flow graph instance spawns all of its tasks into a single task arena, and it also uses a

single task_group_context object for all of these tasks. When we instantiate a graph

object, we can pass in an explicit task_group_context to the constructor:

tbb::task_group_context tgc;

tbb::flow::graph g{tgc};

If we don’t pass one to the constructor, a default object will be created for us.

�Canceling a Flow Graph

If we want to cancel a flow graph, we cancel it using the task_group_context, just as we

would with the TBB generic algorithms.

tgc.cancel_group_excution();

Figure 17-25.  None of the nodes execute different node invocations concurrently

Chapter 17 Flow Graphs: Beyond the Basics

489

And just as with TBB algorithms, the tasks that have already started will complete but

no new tasks related to the graph will start. As described in Appendix B, there is also a

helper function in the graph class that lets us check the status of a graph directly:

if (g.is_cancelled()) {

 std::cout << "My graph was cancelled!" << std::endl;

}

If we need to cancel a graph, but do not have a reference to its task_group_context,

we can get one from within the task:

tbb::task::self().cancel_group_execution();

�Resetting a Flow Graph After Cancellation

If a graph is canceled, whether directly or due to an exception, we need to reset the

graph, g.reset(), before we can use it again. This resets the state of the graph – clearing

internal buffers, putting the edges back into their initial states, and so on. See Appendix

B for more details.

�Exception Handling Examples

To learn about how exceptions work with a flow graph, let’s look at the implementation

of the graph in Figure 17-26. This figure provides a small, three-node graph that throws

an exception in its second node, node2.

Chapter 17 Flow Graphs: Beyond the Basics

490

If we execute this example, we get an exception (hopefully this did not come as a

surprise):

terminate called after throwing an instance of 'int'

Since we didn’t handle the exception, it propagates to the outer scope and our

program terminates. We can, of course, modify the implementation of our node node2,

so that it catches the exception within its own body, as shown in Figure 17-27.

Figure 17-26.  A flow graph that throws an exception in one of its nodes

Chapter 17 Flow Graphs: Beyond the Basics

491

If we make this change, our example will run to completion, printing out the

“Caught” messages, in no particular order:

Caught 2

Caught 1

So far, none of this is very exceptional (pun intended); it’s just how exceptions

should work.

The unique part of exception handling in a flow graph is that we can catch

exceptions at the call to the graph’s wait_for_all function, as shown in Figure 17-28.

Figure 17-27.  A flow graph that throws an exception in one of its nodes

Figure 17-28.  A flow graph that throws an exception in one of its nodes

If we re-run our original example from Figure 17-26 but use a try-catch block around

the call to wait_for_all, we will see only one “Catch” message (either for 1 or 2):

Caught 2

The exception thrown in node node2 is not caught in the node’s body, so it will

propagate to the thread that waits at the call to wait_for_all. If a node’s body throws an

exception, the graph it belongs to is canceled. In this case, we see that there is no second

“Caught” message, since node2 will only execute once.

Chapter 17 Flow Graphs: Beyond the Basics

492

And of course, if we want to re-execute the graph after we deal with the exception

that we catch at the wait_for_all, we need to call g.reset() since the graph has been

canceled.

�Do: Set a Priority for a Graph Using task_group_
context
We can set priorities for all of the tasks spawned by a graph by using the graph’s task_

group_context, for example:

if (auto t = g.root_task()) {

 t->group()->set_priority(tbb::priority_high);

}

Or we can pass in a task_group_context object with a preset priority to the graph’s

constructor. In either case though, this sets the priorities for all of the tasks related to

the graph. We can create one graph with a high priority and another graph with a low

priority.

Shortly before the publication of this book, support for relative priorities for

functional nodes was added to TBB as a preview feature. Using this feature, we can pass

a parameter to a node’s constructor to give it a priority relative to other functional nodes.

This interface was first provided in TBB 2019 Update 3. Interested readers can learn more

details about this new functionality in the online TBB release notes and documentation.

�Don’t: Make an Edge Between Nodes in Different Graphs
All graph nodes require a reference to a graph object as one of the arguments to their

constructor. In general, it is only safe to construct edges between nodes that are part of

the same graph. Connecting two nodes in different graphs can make it difficult to reason

about graph behaviors, such as what task arenas will be used, if our calls to wait_for_

all will properly detect graph termination, and so on. To optimize performance, the

TBB library takes advantage of its knowledge about edges. If we connect two graphs by

an edge, the TBB library will freely reach across this edge for optimization purposes.

Chapter 17 Flow Graphs: Beyond the Basics

493

We may believe that we have created two distinct graphs, but if there are shared edges,

TBB can start mixing their executions together in unexpected ways.

To demonstrate how we can get unexpected behavior, we implemented the class

WhereAmIRunningBody shown in Figure 17-29. It prints max_concurrency and priority

settings, which we will use to infer what task arena and task_group_context this body’s

task is using when it executes.

Figure 17-30 provides an example that uses the WhereAmIRunningBody to

demonstrate an unexpected behavior. In this example, we create two nodes: g2_node and

g4_node. The node g2_node is constructed with a reference to g2. The graph g2 is passed

a reference to a task_group_context that has priority_normal and g2 is reset() in a

task_arena with a concurrency of 2. We should therefore expect g2_node to execute with

normal priority in an arena with 2 threads, right? The node g4_node is constructed such

that we should expect it to execute with high priority in an arena with four threads.

The first group of calls that include g2_node.try_put(0) and g4_node.try_put(1)

match these expectations:

Figure 17-29.  A body class that lets us infer what task arena and task_group_
context are used by a node execution

Chapter 17 Flow Graphs: Beyond the Basics

494

But, when we make an edge from g2_node to g4_node, we make a connection

between nodes that exist in two different graphs. Our second set of calls that include

g2_node.try_put(2) again cause the body of g2_node to execute with normal priority in

arena a2. But TBB, trying to reduce scheduling overheads, uses scheduler bypass (see

Scheduler Bypass in Chapter 10) when it invokes g4_node due to the edge from g2_node

to g4_node. The result is that g4_node executes in the same thread as g2_node, but this

Figure 17-30.  An example that has unexpected behavior because of cross-graph
communication

Chapter 17 Flow Graphs: Beyond the Basics

495

thread belongs to arena a2 not a4. It still uses the correct task_group_context when the

task is constructed, but it winds up being scheduled in an unexpected arena.

2:g2_node executing in arena 2 with priority normal

2:g4_node executing in arena 2 with priority high

From this simple example, we can see that this edge breaks the separation between

the graphs. If we were using arenas a2 and a4 to control the number of threads, for work

isolation or for thread affinity purposes, this edge will undo our efforts. We should not

make edges between graphs.

�Do: Use try_put to Communicate Across Graphs
In the previous “Don’t,” we decided that we should not make edges between graphs. But

what if we really need to communicate across graphs? The least dangerous option is to

explicitly call try_put to send a message from a node in one graph to a node in another

graph. We don’t introduce an edge, so the TBB library won’t do anything sneaky to

optimize the communication between the two nodes. Even in this case though, we still

need to be careful as our example in Figure 17-31 demonstrates.

Here, we create a graph g2 that sends a message to graph g1 and then waits for both

graph g1 and g2. But, the waiting is done in the wrong order!

Since node g2_node2 sends a message to g1_node1, the call to g1.wait_for_all()

will likely return immediately since nothing is going on in g1 at the time of the call.

We then call g2.wait_for_all(), which returns after g2_node2 is done. After this call

returns, g2 is finished but g1 has just received a message from g2_node2 and its node

g1_node1 has just started to execute!

Chapter 17 Flow Graphs: Beyond the Basics

496

Figure 17-31.  A flow graph that sends a message to another flow graph

Chapter 17 Flow Graphs: Beyond the Basics

497

Luckily, if we call the waits in the reverse order, things will work as expected:

g2.wait_for_all();

g1.wait_for_all();

But still, we can see that using explicit try_puts is not without dangers. We need to

be very careful when graphs communicate with each other!

�Do: Use composite_node to Encapsulate Groups
of Nodes
In the previous two sections, we warned that communication between graphs can lead

to errors. Often developers use more than one graph because they want to logically

separate some nodes from others. Encapsulating a group of nodes is convenient if there

is a common pattern that needs to be created many times or if there is too much detail in

one large flat graph.

In both of these cases, we can use a tbb::flow::composite_node. A composite_node

is used to encapsulate a collection of other nodes so they can be used like a first-class

graph node. Its interface follows:

Unlike the other node types that we have discussed in this chapter and in Chapter 3,

we need to create a new class that inherits from tbb::flow::composite_node to make

use of its functionality. For example, let’s consider the flow graph in Figure 17-32(a). This

graph combines two inputs from source1 and source2, and uses a token passing scheme

to limit memory consumption.

Chapter 17 Flow Graphs: Beyond the Basics

498

If this token passing pattern is commonly used in our application, or by members

of our development team, it might make sense to encapsulate it into its own node type,

as shown in Figure 17-32(b). It also cleans up the high-level view of our application by

hiding the details.

Figure 17-33 shows what a flow graph implementation looks like if we have a

node that implements the dotted parts of Figure 17-32(a), replacing it with a single

merge node. In Figure 17-33, we use the merge node object like any other flow graph

node, making edges to its input and output ports. Figure 17-34 shows how we use

tbb::flow::composite_node to implement our MergeNode class.

Figure 17-32.  An example that benefits from a composite_node

Chapter 17 Flow Graphs: Beyond the Basics

499

Figure 17-33.  Creating a flow graph that uses a class MergeNode that inherits from
tbb::flow::composite_node

Chapter 17 Flow Graphs: Beyond the Basics

500

Figure 17-34.  The implementation of MergeNode

Chapter 17 Flow Graphs: Beyond the Basics

501

In Figure 17-34, MergeNode inherits from CompositeType, which is an alias for

The two template arguments indicate that a MergeNode will have two input ports, both

that receive BigObjectPtr messages, and a single output port that sends BigObjectPtr

messages. The class MergeNode has a member variable for each node it encapsulates: a

tokenBuffer, a join, and a combine node. And these member variables are initialized in

the member initializer list of the MergeNode constructor. In the constructor body, calls to

tbb::flow::make_edge set up all of the internal edges. A call to set_external_ports is

used to assign the ports from the member nodes to the external ports of the MergeNode.

In this case, the first two input ports of join become the inputs of the MergeNode and

the output of combine becomes the output the MergeNode. Finally, because the node is

implementing a token passing scheme, the tokenBuffer is filled with tokens.

While creating a new type that inherits from tbb::flow::composite_node may

appear daunting at first, using this interface can lead to more readable and reusable

code, especially as your flow graphs become larger and more complicated.

�Introducing Intel Advisor: Flow Graph Analyzer
The Flow Graph Analyzer (FGA) tool is available in Intel Parallel Studio XE 2019 and later.

It is provided as a feature of the Intel Advisor tool. Instructions for getting the tool can be

found at https://software.intel.com/en-us/articles/intel-advisor-xe-release-

notes.

FGA was developed to support the design, debugging, visualization, and analysis

of graphs built using the TBB flow graph API. That said, many of the capabilities of FGA

are generically useful for analyzing computational graphs, regardless of their origin.

Currently, the tool has limited support for other parallel programming models including

the OpenMP API.

For our purposes in this book, we will focus only on how the design and analysis

workflows in the tool apply to TBB. We also use FGA to analyze some of the samples in

this chapter. However, all of the optimizations presented in this chapter can be done with

or without FGA. So, if you have no interest in using FGA, you can skip this section. But

again, we believe there is significant value in this tool, so skipping it would be a mistake.

Chapter 17 Flow Graphs: Beyond the Basics

https://software.intel.com/en-us/articles/intel-advisor-xe-release-notes
https://software.intel.com/en-us/articles/intel-advisor-xe-release-notes

502

�The FGA Design Workflow
The design workflow in FGA lets us graphically design TBB flow graphs, validate that

they are correct, estimate their scalability, and, after we are satisfied with our design,

generate a C++ implementation that uses the TBB flow graph classes and functions. FGA

is not a full Integrated Development Environment (IDE) like Microsoft Visual Studio,

Eclipse or Xcode. Instead, it gets us started with our flow graph design, but then we need

to step outside of the tool to complete the development. However, if we use the design

workflow in a constrained way, as we will describe later, iterative development in the

designer is possible.

Figure 17-35 shows the FGA GUI used during the design workflow. We will only

briefly describe the components of the tool here as we describe the typical workflow; the

Flow Graph Analyzer documentation provides a more complete description.

The typical design workflow starts with a blank canvas and project. As highlighted

by the black circle numbered 1 in Figure 17-35, we select nodes in the node palette and

place them on the canvas, connecting them together by drawing edges between their

ports. The node palette contains all of the node types available in the TBB flow graph

interface and provides tooltips that remind us about the functionality of each type. For

each node on the canvas, we can modify its type-specific properties; for a function_node

1

2

Figure 17-35.  Using the FGA design workflow

Chapter 17 Flow Graphs: Beyond the Basics

503

for example, we can provide the C++ code for the body, set a concurrency limit, and

so on. We can also provide an estimated “weight” that represents the computational

complexity of the node so that later we can run a Scalability Analysis to see if our graph

will perform well.

Once we have drawn our graph on the canvas, we run a Rule Check that analyzes

the graph looking for common mistakes and anti-patterns. The Rule Check results,

highlighted by the black circle numbered 2 in Figure 17-35, show issues such as

unnecessary buffering, type mismatches, suspicious cycles in the graph, and so on.

In Figure 17-35, the Rule Check has discovered that there is a type mismatch between the

input of our limiter_node and the output of our multifunction_node. In response, we

can then, for example, modify the port output type of our multifunction_node to fix

this issue.

When we have fixed all correctness issues uncovered by the Rule Check, we can

then run a Scalability Analysis. The Scalability Analysis constructs a TBB flow graph in

memory, replacing the computational node bodies with dummy bodies that actively

spin for a time proportional to their “weight” property. FGA runs this model of our graph

on various numbers of threads and provides a table of the speedups, for example:

Using these features, we can iteratively refine our graph design. Along the way, we

can save our graph design in GraphML format (a common standard for representing

graphs). When we are satisfied with our design we can generate C++ code that uses the

TBB flow graph interface to express our design. This code generator is more accurately

viewed as a code wizard than an IDE since it does not directly support an iterative code

development model. If we change the generated code, there is no way to reimport our

changes into the tool.

�Tips for Iterative Development with FGA

If we want to create a design that we can continue to tune from within FGA, we can use

a constrained approach, where we specify node bodies that redirect to implementations

that are maintained outside of FGA. This is necessary because there is no way to

reimport modified C++ code back into FGA.

Chapter 17 Flow Graphs: Beyond the Basics

504

For example, if we want to make iterative development easier, we should not specify

a function_node that exposes its implementation directly in the body code:

Instead, we should specify only the interface and redirect to an implementation that

can be maintained separately:

If we take this constrained approach, we can often maintain the graph design in

FGA and its GraphML representation, iteratively tuning the topology and node properties

without losing any node body implementation changes we make outside of the tool.

Whenever we generate new C++ code from FGA, we simply include the most up-to-

date implementation header and the node bodies use these implementations that are

maintained outside of the tool.

Flow Graph Analyzer does not require us to use this approach of course, but it is

good practice if we want to use the code generation features of FGA as more than a

simple code wizard.

Chapter 17 Flow Graphs: Beyond the Basics

505

�The FGA Analysis Workflow
The analysis workflow in FGA is independent of the design workflow. While we can

surely analyze a flow graph that was designed in FGA, we can just as easily analyze a

TBB flow graph that is designed and implemented outside of the tool. This is possible

because the TBB library is instrumented to provide runtime events to the FGA trace

collector. A trace collected from a TBB application lets FGA reconstruct the graph

structure and the timeline of the node body executions – it does not depend on the

GraphML files developed during the design workflow.

If we want to use FGA to analyze a TBB application that uses a flow graph, the first

step is to collect an FGA trace. By default, TBB does not generate traces, so we need to

activate trace collection. The FGA instrumentation in TBB was a preview feature prior

to TBB 2019. We need to take extra steps if we are using an older version of TBB. We

refer readers to the FGA documentation for instructions on how to collect traces for the

version of TBB and FGA that they are using.

Once we have a trace of our application, the analysis workflow in FGA uses the

activities highlighted by the numbered circles in Figure 17-36: (1) inspect the tree-map

view for an overview of the graph performance and use this as an index into the graph

topology display, (2) run the critical path algorithm to determine the critical paths

through the computation, and (3) examine the timeline and concurrency data for

insight into performance over time. Analysis is most commonly an interactive process

that moves between these different activities as the performance of the application is

explored.

Chapter 17 Flow Graphs: Beyond the Basics

506

The tree-map view labeled as (1) in Figure 17-36 provides an overview of the

overall health of a graph. In the tree map, the area of each rectangle represents the total

aggregated CPU time of the node and the color of each square indicates the concurrency

observed during the execution of the node. The concurrency information is categorized

as poor (red), ok (orange), good (green), and oversubscribed (blue).

Nodes with a large area that are marked as “poor” are hotspots and have an average

concurrency between 0% and 25% of the hardware concurrency. These are therefore good

candidates for optimization. The tree-map view also serves as an index into a large graph;

clicking on a square will highlight the node in the graph and selecting this highlighted

node will in turn mark tasks from all instances of this node in the timeline trace view.

The graph topology canvas is synchronized with other views in the tool. Selecting a

node in the tree-map view, the timeline, or in a data analytics report will highlight the

node in the canvas. This lets users quickly relate performance data to the graph structure.

1
2

3

Figure 17-36.  Using the FGA analysis workflow. These results were collected on a
system with 16 cores.

Chapter 17 Flow Graphs: Beyond the Basics

507

One of the most important analytic reports provided by FGA is the list of critical

paths in a graph. This feature is particularly useful when one has to analyze a large

and complex graph. Computing the critical paths results in a list of nodes that form

the critical paths as shown in the region labeled (2) in Figure 17-36. As we discussed in

Chapter 3, an upper bound on speedup of dependency graphs can be quickly computed

by dividing the aggregate total time spent by all nodes in a graph by the time spent on

the longest critical path, T1/T∞. This upper bound can be used to set expectations on the

potential speedup for an application expressed as a graph.

The timeline and concurrency view labeled as (3) in Figure 17-36 displays the raw

traces in swim lanes mapped to software threads. Using this trace information, FGA

computes additional derived data such as the average concurrency of each node and the

concurrency histogram over time for the graph execution. Above the per-thread swim

lanes, a histogram shows how many nodes are active at that point in time. This view

lets users quickly identify time regions with low concurrency. Clicking on nodes in the

timelines during these regions of low concurrency lets developers find the structures in

their graph that lead to these bottlenecks.

�Diagnosing Performance Issues with FGA
In this chapter, we discussed a number of potential performance issues that can arise

when using a flow graph. In this section, we briefly discuss how FGA can be used to

explore these issues in a TBB-based application.

�Diagnosing Granularity Issues with FGA

Just like with our TBB generic loop algorithms, we need to be concerned about tasks that

are too small to profit from parallelization. But we need to balance this concern with the

need to create enough tasks to allow our workload to scale. In particular, as we discussed

in Chapter 3, scalability can be limited by serial nodes if they become a bottleneck in the

computation.

In an example timeline from FGA shown in Figure 17-37, we can see that there is a

dark serial task, named m, which causes regions of low concurrency. The color indicates

that this task is about 1 millisecond in length – this is above the threshold for efficient

scheduling but, from the timeline, it appears to be a serializing bottleneck. If possible, we

should break this task up into tasks that can be scheduled in parallel – either by breaking

it into multiple independent nodes or through nested parallelism.

Chapter 17 Flow Graphs: Beyond the Basics

508

In contrast, there are regions in Figure 17-37 where smaller tasks, named n, are

executed in parallel. By their coloring, it appears these are close to the 1 microsecond

threshold, and consequently we can see gaps in the timelines during this region,

indicating that there may be some non-negligible scheduling overheads involved.

In this case, it may benefit us to merge nodes or to use a lightweight policy if possible to

decrease overheads.

�Recognizing Slow Copies in FGA

Figure 17-38 shows how we might recognize slow copies in FGA. In the figure, we see

100 millisecond segments from the timelines of runs of graphs similar to Figure 17-12,

but that pass BigObject messages directly (Figure 17-38(a)) and shared_ptr<BigObject>

messages (Figure 17-38(b)). To make the construction appear expensive, we inserted

a spin-wait in the BigObject constructor so that it takes 10 milliseconds to construct

each object – making the construction time of a BigObject and our function_node

body’s execution times equal. In Figure 17-38(a), we can see the time it takes to copy the

message between nodes appears as gaps in the timeline. In Figure 17-38(b), where we

pass by pointer, the message passing time is negligible, so no gaps are seen.

Figure 17-37.  The FGA timeline colors tasks according to their execution times.
Lighter tasks are smaller.

Chapter 17 Flow Graphs: Beyond the Basics

509

When using FGA to analyze our flow graph applications, gaps in the timeline indicate

inefficiencies that need to be further investigated. In this section, they indicated costly

copies between nodes and in the previous section they indicated that the overhead

of scheduling was large compared to the task sizes. In both cases, these gaps should

prompt us to look for ways to improve performance.

Diagnosing Moonlighting using FGA

Earlier in this chapter, we discussed the execution of the moonlighting graph in

Figure 17-23 that generated the output in Figure 17-24. FGA provides a Stacked View in

its execution timeline that lets us easily detect moonlighting as shown in Figure 17-39.

Figure 17-38.  In FGA, the long copies appear as gaps between the node body
executions. Each timeline segment shown is approximately 100 milliseconds long.

Chapter 17 Flow Graphs: Beyond the Basics

510

In a Stacked View, we see all of the nested tasks that a thread is executing, including

those that come from flow graph nodes and those that come from TBB Generic Parallel

Algorithms. If we see that a thread executes two nodes concurrently, it is moonlighting.

In Figure 17-39, for example, we see that Thread 0 starts executing another instance

of node n0 inside of an existing instance of n0. In our previous discussions about

moonlighting, we know this can happen if a thread steals work while it is waiting for a

nested parallel algorithm to complete. The Stacked View in Figure 17-39, lets us easily

see that a nested parallel_for, labeled p8, is the culprit in this case.

Using the timeline views from FGA, we can identify when threads are moonlighting

simply by noticing a thread’s overlapped participation in more than one region or node. As

developers, and possibly through other interactions with FGA, we then need to determine

if the moonlighting is benign or needs to be addressed by TBB’s isolation features.

�Summary
The flow graph API is a flexible and powerful interface for creating dependency and data

flow graphs. In this chapter, we discussed some of the more advanced considerations in

using the TBB flow graph high-level execution interface. Because it is implemented on

Figure 17-39.  FGA timelines grouped by Node/Region. We can see that thread 0
is moonlighting since it shown as concurrently executing more than one parallel
region.

Chapter 17 Flow Graphs: Beyond the Basics

511

top of TBB tasks, it shares the composability and optimization features supported by TBB

tasks. We discussed how these can be used to optimize for granularity, effective cache,

and memory use and create sufficient parallelism. We then listed some dos and don’ts

that can be helpful when first exploring the flow graph interfaces. Finally, we provided a

brief overview of the Flow Graph Analyzer (FGA), a tool available in Intel Parallel Studio

XE that has support for the graphical design and analysis of TBB flow graphs.

�For More Information
Michael Voss, “The Intel Threading Building Blocks Flow Graph,” Dr. Dobb’s, October

5, 2011. www.drdobbs.com/tools/the-intel-threading-building-blocks-

flow/231900177.

Vasanth Tovinkere, Pablo Reble, Farshad Akhbari and Palanivel Guruvareddiar,

“Driving Code Performance with Intel Advisor’s Flow Graph Analyzer,” Parallel Universe

Magazine, https://software.seek.intel.com/driving-code-performance.

Richard Friedman, “Intel Advisor’s TBB Flow Graph Analyzer: Making Complex

Layers of Parallelism More Manageable,” Inside HPC, December 14, 2017, https://

insidehpc.com/2017/12/intel-flow-graph-analyzer/.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material.

If material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 17 Flow Graphs: Beyond the Basics

http://www.drdobbs.com/tools/the-intel-threading-building-blocks-flow/231900177
http://www.drdobbs.com/tools/the-intel-threading-building-blocks-flow/231900177
https://software.seek.intel.com/driving-code-performance
https://insidehpc.com/2017/12/intel-flow-graph-analyzer/
https://insidehpc.com/2017/12/intel-flow-graph-analyzer/
http://creativecommons.org/licenses/by-nc-nd/4.0/

513
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_18

CHAPTER 18

Beef Up Flow Graphs
with Async Nodes
Back in 2005, Herb Sutter wrote “The free lunch is over”1 paper to warn us about the dawn

of the multicore era and its implications on software development. In the multicore era,

developers who care about performance can no longer sit back and lazily wait for the next

processor generation in order to gleefully see their apps running faster. Those days are long

gone. Herb’s message was that developers who care about fully exploiting modern processors

would have to embrace parallelism. At this point of the book, we certainly know this, so what?

Well, we believe that today “Lunch is getting much too expensive.” Let’s elaborate on this.

In more recent years, strongly spurred by energy constraints, more complex

processors have emerged. Nowadays, it is not difficult to find heterogeneous systems

comprising one or more GPU, FPGA, or DSP alongside one or more multicore CPUs.

Much in the same way that we embraced parallelism to get the most of all CPU cores,

now it may also make sense to offload part of the computations to these accelerators.

But hey, this is tough! Yep, it is! If sequential programming was once the “free lunch,”

heterogeneous parallel programming today is more like a feast at a three-star Michelin

restaurant – we have to pay, but it is oh so good!

And does TBB help in saving some of the dinner price? Of course! How do you dare

doubt it? In this and the next chapter of our book, we walk through the features recently

incorporated to the TBB library in order to help make lunch affordable again –we show

how to offload computation to asynchronous devices thereby embracing heterogeneous

computing. In this chapter, we will pick up the TBB Flow Graph interface and reinforce it

with a new type of node: the async_node. In the next chapter, we will go even further and

put Flow Graph on OpenCL steroids.

1�“The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software,” Herb Sutter.
www.gotw.ca/publications/concurrency-ddj.htm.

http://www.gotw.ca/publications/concurrency-ddj.htm

514

�Async World Example
Let’s start with the simplest example that uses an async_node. We will illustrate why this

particular flow graph node is useful, and we will also present a more complex example

that will be useful for the next chapter.

Since there is nothing simpler than a “Hello World” code snippet, we propose an “Async

World” alternative based on the flow graph API that includes an async_node in the graph.

If you have questions about flow graphs in TBB, you may wish to read through Chapter 3 for

a solid background and use the “Flow Graph” section in Appendix B as a reference for the

APIs. The flow graph that we build in this first example is depicted in Figure 18-1.

Our goal is to send a message from a source_node, in_node, to an asynchronous

node, a_node, but instead of processing the message inside a_node, this task is offloaded

to an asynchronous activity that is running somewhere (a different MPI node, an

OpenCL capable GPU, an FPGA, you name it). As soon as this asynchronous task

finishes, the flow graph engine has to get the control back, read the output of the async

activity, and propagate the message to the descendent nodes in the graph. In our very

simple “Async World” example, in_node just prints “Async” and passes a=10 to a_node.

The a_node receives a=10 as the input and forwards it to an AsyncActivity. In this

example, AsyncActivity is a class that just increments the input message and prints

“World!”. These two actions are carried out in a new thread that simulates here an

asynchronous operation or device. Only when the AsyncActivity deigns to respond

with output=11, out_node will receive this value and the program finishes.

Figure 18-1.  Flow graph for the “Async world” example

Chapter 18 Beef Up Flow Graphs with Async Nodes

515

The code presented in Figure 18-2 includes the async_world() function definition

where we build the graph g composed of the three nodes of Figure 18-1.

Figure 18-2.  Building the flow graph for the “Async World” example

Chapter 18 Beef Up Flow Graphs with Async Nodes

516

The source_node interface is described in the first entry of the table in Figure B-37

of Appendix B. In our example, we create the in_node of the source_node type. The

argument of the lambda, int& a, is actually the output message that will be sent to its

successor node in the graph (the async_node). When the source node is activated near

the end of the async_world() function, by using in_node.activate(), the lambda will

be executed just once because it returns “true” just for the first invocation (initially

n=false, n is set to true inside the lambda, which only returns true if n=true). In this

single invocation, a message with a=10 is sent to the next node in the graph. The last

argument of the in_node is false so that the source node is created in hibernation mode

and only wakes up after the in_node.activate() is called (otherwise the node start

sending messages immediately after the output edge is connected).

Next comes the async_node definition. The syntax required for the async_node

interface is

In our example, a_node is constructed here:

which creates an async_node<int, int> in the graph g with unlimited concurrency.

By using unlimited, we instruct the library to spawn a task as soon as a message

arrives, regardless of how many other tasks have been spawned. Should we want

only up to 4 concurrent invocations of a_node, we can change unlimited to 4.

The template parameter <int, int> points out that a message of type int enters

a_node and a message of type int leaves a_node. The lambda used in a_node

constructor is the following:

that captures by reference an AsyncActivity object, asyncAct, and declares the functor

that has to be run for each message reaching a_node. This functor has two arguments,

input and gateway, passed by reference. But wait, didn´t we say that the template

parameter <int, int> means that the node expects an incoming integer and emits an

Chapter 18 Beef Up Flow Graphs with Async Nodes

517

outgoing integer? Shouldn’t the functor’s prototype be (const int& input) -> int?

Well, it would have been that way for a regular function_node, but we are dealing now

with an async_node and its particularities. Here, we get const int& input as expected,

but also a second input argument, gateway_t& gateway, that serves as an interface to

inject the output of the AsyncActivity back into the graph. We will come to this trick

when explaining the AsyncActivity class. For the moment, to finish the description of

this node let’s just say that it basically dispatches the AsyncActivity with asyncAct.

run(input, gateway).

The output node, out_node, is a function_node that in this example has been

configured as an end node that does not send any output message:

This node receives the integer that comes from the AsyncActivity through the

gateway and finishes off just printing “Bye!” followed by the value of such integer.

In the last lines of our Async World example in Figure 18-2, we find two make_edge

calls to create the connections depicted in Figure 18-1, and finally the graph is awakened

with in_node.activate() to immediately wait until all messages have been processed

with g.wait_for_all().

Here comes the AsyncActivity class, which implements the asynchronous

computations in our example as can be seen in Figure 18-3.

Chapter 18 Beef Up Flow Graphs with Async Nodes

518

The public member function “run” (that was invoked in a_node’s functor with

asyncAct.run) first does gateway.reserve_wait(), which notifies the flow graph

that work has been submitted to an external activity so this can be taken into account

by g.wait_for_all() at the end of async_world(). Then, an asynchronous thread is

spawned to execute a lambda, which captures the gateway by reference and the input

integer by value. It is key to pass input by value because otherwise the referenced

variable, a in the source_node, can be destroyed before the thread reads its value (if the

source_node finishes before the asyncThread can read the value of a).

The lambda in the thread constructor first prints the “World” message and then

assigns output=11 (input+1, more precisely). This output is communicated back into

the flow graph by calling the member function gateway.try_put(output). Finally, with

gateway.release_wait(), we inform the flow graph that, as far as the AsyncActivity is

concerned, there is no need to wait any longer for it.

Figure 18-3.  Implementation of the asynchronous activity

Chapter 18 Beef Up Flow Graphs with Async Nodes

519

Note T here is no requirement to call member function reserve_wait()
for each input message submitted to an external activity. The only requirement
is that each call to reserve_wait() must have a corresponding call to
release_wait(). Note that wait_for_all() will not exit while there are some
reserve_wait() calls without matching release_wait()’s.

The output of the resulting code is

Async World! Input: 10

Bye! Received: 11

where “Async” is written by in_node, “World! Input: 10” by the asynchronous task and

the last line by out_node.

�Why and When async_node?
Now, there may be readers displaying a conceited smirk and thinking sort of “I

don’t need an async_node to implement this.” Why don’t we just rely on the good ol’

function_node?

For example, a_node could have been implemented as in Figure 18-4, where we use

a function_node that receives an integer, input, and returns another integer, output.

The corresponding lambda expression spawns a thread, asyncThread, that prints and

generates the output value, and then waits for the thread to finish with the asyncThread.

join() to gleefully return output.

Chapter 18 Beef Up Flow Graphs with Async Nodes

520

If you were not one of the smirking readers before, what about now? Because, what

is wrong with this much simpler implementation? Why not rely on the same approach to

also offload computations to a GPU or an FPGA, and wait for the accelerator to finish its

duty?

To answer these questions, we have to bring back one of the fundamental TBB design

criteria, namely the composability requirement. TBB is a composable library because

performance does not take a hit if the developer decides or needs to nest parallel patterns

inside other parallel patterns, no matter how many levels are nested. One of the factors

that make TBB composable is that adding nested levels of parallelism does not increase

the number of worker threads. That in turn avoids oversubscription and its associated

overheads from ruining our performance. To make the most out of the hardware, TBB is

usually configured so that it runs as many worker threads as logical cores. The various

TBB algorithms (nested or not) only add enough user-level lightweight tasks to feed these

worker threads and thereby exploit the cores. However, as we warned in Chapter 5,

calling a blocking function inside a user-level task not only blocks the task but it also

blocks the OS-managed worker thread processing this task. In such an unfortunate case,

if we had a worker thread per core and one of them was blocked, the corresponding core

may become idle. In such a case, we would not be fully utilizing the hardware!

In our simple example of Figure 18-4, the asyncThread will use the idle core when

it runs the task outside the flow graph control. But what about offloading work to an

accelerator (GPU/FPGA/DSP, pick as you please!), and waiting for it? If a TBB task

calls blocking functions from OpenCL, CUDA, or Thrust code (to name a few), the TBB

worker running this task will inevitably block.

Figure 18-4.  A simplest implementation that creates and waits for an
asynchronous thread. Did someone say DANGER?

Chapter 18 Beef Up Flow Graphs with Async Nodes

521

Before async_node was available in the flow graph list of nodes, a possible, although

not ideal, workaround was to oversubscribe the system with one extra thread. To

accomplish this (as described in more detail in Chapter 11), we usually rely on the

following lines:

This solution is still viable if we don’t require a flow graph in our code and just want

to offload work to an accelerator from, say, a parallel_invoke or one of the stages of

a parallel_pipeline. The caveat here is that we should know that the extra thread is

going to be blocked most of the time while waiting for the accelerator. However, the

glitch with this workaround is that there will be periods of time in which the system is

oversubscribed (before and after the offloading operation or even while the accelerator

driver decides to block2 the thread).

To avoid this issue, async_node comes to our rescue. When the async_node task

(usually its lambda) finishes, the worker thread that was taking care of this task switches

to work on other pending tasks of the flow graph. This way, the worker thread does not

block leaving an idle core. What it is key to remember is that before the async_node task

finishes, the flow graph should be warned of that an asynchronous task is in flight (using

gateway.reserve_wait()), and just after the asynchronous task re-injects its result back

into the flow graph (with try_put()) we should notify that the asynchronous task has

finished with gateway.release_wait(). Still smirking? If so, please tell us why.

�A More Realistic Example
The triad function of the well-known STREAM benchmark3 is a basic array operation,

also called “linked triad,” that essentially computes C = A + α∗B, where A, B, and C are

1D arrays. It is therefore quite similar to the BLAS 1 saxpy operation that implements

A=A+α∗B, but writing the result in a different vector. Pictorially, Figure 18-5 helps in

understanding this operation.

2�When a thread offloads a kernel to the GPU using a blocking call the driver may not immediately
block the calling thread. For example, some GPU drivers keep the thread spinning so that it
will respond earlier to lightweight kernels, and finally block the thread after some time to avoid
consuming resources while heavyweight kernels finish.

3�John McCalpin, STREAM benchmark, www.cs.virginia.edu/stream/ref.html.

Chapter 18 Beef Up Flow Graphs with Async Nodes

http://www.cs.virginia.edu/stream/ref.html

522

In our implementation, we will assume that array sizes are determined by the

variable vsize and that the three arrays store single precision floats. Coming up with

a parallel implementation of this embarrassingly parallel algorithm is not challenging

enough for us at this point of the book. Let’s go for a heterogeneous implementation.

Okay, so you’ve got an integrated GPU? That don’t impress me much!4 Reportedly,

more than 95% of shipped processors come with an integrated GPU, sharing the die

along with the multicore CPU. Would you sleep soundly after running the triad code

on just one CPU core? Not quite, right? CPU cores shouldn’t be sitting idle. Much in

the same way, GPU cores shouldn’t be sitting idle either. On many occasions, we can

leverage the excellent GPU computing capabilities to further speed up some of our

applications.

In Figure 18-6, we illustrate the way in which the triad computation will be

distributed among the different computing devices.

4�Shania Twain – That Don’t Impress Me Much, Come On Over album, 1997.

Figure 18-5.  Triad vector operation that computes C = A + α∗B (ci = ai + α∗bi, ∀i)

Chapter 18 Beef Up Flow Graphs with Async Nodes

523

In our implementation, we will rely on the offload_ratio variable, which controls

the fraction of the iteration space that is offloaded to the GPU, whereas the rest is

processed in parallel on the CPU. It goes without saying that 0 ≤ offload_ratio ≤ 1.

The code will be based on the flow graph depicted in Figure 18-7. The first node,

in_node, is a source_node that sends the same offload_ratio to a_node and cpu_node.

The former is an async_node that offloads the computation of the corresponding

subregion of the arrays to an OpenCL capable GPU. The latter is a regular function_node

that nests a TBB parallel_for to split the CPU assigned subregion of the arrays among

the available CPU cores. Execution time on both the GPU, Gtime, and CPU, Ctime, are

collected in the corresponding node and converted into a tuple inside the join_node.

Finally, in the out_node, those times are printed, and the heterogeneously computed

version of array C is compared with a golden version obtained by a plain serial execution

of the triad loop.

Figure 18-6.  Heterogeneous implementation of the triad computation

Chapter 18 Beef Up Flow Graphs with Async Nodes

524

Note W e love to gently introduce new concepts, and we try to toe the line on this,
especially when it comes to TBB content. However, OpenCL is outside the scope
of the book, so we have to give up our own rule and just comment briefly on the
OpenCL constructs that are used in the following examples.

For the sake of simplicity, in this example, we will accept the following assumptions:

	 1.	 In order to leverage a zero-copy buffer strategy that reduces the

overhead of data movement between devices, we assume that

an OpenCL 1.2 driver is available and that there is a common

region of memory visible from both the CPU and the GPU. This

is usually the case for integrated GPUs. For recent heterogeneous

chips, OpenCL 2.0 is also available, and in such a case we can take

advantage of the SVM (Shared Virtual Memory) as we will also

illustrate next.

	 2.	 In order to reduce the number of arguments of the flow graph

nodes and that way improve the readability of the code, pointers

to CPU and GPU views of the three arrays A, B, and C are globally

visible. The variable vsize is also global.

Figure 18-7.  Flow graph that implements heterogeneous triad

Chapter 18 Beef Up Flow Graphs with Async Nodes

525

	 3.	 In order to skip the aspects less related to TBB, all the OpenCL

boilerplate has been encapsulated into a single function opencl_

initialize(). This function takes care of getting the platform,

platform, selecting the GPU device, device, creating the GPU

context, context, and a command queue, queue, reading the

source code of the OpenCL kernel, compiling it to create the

kernel, and initializing the three buffers that store the GPU view

of arrays A, B, and C. Since the AsyncActivity also needs the

command queue and the program handlers, the corresponding

variables, queue and program, are also global. We took advantage

of the C++ wrappers available for the OpenCL C API. More

precisely, we used the cl2.hpp OpenCL C++ header that can be

found on https://github.com/KhronosGroup/OpenCL-CLHPP/.

Let’s start with the main function of the code; in Figure 18-8, we only show the

definition of the two first nodes: in_node and cpu_node.

Figure 18-8.  Main function of the heterogeneous triad computation with the first
two nodes

Chapter 18 Beef Up Flow Graphs with Async Nodes

https://github.com/KhronosGroup/OpenCL-CLHPP/

526

Figure 18-8.  (continued)

We first read the program arguments and initialize the OpenCL boilerplate calling

opencl_initialize(). From this function, we only need to know that it initializes a

GPU command queue, queue, and an OpenCL program, program. The initialization

of the number of threads and the reason to initialize a global_control object will

be addressed at the end of the section. The source code of the GPU kernel is quite

straightforward:

This implements the triad operation, C = A + α∗B, assuming α=0.5 and that the

arrays of float are stored in global memory. At kernel launching time, we have to specify

the range of iterations that the GPU will traverse, and the GPU internal scheduler will

pick single iterations from this space with the instruction i=get_global_id(0). For each

one of these i’s, the computation C[i] = A[i] + alpha ∗ B[i] will be conducted in

parallel in the different compute units of the GPU.

Chapter 18 Beef Up Flow Graphs with Async Nodes

527

Inside the opencl_initialize() function, we also allocate the three OpenCL buffers

and the corresponding CPU pointers that point to the same buffers from the CPU side

(what we call the CPU view of the arrays). Assuming we have OpenCL 1.2, for the input

array A, we rely on the OpenCL cl::Buffer constructor to allocate a GPU accessible

array called Adevice:

The flag CL_MEM_ALLOC_HOST_PTR is key to take advantage of the zero-copy buffer

OpenCL feature because it forces the allocation of host-accessible memory. The same

call is used for the other two GPU views of the arrays, Bdevice and Cdevice. To get a

pointer to the CPU view of these buffers, the OpenCL enqueueMapBuffer is available

and used as follows:

which gives us a float pointer Ahost that can be used from the CPU to read and write

in the same memory region. Similar calls are needed for pointers Bhost and Chost. In

modern processors with integrated GPUs, this call does not imply data copy overheads

and hence the zero-copy buffer name for this strategy. There are additional subtleties

regarding OpenCL like the meaning and functionality of clEnqueueUnmapMemObject()

and potential issues arising of having both the CPU and GPU writing in different regions

of the same array, but they fall beyond the scope of this book.

Note I f your device supports OpenCL 2.0, the implementation is easier especially
if the heterogeneous chip implements what is called fine-grained buffer SVM. In
that case, it is possible to allocate a region of memory that not only is visible
by both the CPU and GPU, but that can also be updated concurrently and kept
coherent by the underlying hardware. In order to check whether or not OpenCL
2.0 and fine-grained buffer SVM are available, we need to use: device.
getInfo<CL_DEVICE_SVM_CAPABILITIES>();

Chapter 18 Beef Up Flow Graphs with Async Nodes

528

To exploit this feature, in the opencl_initialize(), we can use
cl::SVMAllocator() and pass it as the allocator template argument of the
std::vector constructor. This will give us a std::vector A, that is at the
same time the GPU view and the CPU view of the data:

This is, no need for Ahost and Adevice anymore. Just A. As with any shared
data, we are responsible of avoiding data races. In our example, this is easy
because the GPU writes in a region of the array C that does not overlap with the
region written by the CPU. If this condition is not met, in some cases, the solution is
to resort to an array of atomics. Such a solution is usually called platform atomics,
or system atomics, since they can be atomically updated by the CPU and the
GPU. This feature is optionally implemented and requires that we instantiate the
SVMAllocator with cl::SVMTraitAtomic<>.

The next thing in Figure 18-8 is the declaration of the graph g and definition of the

source_node, in_node, which is quite similar to the one explained in Figure 18-2, with

the single difference that it passes a message with the value of offload_ratio.

The next node in our example is a function_node, cpu_node, which receives a

float (actually, offload_ratio) and sends a double (the time required to do the CPU

computation). Inside the cpu_node lambda, a parallel_for is invoked and its first

argument is a blocked range like this:

which means that only the upper part of the arrays will be traversed. The lambda of this

parallel_for computes in parallel Chost[i] = Ahost[i] + alpha ∗ Bhost[i] for

different chunks of iterations in which the range is automatically partitioned.

Chapter 18 Beef Up Flow Graphs with Async Nodes

529

We can continue in Figure 18-9 with the next node, a_node, that is an asynchronous

node that receives a float (again the offload_ratio value) and sends the time required

by the GPU computation. This is accomplished asynchronously in a_node’s lambda

where the member function run of an AsyncActivity object, asyncAct, is called,

similarly to what we already saw in Figure 18-2.

Figure 18-9.  Main function of the heterogeneous triad computation with the
definition of the last three nodes

The join_node does not deserve our time here because it was already covered in

Chapter 3. Suffice to say that it forwards a tuple, which packs the GPU time and the CPU

time, to the next node.

The final node is a function_node, out_node, which receives the tuple with the

times. Before printing them, it checks that the resulting C array has been correctly

computed partially on the CPU and partially on the GPU. To this end, a golden version

of C, CGold, is allocated and then computed serially using the STL algorithm transform.

Then, if Chost coincides with CGold, we are all set. The equal STL algorithm comes in

handy to implement this comparison.

Chapter 18 Beef Up Flow Graphs with Async Nodes

530

Figure 18-10 finishes off the main() function with the node connections, thanks

to five make_edge calls, followed by the in_node activation to trigger the execution of

the graph. We wait for completion with g.wait_for_all().

Finally, in Figure 18-11, we present the implementation of the AsyncActivity class,

whose run member function is invoked from the async_node.

Figure 18-10.  Last part of the triad main function where nodes are connected and
the graph is dispatched

Chapter 18 Beef Up Flow Graphs with Async Nodes

531

Instead of spawning a thread as we did in the AsyncActivity of Figure 18-3, we

follow here a more elaborated and efficient alternative. Remember that we postponed

the explanation of why we used a global_control object in Figure 18-8. In this figure, we

initialized the scheduler as follows:

If you remember from Chapter 11, the task_scheduler_init line will result in the

following:

Figure 18-11.  AsyncActivity implementation, where the actual GPU kernel
invocation takes place

Chapter 18 Beef Up Flow Graphs with Async Nodes

532

•	 A default arena will be created with nth slots (one of them reserved

for the master thread).

•	 nth - 1 worker threads will be populated in the global thread pool,

which would occupy the worker slots of the arena as soon as there is

work pending in such arena.

But later, the global_control object, gc, is constructed so that the actual number of

workers in the global thread pool is incremented. This extra thread has no slot available

in the default arena so it will be put to sleep.

Now, the AsyncActivity class, instead of spawning a new thread as we did before, it

awakes the dormant thread, which is usually faster, especially if we are invoking several

times the AsyncActivity. To that end, the constructor of the class initializes a new arena,

a = tbb::task_arena{1,0}, that has one worker thread slot since it reserves 0 slots for

the master. When the member function run() is invoked, a new task is enqueued in this

arena with a.enqueue(). This will result in the dispatch of the dormant thread that will

occupy the slot of this new arena and complete the task.

Next, the task spawned in this AsyncActivity follows the usual steps to offload

computations to a GPU. First, construct the triad_kernel KernelFunctor informing

that the triad kernel has three cl::Buffer arguments. Second, call triad_kernel

passing the NDRange, which is calculated as ceil(vsize∗offload_ratio), and the GPU

view of the buffers, Adevice, Bdevice, and Cdevice.

When running this code on an Intel processor with an integrated GPU, these two

lines are generated:

Time cpu: 0.132203 sec.

Time gpu: 0.130705 sec.

where vsize is set to 100 million elements and we have been playing with offload_

ratio until both devices consume approximately the same time in computing their

assigned subregion of the arrays.

Chapter 18 Beef Up Flow Graphs with Async Nodes

533

�Summary
In this chapter, we have first introduced the async_node class that enhances the flow

graph capabilities when it comes to dealing with asynchronous tasks that escape the

flow graph control. In a first simple Async World example, we illustrated the use of

this class and its companion gateway interface, useful to re-inject a message from the

asynchronous task back into the flow graph. We then motivated the relevance of this

extension to the TBB flow graph, which is easily understood if we realize that blocking a

TBB task results in blocking a TBB worker thread. The async_node allows for dispatching

an asynchronous work outside the flow graph but without blocking a TBB worker thread

when waiting for this asynchronous work to complete. We wrapped up the chapter with a

more realistic example that puts to work the async_node to offload some of the iterations

of a parallel_for to a GPU. We hope we have provided the basis to elaborate more

complex projects in which asynchronous work is involved. However, if we usually target

an OpenCL capable GPU, we have good news: in the next chapter, we cover the opencl_

node feature of TBB, which provides a friendlier interface to put the GPU to work for us!

�For More Information
Here are some additional reading materials we recommend related to this chapter:

•	 Herb Sutter, “The Free Lunch Is Over: A Fundamental Turn

Toward Concurrency in Software,” www.gotw.ca/publications/

concurrency-ddj.htm.

•	 John McCalpin, STREAM benchmark, www.cs.virginia.edu/

stream/ref.html.

•	 David Kaeli, Perhaad Mistri, Dana Schaa, Dong Ping Zhang.

Heterogeneous Computing with OpenCL 2.0. Morgan Kaufmann

2015.

Chapter 18 Beef Up Flow Graphs with Async Nodes

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.cs.virginia.edu/stream/ref.html
http://www.cs.virginia.edu/stream/ref.html

534

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 18 Beef Up Flow Graphs with Async Nodes

http://creativecommons.org/licenses/by-nc-nd/4.0/

535
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_19

CHAPTER 19

Flow Graphs on Steroids:
OpenCL Nodes
Does the async_node leave you yearning for more? If so, this is your chapter. Here, we will

cover a high-level Flow Graph class, the opencl_node, that strives to hide the hardware

details and programing nuances of OpenCL capable devices. Why OpenCL? Well, there

are many reasons and to name a few: OpenCL is an open standard contributed to by

members of a large consortium, it is designed to be a platform-independent API, and it

aims to nimbly evolve to meet newer requirements. For instance, OpenCL has been an

extension of C (not C++), but the latest OpenCL 2.2 version adds support for a subset of

C++14 including classes, lambda expressions, templates, and so on.

Is that not enough? Okay, one more. For us, the mother of all reasons, the one

standing out among the others, is the number and variety of platforms on which you can

use OpenCL. Starting with the notebook and desktop segment, more than 95% of shipped

processors for these systems include an OpenCL capable integrated GPU (usually from

Intel or AMD). In the mobile segment, at the heart of most smart phones and tablets, we

find a System-on-Chip, SoC, featuring a GPU that supports OpenCL (and yes, from the

TBB repository we can get the TBB binaries for Android too). These examples seem to be

convincing enough, but there is more! In the embedded arena, for many years running,

we have been able to buy and exploit heterogeneous boards including an OpenCL

programmable FPGA (from Intel-Altera and Xilinx). In the server domain, at the time of

writing these lines, Intel is targeting data centers with both FPGA PCIe cards and Intel

Xeon Scalable Processor 6138P that includes on-chip an Intel-Altera Arria 10 FPGA, and

of course, OpenCL is one of the supported programming models. Moreover, OpenCL

code can also run on many CPUs and other kind of accelerators, like the Xeon Phi.

But if OpenCL does not suit your needs, TBB architects also considered the

possibility of supporting other programming models. They abstracted away the low-level

details of the accelerator programming model into a module called factory. In fact,

536

the opencl_node is the result of instantiating a general class called streaming_node with

a particular factory. Then, a factory defines the necessary methods to upload/download

data to/from the accelerator and to launch the kernel. That is, the opencl_node is the

result of marrying the streaming_node class to an OpenCL factory. Newer programming

models can be supported just by developing the corresponding factory.

Now, this is quite a long chapter that covers several concepts (opencl_node,

opencl_program, opencl_device, arguments and range of the OpenCL kernel,

sub-buffers, etc.) therefore implying a steep learning curve. But we will start easy, on

the plains, and progressively ascend to the more complex classes and examples (as

we always try to do). As we depict in Figure 19-1, we will start with a simple “Hello

World”-like example that uses the opencl_node, to later implement the same triad

vector computation that was presented in the previous chapter, but now with our new

high-level toy. If you want to save the final climb to the summit, you can stop reading

there. If on the other hand you are an experienced climber, at the end of the chapter

we give a sneak peek at more advanced features, like fine-tuning the OpenCL NDRange

and kernel specification.

Figure 19-1.  Depicting the learning curve of this chapter

�Hello OpenCL_Node Example
This time let’s start at the end. This is the output of our first example:

Hello OpenCL_Node

Bye! Received from: OPENCL_NODE

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

537

These two lines are the result of running the flow graph that is shown in Figure 19-2, where

the bubbles identify the string that is printed by each one of the three nodes in the graph.

Figure 19-2.  Flow graph for the “Hello OpenCL_Node” example

The middle node, gpu_node, is an opencl_node that prints out “OpenCL_Node\n”.

To this end, it will be configured to run the following OpenCL kernel that is stored in an

hello.cl file:

The hello.cl file includes the definition of the cl_print() kernel that will be

executed by a special node of the flow graph, an opencl_node. If we take a closer look

at the kernel function, it actually prints whatever array of chars happens to arrive as

an input argument. In addition, to exert a noticeable impact, the kernel also changes

the string by capitalizing only the lowercase letters. The global keyword preceding the

char *str declaration of the argument states that the array of chars should be stored in

OpenCL global memory. For what matters here (i.e., oversimplifying), this means that

the string is stored in a region of memory that can be “somehow” read and written by

the CPU and the GPU. In the common case of an integrated GPU, the global memory

just sits on main memory. This means, that the opencl_node should receive as argument

an array of chars. In our example, this array of chars contains the characters that read

“OpenCL_Node\n”. As you are probably guessing, this message comes from the first node,

in_node. Right, the pointer to the string (a in Figure 19-2) flies from in_node to gpu_node,

and without user intervention, the string initialized on the CPU ends up reaching the

GPU. And what message reaches out_node? Again, the pointer a that leaves gpu_node

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

538

and enters out_node with the name m. Finally, this last node of the graph prints “Bye!

Received from: OPENCL_NODE” where we note the change in the string, and also that the

string processed on the GPU has somehow become accessible by the CPU. Now, we all

crave the details of the actual implementation, so here they are in Figure 19-3.

Figure 19-3.  Building the flow graph for the “Hello OpenCL_Node” example

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

539

And that’s it! Note that the GPU node configuration requires only three C++ lines of

code. Isn’t it neat?

Disclaimer A s of writing this chapter, the latest version of TBB is 2019. In this
version, the opencl_node is still a preview feature, which essentially means
that

•	 It is subject to change. If you rely on a preview feature in your code,
double check it keeps working when updating to a newer TBB
release. In the worst case, a preview feature can even disappear!

•	 It may have little documentation and support. Indeed, opencl_
node and streaming_node documentation is not abundant on the
Web. There are some blog entries1 illustrating this feature, but they
are 3 years old and part of the API has changed since then.

•	 It has to be explicitly enabled (i.e., by default it is off). To use
opencl_node in our codes we have to add these three lines:

The fringe benefit of using this header is that you don’t need to manually include
tbb/flow_graph.h nor the OpenCL header files, because they are already
included within flow_graph_opencl_node.h. Actually, this header file, along
with the blog entries, is nowadays our most reliable source of information about
the classes and member functions that this feature provides. This chapter should
be considered as a gentle introduction to the one thousand and a half lines of code
included in that opencl_node header.

1�https://software.intel.com/en-us/blogs/2015/12/09/opencl-node-overview.

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

https://software.intel.com/en-us/blogs/2015/12/09/opencl-node-overview

540

Okay, let’s go node by node. The first one, in_node, looks familiar if you remember

the examples from the previous chapter. To refresh our minds, suffice to say that (1)

the input argument of the lambda ([&](buffer_t& a)) is actually a reference to the

message that will be sent to any connected node; (2) only one message leaves in_node

because after the first invocation it returns false; and (3) in_node.activate() is in fact

awaking the node and triggering that single message. But wait, there is something new

in this node that we do have to pay attention to! The message leaving in_node has to end

up in a GPU-accessible region of memory and this is why argument a is not just an array

of chars, but a reference to a buffer_t. Just before the definition of in_node we see that

buffer_t is an opencl_buffer of OpenCL chars (cl_char):

The opencl_buffer is the first opencl_node helper class that we will see in this

chapter, but there are more to come. It is a template class that abstracts a strongly typed

linear array and it encapsulates the logic of the memory transactions between the host

and the accelerator. We allocate an opencl_buffer<T> using the constructor of the

class, like in our example in the line a = buffer_t{sizeof(str)}, or by declaring a new

object with

In both cases, we end up allocating an opencl_buffer of cl_char. The version of

the OpenCL factory that we use now is based on OpenCL 1.2 and leverages the zero-

copy buffer approach. This means that, internally, when calling the opencl_buffer

constructor, the OpenCL function clCreateBuffer is called, and one of its arguments

is CL_MEM_ALLOC_HOST_PTR. As we succinctly explained in the previous chapter,

the buffer is allocated on the GPU space but a CPU-accessible pointer (the CPU

view of the buffer) can be obtained using a map function (clEnqueueMapBuffer).

To return the control of the buffer to the GPU, OpenCL provides an unmap function

(clEnqueueUnmapMemObject). On modern chips with integrated GPUs, map and unmap

functions are cheap because no actual data copies are required. For these cases,

map and unmap functions take care of keeping CPU and GPU caches consistent with

the copy stored in the global memory (main memory) which may or may not imply

CPU/GPU cache flushes. The good news is that all these low-level chores are none

of our business anymore! Newer factories with better features or supporting other

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

541

accelerators could be developed and we could just use them by simply recompiling

our sources. Consider if an OpenCL 2.0 factory were to be disclosed tomorrow and

that our accelerator implemented fine-grained buffer SVM. Just by using the new

OpenCL 2.0 factory instead of the 1.2 one, we would get for free a boost in performance

(because now map and unmap operations are unnecessary and cache coherency

between the CPU and GPU is automatically kept by the hardware).

Oops, sorry for letting our minds drift for a while. Let’s get back to the point. We

were explaining the source_node of our example in Figure 19-3 (yes, several paragraphs

ago). This source_node, in_node, just initializes an array of chars, str, with the string

“OpenCL_Node\n”, allocates the opencl_buffer, a, of the appropriate size, and copies the

string to that buffer using the std::copy_n STL algorithm. That’s it. When the lambda of

this source_node finishes, a message with a reference to the opencl_buffer will fly from

in_node to the gpu_node.

Now, remember the lines required to configure the gpu_node:

The first line uses the second opencl_node helper class that we cover in this

chapter: the opencl_program class. In this line, we create the program object passing

to the constructor the name of the file, hello.cl, where the OpenCL kernel, cl_print,

is stored. There are other opencl_program constructors available, should we want to

provide a precompiled kernel or the SPIR (OpenCL intermediate representation) version

of the kernel. For the sake of keeping drifting minds away and staying focused on our

example, we cover these other alternatives later.

The second line creates the gpu_node of type opencl_node<tuple<buffer_t>>. This

means that the gpu_node receives a message of type buffer_t and, when done, it emits

a message also of type buffer_t. Do we really need a tuple for a single argument/port?

Well, the opencl_node is designed to receive several messages from preceding nodes and

to send several messages to the following nodes of the graph and theses are packed into

a tuple. Currently, there is no special case in the interface for a single input and output,

so we need to use a single element tuple in that case. Regarding the correspondence

between the opencl_node ports and the kernel arguments, by default, opencl_node

binds the first input port to the first kernel argument, the second input port to the second

kernel argument, and so on. There are other possibilities that will be covered later.

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

542

And do we really need to send an outgoing message for every incoming one? Well,

the opencl_node is designed to support this maximum connectivity (one output port

per input port) and if there are fewer inputs than outputs, or the other way around, we

can always leave the corresponding ports unconnected. And do we really need to use

the same data type for the input and the output? Well, with the current factory, yes. If the

input port 0 is of type T, the output port 0 is of the same T type (the tuple specifying the

argument types do not distinguish between input and output).

Note T he main reason supporting the opencl_node implementation decisions
is that each opencl_node’s port can potentially be mapped into each OpenCL
kernel argument. For an “in-out” argument, having it at both input and output of
course makes sense. For an “out” argument, we still need to pass in the object that
is to be written, so there is a need for an input to match the output – otherwise
the opencl_node would need to allocate the objects, which it doesn’t. And finally,
for an “in” argument, having it available at the output lets us forward the value,
that is, pass it through unchanged to downstream nodes. So, the most practical
thing was to just make all arguments in-out. We believe it makes sense if we think
of the OpenCL node’s tuple as a list of arguments, and we can connect edges to
any of the arguments to set/get the value before/after the execution. For an “in”
argument, the corresponding emitted value is unchanged. For an “out” argument,
we provide the memory to write to and later get the value. And for “in-out,” we
send the value and receive the modified value.

Remember that OpenCL node is a preview feature. The TBB developers are eager
for input on preview features – that’s why they’re preview features after all. They
want to collect input on what’s good and what’s bad, so they can spend time on
perfecting the parts of the library that people care the most about. This preview
OpenCL node is supposed to be good enough to try out and provide feedback. If
we have strong opinions on what needs to be added – we should speak up!

Now, the constructor of the opencl_node includes as arguments the flow graph

object, g, and a handle to the kernel function that should be included in the OpenCL

program file. Since the file hello.cl includes the kernel function cl_print, we use the

member function: program.get_kernel("cl_print").

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

543

This means that we can have several kernel functions in the same OpenCL

source file and assign each one to different opencl_nodes. And do we really have to

settle just with a single program file? Well, not quite. We can instantiate the desired

number of opencl_program objects if we have our OpenCL kernels distributed

among several source files.

Finally, the third line of code needed to configure the gpu_node is gpu_node.set_

range({{1}}). This member function from opencl_node specifies the iteration space

that will be traversed by the GPU. More formally, in the OpenCL jargon, this iteration

space is known as the NDRange, but let’s not dwell on these details at this point. For now,

let’s take a leap of faith and just believe that the set_range({{1}}) member function

results in the body of the kernel being executed just once.

Now we are done with the source_node (in_node), the opencl_node (gpu_node),

and the last one in our example is a regular function_node called out_node. The

corresponding code is

We see that out_node receives a message, m, of type buffer_t. Because buffer_t is

really an opencl_buffer<cl_char>, the call m.begin() results in a CPU visible pointer

to the string that was initially set in in_node and was later modified by the GPU kernel.

Our last node just prints this string and dies.

The rest of the example is the usual flow graph glue logic that makes the edges

between the nodes, wakes up the source node, and waits for all the messages (just one in

our example) to pass through the nodes. Nothing new here.

However, before we start climbing the first hills of our ascent, we will do a high

level of recap of what we just explained while going deeper into what happens with the

message, a, that was born on the CPU, sent to the GPU and modified there, to later pass

to the final node where we can see the effect of the GPU kernel execution. We hope

Figure 19-4 will serve us well in this regard.

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

544

The picture assumes that the OpenCL factory is based on the 1.2 version of this

standard. In this case, the message a is allocated, as an opencl_buffer, in the GPU

memory space but can also be written on the CPU if we first get the CPU-accessible

iterator with a.begin(). The reference to a is a message that leaves in_node and enters

port 0 of the gpu_node (which will invariably cause the message – the reference to a – to

leave through the port 0 of departure). Port 0 of gpu_node is bound to the first argument

of the kernel function that has a compatible type (opencl_buffer<cl_char> can be

casted to char *). The kernel can safely access the string without cache coherency issues

because before launching the kernel, the OpenCL factory takes care of unmapping the

buffer. Finally, the reference to the buffer reaches out_node, where the string is again

mapped to be accessed and printed on the CPU.

Before moving on, we would like to underscore here how fortunate we should feel

by not having to manually deal with all the OpenCL boilerplate code (platform, devices,

context, command queues, kernel reading and compilation, kernel argument setting and

launching, OpenCL resources deallocation, etc.). All that is now hidden under the hood

thanks to the OpenCL factory. Besides, as we said, new factories can make our code faster

or able to work with other accelerators with minor or no changes in the source code.

�Where Are We Running Our Kernel?
So far so good, right? But speaking of OpenCL boilerplate code, where is the knob to

control on which device we are running our opencl_nodes? In our previous example, we

said that the gpu_node was running the specified kernel on the GPU. Where else, right?

Figure 19-4.  Overview of the example with details of message operations

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

545

But what if we were lying? Disturbing, huh? Okay, let’s see first if there are more OpenCL

capable devices on our machine. Hopefully there is only a single device and it is a GPU,

but I wouldn’t bet my fingers on it! We’ll have to sniff it out, but we are not emotionally

ready to write old-style plain OpenCL code, are we? Mercifully, the TBB OpenCL factory

puts in our hands two additional and valuable helper classes (and that makes four of

them already). These are the opencl_device and opencl_device_list helper classes.

Let’s use them first outside the flow graph context, as we can see in Figure 19-5.

Figure 19-5.  Simple code to query the OpenCL platform and devices available

First, an opencl_device_list object, devices, is initialized by calling the function

available_devices(). This function returns an iterable container with all the OpenCL

enabled devices available in the first platform. Yes, only in the first available platform.2

2�Remember again that this is a preview feature. If you need more flexibility in this regard, we will
appreciate it if you could file a request to let Intel know that you find the OpenCL node useful but
that there are limitations that need to be addressed.

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

546

Then, we pop the first opencl_device, d, from the list and query the platform name,

profile, version, and vendor. All available devices in the platform will share these

attributes.

Next, with for(opencl_device d:devices), we iterate through the whole device

list to get and print per-device name, major and minor version, and device type. Major

and minor version information was already provided by d.platform_version(), but

this one returns a string, whereas both d.major_version() and d.minor_version()

return an integer. The output resulting of running this code on the MacBook on which

we are writing these lines, and where we have run our previous example, can be seen

in Figure 19-6.

Note T he function available_devices() is in fact not public and that is the
reason we had to use this convoluted chain of namespaces:

tbb::flow::interface10::opencl_info::available_devices()

We noticed that just before the implementation of this member function inside
flow_graph_opencl_node.h there is a comment stating that

// TODO: consider opencl_info namespace as public API

Since this is a preview feature in TBB, the interface is not yet completely settled.
Take this into account in case this consideration eventually becomes a fact.

Figure 19-6.  Result of running the code of Figure 19-5 on a MacBook Pro

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

547

It may come as some surprise that there may be three OpenCL devices in a laptop!

Namely, one Intel CPU and two GPUs, the first one integrated in the Intel Core i7,

and the second one a discrete AMD GPU. Remember that OpenCL is a portable

programming language that can also be used to implement CPU code. And look, the

first OpenCL capable device is not a GPU, is the quad-core Intel CPU. Now, regarding

our first example in this chapter, where was the kernel running? You are right, on the

first one. The OpenCL factory chooses by default the first available device, irrespective

of whether it's a CPU or a GPU. So… we were lying!!! The kernel was running on a

CPU disguised as an OpenCL accelerator. What if we have been lying here and there

throughout the book? Think about it… that’s even more terrifying (unless this is the

first chapter you are reading).

Okay, let’s fix this minor inconvenience. To save the day, the OpenCL factory

comes with two additional features: Device Filter and Device Selector. Device Filters

are used to initialize the opencl_factory with the set of devices that are available for

kernel execution. All filtered devices must belong to the same OpenCL platform. There

is a default device filter class, default_device_filter, that automatically gathers all

available devices from the first OpenCL platform and returns an opencl_device_list

containing these devices. For its part, a Device Selector, as its name suggests, selects one

of the devices in that opencl_device_list. It is possible to use different device selectors

for different opencl_node instances. The selection is done for every kernel execution,

so it is also possible to have an opencl_node running on different devices for different

invocations. The default selector, default_device_selector, lazily selects and returns

the first device from the list of available devices that was constructed by device filter.

To get our gpu_node running on a real GPU, instead of

we should use

where gpu_selector is an object of our custom class gpu_device_selector:

gpu_device_selector gpu_selector;

and this class is presented in Figure 19-7.

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

548

The agreement (more formally, the “Concept”) is that the third argument of an

opencl_node is a functor (an object of a class with the operator() member function)

that returns a device. That way, instead of passing the functor we may embed a lambda

expression in its place. The operator() receives an opencl_factory, f, and returns an

opencl_device. Using the find_if STL algorithm, we return the first iterator, it, in the

container devices() that fulfills it->type()==CL_DEVICE_TYPE_GPU. For the sake of

expediency, we declared auto it and delegated to the compiler to find out that the type

of it is actually

tbb::flow::opencl_device_list::const_iterator it = ...

To account for the possibility of not finding a GPU device, we include a fallback

that returns the first device (there should be at least one! ... there is no point in having a

platform without any device). The functor finishes by printing the name of the selected

device and returning it. In our laptop, the output would be:

Figure 19-7.  Our first custom device selector

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

549

Note that the new messages are printed out by the gpu_node device selector functor

when this node is activated. This is, first in_node prints its message “Hello” and passes

the message to the gpu_node, which before launching the kernel selects the device

(printing the boldface words of the output) and then runs the kernel. That’s something

to consider: an opencl_node in a flow graph is usually activated several times, so we are

better off implementing the lightest possible device selector.

For example, if the lambda expression of the std::find_if algorithm doesn’t need

to print the “Found GPU!” message, it can be further simplified:

Now, if we don’t like how our source code looks having to explicitly add the

gpu_device_selector class, we can substitute the functor by a lambda expression.

It is kind of tricky because the operator() of this class is a templated function,

remember?:

The easiest way (that we are aware of) to come up with the lambda implementation

is to relay on polymorphic lambdas that are available since C++14. Don’t forget to

compile the code in Figure 19-8 with the option std=c++14.

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

550

Note the (auto& f) argument of the lambda, instead of (opencl_factory

<DeviceFilter>& f) that we used in the functor-based alternative. This code traverses

the devices() container and then returns the second device in the list, resulting in

something like

Available devices:

0.- Device: Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz

1.- Device: Intel(R) HD Graphics 530

2.- Device: AMD Radeon Pro 450 Compute Engine

Running on Intel(R) HD Graphics 530

Now that we know our device list and assuming we want to use the integrated GPU,

better change the lambda to make it faster:

An even faster alternative would be to cache the opencl_device the first time we

invoke the device selector. For example, in Figure 19-9, we sketch a modification of the

gpu_device_selector class that was presented in Figure 19-7.

Figure 19-8.  Using a lambda expression instead of a functor to do the device
selection

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

551

The class has now an opencl_device member variable, device. When the

operator() is invoked the first time, the device list, f.devices(), is traversed to find the

device that we want to use (in the example, the second available device). Then we cache

it into the device variable for future uses. Note that further care to avoid data races is

required if this operator can be called concurrently from different threads.

We hope you can keep secret how badly we coded the examples of Figures 19-8

and 19-9. In those snippets, we are hardcoding the device to be the second one, which

works on our test machine, but it may miserably fail on other platforms. Actually, if

there is a single device stored in the f.devices() container, dereferencing *(++f.

devices().cbegin()) will trigger a segmentation fault. This is another example of the

trade-off between portability and performance. We would be better off using the version

of Figure 19-7 (commenting out the print statements) if we don’t know where the code

can eventually run and the device selection time is negligible in comparison with the

OpenCL computation.

�Back to the More Realistic Example of Chapter 18
Do you remember the triad vector operation that we introduced in the previous chapter?

It was just a basic array operation of the form C = A + α*B where A, B, and C are 1D arrays

containing vsize floats, and α is a scalar that we set to 0.5 (because we can). Figure 19-10

is a reminder of the way in which our triad computation will be distributed between the

GPU and CPU depending on the variable offload_ratio.

Figure 19-9.  Device selector class that caches the opencl_device the first time it is
invoked

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

552

The purpose of re-implementing this example is twofold. First, by re-visiting our old

acquaintance but now from the perspective of the opencl_node, we will better appreciate

the benefits of this higher-level feature of the TBB flow graph. Second, going beyond the

“Hello OpenCL_Node” will allow us to delve into more advanced uses of the opencl_node

class and its helper classes. In Figure 19-11, we give an overview of the flow graph that

we are about to implement.

Figure 19-10.  Heterogeneous implementation of the triad computation

Figure 19-11.  Flow graph that implements triad, now using an OpenCL node

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

553

As in our previous examples, the source_node (in_node) just triggers the execution

of the flow graph, in this case passing a single message with the value of offload_ratio.

The following node down the stream is a multifunction_node (dispatch_node).

This kind of node stands out for its flexibility to send messages to the following nodes in

the graph. We see that dispatch_node has five output ports, the first four targeting the

gpu_node, and the last port connected to the cpu_node. The gpu_node is an opencl_node

that will be configured with the appropriate triad GPU kernel, which expects as input

arguments a “GPU view” of arrays A, B, and C (as in the previous chapter, they are called

Adevice, Bdevice, and Cdevice). However, the gpu_node has an additional port to

receive the number of iterations that will be offloaded, which depends on offload_

ratio and that we call NDRange to adhere to the OpenCL notation. The cpu_node is

a regular function node that receives the “CPU view” of the three arrays as well as

offload_ratio so that the CPU can hold up its end of the bargain. The cpu_node has a

single input port, so dispatch_node has to pack into a tuple the four variables required

by the CPU. Both the gpu_node and the cpu_node pass their own view of resulting array

C to the join_node, which in turn builds a tuple with both views and forwards it to the

out_node. This final node will validate that the computation is correct and print out the

execution time. Without further ado, let’s start with the real implementation, kicking off

with data type definitions and buffer allocations in Figure 19-12.

Figure 19-12.  Data type definition and buffer allocation in triad example

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

554

From now on, a buffer_f is an opencl_buffer of cl_floats (OpenCL counterpart

of the regular float data type). With this, we allocate Adevice, Bdevice, and Cdevice

as the “GPU views” of our three arrays. The opencl_buffer class also exposes the

data() member function, which we see here for the first time. This function returns

a CPU-accessible pointer to the GPU buffer and also takes care of mapping the buffer

so that the CPU can have access to it. This allows us to initialize the pointers Ahost,

Bhost, and Chost. Using the STL generate algorithm we initialize arrays A and B with

random numbers between 0 and 255, using a Mersenne Twister generator (as we did

in Chapter 5).

The first two nodes of the graph, in_node and dispatch_node, are defined in

Figure 19-13.

Figure 19-13.  First two nodes, in_node and dispatch_node, in triad example

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

555

This part of the algorithm is quite straightforward. Our old friend in_node sends

offload_ratio=0.5 a single time to dispatch_node. For its part, dispatch_node is of the

following type:

which means that it receives a float (offload_ratio) and has five output ports that send

messages that correspond to the five tuple element types. This tuple encapsulates the

data type of the five output ports of this multifunction node: three buffer_f (opencl_

buffers here) for the three arrays, the NDRange, and a tuple_cpu that packs all the

information for the cpu_node.

The two input arguments of the lambda expression that defines the body of

dispatch_node are

where we find the input message (offload_ratio) and a handle (ports) that give

us access to each one of the five output ports. Now, we use function get<port_

number>(ports).try_put(message) to send a message to the corresponding port_

number. Four calls to this function are all we need to send the information that the

GPU is waiting for. Note that the last one of these four calls puts a 1D array with just

one element equal to ceil(vsize*offload_ratio) which corresponds to the iteration

space on the GPU. A single message sets out on a trip to the CPU via the last port,

using get<4>(ports).try_put(cpu_vectors). Previously, we have conveniently

packed the CPU view of the three vectors and the vector partitioning information

(ceil(vsize*offload_ratio)) in the cpu_vectors tuple.

Any questions? Sure? We don’t want to leave any reader behind. Okay then. Let’s

move on to see the implementation of the next two nodes, the meat of the matter, where

the real computation takes place, in Figure 19-14.

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

556

Although cpu_node is the second one in Figure 19-14, we will cover it first since it

requires less clarification. The template parameter <tuple_cpu, float*> points out

that the node receives a tuple_cpu and sends a pointer to float. The lambda input

argument, cpu_vectors, is used in the body to unpack the pointers into the three

vectors and the variable start (that gets the value ceil(vsize*offload_ratio) already

computed on the dispatch_node). With this information, a parallel_for carries out

the triad computation in the range blocked_range<size_t>(start, vsize), which

correspond to the second part of the iteration space.

As we said, the GPU is responsible of the first part of this iteration space, known in

this context as the NDRange=[0, ceil(vsize*offload_ratio)). The source code of the

GPU kernel is the same as we presented in the previous chapter, and it just receives the

three arrays and does the triad operation for every i in NDRange:

Figure 19-14.  The nodes really shouldering the burden in the triad example:
gpu_node and cpu_node

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

557

These kernel lines are inside the triad.cl file, hence the line:

tbb::flow::opencl_program<> program{std::string{"triad.cl"}};

at the beginning of Figure 19-14. The custom type tuple_gpu packs the three

buffer_f and the NDRange. With this, we declare the gpu_node as

That selects the “triad” kernel of the program file and specifies our favorite Device

Selector, gpu_selector.

Now comes an interesting configuration detail. Four messages reach the gpu_

node and we mentioned previously that “opencl_node binds the first input port

to the first kernel argument, the second input port to the second kernel argument

and so on.” But wait! The kernel only has three arguments! Were we lying again!!??

Well, not this time. We also said that this is the default behavior and that it can be

modified. Here is how.

With gpu_node.set_args(port_ref<0,2>) we state that the messages arriving

at ports 0, 1 and 2 should be bound to the three input arguments of the kernel (A, B

and C). And what about the NDRange? In our first example “Hello OpenCL_Node” in

Figure 19-3 we just used gpu_node.set_range({{1}}) to specify the smallest possible

NDRange with constant value 1. But in this second and more elaborated example, the

NDRange is variable and comes from dispatch_node. We can bind the third port of the

node, that receives NDRange with the set_range() function, as we did with the line

gpu_node.set_range(port_ref<3>). This means that we can pass to set_range()

a constant or a variable NDRange that comes through a port. The member function

set_args() should support the same flexibility, right? We know how to bind kernel

arguments to opencl_node ports, but often times kernel arguments have to be set just

once and not for every invocation.

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

558

Say for example that our kernel receives the value of α that is now a user-defined

argument (not hardwired to 0.5 as before):

Then we can write the following: gpu_node.set_args(port_ref<0,2>, 0.5f) which

binds the three first kernel arguments to the data reaching ports 0, 1, and 2, and the

fourth argument to… 0.5 (oh no! hardwired again! More seriously, nothing prevents us

from passing a variable, alpha, previously set to... 0.5).

Now, let’s go for the last two nodes, node_join and out_node, that are detailed in

Figure 19-15.

Figure 19-15.  Last two nodes, node_join and out_node, of the heterogenous triad
vector operation

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

559

As indicated in boldface, node_join receives a buffer_f (from gpu_node)

and a pointer to float (from cpu_node). This node is created just to join these

two messages into a tuple that is forwarded to the next node. Speaking of which,

the next node is out_node, a function_node that receives a message of the type

join_t::output_type and does not send any output message. Note that join_t

is the type of node_join, so join_t::output_type is an alias of tuple<buffer_f,

float*>. Actually, the input argument of the lambda, m, has this type. A convenient

way to unpack the tuple m is to execute std::tie(Cdevice, Chost) = m, which is

completely equivalent to

Cdevice = std::get<0>(m);

Chost = std::get<1>(m);

The next lines of the body of out_node check that the heterogeneous computation is

correct, first serially computing a golden version, CGold, of the triad array operation and

then comparing with Chost using the std::equal algorithm. Since Chost, Cdevice.

data(), and Cdevice.begin() are all actually pointing to the same buffer, these three

comparisons are equivalent:

std::equal (Chost, Chost+vsize, CGold.begin())

std::equal (Cdevice.begin(), Cdevice.end(), CGold.begin())

std::equal (Cdevice.data(), Cdevice.data()+vsize, CGold.begin())

Time to sign off our code. In Figure 19-16, we add the make_edge calls and trigger the

execution of the flow graph.

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

560

Note that, although the four input ports of gpu_node are connected to the preceding

dispatch_node, only port number 2 of gpu_node goes to node_join. This port carries the

resulting Cdevice buffer, so it is the only one we care about. The other three disregarded

ports won’t feel offended.

It took us a while to explain the whole example, and still we have to add one more

thing. How it compares with the async_node version that we presented in the previous

chapter? Our async_node version included the OpenCL boilerplate that was hidden in

the OpenCL_Initialize() function but was required because it gave us access to the

context, command queue and kernel handlers. This async_node version has 287 lines

of code (excluding comments and blank lines) if we use the cl.h OpenCL header or 193

lines using the cl.hpp C++ wrapper of the cl.h header. This new version based on the

opencl_node feature further reduces the size of the source file to just 144 lines of code.

Figure 19-16.  Last part of the triad main function where nodes are connected and
the graph is dispatched

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

561

�The Devil Is in the Details
Those of us that have previously developed OpenCL codes, know that we can “enjoy”

a considerable degree of latitude if we use the raw OpenCL library directly. This

flexibility doesn’t show up in the opencl_node at first glance. How can we define a

multidimensional NDRange? And how can we also specify the local size in addition

to the NDRange global size? And how can we provide a precompiled kernel instead of

the OpenCL source? Maybe the problem is that we have not covered all the available

configuration knobs yet. Let’s jump into the answers to these questions.

The main OpenCL functions needed to launch a kernel are clSetKernelArg

(clSetKernelArgSVMPointer if we use OpenCL 2.x Shared Virtual Memory pointers) and

clEnqueueNDRangeKernel. These functions are internally called in the OpenCL factory,

and we can control which arguments are passed into them. To illustrate how the opencl_

node member functions and helper functions are translated to raw OpenCL calls, we

zoom in on an opencl_node in Figure 19-17.

Figure 19-17.  opencl_node internals and correspondence between opencl_node
functions and native OpenCL calls

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

562

In this figure, we use the gpu_node of the previous triad example, where we

configured an opencl_node to receive three opencl_buffers and the NDRange (a total

of four ports that enter and leave the node). As we explained a few pages ago, thanks

to gpu_node.set_args(port_ref<0,2>, alpha), we clearly state that the first three

input ports (0, 1, and 2) that carry A, B, and C vectors should be bound to the first

three arguments of the kernel, and the last argument of the kernel (the multiplicative

factor α) is statically bounded to a variable alpha, which does not come from

previous nodes of the graph. Now, we have all the information that is required to

make the four clSetKernelArg() calls that we see in Figure 19-17, which in turn

work their magic to get these four arguments to appear as inputs to the kernel void

triad(...) OpenCL function.

Now, let’s look at how the clEnqueueNDRangeKernel call is appropriately configured.

This is one of the most complex OpenCL calls; it requires nine arguments that we list

in Figure 19-18. However, this is not an OpenCL primer, and for this chapter it suffices

to discuss just the five arguments from the 2nd to the 6th ones. The one identified with

the variable “kernel” will be covered later, and to understand the other four we have to

delve deeper into one of the fundamental concepts of OpenCL: the NDRange.

Figure 19-18.  Signature of the OpenCL clEnqueueNDRangeKernel call

�The NDRange Concept
An NDRange defines an iteration space of independent work items. This space is

potentially three-dimensional, but it can be also 2D or 1D. The NDRange in our triad

example is 1D. The argument dim in the clEnqueueNDrangeKernel call in Figures 19-17

and 19-18 should contain 1, 2, or 3 accordingly and will be properly set by the gpu_node.

set_range() call. In the example of Figure 19-17, this set_range() call points out that

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

563

the NDRange information arrives to port 3 of the gpu_node from a previous node of the

graph. The NDRange information should be in one, or optionally two containers, which

provide begin() and end() member functions. Many standard C++ types provide these

member functions, including std::initializer_list, std::vector, std::array, and

std::list, to name a few. If we only specify one container, the opencl_node just sets

the global_work_size argument of the clEnqueueNDRangeKernel() function (identified

with the variable global in Figures 19-17 and 19-18). If otherwise, we also specify a

second container, the opencl_node sets the local_work_size argument (local in

Figures 19-17 and 19-18) as well.

Note A s we said, the NDRange global_work_size defines the parallel
iteration space that will be executed by the accelerator. Each point in this space
is called a work item using the OpenCL slang (if you are familiar with CUDA,
it is equivalent to a CUDA thread). Therefore, work items can be processed in
parallel on the different accelerator compute units, CUs, and the corresponding
computation is defined by the kernel code, that is, if our kernel function includes
C[i]=A[i]+B[i], this is the expression that will be applied to each work item i
of this 1D iteration space.

Now, work items are grouped into what are called work-groups (or blocks using
CUDA notation). Due to architectural implementation details, work items belonging
to the same work-group are more tightly related. For instance, on a GPU, it is
guaranteed that a work-group will be scheduled on a single GPU compute unit.
This implies that we can synchronize the work items of a single work-group with
an OpenCL barrier, and these work items share a per-CU memory space called
“local memory” which is faster than the global memory.

The argument local_work_size specifies the size of the work-groups. OpenCL
drivers can automatically compute a recommended local_work_size if none is
provided. However, if we want to enforce a particular work-group size, we have to
set the local_work_size argument.

Here is where some examples will make it crystal clear. Say we have 2D arrays

A, B, and C, of dimensions h x w and we want to compute the matrix operation

C=A+B. Although matrices are two-dimensional, in OpenCL they are passed to the

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

564

kernel as a pointer to a row-major linearized 1D cl_mem buffer. This does not prevent us

from computing a 1D index from a 2D one, so the kernel will look like

x = get_global_id(0); // column
y = get_global_id(1); // row

C[y*w+x] = A[y*w+x] + B[y*w+x]; // row x width + column

although the fancy way to express the same uses the int2 type and reads as

 int2 gId = (int2)(get_global_id(0), get_global_id(1));

 C[gId.y*w+gId.x] = A[gId.y*w+gId.x] + B[gId.y*w+gId.x];

To get more information about what is going on for each work item during the kernel

execution, we will print out some additional information, as seen in Figure 19-19.

The first three variables, gId, lId, and grId store the global ID, local ID, and group

ID of each work item, respectively, in both dimensions x and y. The next three variables

gSize, lSize, and numGrp are set to the global size, local size, and number of work-

groups. The first if condition is satisfied only by the work item with global ID (0,0).

kernel void cl_print(global float* A,
global float* B,
global float* C,
int w) {

int2 gId = (int2)(get_global_id(0), get_global_id(1));
int2 lId = (int2)(get_local_id(0), get_local_id(1));
int2 grId = (int2)(get_group_id (0), get_group_id(1));
int2 gSize = (int2)(get_global_size(0), get_global_size(1));
int2 lSize = (int2)(get_local_size(0), get_local_size(1));
int2 numGrp = (int2)(get_num_groups (0), get_num_groups(1));
if (gId.x == 0 && gId.y==0)

printf("gSize.x=%d, gSize.y=%d, lSize.x=%d, lSize.y=%d,
numGrp.x=%d, numGrp.y=%d\n",
gSize.x, gSize.y, lSize.x, lSize.y, numGrp.x,
numGrp);

printf("gId.x=%d, gId.y=%d, lId.x=%d, lId.y=%d, grId.x=%d,
grId.y=%d\n\n",
gId.x, gId.y, lId.x, lId.y, grId.x, grId.y);

C[gId.y*w+gId.x] = A[gId.y*w+gId.x] + B[gId.y*w+gId.x];

}

Figure 19-19.  Kernel example that adds two matrices and prints out relevant
work-item information

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

565

So only that work item prints out the various sizes and number of groups, which are the

same for all work items. The second printf statement is executed by every work item and

prints the global, local and group IDs for that work item. This results in the output shown

in Figure 19-20, when enqueued with dim = 2, global = {4,4} and local = {2,2}.

In this figure, we depict every work item with a colored box. There are 16 work items

arranged in a 4×4 grid where we identify each work-group using four different colors.

Since the local size is {2,2}, each work-group is a 2×2 subspace. It’s no wonder that the

number of groups is 4, but to give some formalism to this chapter we add here some

invariants that we can easily demonstrate:

numGrp.x = gSize.x/lSize.x

0 <= gId.x < gSize

0 <= lId.x < lSize

gId.x = grId * lSize.x + lId.x

and likewise, for the .y coordinate (or even .z in a 3D space)

Figure 19-20.  Output of the kernel of Figure 19-19 when configured with dim=2,
global={4,4}, and local={2,2} --set_range({{4, 4}, {2, 2}})--

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

566

And now, how do we specify the global and local sizes for an opencl_node? So far, we

have just used gpu_node.set_range({{<num>}}) in previous examples of the chapter.

This would translate into dim=1, global={<num>} and local=NULL which results in a 1D

NDRange with local size left to the OpenCL driver discretion.

In the general case, we may need global={gx, gy, gz} and local={lx, ly, lz}.

The easiest way to achieve this is to use

 gpu_node.set_range({{gx, gy, gz},{lx, ly, lz}});

However, as we said, any container that can be iterated with a begin() member

function will also suit our needs. For instance, a more convoluted way of expressing the

same would be

The resulting range has as many dimensions as the number of elements in the

container, with each dimension size set to the corresponding element value. The caveat

here is to specify the same dimensionality for both the global and the local containers.

To make things interesting, we have to add the TBB driver code that can launch the

kernel of Figure 19-19. The most concise way we know of is to build a graph with a single

opencl_node as shown in Figure 19-21.

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

567

See? Just a handful of lines of code and we are up and running an OpenCL code

that adds two matrices A and B. Note that the opencl_node, gpu_node, has only a single

port, port<0>, that is bound to the third argument of the kernel, matrix C, that carries the

result of the computation conducted in the kernel. The input matrices, A and B, and the

matrix width, w, are directly passed using set_args member function. Also note that the

opencl_node has to have at least one port and it is activated only if a message lands in

this entry port. An alternative to implement the gpu_node would be the following:

Figure 19-21.  opencl_node exercised in isolation

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

568

Where the gpu_node receives Cdevice on port<0>, the NDRange on port<1> and the

remaining kernel arguments are specified with the set_range() member function. The

type of the message arriving and leaving port<1> of the gpu_node is tbb::flow::opencl_

range (the umpteenth opencl_node helper class, so far!), and we rely on try_put() to

pass an opencl_range object initialized with the two containers.

�Playing with the Offset
There are two other arguments of the clEnqueueNDRangeKernel function that we

left behind (see Figure 19-18). One is the offset argument that can be used to skip

some of the first work items at the beginning of the iteration space. In the current

implementation of the OpenCL factory, this offset is hardwired to {0,0,0}. Not a big

deal. There are two possible workarounds to overcome this limitation.

The first one consists in passing the offset to the kernel and add it to the global ID

before indexing the arrays. For example, for a one-dimensional C=A+B operation we can

write something like

And of course, we can adapt the NDRange to avoid overrunning the arrays. Although

functional, not a super-elegant solution. Which is the super-elegant solution then? Well,

we can use the opencl_subbuffer class to achieve the same result. For example, if we

want to add just a subregion of vectors A and B, we can keep a simpler version of the

vector-add kernel:

but pass the following arguments to the set_args() member function:

 Adevice.subbuffer(offset, size)

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

569

and similarly, for Bdevice and Cdevice. Another alternative to create a sub-buffer of

Cdevice is to call

 tbb::flow::opencl_subbuffer<cl_float>(Cdevice, offset, size)

�Specifying the OpenCL Kernel
Finally, we have to devote some time to the kernel argument (see Figure 19-18). Up to

now, we have used OpenCL source files to provide our kernel. In the last example of

Figure 19-21, we used again the opencl_program class:

which is equivalent to the more explicit constructor:

This is the usual approach to provide the kernel function that, on the one hand,

requires compiling the source at runtime, but on the other hand, provides portability

because the source will be compiled (only once at opencl_program construction) for

all the available devices. Internally, the OpenCL factory relies on the OpenCL functions

clCreateProgramWithSource and clBuildProgram.

If we are positive we don’t need to port our code to any other platform and/or if, for

the production version, we require the last drop of performance, we can also precompile

the kernel. For example, with the Intel OpenCL tool chain we can run

ioc64 -cmd=build -input=my_kernel.cl -ir=my_kernel.clbin

 -bo="-cl-std=CL2.0" -device=gpu

which generates the precompiled file my_kernel.clbin. Now, we can create the program

object faster using

When passing this type of file to the opencl_program constructor, the factory

internally uses the clCreateProgramWithBinary instead. An additional possibility is

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

570

to provide the SPIR intermediate representation of the kernel, using opencl_program_

type::SPIR. To generate the SPIR version, we can use

ioc64 -cmd=build -input=my_kernel.cl -spir64=my_kernel.spir

 -bo="-cl-std=CL1.2"

In both cases, the ioc64 compiler provides some useful information. The output of

the last run will look like

Using build options: -cl-std=CL1.2

OpenCL Intel(R) Graphics device was found!

Device name: Intel(R) HD Graphics

Device version: OpenCL 2.0

Device vendor: Intel(R) Corporation

Device profile: FULL_PROFILE

fcl build 1 succeeded.

bcl build succeeded.

my_kernel info:

 Maximum work-group size: 256

 Compiler work-group size: (0, 0, 0)

 Local memory size: 0

 Preferred multiple of work-group size: 32

 Minimum amount of private memory: 0

Build succeeded!

This output informs us about, among other things, the maximum work-group size,

256, and the preferred multiple of the work-group size, 32, for this particular kernel.

�Even More on Device Selection
In a previous section, we realized that the laptop we are using to conduct our experiments

includes two GPUs. Let’s see a quick example in which we use both of them in the same

flow graph. In Figure 19-22, we link two opencl_nodes so that the first computes C=A+B

and send C to the following one, that does C = C – B. When both nodes are done, we

check that C == A in a regular function_node. Array dimensions are rows × cols.

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

571

On our laptop, we already know that the device list f.devices() includes three

devices, and the second and third ones are the two GPUs. That way, we can safely use

f.devices().begin() +1 and +2 to get the iterator pointing to each GPU, as we see in

Figure 19-22.  Example with two opencl_nodes, each one configured to use a
different GPU

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

572

the boxed statements of Figure 19-22 for the two opencl_node definitions. In addition to

targeting different GPUs, each opencl_node is configured to run two different kernels of

the program fig_19_23.cl: cl_add and cl_sub. The information flowing from gpu_node1

to gpu_node2 is the opencl_buffer Cdevice. Inside the OpenCL factory, data movement

is minimized and if, for example, an opencl_buffer has to be accessed by two consecutive

opencl_nodes mapped onto the same GPU, the data allocated on the GPU is not moved

to the CPU until the first CPU node of the graph tries to access the corresponding buffer

(by using opencl_buffer.begin() or opencl_buffer.data() member functions).

In Figure 19-23, we present the program fig_19_23.cl including the two kernels

referenced in the previous code. Note that instead of passing the row width as a fourth

argument, we use gSz.x that contains the same value.

The output resulting from running the code of Figure 19-22 on our laptop is the following:

Running gpu_node1 on Intel(R) HD Graphics 530

Running gpu_node2 on AMD Radeon Pro 450 Compute Engine

gSz.x=4, gSz.y=4

gSz.x=4, gSz.y=4

Figure 19-23.  Content of fig_19_23.cl where we see two kernels, each one called
from a different opencl_node

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

573

It is also possible to have a single opencl_node changing the OpenCL device to which

the work is offloaded for every invocation of the node. The example of Figure 19-24

shows an opencl_node that is invoked three times, and for each one a different device is

used to run a simple kernel.

Figure 19-24.  A single opencl_node can change the target accelerator for every
invocation

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

574

The code uses the atomic variable device_num initialized to 0. Each invocation to

the gpu_node returns a different device, cyclically traversing all of them (three in our

platform). Along with the following kernel:

the resulting output is

Iteration: 0

Iteration: 1

Iteration: 2

Running on Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz

Running on Intel(R) HD Graphics 530

Running on AMD Radeon Pro 450 Compute Engine

A[0]=1

A[0]=2

A[0]=3

where we can corroborate that the elements of the array Adevice have been incremented

three times in three consecutive invocations of the gpu_node and the corresponding

kernel has been executed on three different OpenCL devices.

�A Warning Regarding the Order Is in Order!
One final caveat that we should be aware of has to do with the order in which the

messages arrive to an opencl_node when it is served from several nodes. For example, in

Figure 19-25 we illustrate a flow graph, g, that includes a gpu_node fed from two function

nodes, filler0 and filler1. Each “filler” sends 1000 buffers, b, of 10 integers each, of

the form {i,i,i,…,i}, with i ranging from 1 to 1000. The receiving gpu_node receives

both messages as b1 and b2 and just invokes an OpenCL kernel as simple as this:

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

575

The code that implements the previous graph is listed in Figure 19-26. We agree

with George Bernard Shaw in that “The liar’s punishment is not in the least that he is

not believed, but that he cannot believe anyone else.” As liar connoisseurs, we use in our

code a try-catch construction especially devised to catch liars!

Figure 19-25.  Two function nodes feeding an opencl_node with buffers that will
be multiplied on the GPU

As we see, it basically multiplies b1[i]=b1[i]*b2[i]. If b1 and b2 are equal (to

{1,1,1,…}, or {2,2,2,…}, etc.), we should get at the output 1000 buffers with squared

outputs ({1,1,1,…}, then {4,4,4,…}, and so on). Right? Sure? We don’t want to lie, so

just in case, let’s double check it in the last node of the graph, checker, which validates

our assumption.

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

576

Figure 19-26.  Source code corresponding to the graph depicted in Figure 19-25

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

577

We first define buffer_i as an opencl_buffer of integers. The two “fillers” receive

an integer, i, and fill a buffer_i with 10 i’s that are sent to the gpu_node. The three lines

used to configure the opencl_node are too basic for us now and do not require further

elaboration. The last node is the checker that throws an exception if any of the values

received in the buffer processed on the GPU is not a squared integer. After making the

edges, a 1000 iteration loop puts to work the two fillers. Now, the moment of truth has

arrived, and the output is

Liar!!: 42 is not a square of any integer number

Well, we got caught! Apparently, 6*7 was computed on the GPU, instead of 6*6

or 7*7. Why? The answer is that we have not taken enough measures to ensure that

messages arriving to the gpu_node are paired correctly. Remember that the body of the

“fillers” is executed by tasks, and we cannot assume any particular order regarding the

task execution.

Fortunately, the opencl_node comes with a handy type-specified key matching

feature that will save the day. We put that feature to work in Figure 19-27.

Figure 19-27.  Fixing the code of Figure 19-26

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

578

Basically, now buffer_i is a new class that inherits from opencl_buffer<cl_int>

and adds an int my_key member variable and a key() member function that returns

that key. Now the fillers have to use a different constructor (buffer_i b{N,i}), but

more importantly, the opencl_node receives a second template argument (key_

matching<int>). This automatically instructs the opencl_node to call the key()

function and wait for messages with the same key value to be passed to all input ports.

Done! If we run our code with these minor modifications, we will see that now we've

been acquitted of perjury!

�Summary
In this chapter, we presented the opencl_node feature of TBB flow graph. We began with

a simple Hello OpenCL_Node example that represented a first look at the opencl_node,

covering just the basics of this class. We then started to dive deeper into some of the

helper classes, such as the opencl_device_list that is a container of opencl_device

objects, and the Device Filter and Device Selector entities. In order to illustrate other

helper classes and to give a more complex example, we also implemented the triad

vector operation using an opencl_node to take care of part of the computation whereas

the rest is processed simultaneously on the CPU cores. While there, we better covered

the opencl_buffer helper class and the set_range and set_args member functions of

the opencl_node class. The NDRange concept and how to set the global and local OpenCL

sizes required almost a section, where we also explained how to use the opencl_

subbuffer class and other variants to provide the kernel program (precompiled or the

SPIR intermediate representation). We followed up by introducing two examples that

illustrate how to map different opencl_nodes of the flow graph onto different devices, or

even how to change the device to which the opencl_node offloads the computation at

each invocation. Finally, we described how to avoid ordering issues when an opencl_

node is fed from different nodes.

One final disclaimer. Maybe we were actually lying in the end. As of writing this

chapter, the opencl_node is still a preview feature, so it is subject to eventual changes.

After 3 years of development, we don’t expect major changes, but we cannot promise

this. If such changes end up in a future release, we do promise to write an updated

edition of this chapter! Do you believe us?

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

579

�For More Information
Here are some additional reading materials we recommend related to this chapter:

•	 Alexei Katranov, Opencl_node overview. Series of entries in the

Intel Developer Zone blog: https://software.intel.com/en-us/

blogs/2015/12/09/opencl-node-overview.

•	 David Kaeli, Perhaad Mistri, Dana Schaa, Dong Ping Zhang.

Heterogeneous Computing with OpenCL 2.0. Morgan

Kaufmann 2015.

Hiking icon in Figure 19-1 made by Scott de Jonge from www.flaticon.com.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 19 Flow Graphs on Steroids: OpenCL Nodes

https://software.intel.com/en-us/blogs/2015/12/09/opencl-node-overview
https://software.intel.com/en-us/blogs/2015/12/09/opencl-node-overview
https://www.flaticon.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

581
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_20

CHAPTER 20

TBB on NUMA
Architectures
Advanced programmers who care about performance know that exploiting locality

is paramount. When it comes to locality, cache locality is the one that immediately

springs to mind, but in many cases, for heavy-duty applications running on large

shared-memory architectures, Non-Uniform Memory Access (NUMA) locality should

also be considered. As you certainly know, NUMA conveys the message that memory

is organized in different banks and some cores have faster access to some of the “close”

banks than to “far” banks. More formally, a NUMA node is a grouping of the cores,

caches, and local memory in which all cores share the same access time to the local

shared caches and memory. Access time from one NUMA node to a different one can be

significantly larger. Some questions arise, such as how the program data structures are

allocated on the different NUMA nodes and where the threads that process these data

structures are running (are they close or far from the data?). In this chapter, we address

these questions, but more importantly, what can be done to exploit NUMA locality

within a TBB parallel application.

Tuning for performance on NUMA systems comes down to four activities: (1)

discovering what your platform topology is, (2) knowing the costs associated with

accessing memory from the different nodes of your system, (3) controlling where your

data is stored (data placement), and (4) controlling where your work executes (processor

affinity).

In order to prevent you from being disappointed further down the line (i.e., to

disappoint you right now!), we shall say the following upfront: currently, TBB does not

offer high-level features for exploiting NUMA locality. Or in other words, out of the four

activities listed before, TBB offers some help only in the fourth one, where we can rely on

582

the TBB task_arena (see Chapter 12) and local task_sheduler_observer (see Chapter 13)

classes to identify the threads that should be confined in a NUMA node. For all the

other activities, and even for the actual pinning of threads to NUMA nodes (which is

the essential part of the fourth activity), we need to use either low-level OS-dependent

system calls or higher-level third-party libraries and tools. This means, that even if this

is a TBB book, this last chapter is not entirely about TBB. Our goal here is to thoroughly

elaborate on how we can implement TBB code that exploits NUMA locality, even if most

of the required activities are not directly related to TBB.

Now that we have warned the reader, let us break down the sections into which

we have organized this chapter. We basically follow, in order, the four activities listed

before. The first section shows some tools that can be used to discover the topology of

our platform and to check how many NUMA nodes are available. If there is more than

one NUMA node, we can move on to the next section. There, we use a benchmark to

get an idea of the potential speedup that is at stake when exploiting NUMA locality on

our particular platform. If the expected gain is convincing, we should start thinking in

exploiting NUMA locality in our own code (not just in a simple benchmark). If we realize

that our own problem can benefit from NUMA locality, we can jump into the heart of

the matter which consists in mastering data placement and processor affinity. With this

knowledge and with the help of TBB task_arena and task_scheduler_observer classes,

we implement our first simple TBB application that exploits NUMA locality and assess

the speedup obtained with respect to a baseline implementation. The whole process is

summarized in Figure 20-1. We close the chapter sketching more advanced and general

alternatives that could be considered for more complex applications.

Figure 20-1.  Activities required to exploit NUMA locality

Chapter 20 TBB on NUMA Architectures

583

Note I f you are wondering why there is no high-level support in the current
version of TBB, here are some reasons. First, it is a tough problem, highly dependent
on the particular application that has to be parallelized and the architecture on
which it will run. Since there is no one-size-fits-all solution, it is left to developers to
determine the particular data placement and processor affinity alternatives that best
suit the application at hand. Second, TBB architects and developers have always
tried to avoid hardware specific solutions inside the TBB library because they can
potentially hurt the portability of the code and the composability features of TBB. The
library was not developed only to execute HPC applications, where we usually have
exclusive access to the whole high-performance platform (or a partition of it). TBB
should also do its best in shared environments in which other applications and
processes are also running. Pinning threads to cores and memory to NUMA nodes
can in many cases leads to suboptimal exploitation of the underlying architecture.
Manually pinning has been shown repeatedly to be a bad idea in any application or
system that has any dynamic nature in it at all. We strongly advise against taking
such an approach, unless you are positive you will improve performance for your
particular application on your particular parallel platform and you do not care about
portability (or extra effort is made to implement a portable NUMA-aware application).

Considering the task-based nature of TBB parallel algorithms and the work-stealing

scheduler that fuels the parallel execution, keeping the tasks running in cores close to

the local memory can seem challenging. But that’s not going to deter brave and fearless

programmer like us. Let’s go for it!

�Discovering Your Platform Topology
“Know your enemy and yourself, and you shall win a hundred battles without loss.” – Sun Tzu

in The Art of War. This millenarian quote advises us to first strive to meticulously understand

what we are facing before tackling it. There are some tools that come in handy to understand

the underlying NUMA architecture. In this chapter, we will use hwloc and likwid1 to gather

information about the architecture and code execution. hwloc is a software package that

1�www.open-mpi.org/projects/hwloc and https://github.com/RRZE-HPC/likwid.

Chapter 20 TBB on NUMA Architectures

https://www.open-mpi.org/projects/hwloc/
https://github.com/RRZE-HPC/likwid

584

provides a portable way to query information about the topology of a system, as well as to

apply some NUMA controls, like data placement and processor affinity. likwid is another

software package that informs about the hardware topology, can be used to collect hardware

performance counters, and also provides a set of useful micro-benchmarks that can be used

to characterize systems. We can also use VTune to analyze the performance of our code.

Although likwid is only available for Linux, hwloc and VTune can be easily installed on

Windows and MacOS as well. However, since the shared memory platforms that will serve to

illustrate our codes run Linux, this will be the OS that we assume unless stated otherwise.

Because tuning for NUMA requires a deep understanding of the platforms being

used, we will start by characterizing two machines that we will work on throughout this

chapter. The two machines that we introduce next are known as yuca (from the yucca

plant) and aloe (from the aloe vera plant). First, we can gather basic information about

these machines. On Linux this information can be obtained using the command “lscpu”,

as we can see in Figure 20-2.

At first glance, we see that yuca has 64 logical cores numbered from 0 to 63,

two logical cores per physical core (hyperthreading aka SMT or simultaneous

multithreading, available), eight physical cores per socket, and four sockets that are

also the four NUMA nodes or NUMA domains. For its part, aloe has 32 physical cores

with hyperthreading disabled (only one thread per core), 16 physical cores per socket,

and two sockets (NUMA nodes). At the end of the lscpu output, we can see the NUMA

Figure 20-2.  Output of lscpu on yuca and aloe

Chapter 20 TBB on NUMA Architectures

585

nodes and the ids of the logical cores included in each node, but the picture will become

clearer if we use the lstopo utility from the hwloc library. In Figure 20-3, we include the

PDF file generated on yuca when executing the command lstopo --no-io yuca.pdf

(the --no-io argument disregards the I/O device topology).

Figure 20-3.  Result of executing lstopo on yuca

Chapter 20 TBB on NUMA Architectures

586

Figure 20-4.  Result of executing lstopo on aloe

From this figure, we can get a clear representation of the NUMA organization in

yuca. The four NUMA nodes include eight physical cores that are seen by the OS as 16

logical cores (also known as hardware threads). Note that logical core ids depend on the

architecture, the firmware (BIOS configuration on PCs), and OS version, so we cannot

assume anything from the numbering. For the particular configuration of yuca, logical

cores 0 and 32 share the same physical core. Now we better understand the meaning of

the last four lines of lscpu on yuca:

NUMA node0 CPU(s): 0-7,32-39

NUMA node1 CPU(s): 8-15,40-47

NUMA node2 CPU(s): 16-23,48-55

NUMA node3 CPU(s): 24-31,56-63

On yuca, each NUMA node has 63 GB of local memory, or 252 GB in total. Similarly,

aloe also features 252 GB but organized in only two NUMA nodes. In Figure 20-4, we see

a slightly edited version of the output of lstopo on aloe.

We see that on aloe each physical core includes a single logical core, numbered from

0-15 in the first domain and from 16-31 in the second one.

Chapter 20 TBB on NUMA Architectures

587

�Understanding the Costs of Accessing Memory
Now that we know the topology of our platform, let’s quantify the overhead due to

nonlocal accesses assuming we already control processor affinity and data placement.

Actually, we do control these two aspects on already available benchmarks, like likwid-

bench available in the likwid tool. Using this benchmark, we can run the STREAM triad

code (see the previous two chapters) using a single command line:

likwid-bench -t stream -i 1 -w S0:12GB:16-0:S0,1:S0,2:S0

which runs a single iteration (-i 1) of the stream benchmark configured with -w

argument so that

•	 S0: The threads are pinned to the NUMA node 0.

•	 12 GB: The three triad arrays occupy 12 GB (4 GB per array).

•	 16: 16 threads will share the computation, each one processing

chunks of 31,250,000 doubles (this is, 4000 million bytes/8 bytes per

double/16 threads).

•	 0:S0,1:S0,2:S0: The three arrays are allocated on the NUMA node 0.

On yuca, the result of this command reports a bandwidth of 8219 MB/s. But it is a

no-brainer to change the data placement for the three arrays, for example to the NUMA

node 1 (using 0:S1,1:S1,2:S1) keeping the computation by 16 threads confined in the

NUMA node 0. Not surprisingly, the bandwidth we get now is only 5110 MB/s, which

means we are losing a 38% of the bandwidth we measured when exploiting NUMA

locality. We get similar results for other configurations that compute local data (data

placement on the cores where the threads are pinned) and configurations that do not

exploit locality (data placement on cores that do not have the thread affinity). On yuca,

all nonlocal configurations result in the same bandwidth hit, but there are other NUMA

topologies on which we pay different penalties depending on where the data is placed

and where the threads are running.

On aloe we only have two NUMA nodes 0 and 1. Having the data and the

computation on the same domain gives us 38671 MB/s, whereas going down the wrong

path results in only 20489 MB/s (almost half, exactly 47% less bandwidth). We are certain

that a reader like you, eager to read and learn about performance programming topics, is

now motivated to exploit NUMA locality in your own projects!

Chapter 20 TBB on NUMA Architectures

588

�Our Baseline Example
Figure 20-5 shows a parallel version of the triad example that we have been using

recently, with just a parallel_for algorithm.

Figure 20-5.  The baseline algorithm to evaluate and improve

The last two lines of this code, which is not yet optimized for NUMA, reports the

execution time and the obtained bandwidth. For the latter, the total number of bytes

accessed is computed as vsize × 8 bytes/double × 3 access per array element (two loads

and one store), and this is divided by the execution time and by one million (to convert

to Mbytes per second). On yuca, this results in the following output when running with

32 threads and arrays of one giga-element:

./fig_20_05 32 1000000000

Time: 2.23835 seconds; Bandwidth: 10722.2MB/s

Chapter 20 TBB on NUMA Architectures

589

and on aloe:

./fig_20_05 32 1000000000

Time: 0.621695 seconds; Bandwidth: 38604.2MB/s

Note that the bandwidth obtained with our triad implementation should not be

compared with the one reported previously by likwid-bench. Now we are using 32

threads (instead of 16) that, depending on the OS scheduler, can freely run on every core

(instead of confined to a single NUMA node). Similarly, arrays are now placed by the OS

following its own data placement policy. In Linux, the default policy2 is “local allocation”

in which the thread that does the allocation determines the data placement: in local

memory if there is enough space, or remote otherwise. This policy is sometimes called

“first touch,” because data placement is not done at allocation time, but at first touch

time. This means that a thread can allocate a region but the thread that first accesses this

region is the one raising the page fault and actually allocating the page on memory local

to that thread. In our example of Figure 20-5, the same thread allocates and initializes the

arrays, which means that the parallel_for worker threads running on the same NUMA

node will have faster access. A final difference is that likwid-bench implements the triad

computation in assembly language which prevents further compiler optimizations.

�Mastering Data Placement and Processor Affinity
Binding data and computation is not trivial at all. Mainly because it depends on

the Operating System and each one has its own system calls. In Linux, the low-

level interface is provided by libnuma3 which includes functions to control the data

placement and processor affinity policies implemented in the Linux kernel. A higher-

level alternative is the numactl4 command that tackles the same problem, offering less

flexibility though.

However, it is not the best idea in the world to ruin the portability of our TBB

application marrying to an OS dependent NUMA library. A portable and widely used

alternative is the already mentioned hwloc library. Currently, TBB does not offer its

own API to deal with NUMA locality, but as we will see later, there are measures we can

take to get our TBB tasks to access local data when possible. At the time of writing this,

2�We can query the enforced NUMA policy using numactl --show.
3�http://man7.org/linux/man-pages/man3/numa.3.html.
4�http://man7.org/linux/man-pages/man8/numactl.8.html.

Chapter 20 TBB on NUMA Architectures

http://man7.org/linux/man-pages/man3/numa.3.html
http://man7.org/linux/man-pages/man8/numactl.8.html

590

manual control of data placement and processor affinity has to be done via a third-party

library, and without loss of generality, we will resort to hwloc in this chapter. This library

can be used in Windows, MacOS, and Linux (actually, in Linux hwloc uses numactl/

libnuma underneath).

In Figure 20-6, we present an example that queries the number of NUMA nodes and

then allocates some data on each node to later create a thread per node and bind it to

the corresponding domain. We are using hwloc 2.0.1 in the following.

Figure 20-6.  Using hwloc to allocate memory and bind threads to each NUMA
node

Chapter 20 TBB on NUMA Architectures

591

A recurrent argument of all hwloc functions is the object topology, topo in our

example. This object is first initialized and then loaded with the available information

of the platform. After that, we are ready to get information from the topo data structure,

as we do with hwloc_get_nbobjs_by_type that returns the number of NUMA nodes

when the second argument is HWLOC_OBJ_NUMANODE (several other types are available,

as HWLOC_OBJ_CORE or HWLOC_OBJ_PU – logical core or processing unit). This number of

NUMA nodes is stored in the variable num_nodes.

The example continues by creating an array of num_nodes pointers to doubles that

will be initialized inside the function alloc_mem_per_node. The function call to alloc_

thr_per_node creates num_nodes threads, each one pinned to the corresponding NUMA

node. These two functions are described in Figures 20-7 and 20-8, respectively. The

example finishes by freeing the allocated memory and the topo data structure.

Figure 20-7.  Function that allocates an array of doubles per NUMA node

Figure 20-7 shows the implementation of the function alloc_mem_per_node. The key

operations are hwloc_get_obj_by_type that returns a handle to the ith NUMA node

object, numa_node, when the second and third arguments are HWLOC_OBJ_NUMANODE

Chapter 20 TBB on NUMA Architectures

592

and i, respectively. This numa_node has several attributes like numa_node->cpuset

(a bitmask identifying the logical cores included in the node) and numa_node->nodeset

(a similar bitmask that identifies the node). The function hwloc_bitmap_asprintf

comes in handy to translate these sets into strings as we will see latter in the output

of the program. Using the nodeset bitmask, we can allocate memory in a node with

hwloc_alloc_membind.

The output we get on yuca when running the code until alloc_mem_per_node returns

to the main function is

There are 4 NUMA node(s)

NUMA node 0 has cpu bitmask: 0x000000ff,0x000000ff

Allocate data on node 0 with node bitmask 0x00000001

NUMA node 1 has cpu bitmask: 0x0000ff00,0x0000ff00

Allocate data on node 1 with node bitmask 0x00000002

NUMA node 2 has cpu bitmask: 0x00ff0000,0x00ff0000

Allocate data on node 2 with node bitmask 0x00000004

NUMA node 3 has cpu bitmask: 0xff000000,0xff000000

Allocate data on node 3 with node bitmask 0x00000008

where we see the cpuset and nodeset of each NUMA node. If we refresh our memory

looking again at Figure 20-3, we see that in node 0 we have eight cores with 16 logical

cores, numbered from 0 to 7 and from 32 to 39, which are represented in hwloc with the

bitmask 0x000000ff,0x000000ff. Note that the “ , ” separates the two sets of logical cores

sharing the eight physical ones. To compare with a Hyperthreading disabled platform,

this is the corresponding output on aloe:

There are 2 NUMA node(s)

NUMA node 0 has cpu bitmask: 0x0000ffff

Allocate data on node 0 with node bitmask 0x00000001

NUMA node 1 has cpu bitmask: 0xffff0000

Allocate data on node 1 with node bitmask 0x00000002

In Figure 20-8, we list the function alloc_thr_per_node that spawns a thread per

NUMA node and then bind it using the cpuset attribute.

Chapter 20 TBB on NUMA Architectures

593

This function also queries the number of NUMA nodes, num_nodes, to later iterates this

number of times inside a loop that creates the threads. In the lambda expression that each

thread executes, we use hwloc_set_cpubind to bind the thread to each particular NUMA

node, now relying on the numa_node->cpuset. To validate the pinning, we print the thread

id (using std::this_thread::get_id) and the id of the logical core on which the thread is

running (using sched_getcpu). The result on yuca is next, also illustrated in Figure 20-9.

Before: Thread 0 with tid 873342720 on core 33

After: Thread 0 with tid 873342720 on core 33

Before: Thread 1 with tid 864950016 on core 2

After: Thread 1 with tid 864950016 on core 8

Before: Thread 2 with tid 856557312 on core 33

After: Thread 2 with tid 856557312 on core 16

Before: Thread 3 with tid 848164608 on core 5

After: Thread 3 with tid 848164608 on core 24

Figure 20-8.  Function that creates and pins a thread per NUMA node

Chapter 20 TBB on NUMA Architectures

594

Figure 20-9.  Depicting the movement of threads due to pinning to NUMA nodes
on yuca

Two things are worth mentioning here. First, the threads are initially allocated by

the OS on logical cores in the same NUMA node, since it assumes they will collaborate.

Threads 0 and 2 are even allocated on the same logical core. Second, the threads are not

pinned to a single core, but to the whole set of cores belonging to the same NUMA node.

This allows for some leeway if the OS considers it better to move a thread to a different

core of the same node. For completeness, here is the equivalent output on aloe:

Before: Thread: 0 with tid 140117643171584 on core 3

After: Thread: 0 with tid 140117643171584 on core 3

Before: Thread: 1 with tid 140117634778880 on core 3

After: Thread: 1 with tid 140117634778880 on core 16

There are many more features of hwloc and likwid that the interested reader can

learn from the respective documentation and online tutorials. However, what we have

covered in this section suffices to move on, roll up our sleeves, and implement a NUMA-

conscious version of the triad algorithm using TBB.

Chapter 20 TBB on NUMA Architectures

595

�Putting hwloc and TBB to Work Together
Clearly, the overarching goal is to minimize the number of nonlocal accesses, which

implies conducting the computation on the cores nearest to the memory in which the

data is stored. A quite simple approach is to manually partition the data on the NUMA

nodes and confine the threads that process this data to the same nodes. For educational

purposes, we will first describe this solution and in the next section briefly elaborate on

more advanced alternatives.

We can rely on the hwloc API to accomplish the data placement and processor

affinity tasks, but we want a NUMA-aware TBB implementation of the triad benchmark.

In this case, the TBB scheduler is the one managing the threads. From Chapter 11,

we know that a number of threads are created inside the tbb::task_scheduler_

init function. Additionally, this TBB function creates a default arena with enough

worker slots to allow the threads to participate in executing tasks. In our baseline

implementation of triad (see Figure 20-5), a parallel_for takes care of partitioning the

iteration space into different tasks. All the threads will collaborate on processing these

tasks, irrespectively of the chunk of iterations that each task processes and of the core on

which the thread is running. But we don’t want that on a NUMA platform, right?

Our simplest alternative to the baseline triad implementation will enhance the

implementation by performing the following three steps:

•	 It will partition and allocate the three vectors, A, B, and C, of the triad

algorithm on the different NUMA nodes. As the simplest solution,

a static block partitioning will do for now. On yuca, this means that

four big chunks of A, B, and C will be allocated on each one of the

four nodes.

•	 It will create a master thread on each NUMA node. Each

master thread will create its own task arena and its own local

task_scheduler_observer. Then, each master thread executes its

own tbb::parallel_for algorithm to process the fraction of A, B,

and C that correspond to this NUMA node.

•	 It will automatically pin the threads that join each arena to the

corresponding NUMA node. The local task_scheduler_observer

that we create for each arena will take care of this.

Chapter 20 TBB on NUMA Architectures

596

Let’s see the implementation of each one of the described bullet points. For the main

function we slightly modify the one we presented for the hwloc example of Figure 20-6.

In Figure 20-10, we list the new lines required for this new example, using ellipsis (…) on

the lines that do not change.

Figure 20-10.  Main function of the NUMA-conscious implementation of triad

The program argument, thds_per_node, allows us to play with different number

of threads per NUMA node. As in the example of Figure 20-6, num_nodes is the number

of NUMA nodes that we obtain using the hwloc API. Consequently, we pass to the TBB

scheduler constructor (thds_per_node-1)*(num_nodes) instead of thds_per_node*num_

nodes because we will explicitly create the additional num_nodes master threads inside

alloc_thr_per_node.

The function alloc_mem_per_node is essentially the same as the one listed in

Figure 20-7, but now it is called with a different size argument: doubles_per_node =

vsize*3/num_nodes, where vsize is the size of the three vectors, so the total amount of

doubles is multiplied by 3, but divided by the number of nodes to implement the block

partitioning. For the sake of cleanness, we assume that vsize is a multiple of num_nodes.

At the completion of alloc_mem_per_node, data[i] points to the data allocated on the

ith NUMA node.

Chapter 20 TBB on NUMA Architectures

597

Figure 20-11.  Function that creates a thread per node to compute the triad
computation on each NUMA node

There are other differences in the adapted version of the alloc_thr_per_node

function as we see in Figure 20-11. It now receives a handle to the data, the size of the

local vectors that will be traversed per node, lsize, and the number of threads per node

set by the user, thds_per_node.

Chapter 20 TBB on NUMA Architectures

598

Note that in the code snippet presented in Figure 20-11, inside the i-loop that

traverses the num_nodes, there are three nested lambda expressions: (1) for the thread

object; (2) for task_arena::execute member function; and (3) for the parallel_for

algorithm. In the outer one, we first pin the thread to the corresponding NUMA node, i.

The second step is to initialize the pointers to arrays A, B, and C that were allocated

in the data[i] array. In Figure 20-10, we call alloc_thr_per_node using as the third

argument vsize/num_nodes because on each node we traverse just one chunk of the

block distribution of the three arrays. Hence, the function’s argument lsize = vsize/

num_nodes, which is used in the loop that initializes arrays A and B and as the argument

to the parallel_for that computes C.

Next, we initialize a per NUMA node arena, numa_arena, that is later passed as

argument to a task_scheduler_observer object, p, and used to invoke a parallel_for

confined to this arena (using numa_arena.execute). Here lies the key of our NUMA-

aware implementation of triad.

The parallel_for will create tasks that traverse chunks of the local partition of

the three vectors. These tasks will be executed by threads running on the cores of the

same NUMA node. But up to now, we just have thds_per_node*num_nodes threads,

out of which num_nodes have been explicitly spawned as master threads and pinned

to a different NUMA node, but the rest are still free to run everywhere. The threads

that are available in the global thread pool will each join one of the num_nodes arenas.

Conveniently, each numa_arena has been initialized with thds_per_node slots, one

already occupied by a master thread and the rest available for worker threads. Our

goal now is to pin the first thds_per_node-1 threads that enter each numa_arena to the

corresponding NUMA node. To that end, we create a PinningObserver class (deriving

from task_scheduler_observer) and construct an object, p, passing four arguments

to the constructor: PinningObserver p{numa_arena, topo, i, thds_per_node}.

Remember that here, i is the id of the NUMA node for the master thread i.

In Figure 20-12, we see the implementation of the PinningObserver class.

Chapter 20 TBB on NUMA Architectures

599

The task_scheduler_observer class was introduced in Chapter 13. It has a preview

feature that allows us to have an observer per task arena – also called a local task_

scheduler_observer. This kind of observer is initialized with a reference to the arena, as

we do in the initializer list of the PinningObserver constructor using task_scheduler_

observer{arena}. This results in the execution of the member function on_scheduler_

entry for each thread that enters this particular arena. The constructor of the class also

sets the number of NUMA nodes, num_nodes, and the numa_node object that will give

us access to the numa_node->cpuset bitmask. The constructor finally calls the member

function observe(true) to start tracking whether or not a task enters the arena.

Figure 20-12.  Implementation of the local task_scheduler_observer for triad

Chapter 20 TBB on NUMA Architectures

600

The function on_scheduler_entry keeps track of the number of threads that have

been already pinned to the numa_node in the atomic variable thds_per_node. This

variable is set in the initializer list of the constructor to the number of threads per node

that the user pass as the first argument of the program. This variable is decremented

for each thread entering the arena, which will get pinned to the node only if the value

is greater than 0. Since each numa_arena was initialized with thds_per_node slots, and

the already pinned master thread that creates the arena occupies one of the slots, the

thds_per_node - 1 threads that join the arena first will get pinned to the node and work

on tasks generated by the parallel_for that this arena is executing.

Note T he implementation of our PinningObserver class is not totally correct. One
thread may leave the arena and reenter the same arena, getting pinned twice, but
decrementing the number thds_per_node. A more correct implementation would
check that the thread entering the arena is a new one that has not been pinned to
this arena already. To avoid complicating the example, we leave this correction as
an exercise to the reader.

We can now assess on yuca and aloe the bandwidth (in Mbytes per second) of

this NUMA optimized version of the triad algorithm. To compare with the baseline

implementation in Figure 20-5, we set the vector sizes to 109 doubles and set the number

of threads per NUMA node so that we end up with 32 threads total. For example, in yuca

we call the executables as follows:

baseline: ./fig_20_05 32 1000000000

NUMA conscious: ./fig_20_10 8 1000000000

The results presented in the table of Figure 20-13 are the average of ten runs in which

yuca and aloe had a single user that was using the platform exclusively to conduct the

experiments.

Figure 20-13.  Speedup due to the NUMA-conscious implementation

Chapter 20 TBB on NUMA Architectures

601

This is 74% faster execution on yuca, and 54% on aloe! Would you ignore this extra

amount of performance that we can squeeze out of a NUMA architecture with some

extra implementation work?

To further investigate this improvement, we can take advantage of the likwid-

perfctr application that is able to read out hardware performance counters. Invoking

likwid-perctr -a, we get a list of groups of events that can be specified using only the

group name. In aloe, likwid offers a NUMA group, which collects information about local

and remote memory accesses. To measure the events in this group on our baseline and

NUMA-conscious implementations, we can invoke these two commands:

likwid-perfctr -g NUMA ./fig_20_05 32 1000000000

likwid-perfctr -g NUMA ./fig_20_10 16 1000000000

This will report plenty of information about the value of some performance counters

on all the cores. Among the counted events are

OFFCORE_RESPONSE_0_LOCAL_DRAM

OFFCORE_RESPONSE_1_REMOTE_DRAM

which give us approximate information (because is based on event-based sampling)

of the amount of data accessed in local memory and remote memory. For the baseline

triad implementation, the ratio of local data over remote data is only 3.25, but it raises up

to 25.5 in the NUMA optimized triad-numa version. This confirms that, for this memory

bound application, the effort we made to exploit NUMA locality pays off in terms of both

the amount of local accesses and consequently the execution bandwidth.

�More Advanced Alternatives
For the regular triad code, the simple solution we have implemented is okay, but

TBB’s work-stealing scheduler is confined to balancing the load on each NUMA node

independently. On yuca, there will be four parallel_for algorithms running, each on

a NUMA node with eight threads served by eight physical cores. The downside of our

simple approach is that the four arenas have been configured with eight slots, which is

okay for the steady-state part of the execution, but limits TBB’s flexibility if the load is not

perfectly balanced between the NUMA nodes.

Chapter 20 TBB on NUMA Architectures

602

For example, if one of the parallel_for algorithms ends first, eight threads become

idle. They come back to the global thread pool but cannot join any of the other three

busy arenas because all the slots are already filled. A simple solution for this involves

increasing the number of slots of the arenas, while keeping the number of pinned

threads to thds_per_node. In such a case, if a parallel_for finishes first, the eight

threads returning to the global pool can be redistributed in the free slots of the other

three arenas. Note that these threads are still pinned to the original node, although they

will work now in a different arena of a different node and therefore memory accesses will

be remote.

We could pin the threads entering the extended arena to the corresponding NUMA

node when they occupy its free slots (even if they were pinned to a different NUMA

node before). Now these helping threads will also access local memory. However,

the node can become oversubscribed, which usually hurts performance (if not, you

should oversubscribe every NUMA node from the very beginning). For each particular

application and architecture, thorough experimentation should be carried out to decide

whether it is advantageous to migrate the thread to the NUMA node or to remotely

access the data from the original node. For the simple and regular triad algorithm,

none of these discussed approaches significantly improves the performance, but in

more complex and irregular applications they might. Not only do remote access have

overhead, but also thread migration from one arena to another, as well as pinning

the thread once again, represent an overhead that has to be amortized by better load

balancing of the work.

Another battle that we can choose to fight concerns the data partitioning. We used

a basic block distribution of the three arrays in our simple triad implementation, but we

certainly know of better data distributions for more irregular applications. For example,

instead of partitioning upfront the iteration space among the NUMA nodes, we can

follow a guided scheduling approach. Each master thread leading the computation on

each NUMA node can get larger chunks of the iteration space at the beginning of the

computation and smaller as we approach the end of the space. The caveat here is to

guarantee that chunks have enough granularity to be repartitioned again among the

cores of each NUMA node.

A more elaborate alternative consists in generalizing the work-stealing framework in

a hierarchical way. In order to allow work stealing both between arenas and within each

arena, a hierarchy of arenas can be implemented. A similar idea was implemented for

Cilk by Chen and Guo (see the “For More Information” section) who proposed a triple-

level work-stealing scheduler that yielded up to 54% of performance improvement over

Chapter 20 TBB on NUMA Architectures

603

more traditional work-stealing alternatives for memory-bound applications. Note that

memory-bound applications will benefit more from NUMA locality exploitation than

CPU-bound ones. For the latter, memory access overhead is usually hidden by CPU

intensive computations. Actually, for CPU-bound applications, adding extra complexity

to the scheduler in order to exploit NUMA locality can result in an extra overhead that

ends up not paying off.

�Summary
In this chapter, we explored some alternatives to exploit NUMA locality combining

TBB and third-party libraries that help in controlling the data placement and processor

affinity. We began by studying the enemy that we want to defeat: the NUMA architecture.

To that end, we introduced some ally libraries, hwloc and likwid. With them we can not

only query the low-level details of the NUMA topology but also control data placement

and processor affinity. We illustrated the use of some of the hwloc functions to allocate

per-node memory, create one thread per NUMA node and pin threads to the cores of the

node. With this template, we re-implemented a baseline version of the triad algorithm,

now paying attention to NUMA locality. The simplest solution consisted of distributing

the three triad arrays in blocks that are allocated and traversed in the different NUMA

nodes. The library hwloc was key to allocate and pin the threads, and the TBB task_

arena and task_scheduler_observer classes were instrumental in identifying the

threads entering a particular NUMA node. This initial solution is good enough for

a code as regular as the triad benchmark, which reports 74% and 54% performance

improvement (with respect to the baseline triad implementation) on two different

NUMA platforms, respectively. For more irregular and complex applications, more

advanced alternatives are sketched in the last section of the chapter.

�For More Information
Here are some additional reading materials we recommend related to this chapter:

•	 Christoph Lameter, NUMA (Non-Uniform Memory Access): An

Overview, ACMqueue, Volume 11, issue 7, 2013.

•	 Ulrich Drepper, What Every Programmer Should Know About

Memory, www.akkadia.org/drepper/cpumemory.pdf, 2017.

Chapter 20 TBB on NUMA Architectures

http://www.akkadia.org/drepper/cpumemory.pdf

604

•	 Quan Chen, Minyi Guo and Haibing Guan, LAWS: Locality-

Aware Work-Stealing for Multi-socket Multi-core Architectures,

International Conference on Supercomputing, ICS, 2014.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 20 TBB on NUMA Architectures

http://creativecommons.org/licenses/by-nc-nd/4.0/

605
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5

�APPENDIX A

History and Inspiration
In this Appendix, we offer two different complementary perspectives on the history

of TBB: first a look at TBB’s history, and second a look at what preceded and inspired

TBB. We hope you enjoy both, and that they deepen your understanding of why TBB

has been called the most important new addition to parallel programming in the past

decade, and we would not argue with that.

�A Decade of “Hatchling to Soaring”
This first part of the appendix is adapted from a piece that James wrote on the tenth

anniversary of TBB (mid-2016).

If you will be so kind as to indulge me, I will share my own thoughts about TBB. I

have four things in mind to touch on as I ramble about TBB.

�#1 TBB’s Revolution Inside Intel
TBB was our first commercially successful software product to embrace open source,

and with continued leadership TBB has more recently moved to Apache licensing.

We knew we wanted to open source TBB from the start, but we were not ready

when we launched in 2006. Open source projects were new to our small team, and to

Intel. We focused first on creating a strong TBB and launching it as a product in mid-

2006. After launching, we shifted our attention to revising our build system, cleaning up

code (commenting!), and a dozen other things that would help us be inviting to others

who would want to understand and contribute to our source code. We had a goal to be

open source in mid-2007. A new problem arose – TBB became an immediate hit with

customers. We were not secret with our customers about our desire to open source,

and this only intensified their interest in TBB. Our success quickly became a problem

inside Intel as some of our management asked the question “why give away the source

https://doi.org/10.1007/978-1-4842-4398-5

606

code to such a successful product?” Armed with facts and figures from our team, I

boldly presented a multitude of reasons why we should open up. That was a mistake,

and I failed to get the needed permissions before 2006 ended. I licked my wounds, and

we eventually realized we only needed to prove one thing: TBB would have far greater

adoption if we open sourced it than if we did not. After all, developers bet the very future

of their code when they adopt a programming model. Perhaps openness matters more

for programming models than it does for most other software. While we understood

this point, we had failed to articulate to our management that this was all that really

mattered – and that it was all we needed to know to understand that we must open source

TBB. Armed with this perspective, I surprised our senior V.P. who had to approve our

proposal. I surprised her by showing up with only a single piece of paper with a simple

graph on it, which offered a comparison of projected TBB adoption with and without

open sourcing. We predicted that TBB would vanish and be replaced within five years

if we didn’t offer this critical programming model via open source. We predicted great

success if we did open source (we actually far underestimated the success, as it turns

out). Senior Vice President Renee James listened to my 2-minute pitch, looked at me,

and asked “Why didn’t you say this the first time? Of course we should do this.” I could

have pointed out it was exactly slide 7 of the original way-too-long 20 slide presentation

that I had presented 2 months earlier. I settled on “Thank you” and the rest is history.

We choose the most popular open source licensing at the time: GPL v2 with classpath

exception (important for C++ template libraries). Ten years later, we moved TBB to the

Apache license. We have received a great deal of feedback from the community of users

and contributors that this is the right license to use for TBB in our times.

�#2 TBB’s First Revolution of Parallelism
The first revolution of parallelism offered by TBB was to fully embrace the task stealing

abstraction while giving full C++ support with full composability.

OpenMP is incredibly important, but it is not composable. This is a mistake of

epic proportions with long reaching ramifications, and it cannot be changed because

OpenMP is so important and committed to compatibility. I am complicit in the OpenMP

mistake along with everyone else who helped pull it together, review it, and promote it

starting in 1997. We overlooked the importance that nested parallelism would have as

the amount of hardware parallelism grew. It simply was not a concern in 1997.

Appendix A History and Inspiration

607

Being composable is the most amazing feature of TBB. I cannot overstate the

importance of never worrying about oversubscription, nested parallelism, and so on. TBB

is gradually revolutionizing certain communities of developers that demand composability

for their applications. The Intel Math Kernel Library (MKL), which has long been based on

OpenMP, offers a version built on top of TBB for exactly this reason. And the much newer,

and open source, Intel Data Analytics Acceleration Library (DAAL) always uses TBB and

the TBB-powered MKL. In fact, TBB is finding use in some versions of Python too.

Of course, the task stealing scheduler at the heart of TBB is the real magic. While

HPC customers worry about squeezing out the ultimate performance while running an

application on dedicated cores, TBB tackles a problem that HPC users never worry about:

how can you make parallelism work well when you share the cores that you run upon?

Imagine running on eight cores, but a virus checker happens to run on one core during

your application’s run. That would never happen on a supercomputer, but it happens

all the time on workstations and laptops! Without the dynamic nature of the TBB task

stealing scheduler, such a program would simply be delayed by the full time that the virus

checker stole… because it would effective delay every thread in the application. When

using TBB on eight cores, an interruption, of duration TIME on one core, may delay the

application by as little as TIME/8. This real world flexibility matters a lot!

Finally, TBB is a C++ template library that fully embraces bringing parallelism to

C++. The dedication of TBB to C++ has helped inspire changes to the C++ standard.

Perhaps our biggest dream of all is that TBB will one day only be the scheduler and the

algorithms that use it. The many other things in TBB to help parallelize parts of STL,

create truly portable locks and atomics, address short comings in memory allocations,

and other features to bring parallelism to C++ can and should be part of the standard

language eventually. Maybe even more of TBB? Time will tell.

�#3 TBB’s Second Revolution of Parallelism
The second revolution of parallelism offered by TBB was to offer superior alternatives

from bulk synchronous programming.

As much as we can praise the task stealing scheduler of TBB, the algorithms most

often used in applications are organized with a lot of synchronization happening at

runtime. This is a sign of the times in terms of how parallel programming has been done

successfully for years. However, as the amount of parallelism has grown, this has become

Appendix A History and Inspiration

608

a great obstacle in the pursuit of scaling. A better approach is to express the flow of data

and require a much more minimal level of synchronization. The TBB flow graph addition

to TBB, is a leader in this critical new revolution in parallel programming. This type of

thinking is required for any parallel programming model to support the future well.

�#4 TBB’s Birds
On a very different note, I do get asked about the birds we’ve used. Of course, my original

TBB book (2007) was an O’Reilly Nutshell book with its iconic design that always features

an animal. O’Reilly made it clear to me, as the author, that they would pick the animal (a

mysterious process). Undaunted, I did convey some ideas I had for animals that made

sense to me. O’Reilly chose a beautifully drawn canary for the cover, a beautiful bird that

was not an animal I had even considered. Everyone can have opinions, but soon our cry

around Intel was “embrace the bird.” We can thank Belinda Adkisson for that reframe,

and for the popular non-infringing “Chirp” bird that we used on t-shirts, stickers, and

web sites. A cheery little bird remains our mascot for TBB. We have “embraced the bird.”

Embrace the Bird!

The colophon in the original book reads:

The animal on the cover of Intel Threading Building Blocks is a

wild canary (Serinus canaria), a small songbird in the finch family.

It is also known as an island canary or Atlantic canary because it is

native to islands off western Europe, particularly Madeira, Azores,

Appendix A History and Inspiration

609

and the Canary Islands, for which the bird was named. The name

comes from the Latin canaria (“of the dogs”), first used by Pliny

the Elder in his Naturalis Historia because of the large dogs

roaming the Islands. Canaries live in orchards, farmlands, and

copses, and make their nests in bushes and trees.

Although the wild canary is darker and slightly larger than the

domestic canary, it is otherwise similar in appearance. Its breast

is yellow-green and its back is streaked with brown. Like many

species, the male is more vibrantly colored than the female. The

male also has a sweeter song. When the Spanish conquered the

Islands in the 15th century, they domesticated the birds and

began to breed them. By the 16th century, canaries were prized as

pets throughout Europe. (Samuel Pepys writes about his “canary

birds” in a 1661 diary entry.) Five hundred years of selective

breeding have produced many canary varieties, including the

bright yellow type common today. The small birds are popular

pets because they can live up to 10 years, require little special

attention, and are considered to have the most melodious song of

all birds.

As late as the 1980s, coal miners used canaries as a warning system,

with two birds in each coal pit. According to the U.S. Bureau of

Mines, canaries were preferred to mice because they are more

sensitive to fumes and more visibly show distress in the presence

of gas. A canary in a mine would chirp all day, but if the carbon

monoxide level rose, it would stop singing and sway on its perch

before falling dead – warning the miners to get out fast.

I wrote the TBB book in the Spring of 2007 with a great deal of help from the TBB

team. I would very much like to see us do a new TBB book in the upcoming years. I

currently do not personally have the time to do it this year, but if enough people wanted

to help… well, I think we could figure something out. I’m open to suggestions. Thank

you, Michael and Rafael, for jumping in, first to do a tutorial on TBB together in 2017, and

then to collaborate on this book starting in 2018!

Appendix A History and Inspiration

610

James went on to welcome people to the tenth anniversary special edition of Intel’s The

Parallel Universe magazine. It was the published just as James left Intel to become semi-

retired (busier than ever). The special issue is available free online at https://software.

intel.com/parallel-universe-magazine. You can read more about the history of TBB

in the article “The Genesis and Evolution of Intel Threading Building Blocks” as related by

its original architect in the same issue – including his two “regrets” in the initial TBB 1.0

design. Many interesting articles about TBB have been published in the magazine over the

years.

Ten years of TBB – special issue of Intel’s The Parallel Universe magazine

Appendix A History and Inspiration

https://software.intel.com/parallel-universe-magazine
https://software.intel.com/parallel-universe-magazine
https://software.intel.com/parallel-universe-magazine

611

�Inspiration for TBB
This second part of this appendix is adapted from the historical notes that James produced

for the first TBB book (2007) when TBB was only 1 year old. This is a look at what

preceded and inspired TBB.

James originally titled this chapter of the original TBB book the “Epilogue” and

referred to it as a bibliography. The editor at O’Reilly, Andy Oram – who James describes

as the best editor on the planet – tempered James’ enthusiasm for a technical book having

a bibliography or an epilogue and renamed this to be “Chapter 12” in the book and titled

it “History and Related Projects.”

Figure A-1.  Key influences on the design of Threading Building Blocks

Nothing that follows is required reading to learn how to use Threading Building

Blocks. Instead, the following looks at some of the inspirations that shaped our thoughts

at Intel and led to the design and implementation of Threading Building Blocks. A list of

papers, articles, and books at the end of the chapter forms a bibliography to give some

suggested further reading.

Appendix A History and Inspiration

612

Note T he chapter originally contained a brief explanation of lambda functions,
whose inclusion in C++ is advocated by Arch Robison, lead developer for
Threading Building Blocks. We removed this because the Preface to this book
explains lambdas because the C++ standard did add lambdas to the C++ standard
a few years later in C++11. This simplified TBB syntax, and hence teaching TBB,
exactly as Arch had hoped to do. Of course, it made the original TBB book seem a
bit old because all our examples did not use C++11 since we published in 2007.

The information in this bibliography is likely to appeal most to those who want to

contribute to Threading Building Blocks. There is much to be pondered in the design of

Threading Building Blocks, and this chapter aims to clarify where to start.

Threading Building Blocks draws from a great many sources. Figure A-1 highlights

the key influences of the past decade or so. The influences were in the form of inspiration

and, other than McRT-Malloc, they have no actual source code connection. Influences

prior to 1988 are left as an exercise for other historians.

Threading Building Blocks is unique because it rests on a few key decisions:

•	 Support general C++ programs with existing compilers

•	 Relaxed sequential execution

•	 Use recursive parallelism and generic algorithms

•	 Use task stealing

�Relaxed Sequential Execution Model
TBB implements a relaxed sequential execution model. The word relaxed refers

to the notion that serial programs are actually overly constrained by implicit serial

dependencies (such as the program counter) and that the concurrent library introduces

as much parallelism as possible without removing the ability to run sequentially.

We can think of this model as being as relaxed as possible and still being able to run

correctly in a single thread. That is the goal!

Being able to run a program sequentially gives us a tremendous advantage when

debugging our applications. It lets us debug common programming errors before

dealing with any concurrency issues that need to be debugged. Our advice is simple:

start with debugging in a sequential mode, and then run the program in parallel to

Appendix A History and Inspiration

613

debug concurrency issues. Programs designed to require concurrency would not give

us this option. Furthermore, programs designed to require concurrency will have

performance pitfalls when the number of required threads exceeds the number of

hardware threads because time-slicing artifacts can hit hard.

�Influential Libraries
1988, Chare Kernel, University of Illinois at Urbana-Champaign

In 1988, it was simply a C library. The key notion was to break a

program into small bits of work, called chares, and the scheduler

would take care of packing these efficiently (in both space and

time) onto processors. Mapping tasks onto threads instead of

programming threads directly is an important concept. The Chare

Kernel was later extended with some features for marshaling to

address distributed memory machines, becoming Charm++.

1993, Standard Template Library (STL) for C++, Hewlett-Packard

STL was presented in November 1993 to the ANSI/ISO C++

committee and HP made it freely available in 1994. It was adopted

into the C++ standard. Arch Robison related: “I once heard

Stepanov give a great talk on generic programming, where he went

through how to write a really generic greatest-common-factor

algorithm. [The paper at is similar to that talk, but with more

mathematical emphasis.] In its full glory, generic programming is

not just parametric types, but programming with concepts.” Works

by Stepanov on STL and generic programming are listed later in

this chapter. Note: Alexander Stepanov kindly wrote the foreword

for the original book which included praise for the embracing of

generic programming in TBB’s design.

1999, Java Specification Request #166 (JSR-166), Doug Lea

It was actually not standardized until later, but 1999 was the year

Lea first introduced it. FJTask was an attempt to put Cilk-style

parallelism into the stock Java library. It was proposed for JSR-166,

but it did not make it into that standard.

Appendix A History and Inspiration

614

2001, Standard Template Adaptive Parallel Library (STAPL), Texas A&M

STAPL introduced the notion of recursive parallel ranges

(“pRanges”) and the concept of using these ranges instead of

iterators to bind parallel generic algorithms to parallel containers.

STL lacks a recursive range. STAPL is more complex than TBB

because it encompasses distributed memory architectures typical

of High-Performance Computing (HPC). Furthermore, STAPL

supports the specification of arbitrary execution order for parallel

task graphs. This allows the use of multiple scheduling policies to

optimize execution time.

2004, ECMA CLI parallel profile, Intel

This ECMA spec for the .NET virtual machine has classes for

parallel iteration, designed by Arch Robison.

2006, McRT-Malloc, Intel Research

A scalable transactional memory allocator, McRT forms

the basis of the Scalable Memory Allocator supplied with

Threading Building Blocks. Sections 3 and 3.1 of a 2006 paper by

Hudson, Saha, Adl-Tabatabai, and Hertzberg (http://doi.acm.

org/10.1145/1133956.1133967) describe roughly what is in the

Scalable Memory Allocator in TBB.

�Influential Languages
1994, Threaded-C, Massachusetts Institute of Technology

The Parallel Continuation Machine (PCM) was the runtime

support for Threaded-C. It was a C-based package that provided

continuation-passing-style threads on Thinking Machines

Corporation’s Connection Machine Model CM-5 Supercomputer

and used work stealing as a general scheduling policy to improve

the load balance and locality of the computation. This language is

not to be confused with the Threaded-C for EARTH from McGill

University and the University of Delaware. PCM was briefly

mentioned on page 2 of the original Cilk manual.

Appendix A History and Inspiration

http://doi.acm.org/10.1145/1133956.1133967
http://doi.acm.org/10.1145/1133956.1133967

615

1995, Cilk, Massachusetts Institute of Technology

The first implementation of Cilk () was a direct descendent of

PCM/Threaded-C. Cilk fixed the difficulty of programming

continuation tasks and came up with methods to tailor task

allocation to caches without knowing the size of the caches with

cache-oblivious algorithms. Cilk is an extension of C that supports

very efficient fork/join parallelism. Its space efficiency is discussed

in http://supertech.csail.mit.edu/papers/cilkjpdc96.

pdf. FFTW (www.fftw.org) is an example of a cache-oblivious

algorithm.

�Influential Pragmas
1997, OpenMP, by a consortium of major computer hardware and software vendors

OpenMP supports multiplatform, shared-memory parallel

programming in C and Fortran, offering a standard set of compiler

directives, library routines, and environment variables. Prior to

OpenMP, many vendors had proprietary compiler directives with

similar intent, but they lacked portability. OpenMP embodies a

fork/join philosophy. See www.openmp.org.

1998, OpenMP Taskqueue, Kuck & Associates (KAI)

Proposed extensions for OpenMP to move beyond loops.

A refinement of this proposal was adopted and added to OpenMP

in 2008 (a year after our book) as of OpenMP 3.0.

�Influences of Generic Programming
Bjarne Stroustrup, creator of C++, originally said there were three fundamental styles

supported by C++ – procedural programming, data abstraction, and object-oriented

programming – but later added that generic programming had become a fourth style.

We can give credit to the Standard Template Library (STL), created by Alexander

Stepanov, for popularizing this style. It fits very well with the principles of C++, which

favors abstraction and efficiency together.

Appendix A History and Inspiration

http://supertech.csail.mit.edu/papers/cilkjpdc96.pdf
http://supertech.csail.mit.edu/papers/cilkjpdc96.pdf
http://www.fftw.org
http://www.openmp.org

616

In STL and Threading Building Blocks, algorithms are separated from containers.

This means that an algorithm takes a recursive range and uses it to access elements

within the container. The specific type of the container itself is unknown to the

algorithm. This clear separation of containers and algorithms is the basic idea of

generic programming. Separation of algorithms from containers means that template

instantiations result in relatively little added code and generally only that which is

actually going to be used.

Threading Building Blocks does embrace the same principles as STL but does it

through the use of recursive ranges, not iterators. Iterators in STL (except for random-

access iterators) are fundamentally sequential, and thus inappropriate for expressing

parallelism.

Note  C++ Extensions for Ranges became a Technical Specification (ISO/IEC TS
21425:2017) and will almost certainly be part of C++20. The reasons for preferring
ranges over iterators include the sequential nature of iterators which caused TBB
to reject them in 2006.

�Considering Caches
Threading Building Blocks is designed with caches in mind and works to limit the

unnecessary movement of tasks and data. When a task has to be passed to a different

processor core for execution, Threading Building Blocks moves the task with the least

likelihood of having data in the cache for the processor core from which the task is

stolen.

It is interesting to note that parallel Quicksort is an example in which caches beat

maximum parallelism. Parallel Mergesort has more parallelism than parallel Quicksort.

But parallel Mergesort is not an in place sort, and thus has twice the cache footprint that

parallel Quicksort does. Hence, Quicksort usually runs faster in practice.

Keep data locality in mind when considering how to structure your program. Avoid

using data regions sporadically when you can design the application to use a single

set of data in focused chunks of time. This happens most naturally if you use data

decomposition, especially at the higher levels in a program.

Appendix A History and Inspiration

617

�Considering Costs of Time Slicing
Time slicing enables there to be more logical threads than physical threads. Each logical

thread is serviced for a time slice – a short period of time defined by the operating system

during which a thread can run before being preempted – by a physical thread. If a thread

runs longer than a time slice, as most do, it relinquishes the physical thread until it gets

another turn. This chapter details the costs incurred by time slicing.

The most obvious cost is the time for context switching between logical threads. Each

context switch requires that the processor save all its registers for the previous logical

thread that it was executing, and load its registers with information for the next logical

thread it runs.

A subtler cost is cache cooling. Processors keep recently accessed data in cache

memory, which is very fast, but also relatively small compared to main memory. When

the processor runs out of cache memory, it has to evict items from cache and put them

back into main memory. Typically, it chooses the least recently used items in the cache.

(The reality of set-associative caches is a bit more complicated, but this is not a cache

primer.)

When a logical thread gets its time slice, as it references a piece of data for the

first time, this data is pulled into cache, taking hundreds of cycles. If it is referenced

frequently enough not to be evicted, each subsequent reference will find it in cache, and

take only a few cycles. Such data is called hot in cache.

Time slicing undoes this because if Thread A finishes its time slice, and subsequently

Thread B runs on the same physical thread, B will tend to evict data that was hot in cache

for A, unless both threads need the data. When Thread A gets its next time slice, it will

need to reload evicted data, at the cost of hundreds of cycles for each cache miss.

Or worse yet, the next time slice for Thread A may be on a different physical thread that

has a different cache altogether.

Another cost is lock preemption. This happens if a thread acquires a lock on a

resource and its time slice runs out before it releases the lock. No matter how short a

time the thread intended to hold the lock, it is now going to hold it for at least as long

as it takes for its next turn at a time slice to come up. Any other threads waiting on the

lock either busy-wait pointlessly or lose the rest of their time slice. The effect is called

convoying because the threads end up “bumper to bumper” waiting for the preempted

thread in front to resume driving.

Appendix A History and Inspiration

618

�Further Reading
Acar, U., G. Blelloch, and R. Blumofe (2000). “The Data Locality of Work Stealing.”

Proceedings of the Twelfth Annual ACM Symposium on Parallel Algorithms and

Architectures, 1-12.

Amdahl, G. M. (1967, April). “Validity of the single-processor approach to achieving

large scale computing capabilities.” AFIP Conference Proceedings, 30. Reston, VA: AFIPS

Press, 483-485.

An, P., A. Jula, et al. (2003). “STAPL: An Adaptive, Generic Parallel C++ Library.”

Workshop on Language and Compilers for Parallel Computing, 2001. Lecture Notes in

Computer Science 2624, 193-208.

Austern, M. H., R. A. Towle, and A. A. Stepanov (1996). “Range partition adaptors: a

mechanism for parallelizing STL.” ACM SIGAPP Applied Computing Review. 4, 1, 5-6.

Blumofe, R. D., and D. Papadopoulos (1998). “Hood: A User-Level Threads Library

for Multiprogrammed Multiprocessors.”

Blumofe, R. D., C. F. Joerg, et al. (1996). “Cilk: An Efficient Multithreaded Runtime

System.” Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, 207-216.

Boehm, H. (2006, June). “An Atomic Operations Library for C++.” C++ standards

committee document N2047.

Butenhof, D. R. (1997). Programming with POSIX Threads. Reading, MA: Addison

Wesley.

Flynn, M. J. (1972, September). “Some Computer Organizations and Their

Effectiveness.” IEEE Transactions on Computers, C-21, 9, 948-960.

Garcia, R., J. Järvi, et al. (2003, October). “A Comparative Study of Language Support

for Generic Programming.” Proceedings of the 2003 ACM SIGPLAN conference on

object-oriented programming, systems, languages, and applications.

Gustafson, J. L. (1988). “Reevaluating Amdahl’s Law.” Communications of the ACM,

31(5), 532-533.

Halbherr, M., Zhou, Y., and C. F. Joerg (1994, March). MIMD-Style Parallel

Programming Based on Continuation-Passing Threads, Computation Structures Group

Memo 355.

Halbherr, M., Y. Zhou, and C. F. Joerg (1994, September). “MIMD-style parallel

programming with continuation-passing threads.” Proceedings of the 2nd International

Workshop on Massive Parallelism: Hardware, Software, and Applications, Capri, Italy.

Hansen, B. (1973). “Concurrent Programming Concepts.” ACM Computing Surveys, 5, 4.

Appendix A History and Inspiration

619

Hoare, C. A. R. (1974). “Monitors: An Operating System Structuring Concept.”

Communications of the ACM, 17, 10, 549-557.

Hudson, R. L., B. Saha, et al. (2006, June). “McRT-Malloc: a scalable transactional

memory allocator.” Proceedings of the 2006 International Symposium on Memory

Management. New York: ACM Press, 74-83.

Intel Threading Building Blocks 1.0 for Windows, Linux, and Mac OS—Intel Software

Network (1996).

“A Formal Specification of Intel Itanium Processor Family Memory Ordering” (2002,

October).

ISO/IEC 14882:1998(E) International Standard (1998). Programming languages –

C++. ISO/IEC, 1998.

ISO/IEC 9899:1999 International Standard (1999). Programming languages – C, ISO/

IEC, 1999.

Järvi, J., and B. Stroustrup (2004, September). Decltype and auto (revision 4). C++

standards committee document N1705=04-0145.

Kapur, D., D. R. Musser, and A.A. Stepanov (1981). “Operators and Algebraic

Structures.” Proceedings of the 1981 Conference on Functional Programming Languages

and Computer Architecture, 59-63.

MacDonald, S., D. Szafron, and J. Schaeffer (2004). “Rethinking the Pipeline as

Object-Oriented States with Transformations.” Ninth International Workshop on High-

Level Parallel Programming Models and Supportive Environments.

Mahmoud, Q. H. (2005, March). “Concurrent Programming with J2SE 5.0.” Sun

Developer Network.

Massingill, B. L., T. G. Mattson, and B. A. Sanders (2005). “Reengineering for

Parallelism: An Entry Point for PLPP (Pattern Language for Parallel Programming)

for Legacy Applications.” Proceedings of the Twelfth Pattern Languages of Programs

Workshop.

Mattson, T. G., B. A. Sanders, and B. L. Massingill (2004). Patterns for Parallel

Programming. Reading, MA: Addison Wesley.

McDowell, C. E., and D. P. Helmbold (1989). “Debugging Concurrent Programs.”

Communications of the ACM, 21, 2.

Meyers, S. (1998). Effective C++, Second Edition. Reading, MA: Addison Wesley, 1998.

Musser, D. R., and A. A. Stepanov (1994). “Algorithm-Oriented Generic Libraries.”

Software—Practice and Experience, 24(7), 623-642.

Appendix A History and Inspiration

620

Musser, D. R., G. J. Derge, and A. Saini, with foreword by Alexander Stepanov (2001).

STL Tutorial and Reference Guide, Second Edition: C++ Programming with the Standard

Template Library, Boston, MA: Addison Wesley, 2001.

Narlikar, G., and G. Blelloch (1999). “Space-Efficient Scheduling of Nested

Parallelism.” ACM Transactions on Programming Languages and Systems, 21, 1, 138-173.

OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005).

Ottosen, T. (2006, September). Range Library Core. C++ standards committee

document N2068.

Plauger, P. J., M. Lee, et al. (2000). C++ Standard Template Library, Prentice Hall.

Rauchwerger, L., F. Arzu, and K. Ouchi (1998, May). “Standard Templates Adaptive

Parallel Library,” Proceedings of the 4th International Workshop on Languages,

Compilers, and Run-Time Systems for Scalable Computers (LCR), Pittsburgh, PA. Also

Lecture Notes in Computer Science, 1511, Springer-Verlag, 1998, 402-410.

Robison, A. D. (2006). “A Proposal to Add Parallel Iteration to the Standard Library.“

Robison, A. (2003, April). “Memory Consistency & .NET.” Dr. Dobb’s Journal.

Samko, V. (2006, February). “A proposal to add lambda functions to the C++

standard.” C++ standards committee document N1958=06-028.

Schmidt, D. C., and I. Pyarali (1998). Strategies for Implementing POSIX Condition

Variables on Win32. Department of Computer Science, Washington University, St. Louis,

MO.

Schmidt, D. C., M. Stal, et al. (2000). Patterns for Concurrent and Networked Objects.

Pattern-Oriented Architecture, 2.

Shah, S., G. Haab, et al. (1999). “Flexible Control Structures for Parallelism in

OpenMP.” Proceedings of the First European Workshop on OpenMP.

Siek, J., D. Gregor, et al. (2005). “Concepts for C++0x.”

Stepanov, A. A., and M. Lee (1995). “The Standard Template Library.” HP

Laboratories Technical Report 95-11(R.1).

Stepanov, A. A. (1999). “Greatest Common Measure: The Last 2500 Years.”

Stroustrup, B. (1994). The Design and Evolution of C++, also known as D&E. Reading,

MA: Addison Wesley.

Stroustrup, B. (2000). The C++ Programming Language. Special Edition. Reading,

MA: Addison Wesley.

Stroustrup, B., and G. Dos Reis (2005, April). “A Concept Design (rev.1).” Technical

Report N1782=05-0042, ISO/IEC SC22/JTC1/WG21.

Appendix A History and Inspiration

621

Stroustrup, B., and G. Dos Reis (2005, October). “Specifying C++ concepts.” Technical

Report N1886=05-0146, ISO/IEC SC22/JTC1/WG21.

Su, E., X. Tian, et al. (2002, September). “Compiler Support of the Workqueuing

Execution Model for Intel SMP Architectures.” Fourth European Workshop on OpenMP,

Rome.

Sutter, H. (2005, January). “The Concurrency Revolution.” Dr. Dobb’s Journal.

Sutter, H. (2005, March). “The Free Lunch is Over: A Fundamental Turn Towards

Concurrency in Software.” Dr. Dobb’s Journal.

Voss, M. (2006, December). “Enable Safe, Scalable Parallelism with Intel Threading

Building Blocks’ Concurrent Containers.”

Voss, M. (2006, October). “Demystify Scalable Parallelism with Intel Threading

Building Blocks’ Generic Parallel Algorithms.”

Willcock, J., J. Järvi, et al. (2006). “Lambda Expressions and Closures for C++.”

N1968-06-0038.

Appendix A History and Inspiration

623
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5

APPENDIX B�

TBB Précis
Our book thus far has been focused on teaching – this Appendix completes the

picture by fully documenting it in a way that could not be done in the flow of teaching.

Throughout the book, we left out some details about interfaces in order to keep the text

more readable and manageable. In particular, some advanced concepts like TGC (Task

Group Contexts) were not introduced until the second half of the book, so there is no

mention of such parameters in the first half of the book.

Therefore, this is where we have placed complete definitions. This appendix is a

series of precise summaries (précis) for each category of TBB interfaces. The plural of

précis is also précis, hence the name we chose for this appendix.

We offer terse but complete definitions of the interfaces intended for use in

applications. Also, when useful, a “Hello, World” illustrative example is included. It is

our hope that the illustrative examples help those readers, who, like the authors, really

want to see a simple example in action in order to more fully grasp the API. The example

code in this appendix illustrates correct usage of the API, with sample output, without

attempting to be awesome parallel programming examples. Keep in mind that code

examples from this book, including this appendix, are available for download from the

threadingbuildingblocks.org web site, so we encourage you to expand the silly little code

examples from this appendix to explore the APIs yourself. The book Index and Table of

Contents provide pointers to more detailed discussions regarding each of these items

where examples to help with real parallel programming will be found.

Often, we emphasize possibly parallel in our terse descriptions, not because we

doubt that TBB will give us great parallel execution and scaling, but because parallelism

is never guaranteed. For instance, when a program runs on a single core machine the

machine cannot give us parallel execution. Or, in a complex pipeline the individual

stages (filters) may or may not run in parallel depending on the overall workload. This

point about parallelism being only possible is subtle but important, and applies to all

composable parallel solutions.Debug and Conditional Coding

https://doi.org/10.1007/978-1-4842-4398-5

624

�Debug and Conditional Coding
To aid in debugging, TBB has macros, an environment variable (TBB_VERSION), and

a function that reveal version and runtime information for conditional coding and

debugging.

Figure B-1.  Précis: Macros

Figure B-2.  Précis: Environment variable

APPENDIX B TBB Précis

625

Figure B-3.  Précis: TBB_runtime_interface_version

Figure B-4.  Précis: Debugging macros

APPENDIX B TBB Précis

626

�Preview Feature Macros
TBB may also include macros to enable “preview features.” From time to time, TBB

release may include experimental features called “preview features” that will generally

be disabled by default. Preview features are included side by side in full releases to

enable feedback from users without committing to preserve the API. We do not cover

preview features in this book – we refer you to the release notes to learn about any

preview features that may be available in a given release of TBB.

�Ranges
A Range can be recursively subdivided into two parts. Subdivision is done by calling one

of the splitting constructors of Range. There are two types of splitting constructors:

	 1.	 Basic splitting constructor: It is recommended that the division

be done in nearly equal parts in this constructor, but it is not

required. Splitting as evenly as possible typically yields the best

parallelism.

	 2.	 Proportional splitting constructor: This constructor is optional

and can be omitted along with the is_splittable_in_proportion

class variable. When using this type of constructor, for the best

results, follow the given proportion with rounding to the nearest

integer if necessary.

Ideally, a range is recursively splittable until the parts represent portions of work

that are more efficient to execute serially, rather than split further. The amount of work

represented by a Range typically depends upon higher-level context, hence a typical type

that models a Range should provide a way to control the degree of splitting. For example,

the template class blocked_range has a grainsize parameter that specifies the biggest

range considered indivisible.

If the set of values has a sense of direction, then by convention, the splitting

constructor should construct the second part of the range, and update its argument to be

the first part of the range. This enables parallel_for, parallel_reduce, and parallel_

scan algorithms, when running sequentially, to work across a range in the increasing

order, typical of an ordinary sequential loop.

APPENDIX B TBB Précis

627

Since a Range declares both splitting and copy constructors, a default constructor for

it will not be automatically generated. Therefore, it is necessary to either explicitly define

a default constructor, or always use arguments to create an instance of a Range.

Figure B-5.  Précis: Requirements on range concept

�Partitioners
A partitioner specifies how a loop template should partition its work among threads.

The default behavior of the loop templates parallel_for, parallel_reduce, and

parallel_scan tries to recursively split a range into enough parts to keep processors

busy, not necessarily splitting as finely as possible. An optional partitioner parameter

enables other behaviors to be specified, as shown in the table in Figure B-6. Unlike other

partitioners, an affinity_partitioner is passed by non-const reference because it is

updated to remember where loop iterations run, hence the absence of a const qualifier.

The template parallel_deterministic_reduce supports simple_partitioner and

static_partitioner only because the other partitioners are, by their very nature,

nondeterministic.

APPENDIX B TBB Précis

628

�Algorithms
Chapter 2 introduces TBB algorithms, and Chapter 16 dives deeper.

parallel_while is not documented in this book, as it has been deprecated in favor

of the newer parallel_do.

Figure B-6.  Précis: Partitioners

APPENDIX B TBB Précis

629

Figure B-7.  Précis: Algorithm: parallel_do

�Algorithm: parallel_do
Applies a function object body over a sequence [first,last). Items may be processed

in parallel. Additional work items can be added if the Body::operator is declared with a

second argument of type parallel_do_feeder. The function terminates when body(x)

returns for all items x that were in the input sequence or added by method parallel_do_

feeder::add. The container form parallel_do(c,body) is equivalent to parallel_do(s

td::begin(c),std::end(c),body).

APPENDIX B TBB Précis

630

Figure B-8.  Précis: Algorithm: parallel_do example

APPENDIX B TBB Précis

631

�Algorithm: parallel_for
The range parameter version provides the most general and efficient form of parallel

iteration. It represents a possibly parallel execution of body over each value in range.

Type Range must model the Range concept (requirements covered after the upcoming

explanation and example code for parallel_for). The first/last/step version

represents a possibly parallel execution of the loop: for (auto i=first; i<last;

i+=step) f(); If step is not provided, it is assumed to be one. The optional partitioner

specifies a partitioning strategy. The partitioner argument specifies a partitioning

strategy, as described in Chapter 12. The task_group_context argument specifies the

task group context to use for cancellation and exception handling.

Figure B-9.  Précis: Algorithm: parallel_do body requirements

APPENDIX B TBB Précis

632

Figure B-10.  Précis: Algorithm: parallel_for

APPENDIX B TBB Précis

633

Figure B-11.  Précis: Algorithm: example of parallel_for with blocked_range

APPENDIX B TBB Précis

634

Figure B-12.  Précis: Algorithm: example of parallel_for with first,last

Figure B-13.  Précis: Algorithm: parallel_for body requirements

APPENDIX B TBB Précis

635

�Algorithm: parallel_for_each
Applies a function object f to each element in a sequence [first,last) or a container c,

possibly in parallel.

Figure B-14.  Précis: Algorithm: parallel_for_each

APPENDIX B TBB Précis

636

�Algorithm: parallel_invoke
Evaluates f1(), f2(), ..., fn() possibly in parallel. The arguments can be function

objects, lambda expressions, or function pointers. Supports 2 or more arguments. The

original TBB was limited to ten parameters, but thanks to variadic templates in C++11,

there is no limit now.

Figure B-15.  Précis: Algorithm: parallel_for_each example

APPENDIX B TBB Précis

637

Figure B-16.  Précis: Algorithm: parallel_invoke

Figure B-17.  Précis: Algorithm: parallel_invoke example

APPENDIX B TBB Précis

638

�Algorithm: parallel_pipeline
The parallel_pipeline function is a strongly typed lambda-friendly interface for

building and running pipelines, possibly in parallel. Because of strong typing and

lambda support, it is recommended instead of the pipeline class. Flow Graph offers a

far more general solution that should be used when that generality is needed.

Figure B-18.  Précis: Algorithm: parallel_pipeline

Figure B-19.  Précis: Algorithm: parallel_pipeline flow_control

APPENDIX B TBB Précis

639

Figure B-20.  Précis: Algorithm: parallel_pipeline filter_t

APPENDIX B TBB Précis

640

Figure B-21.  Précis: Algorithm: parallel_pipeline example

APPENDIX B TBB Précis

641

�Algorithm: parallel_reduce and parallel_
deterministic_reduce
Reductions (possibly in parallel) are supported in a deterministic (slightly slower, but

with predictable and repeatable results which are at least useful while debugging!),

and a nondeterministic version that will generally be slightly faster. Each reduction

type supports template of two forms. A functional form is designed to be easy to use

in conjunction with lambda expressions. An imperative form is designed to minimize

copying of data. The functional form parallel_reduce(range, identity, func,

reduction) performs a parallel reduction by applying func to subranges in range

and reducing the results using binary operator reduction. It returns the result of the

reduction. Parameter func and reduction can be lambda expressions. The imperative

form parallel_reduce(range,body) performs parallel reduction of body over each

value in range. Type Range must model the Range concept (requirements covered

early in this Appendix). The body must model the requirements shown in the table in

Figure B-22.

Figure B-21.  (continued)

APPENDIX B TBB Précis

642

Figure B-22.  Précis: Algorithm: parallel_[deterministic_]reduce

APPENDIX B TBB Précis

643

Figure B-23.  Précis: Algorithm: parallel_reduce example

APPENDIX B TBB Précis

644

Figure B-24.  Précis: Algorithm: parallel_deterministic_reduce example

APPENDIX B TBB Précis

645

�Algorithm: parallel_scan
The parallel_scan template function computes a (possibly parallel) prefix, also known

as parallel scan. This computation is an advanced concept in parallel computing that

is sometimes useful in scenarios that appear to have inherently serial dependences.

A mathematical definition of the parallel prefix is as follows. Let × be an associative

operation with left-identity element id×. The parallel prefix of × over a sequence

z0, z1, ... zn-1 is a sequence y0, y1, y2, ... yn-1 where: y0 = id× × z0 and

yi = yi-1 × zi. Parallel prefix performs this in parallel by reassociating the application

of × and using two passes. It may invoke × up to twice as many times as the serial

prefix algorithm. Even though it does more work, given the right grainsize the parallel

algorithm can outperform the serial one because it distributes the work across multiple

hardware threads. To obtain decent speedup, systems with more than two cores are

recommended. The parallel_scan template function has two forms. The imperative

form parallel_scan(range, body) implements parallel prefix generically. Type Range

must model the Range concept (requirements covered early in this Appendix). The body

must model the requirements in the following table.

Figure B-25.  Précis: Algorithm: parallel_[deterministic_]reduce body
requirements

APPENDIX B TBB Précis

646

Figure B-26.  Précis: Algorithm: parallel_scan

APPENDIX B TBB Précis

647
Figure B-27.  Précis: Algorithm: parallel_scan example

APPENDIX B TBB Précis

648

�Algorithm: parallel_sort
Sorts a sequence or a container, possibly in parallel. The sort is neither stable nor

deterministic – relative ordering of elements with equal keys is not preserved and

not guaranteed to repeat if the same sequence is sorted again. The requirements

on the iterator and sequence are the same as for std::sort. Specifically,

RandomAccessIterator must be a random-access iterator, and its value type

T must model the requirements in the table in Figure B-29. A call parallel_

sort(begin,end,comp) sorts the sequence [begin, end) using the argument comp

to determine relative orderings. If comp(x,y) returns true then x appears before y in

the sorted sequence. A call parallel_sort(begin, end) is equivalent to parallel_

sort(begin,end,std::less<T>). A call parallel_sort(c[,comp]) is equivalent to

parallel_sort(std::begin(c),std::end(c)[,comp]).

Figure B-28.  Précis: Algorithm: parallel_scan body requirements

APPENDIX B TBB Précis

649

Figure B-29.  Précis: Algorithm: parallel_sort

APPENDIX B TBB Précis

650

Figure B-30.  Précis: Algorithm: parallel_sort example

Figure B-31.  Précis: Algorithm: parallel_sort iterator requirements

APPENDIX B TBB Précis

651

�Algorithm: pipeline
A pipeline represents pipelined application of a series of filters to a stream of items,

possibly in parallel. Each filter operates in a particular mode: parallel, serial in-order, or

serial out-of-order. A pipeline contains one or more filters. Alternatives to pipeline are

parallel_pipeline (recommend because it is strongly typed with a lambda-friendly

interface) and Flow Graph (recommended because it is far more general, and should be

used when that generality is needed).

Figure B-32.  Précis: Algorithm: pipeline

APPENDIX B TBB Précis

652

Figure B-33.  Précis: Algorithm: pipeline example

APPENDIX B TBB Précis

653

�Flow Graph
Chapter 3 introduces TBB flow graph, Chapter 17 dives deeper, and Chapters 18 and 19

look at heterogeneous support. Other chapters provide deeper looks at the many

controls and considerations in making highly refined use of TBB.

It is possible to create graphs that are highly scalable, but it is also possible to create

graphs that are completely sequential. There are three types of components used to

implement a graph:

	 1.	 Graph object: The owner of the tasks created on behalf of the flow

graph. Users can wait on the graph if they need to wait for the

completion of all of the tasks related to the flow graph execution.

One can also register external interactions with the graph and run

tasks under the ownership of the flow graph.

	 2.	 Nodes: Invoke user-provided function objects or manage

messages flow to/from other nodes. There are predefined nodes

that buffer, filter, broadcast, or order items as they flow through

the graph.

	 3.	 Edges: The connections between the nodes, managed by calls to

the make_edge and remove_edge functions.

Figure B-33.  (continued)

APPENDIX B TBB Précis

654

�Flow Graph: graph class

Figure B-34.  Précis: Flow Graph: graph class

APPENDIX B TBB Précis

655

�Flow Graph: ports and edges
Flow Graph provides an API to manage connections between the nodes. For nodes that

have more than one input or output port (e.g., join_node), making a connection requires

that we specify a certain port by using special helper functions.

Figure B-35.  Précis: Flow Graph: ports and edges

�Flow Graph: nodes
Functional nodes (Figure B-37) do computations in response to input messages (if any)

and send the result or a signal to their successors. The list of types for Control Flow
nodes is provided in Figure B-38. A special type of control flow node are the Join nodes,

the different join policies available for join_node are described in Figure B-39. Buffering
nodes (Figure B-40) are designed to accumulate input messages and pass them to

successors in a predefined order, depending on the node type. A pictorial presentation of

the node types is given in Figure B-36.

Some nodes create or use messages that are composites of other messages. Multiport

nodes use tuples to manage their ports. These include join_node, multifunction_

node, split_node, indexer_node and composite_node. Multiport nodes that send or

receive tuples are join_node and split_node.

APPENDIX B TBB Précis

656

�tbb::flow::tuple vs. std::tuple

These days (using C++11 or later compilers), using std::tuple is recommended. TBB

introduced tbb::flow::tuple before C++11, and still supports it if needed. However,

if std::tuple is available as part of the STL, then tbb::flow::tuple is automatically

typedefed to std::tuple.

Figure B-36.  Précis: Flow Graph node types (see also Chapters 3, 17, 18, and 19)

APPENDIX B TBB Précis

657

Figure B-36.  (continued)

Figure B-37.  Précis: Functional node types available in the TBB flow graph
interface. These nodes are discussed in Chapter 3, except async_node which is
described in Chapter 18.

APPENDIX B TBB Précis

658

Figure B-37.  (continued)

APPENDIX B TBB Précis

659

Figure B-38.  Précis: Control flow node types available in the TBB flow graph
interface. These nodes are discussed in Chapter 3.

APPENDIX B TBB Précis

660

Figure B-39.  Précis: Join node policies available in the TBB flow graph interface.
These nodes are discussed in Chapter 3.

APPENDIX B TBB Précis

661

Figure B-40.  Précis: Buffering node types available in the TBB flow graph
interface. These nodes are discussed in Chapter 3.

APPENDIX B TBB Précis

662

�Graph Policy (namespace)

We can give guidance for scheduling to functional nodes in our graphs. Lightweight

policies for functional nodes can help reduce the overhead associated with its execution

scheduling. Lightweight policies should only be applied on a per-node basis after careful

evaluation. Having multiple successors using the lightweight policy for a particular node

can significantly reduce the parallelism available in the graph, and hence severely limit

scaling. Cycles in a flow graph consisting only of nodes with lightweight policies may

possibly result in deadlock.

A lightweight policy is used to indicate that the body of the node contains a small

amount of work and should, if possible, be executed without the overhead of scheduling

a task. All flow graph functional nodes, except for source_node, support the lightweight

policy as a possible value of the optional Policy template parameter. To use the

lightweight policy, specify the Policy template parameter of the node to queueing_

lightweight, rejecting_lightweight, or lightweight. For functional nodes that have

a default value for the Policy template parameter, specifying the lightweight policy

results in extending the behavior of the default value of Policy with the behavior defined

by the lightweight policy. For example, if the default value of Policy is queueing,

specifying lightweight as the Policy value is equivalent to specifying queueing_

lightweight. See Chapter 17 for more discussion of using lightweight Policies.

Policy values are listed in Figure B-41. Note there is a policy tbb::flow::reserving

that is not listed because it is a special policy exclusively for join node that has no

application for async, continue, function and multifunction nodes.

Figure B-40.  (continued)

APPENDIX B TBB Précis

663

Figure B-41.  Précis: Flow Graph: policy values

APPENDIX B TBB Précis

664

Figure B-42.  Précis: Flow Graph: member operations on nodes

APPENDIX B TBB Précis

665

Figure B-42.  (continued)

APPENDIX B TBB Précis

666
Figure B-43.  Précis: Flow Graph: example

APPENDIX B TBB Précis

667

�Memory Allocation
Chapter 7 covers TBB memory allocators completely within a single chapter; this section

of this Appendix is a terse review of the supported APIs, and some notes. Memory

allocators supplied by TBB do not depend upon the rest of TBB, and therefore can be

used with any threading model.

Figure B-43.  (continued)

APPENDIX B TBB Précis

668

Figure B-44.  Précis: Memory Allocation: Memory allocator template classes

APPENDIX B TBB Précis

669

Figure B-45.  Précis: Memory Allocation: Memory allocator functions
(C interfaces)

APPENDIX B TBB Précis

670

Figure B-46.  Précis: Memory Allocation: Memory allocator special controls
(C interfaces)

Figure B-47.  Précis: Memory Allocation: Allocator Concept

APPENDIX B TBB Précis

671

Figure B-47.  (continued)

APPENDIX B TBB Précis

672

Figure B-48.  Précis: Memory Allocation: memory_pool and fixed_pool template
classes

APPENDIX B TBB Précis

673

�Containers
Chapter 6 covers TBB highly concurrent container classes completely within a single

chapter; this section of the Appendix is a terse review of the supported APIs, and some

notes. Highly concurrent container classes supplied by TBB do not depend on the rest

of TBB, and therefore can be used with any threading model. Chapter 6 contains usage

examples, so none are shown here.

Typical C++ STL containers do not permit concurrent updating; attempts to modify

them concurrently often result in corrupting the container. STL containers can be

wrapped in a mutex to make them safe for concurrent access, by letting only one thread

operate on the container at a time, but that approach eliminates concurrency, thus

restricting parallel speedup.

Therefore, TBB offers concurrent containers to allow multiple threads to

concurrently access and update items in the container. TBB uses either fine-grained

locking, or lock-free techniques, to provide for concurrency. This does come at a cost,

typically in the form of slightly higher overheads than regular STL containers. Therefore,

we should use highly concurrent containers when the speedup from any additional

concurrency will outweigh slower sequential performance.

Figure B-49.  Précis: Memory Allocation: Memory Pool Concept

APPENDIX B TBB Précis

674

As with most objects in C++, the constructor or destructor of a container object must

not be invoked concurrently with another operation on the same object. Otherwise the

resulting race may cause the operation to be executed on an undefined object.

Figure B-50.  Précis: Containers: Comparison of Map Classes

APPENDIX B TBB Précis

675

Figure B-51.  Précis: Containers: concurrent hash map (hash table) class

APPENDIX B TBB Précis

676

Figure B-51.  (continued)

APPENDIX B TBB Précis

677

Figure B-51.  (continued)

APPENDIX B TBB Précis

678

Figure B-51.  (continued)

APPENDIX B TBB Précis

679

Figure B-51.  (continued)

Figure B-52.  Précis: Containers: Concurrent Unordered Map, Multimap, Set, and
Multiset Classes

APPENDIX B TBB Précis

680

Figure B-52.  (continued)

APPENDIX B TBB Précis

681

Figure B-52.  (continued)

APPENDIX B TBB Précis

682

Figure B-52.  (continued)

APPENDIX B TBB Précis

683

Figure B-52.  (continued)

Figure B-53.  Précis: Containers: Requirements on Container Range Concept

APPENDIX B TBB Précis

684

Figure B-54.  Précis: Containers: Concurrent Queue Class

APPENDIX B TBB Précis

685

Figure B-55.  Précis: Containers: Concurrent Bounded Queue Class

APPENDIX B TBB Précis

686

Figure B-56.  Précis: Containers: Concurrent Priority Queue Class

APPENDIX B TBB Précis

687

Figure B-56.  (continued)

APPENDIX B TBB Précis

688

Figure B-56.  (continued)

APPENDIX B TBB Précis

689

Figure B-57.  Précis: Containers: Concurrent Vector Class

APPENDIX B TBB Précis

690

Figure B-57.  (continued)

APPENDIX B TBB Précis

691

Figure B-57.  (continued)

APPENDIX B TBB Précis

692

Figure B-57.  (continued)

APPENDIX B TBB Précis

693

�Synchronization
Chapter 5 covers TBB synchronization in a single chapter; this section of this Appendix

is a terse review of the supported APIs, and some notes. Thread Local Storage, which

is also covered in Chapter 5, is reviewed after this section. TBB supplies a platform

independent mutual exclusion and atomic operations. These predate support in the C++

standard. With the addition of similar capabilities in the C++ standard, TBB supports

C++11 interfaces (defined in namespace std, not tbb) for condition variables and scoped

locking, with a few differences:

•	 TBB support is available regardless of whether full C++11 language

support is available or not on a given system.

•	 The implementation uses the tbb::tick_count interface instead of

the C++11 <chrono> interface.

•	 The implementation will throw std::runtime_error if C++11

std::system_error is not available.

•	 The implementation omits or approximates features requiring C++11

language support such as constexpr or explicit operators.

•	 The implementation works in conjunction with tbb::mutex wherever

the C++11 specification calls for a std::mutex.

•	 notify_all_at_thread_exit() is not supported.

APPENDIX B TBB Précis

694

Figure B-58.  Précis: Synchronization: comparison of various mutexes

APPENDIX B TBB Précis

695

Figure B-60.  Précis: Synchronization: mutex examples

Figure B-59.  Précis: Synchronization: C++11 mutex support

APPENDIX B TBB Précis

696

Figure B-60.  (continued)

APPENDIX B TBB Précis

697

Figure B-61.  Précis: Synchronization: Mutex Concepts

APPENDIX B TBB Précis

698

Figure B-62.  Précis: Synchronization: atomic<T> class

APPENDIX B TBB Précis

699

�Thread Local Storage (TLS)
Chapter 5 covers TBB thread local storage as part of the broader coverage of

synchronization; this section of the Appendix is a terse review of the supported APIs.

Thread local storage, for our purposes here, refers to having privatized copies of data

on each thread. An important aspect of TBB is that we do not know how many threads

are being used at any given time, so thread local storage is presented in a manner that

automatically matches the number of threads created at runtime by the TBB library – a

number that can vary greatly depending on the platform our program runs upon.

TBB provides two template classes for thread local storage. Both provide a thread

local element per thread. Both lazily create the elements on demand. They differ in their

intended use models:

•	 combinable provides thread local storage for holding per-thread

subcomputations that will later be reduced to a single result.

•	 enumerable_thread_specific provides thread local storage that acts

like an STL container with one element per thread. The container

permits iterating over the elements using the usual STL iteration

idioms.

Template class flatten2d assists a common idiom where an enumerable_thread_

specific represents a container partitioner across threads. This is supplied because it is

very useful when debugging code.

APPENDIX B TBB Précis

700

Figure B-63.  Précis: TLS: combinable example

APPENDIX B TBB Précis

701

Figure B-64.  Précis: TLS: combinable example

APPENDIX B TBB Précis

702

Figure B-64.  (continued)

APPENDIX B TBB Précis

703

Figure B-65.  Précis: TLS: enumerable_thread_specific

APPENDIX B TBB Précis

704

Figure B-65.  (continued)

APPENDIX B TBB Précis

705

Figure B-66.  Précis: TLS: enumerable_thread_specific example

APPENDIX B TBB Précis

706

Figure B-67.  Précis: TLS: flatten2d example

APPENDIX B TBB Précis

707

Figure B-68.  Précis: TLS: flatten2d example

APPENDIX B TBB Précis

708

�Timing
TBB supplies a platform independent, thread-aware, manner to get a high-resolution time

stamp (TBB implementations seek to utilize the highest resolution timing available on any

given platform). This was included in TBB to assist with debugging and tuning activities

that are natural for any programmer to do when adding and tuning parallel code.

Figure B-69.  Précis: Timing: tick_count class

APPENDIX B TBB Précis

709

�Task Groups: Use of the Task Stealing Scheduler
This section (“Task Groups”) is a summary of the supported high-level APIs to the TBB task

scheduler, while the next section (“Task Scheduler”) covers the more numerous low-level

APIs. The high-level APIs let us easily create groups of potentially parallel tasks from functors

or lambda expressions (Preface, Chapters 1-3). Collectively, the TBB task scheduler forms the

basis of all TBB algorithms (Chapters 2 and 16) and TBB flow graph (Chapters 3 and 17–19).

Functor arguments for the various methods in this section should supply at a

minimum, a copy constructor, a destructor, and have an evaluate functor.

Figure B-70.  Précis: Task Groups: [structured_]task_group

APPENDIX B TBB Précis

710

�Task Scheduler: Fine Control of the Task Stealing
Scheduler
This section (“Task Scheduler”) is a summary of the (numerous) supported low-level

APIs to the TBB task scheduler, while the prior section (“Task Groups”) covers the high-

level APIs. The key four concepts in this section are the task scheduler, task arenas, tasks,

and floating-point controls. The low-level interfaces permit more detailed control, such

as control over exception propagation (Chapter 15), priorities (Chapter 4), isolation

(Chapter 12), and affinity (Chapters 13 and 20). Collectively, the TBB task scheduler

forms the basis of all TBB algorithms (Chapters 2 and 16) and TBB flow graph

(Chapters 3 and 17–19).

Figure B-71.  Précis: Task Groups: task_group example

APPENDIX B TBB Précis

711

Figure B-72.  Précis: Task Scheduler: task_scheduler_init class

APPENDIX B TBB Précis

712

Figure B-73.  Précis: Task Scheduler: task_scheduler_init example

APPENDIX B TBB Précis

713

Figure B-74.  Précis: Task Scheduler: task_arena class

APPENDIX B TBB Précis

714

Figure B-74.  (continued)

APPENDIX B TBB Précis

715

Figure B-75.  Précis: Task Scheduler: this_task_arena members

APPENDIX B TBB Précis

716

Figure B-76.  Précis: Task Scheduler: task class

APPENDIX B TBB Précis

717

Figure B-76.  (continued)

APPENDIX B TBB Précis

718

Figure B-76.  (continued)

APPENDIX B TBB Précis

719

Figure B-76.  (continued)

APPENDIX B TBB Précis

720

Figure B-76.  (continued)

APPENDIX B TBB Précis

721

�Floating-Point Settings
For applications that need to control CPU-specific settings for floating-point computations,

there are two ways to propagate desired settings to tasks executed by the TBB task scheduler:

•	 When a task_arena or the task scheduler for a given application

thread is initialized, it captures the current floating-point settings of

the thread.

•	 The class task_group_context has a method to capture the current

floating-point settings.

By default, worker threads use the floating-point settings captured during

initialization of an application thread’s implicit arena or explicit task_arena. These

settings are applied to all parallel computations within the task_arena or started by the

application thread, until that thread terminates its task scheduler instance. If the thread

later re-initializes the task scheduler, new settings are captured.

For finer control over floating point behavior, a thread may capture the current

settings in a task group context. It can be done at context creation if a special flag is

passed to the constructor:

task_group_context ctx(

 task_group_context::isolated,

 task_group_context::default_traits |

 task_group_context::fp_settings);

Figure B-76.  (continued)

APPENDIX B TBB Précis

722

or by a call to the method capture_fp_settings:

task_group_context ctx;

ctx.capture_fp_settings();

The task group context can then be passed to most Intel TBB parallel algorithms

(including tbb::flow::graph) to ensure that all tasks related to this algorithm use

the specified floating-point settings. It is possible to execute parallel algorithms with

different floating-point settings captured to separate contexts, even at the same time.

Floating-point settings captured to a task group context prevail over the settings

captured during task scheduler initialization. Thus, if a context is passed to a parallel

algorithm then floating-point settings captured to the context are used. Otherwise,

if floating-point settings are not captured to the context, or a context is not explicitly

specified, then the settings captured during task scheduler initialization are used.

In a nested call to a parallel algorithm not using a task group context with explicitly

captured floating-point settings, the settings from the outer level are used. If neither

of the outer level contexts captured floating-point settings, then the settings captured

during task scheduler initialization are used.

It is guaranteed that

•	 Floating-point settings captured to a task group context or at the

moment of task scheduler initialization are applied to all tasks

executed by the task scheduler.

•	 An invocation of an Intel TBB parallel algorithm does not visibly

modify the floating-point settings of the calling thread, even if the

algorithm is executed with different settings.

These guarantees only apply in the following conditions:

•	 The user code inside a task either does not change floating-point

settings, or any modifications are reverse by restoring the previous

settings before the end of the task.

•	 Intel TBB task scheduler observers are not used to set or modify

floating-point settings.

Otherwise, the stated guarantees are not valid and the behavior related to floating-

point settings is undefined.

APPENDIX B TBB Précis

723

�Exceptions
Chapter 15 covers exception handling; this section of this Appendix is a terse review

of the exceptions which can be thrown by TBB components, and the subclass of std::

exception called tbb::tbb_exception, which TBB uses to propagate exceptions

between TBB tasks to make exception handling seamless within a program using TBB.

TBB propagates exceptions along logical paths in a tree of tasks. Because these

paths cross between thread stacks, support for moving an exception between stacks is

necessary.

When an exception is thrown out of a task, it is caught inside the Intel TBB runtime

and handled as follows:

	 1.	 If the cancellation group for the task has already been canceled,

the exception is ignored.

	 2.	 Otherwise, the exception is captured and the group is canceled.

	 3.	 The captured exception is rethrown from the root of the

cancellation group after all tasks in the group have completed or

have been successfully canceled.

An exact exception is captured in modern versions of TBB (built with compilers

with C++11 support). When supporting non-C++11 compilers, TBB has backward

compatibility support via tbb::captured_exception to approximate the original

exception, which is no longer relevant and therefore not covered in this book.

Figure B-77.  Précis: Exceptions that can be thrown by TBB

APPENDIX B TBB Précis

724

Figure B-78.  Précis: Exceptions: Exception handling example

APPENDIX B TBB Précis

725

�Threads
TBB supports a portable “thread” API which is nothing more than a wrapper for

whatever native threads a platform supports. This predates the existence of std::thread

in C++, and offers no advantage over std::thread.

Several mentions are made of the evils of oversubscription in this book, and a short

mention in the Preface is made to the virtues of careful oversubscription. This is because

TBB is designed to support tasks for computationally intensive code. It is important

to note that concurrency may be used effectively to hide latency of operations such as

I/O. TBB tasks are a poor place to put I/O, because TBB does not preempt threads that

are stalled for I/O – that is a function already supplied by modern operating systems. For

this reason, TBB did add a portable API for adding additional threads for work which is

not computationally intensive and which would benefit from oversubscription. The TBB

developers were among those who lobbied for the addition of this capability into C++,

which happened in the C++11 standard.

Figure B-79.  Précis: Exceptions: tbb_exception and movable_exception classes

APPENDIX B TBB Précis

726

For a related discussion of controlling the number of threads used by TBB, we

recommend reading Chapter 11.Here are a few notes about TBB’s implementation of

std::thread, for support of legacy TBB applications. We advise the use of the standard

C++11 std::thread in all new code.

Figure B-80.  Précis: Threads: comparison of C++11 and TBB Thread Classes

�Parallel STL
Chapter 4 discusses Parallel STL; this section of this Appendix summarizes Parallel STL.

Since Parallel STL is an emerging part of C++17, implementations are relatively

new and optimized versions are relatively new as we are finishing this book. Intel has

produced an implementation of Parallel STL that is available as a part of Intel Parallel

Studio XE and Intel System Studio, and is included with the binary distributions of TBB.

The Parallel STL available with TBB already includes support for Parallel STL

that includes C++17 as well as features likely to make it into C++2x (specifically the

unsequenced execution policy specified in C++ committee’s Parallelism Technical

Specification (TS) version 2 dated February 2018). Parallel STL offers efficient support

for both parallel and vectorized execution of algorithms. For sequential execution, it

relies on an available implementation of the C++ standard library. As time passes, and

C++2x takes shape, Parallel STL support will be adjusted and expanded as needed.

As we go to publication with this book, Intel has been maintaining source code for

Parallel STL as open source on github (https://github.com/intel/parallelstl), and

APPENDIX B TBB Précis

https://github.com/intel/parallelstl

727

Parallel STL is being openly discussed for possible inclusion in libstdc++ (gnu) and

libc++ (LLVM).

For now, the optimized Parallel STL has us add #include <pstl/execution> to our

code and then add a subset of the following set of lines, depending on the type of STL

algorithm we intend to use:

•	 #include <pstl/algorithm>

•	 #include <pstl/numeric>

•	 #include <pstl/memory>

Figure B-81.  Précis: Parallel STL: simplistic code snippet

Unsequenced (“unseq” and “par_unseq”) is a strange beast: An unsequenced execution

policy means that function calls are completely unsequenced with respect to each other –

the key implication being that they can be interleaved on a single thread of execution. In

all other situations in C++, the standard requires that they are indeterminately

sequenced (cannot interleave on a single thread of execution). Because of that, code

should not perform any other vectorization-unsafe operations. In general, any action in

one invocation which sets up a synchronization need with a different invocation would

be vectorization-unsafe, including memory alloc/free and mutex acquisition.

APPENDIX B TBB Précis

728

Figure B-82.  Précis: Parallel STL: execution policies

APPENDIX B TBB Précis

729
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5

�Glossary

Abstraction: In the case of TBB, abstraction serves to separate the work into work

appropriate for a programmer and work best left to a runtime. The goal of such

an abstraction is to deliver scalable high performance on a variety of multicore

and many-core systems, and even heterogeneous platforms, without requiring

rewriting of the code. This careful division of responsibilities leaves the programmer

to expose opportunities for parallelism, and the runtime responsible for mapping

the opportunities to the hardware. Code written to the abstraction will be free of

parameterization for cache sizes, number of cores, and even consistency of performance

from processing unit to processing unit.

Affinity: The specification of methods to associate a particular software thread to

a particular hardware thread usually with the objective of getting better or more

predictable performance. Affinity specifications include the concept of being maximally

spread apart to reduce contention(scatter), or to pack tightly (compact) to minimize

distances for communication. OpenMP supports a rich set of affinity controls at various

levels from abstract to full manual control. Fortran 2008 does not specify controls, but

Intel reuses the OpenMP controls for “do concurrent.” Threading Building Blocks (TBB)

provides an abstract loop-to-loop affinity biasing capability.

Algorithm is a term that TBB has used in association with general, reusable solution to

a common parallel programming problems. TBB, and this book, therefore uses the term

‘parallel algorithm’ when ‘parallel pattern’ would also be an appropriate description.

Amdahl’s Law: Speedup is limited by the nonparallelizable serial portion of the work.

A program where two thirds of the program can be run in parallel and one third of the

original nonparallel program cannot be sped up by parallelism will find that speedup

can only approach 3× and never exceed it assuming the same work is done. If scaling

the problem size places more demands on the parallel portions of the program, then

Amdahl’s Law is not as bad as it may seem. See Gustafson’s law.

https://doi.org/10.1007/978-1-4842-4398-5

730

Atom is touted as a hackable text editor for the twenty-first century, and it is open

source. Rafa says “I also love emacs, but now Atom is winning this space on my Mac.”

Compare to the vi and emacs editors.

Atomic operation is an operation that is guaranteed to appear as if it occurred

indivisibly without interference from other threads. For example, a processor might

provide a memory increment operation. This operation needs to read a value from

memory, increment it, and write it back to memory. An atomic increment guarantees

that the final memory value is the same as would have occurred if no other operations on

that memory location were allowed to happen between the read and the write.

Barrier: When a computation is broken into phases, it is often necessary to ensure that

all threads complete all the work in one phase before any thread moves onto another

phase. A barrier is a form of synchronization that ensures this: threads arriving at a

barrier wait there until the last thread arrives, then all threads continue. A barrier can be

implemented using atomic operations. For example, all threads might try to increment

a shared variable, then block if the value of that variable does not equal the number of

threads that need to synchronize at the barrier. The last thread to arrive can then reset

the barrier to zero and release all the blocked threads.

Block can be used in two senses: (1) a state in which a thread is unable to proceed

while it waits for some synchronization event and (2) a region of memory. The second

meaning is also used in the sense of dividing a loop into a set of parallel tasks of a

suitable granularity.

Cache is a part of memory system that stores copies of data temporarily in a fast memory

so that future uses for that data can be handled more quickly than if the request had to

be fetched again from a more distant storage. Caches are generally automatic and are

designed to enhance programs with temporal locality and/or spatial locality. Caching

systems in modern computers are usually multileveled.

Cache friendly is a characteristic of an application in which performance increases as

problem size increases but then levels off as the bandwidth limit is reached.

Cache lines are the units in which data are retrieved and held by a cache, which in

order to exploit spatial locality are generally larger than a word. The general trend is for

increasing cache line sizes, which are generally large enough to hold at least two double-

precision floating-point numbers, but unlikely to hold more than eight on any current

design. Larger cache lines allow for more efficient bulk transfers from main memory but

worsen certain issues including false sharing, which generally degrades performance.

GLOSSARY

731

Cache oblivious algorithm is any algorithm which performs well, without modification,

on multiple machines memory organization such as different levels of cache having

different sizes. Since such algorithms are carefully designed to exhibit compact memory

reuse, it seems like it would have made more sense to call such algorithms cache agnostic.

The term oblivious is a reference to the fact that such algorithms are not aware of the

parameters of the memory subsystem, such as the cache sizes or relative speeds. This is in

contrast with earlier efforts to carefully block algorithms for specific cache hardware.

Cache unfriendly is a characteristic of an application in which the memory footprint of

the workloads needs to be optimal. In this case, we see that performance stays constant

or increases as problem size reaches the optimal size and then performance decreases as

problem size increases. In these workloads, there is a definite “sweet spot.”

Clusters are a set of computers with distributed memory communicating over a high-

speed interconnect. The individual computers are often called nodes. TBB is used at the

node level within a cluster, although multiple nodes are commonly programmed with

TBB and then connected (usually with MPI).

Communication: Any exchange of data or synchronization between software tasks or

threads. Understanding that communication costs are often a limiting factor in scaling is

a critical concept for parallel programming.

Composability: The ability to use two components in concert with each other

without causing failure or unreasonable conflict (ideally no conflict). Limitations on

composability, if they exist, are best when completely diagnosed at build time instead

of requiring any testing. Composability problems that manifest only at runtime are

the biggest problem with non-composable systems. Can refer to system features,

programming models, or software components.

Concurrent means that things are logically happening simultaneously. Two tasks that

are both logically active at some point in time are considered to be concurrent. This is in

contrast with parallel.

Core: A separate subprocessor on a multicore processor. A core should be able to

support (at least one) separate and divergent flow of control from other cores on the

same processor.

Data parallelism is an approach to parallelism that attempts to be oriented around

data rather than tasks. However, in reality, successful strategies in parallel algorithm

development tend to focus on exploiting the parallelism in data, because data

Glossary

732

decomposition (generating tasks for different units of data) scales, but functional

decomposition (generation of heterogeneous tasks for different functions) does not. See

Amdahl’s Law and Gustafson-Barsis’ law.

Deadlock is a programming error. Deadlock occurs when at least two tasks wait for each

other and each will not resume until the other task proceeds. This happens easily when

code requires locking multiple mutexes. For example, each task can be holding a mutex

required by the other task.

Deterministic refers to a deterministic algorithm which is an algorithm that behaves

predictably. Given a particular input, a deterministic algorithm will always produce

the same output. The definition of what is the “same” may be important due to limited

precision in mathematical operations and the likelihood that optimizations including

parallelization will rearrange the order of operations. These are often referred to as

“rounding” differences, which result when the order of mathematical operations to

compute the answer differ between the original program and the final concurrent

program. Concurrency is not the only factor that can lead to nondeterministic

algorithms but in practice it is often the cause. Use of programming models with

sequential semantics and eliminating data races with proper access controls will

generally eliminate the major effects of concurrency other than the “rounding”

differences.

Distributed memory is memory that is physically located in separate computers. An

indirect interface, such as message passing, is required to access memory on remote

computers, while local memory can be accessed directly. Distributed memory is

typically supported by clusters which, for purposes of this definition, we are considering

to be a collection of computers. Since the memory on attached coprocessors also

cannot typically be addressed directly from the host, it can be considered, for functional

purposes, to be a form of distributed memory.

DSP (Digital Signal Processor) is a computing device designed specifically for digital

signal processing tasks such as those associated with radio communications including

filters, FFTs, and analog to digital conversions. The computational capabilities of

DSPs alongside CPUs gave rise to some of the earliest examples of heterogeneous

platforms and various programming languages extensions to control and interact with

a DSP. OpenCL is a programming model that can help harness the compute aspects of

DSPs. See also, heterogeneous platforms.

EFLOP/s (ExaFLOP/s) = 10^18 Floating-Point Operations per second.

GLOSSARY

733

EFLOPs (ExaFLOPs) = 10^18 Floating-Point Operations.

emacs is the best text editor in the world (according to James), and it is open source. Compare

to the vi editor. “emacs” is the first package James installs on any computer that he uses.

Embarrassing parallelism is a description of an algorithm if it can be decomposed into

a large number of independent tasks with little or no synchronization or communication

required.

False sharing: Two separate tasks in two separate cores may write to separate locations

in memory, but if those memory locations happened to be allocated in the same cache

line, the cache coherence hardware will attempt to keep the cache lines coherent,

resulting in extra interprocessor communication and reduced performance, even though

the tasks are not actually sharing data.

Far memory: In a NUMA system, memory that has longer access times than the near

memory. The view of which parts of memory are near vs. far depends on the process

from which code is running. We also refer to this memory as nonlocal memory (in

contrast to local memory) in Chapter 20.

Floating-point number is a format for numbers in computers characterized by trading

a higher range for the numbers for a reduced precision by using the bits available for a

number (mantissa) and a shift count (exponent) that places the point to the left or right

of a fixed position. In contrast, fixed-point representations lack an explicit exponent

thereby allowing all bits to be used for number (mantissa).

Floating-point operation includes add, multiply, subtract, and more, done to floating-

point numbers.

FLOP/s = Floating-Point Operations per second.

FLOPs = Floating-Point Operations.

Flow Graph is a way to describe an algorithm using graph notation. Use of graph

notation means that a flow graph consists of computational nodes connected by edges

denoting possible control flow.

Forward scaling is the concept of having a program or algorithm scalable already in

threads and/or vectors so as to be ready to take advantage of growth of parallelism in

future hardware with a simple recompile with a new compiler or relink to a new library.

Using the right abstractions to express parallelism is normally a key to enabling forward

scaling when writing a parallel program.

Glossary

734

FPGA (Field Programmable Array) is a device that integrates a large number of gates

(and often higher-level constructs such as DSPs, floating-point units, or network

controllers) that remain unconnected to each other until the device is programmed.

Programming was originally a whole chip process that was intended to be done once

when a system was started, but modern FPGAs support partial reconfigurability and

are often dynamically loaded with new programs as a matter of course. Traditionally,

FPGAs were viewed as a way to consolidate a large number of discrete chips in a design

into a single FPGA – usually saving board space, power, and overall cost. As such, FPGAs

were programmed using tools similar to those used to design circuitry at a board or chip

level – called high-level description languages (e.g., VHDL or Verilog). More recent use

to harness FPGAs as compute engines has used the OpenCL programming model.

future-proofed: A computer program written in a manner so it will survive future

computer architecture changes without requiring significant changes to the program

itself. Generally, the more abstract a programming method is, the more future-proof

that program is. Lower level programming methods that in some way mirror computer

architectural details will be less able to survive the future without change. Writing in an

abstract, more future-proof fashion may involve tradeoffs in efficiency, however.

GFLOP/s (GigaFLOP/s) = 10^9 Floating-Point Operations per second.

GFLOPs (GigaFLOPs) = 10^9 Floating-Point Operations.

GPU (Graphic Processing Unit) is a computing device designed to reform calculations

associated with graphics such as lighting, transformations, clipping, and rendering. The

computational capabilities of GPUs were originally designed solely for use in a “graphical

pipeline” sitting between a general-purpose compute device (CPU) and displays. The

emergence of programming support for using the computation without sending results

to the display, and subsequent extensions to the designs of the GPU, lead to a more

generalized compute capability being associated with many GPUs. OpenCL and CUDA

are two popular programming models utilized to harness the compute aspects of GPUs.

See also, heterogeneous platforms.

Grain, as in coarse-grained parallelism or fine-grained parallelism, or grain size, all

refer to the concept of “how much work” gets done before moving to a new task and/

or potentially synchronizing. Programs scale best when grains are as large as possible

(so threads can run independently) but small enough to keep every compute resource

fully busy (load-balancing). These two factors operate somewhat at odds with each

GLOSSARY

735

other, which creates the need to consider grain size. TBB works to automate partitioning,

but there is never a perfect world in which a programmer cannot help tune for the best

performance based on knowledge of their algorithms.

Gustafson-Barsis’ law is a different view on Amdahl’s Law that factors in the fact that as

problem sizes grow, the serial portion of computations tend to shrink as a percentage of

the total work to be done.

Hardware thread is a hardware implementation of a task with a separate flow of

control. Multiple hardware threads can be implemented using multiple cores, or can

run concurrently or simultaneously on one core in order to hide latency using methods

such as hyper-threading of a processor core. In the latter case (hyperthreading or

simultaneous multithreading, SMT), it is said that a physical core features several logical

cores (or hardware threads).

Heterogenous platforms consist of a mixture of compute devices instead of a

homogeneous collection of only CPUs. Heterogenous computing is usually employed to

provide specific acceleration via an attached device, such as a GPU, DSP, FPGA, and

so on. See also OpenCL.

High-Performance Computing (HPC) refers to the highest performance computing

available at a point in time, which today generally means at least a petaFLOP/s

of computational capability. The term HPC is occasionally used as a synonym for

supercomputing, although supercomputing is probably more specific to even higher

performance systems. While the use of HPC is spreading to more industries, it is

generally associated with helping solve the most challenging problems in science

and engineering. High-performance data analytics workloads, often using Artificial

Intelligence (AI) and Machine Learning (ML) techniques, qualify as HPC workloads in

their larger instantiations and often combine well with long standing (traditional) HPC

workloads.

Hyper-threading refers to multithreading on a single processor core with the purpose

of more fully utilizing the functional units in an out-of-order core by bringing together

more instructions than executable by one software thread. With hyper-threading,

multiple hardware threads may run on one core and share resources, but some benefit

is still obtained from parallelism or concurrency. Typically, each hyper-thread has, at

least, its own register file and program counter, so that switching between hyper-threads

is relatively lightweight. Hyper-threading is associated with Intel, see also simultaneous

multithreading.

Glossary

736

Latency is the time it takes to complete a task; that is, the time between when the task

begins and when it ends. Latency has units of time. The scale can be anywhere from

nanoseconds to days. Lower latency is better in general.

Latency hiding schedules computations on a processing element while other tasks

using that core are waiting for long-latency operations to complete, such as memory or

disk transfers. The latency is not actually hidden, since each task still takes the same time

to complete, but more tasks can be completed in a given time since resources are shared

more efficiently, so throughput is improved.

Load balancing assigns tasks to resources while handling uneven sizes of tasks.

Optimally, the goal of load balancing is to keep all compute devices busy with minimal

waste due to overhead.

Locality refers to utilizing memory locations that are closer, rather than further, apart.

This will maximize reuse of cache lines, memory pages, and so on. Maintaining a high

degree of locality of reference is a key to scaling.

Lock is a mechanism for implementing mutual exclusion. Before entering a mutual

exclusion region, a thread must first try to acquire a lock on that region. If the lock has

already been acquired by another thread, the current thread must block, which it may

do by either suspending operation or spinning. When the lock is released, then the

current thread is free to acquire it. Locks can be implemented using atomic operations,

which are themselves a form of mutual exclusion on basic operations, implemented in

hardware.

Loop-carried dependence if the same data item (e.g., element [3] of an array) is written

in one iteration of a loop and is read in a different iteration of a loop, there is said to be

a loop-carried dependence. If there are no loop-carried dependencies, a loop can be

vectorized or parallelized. If there is a loop-carried dependence, the direction (prior

iteration vs. future iteration, also known as backward or forward) and the distance (the

number of iterations separating the read and write) must be considered.

Many-core processor is a multicore processor with so many cores that in practice we

do not enumerate them; there are just “lots.” The term has been generally used with

processors with 32 or more cores, but there is no precise definition.

Megahertz era is a historical period of time during which processors doubled clock

rates at a rate similar to the doubling of transistors in a design, roughly every 2 years.

Such rapid rise in processor clock speeds ceased at just under 4 GHz (four thousand

GLOSSARY

737

megahertz) in 2004. Designs shifted toward adding more cores marking the shift to the

multicore era.

Moore’s Law is an observation that, over the history of semiconductors, the number of

transistors in a dense integrated circuit has doubled approximately every 2 years.

Message Passing Interface (MPI) is an industry-standard message-passing system

designed to exchange data on a wide variety of parallel computers.

Multicore is a processor with multiple subprocessors, each subprocessor (known as a

core) supporting at least one hardware thread.

Multicore era is the time after which processor designs shifted away from rapidly rising

clock rates and shifted toward adding more cores. This era began roughly in 2005.

Node (in a cluster) refers to a shared memory computer, often on a single board with

multiple processors, that is connected with other nodes to form a cluster computer or

supercomputer.

Nondeterministic: Exhibiting a lack of deterministic behavior, so results can vary

from run to run of an algorithm. Concurrency is not the only factor that can lead to

nondeterministic algorithms, but in practice it is often the cause. See more in the

definition for deterministic.

Non-Uniform Memory Access (NUMA): Used to categorize memory design

characteristics in a distributed memory architecture. NUMA = memory access latency is

different for different memories. UMA = memory access latency is same for all memory.

Compare with UMA. See Chapter 20.

Offload: Placing part of a computation on an attached device such as an FPGA, GPU, or

other accelerator.

OpenCL (Open Computing Language) is a framework for writing programs that execute

across heterogeneous platforms. OpenCL provides host APIs for controlling offloading

and attached devices, and extensions to C/C++ to express code to run on the attached

accelerator (GPUs, DSPs, FPGAs, etc.) with the ability to use the CPU as a fallback if the

attached device is not present or available at runtime.

OpenMP is an API that supports multiplatform shared memory multiprocessing

programming in C, C++, and Fortran, on most processor architectures and operating

systems. It is made up of a set of compiler directives, library routines, and environment

variables that influence runtime behavior. OpenMP is managed by the nonprofit

Glossary

738

technology consortium OpenMP Architecture Review Board and is jointly defined by a

group of major computer hardware and software vendors (http://openmp.org).

Parallel means actually happening simultaneously. Two tasks that are both actually

doing work at some point in time are considered to be operating in parallel. When

a distinction is made between concurrent and parallel, the key is whether work can

ever be done simultaneously. Multiplexing of a single processor core, by multitasking

operating systems, has allowed concurrency for decades even when simultaneous

execution was impossible because there was only one processing core.

Parallelism is doing more than one thing at a time. Attempts to classify types of

parallelism are numerous.

Parallelization is the act of transforming code to enable simultaneous activities. The

parallelization of a program allows at least parts of it to execute in parallel.

Pattern is a general, reusable solution to a common problem. Historically, TBB has

used the term parallel algorithm when parallel pattern would also be an appropriate

description.

PFLOP/s (PetaFLOP/s) = 10^15 Floating-Point Operations per second.

PFLOPs (PetaFLOPs) = 10^15 Floating-Point Operations.

Race conditions are nondeterministic behaviors in a parallel program that is generally a

programming error. A race condition occurs when concurrent tasks perform operations

on the same memory location without proper synchronization, and one of the memory

operations is a write. Code with a race may operate correctly sometimes and fail other times.

Recursion is the act of a function being reentered while an instance of the function is

still active in the same thread of execution. In the simplest and most common case,

a function directly calls itself, although recursion can also occur between multiple

functions. Recursion is supported by storing the state for the continuations of partially

completed functions in dynamically allocated memory, such as on a stack, although if

higher-order functions are supported a more complex memory allocation scheme may

be required. Bounding the amount of recursion can be important to prevent excessive

use of memory.

Scalability is a measure of the increase in performance as a function of the availability of

more hardware to use in parallel.

GLOSSARY

http://openmp.org

739

Scalable: An application is scalable if its performance increases when additional

parallel hardware resources are added. The term strong-scaling refers to scaling that

occurs while a problem size does not need to be changed as more compute is available

in order to achieve scaling. Weak-scaling refers to scaling that occurs only when a

problem size is scaled up when additional compute is available. See scalability.

Serial means neither concurrent nor parallel.

Serialization occurs when the tasks in a potentially parallel algorithm are executed in a

specific serial order, typically due to resource constraints. The opposite of parallelization.

Shared memory: When two units of parallel work can access data in the same location.

Normally doing this safely requires synchronization. The units of parallel work,

processes, threads, and tasks can all share data this way, if the physical memory system

allows it. However, processes do not share memory by default and special calls to the

operating system are required to set it up.

SIMD: Single-instruction-multiple-data referring to the ability to process multiple pieces

of data (such as elements of an array) with all the same operation. SIMD is a computer

architecture within a widely used classification system known as Flynn’s taxonomy, first

proposed in 1966.

Simultaneous multithreading refers to multithreading on a single processor core. See

also, hyper-threading.

Software thread is a virtual hardware thread; in other words, a single flow of execution

in software intended to map one for one to a hardware thread. An operating system

typically enables many more software threads to exist than there are actual hardware

threads, by mapping software threads to hardware threads as necessary. Having more

software threads than hardware threads is known as Oversubscription.

Spatial locality: Nearby when measured in terms of distance (in memory address).

Compare with temporal locality. Spatial locality refers to a program behavior where

the use of one data element indicates that data nearby, often the next data element,

will probably be used soon. Algorithms exhibiting good spatial locality in data usage

can benefit from cache lines structures and prefetching hardware, both common

components in modern computers.

Speedup is the ratio between the latency for solving a problem with one processing unit

vs. the latency for solving the same problem with multiple processing units in parallel.

Glossary

740

SPMD: Single-program-multiple-data refers to the ability to process multiple pieces

of data (such as elements of an array) with the same program, in contrast with a more

restrictive SIMD architecture. SPMD most often refers to message passing programming

on distributed memory computer architectures. SPMD is a subcategory of MIMD

computer architectures within a widely used classification system known as Flynn’s

taxonomy, first proposed in 1966.

STL (Standard Template Library) is a part of the C++ standard.

Strangled scaling refers to a programming error in which the performance of parallel

code is poor due to high contention or overhead, so much so that it may underperform

the nonparallel (serial) code.

Symmetric Multiprocessor (SMP) is a multiprocessor system with shared memory and

running a single operating system.

Synchronization: The coordination, of tasks or threads, in order to obtain the desired

runtime order. Commonly used to avoid undesired race conditions.

Task: A lightweight unit of potential parallelism with its own control flow, generally

implemented at a user-level as opposed to OS-managed threads. Unlike threads, tasks

are usually serialized on a single core and run to completion. When contrasted with

“thread” the distinction is made that tasks are pieces of work without any assumptions

about where they will run, while threads have a one-to-one mapping of software threads

to hardware threads. Threads are a mechanism for executing tasks in parallel, while tasks

are units of work that merely provide the opportunity for parallel execution; tasks are not

themselves a mechanism of parallel execution.

Task parallelism: An attempt to classify parallelism as more oriented around tasks

than data. We deliberately avoid this term, task parallelism, because its meaning varies.

In particular, elsewhere “task parallelism” can refer to tasks generated by functional

decomposition or to irregular tasks that still generated by data decomposition. In

this book, any parallelism generated by data decomposition, regular or irregular, is

considered data parallelism.

TBB: See Threading Building Blocks (TBB).

Temporal locality means nearby when measured in terms of time. Compare with spatial

locality. Temporal locality refers to a program behavior in which data is likely to be

reused relatively soon. Algorithms exhibiting good temporal locality in data usage can

GLOSSARY

741

benefit from data caching, which is common in modern computers. It is not unusual to

be able to achieve both temporal and spatial locality in data usage. Computer systems

are generally more likely to achieve optimal performance when both are achieved hence

the interest in algorithm design to do so.

Thread could refer to a software or hardware thread. In general, a “software thread” is

any software unit of parallel work with an independent flow of control, and a “hardware

thread” is any hardware unit capable of executing a single flow of control (in particular,

a hardware unit that maintains a single program counter). When “thread” is compared

with “task” the distinction is made that tasks are pieces of work without any assumptions

about where they will run, while threads have a one-to-one mapping of software threads

to hardware threads. Threads are a mechanism for implementing tasks. A multitasking or

multithreading operating system will multiplex multiple software threads onto a single

hardware thread by interleaving execution via software created time slices. A multicore

or many-core processor consists of multiple cores to execute at least one independent

software thread per core through duplication of hardware. A multithreaded or hyper-

threaded processor core will multiplex a single core to execute multiple software threads

through interleaving of software threads via hardware mechanisms.

Thread parallelism is a mechanism for implementing parallelism in hardware using a

separate flow of control for each task.

Thread local storage refers to data which is purposefully allocated with the intent to

only access from a single thread, at least during concurrent computations. The goal is

to avoid need for synchronization during the most intense computational moments in

an algorithm. A classic example of thread local storage is creating partial sums when

working toward adding all numbers in a large array, by first adding subregions in parallel

into local partial sums (also known as privatized variables) that, by nature of being local/

private, require no global synchronization to sum into.

Threading Building Blocks (TBB) is the most popular abstract solution for parallel

programming in C++. TBB is an open source project created by Intel that has been

ported to a very wide range of operating systems and processors from many vendors.

OpenMP and TBB seldom compete for developers in reality. While more popular

than OpenMP in terms of the number of developers using it, TBB is popular with C++

programmers whereas OpenMP is most used by Fortran and C programmers.

Glossary

742

Throughput is defined as the rate at which those tasks are completed, given a set of tasks

to be performed. Throughput measures the rate of computation, and it is given in units

of tasks per unit time. See bandwidth and latency.

TFLOP/s (TeraFLOP/s) = 10^12 Floating-Point Operations per second.

TFLOPs (TeraFLOPs) = 10^12 Floating-Point Operations.

Tiling is when you divide a loop into a set of parallel tasks of a suitable granularity.

In general, tiling consists of applying multiple steps on a smaller part of a problem

instead of running each step on the whole problem one after the other. The purpose

of tiling is to increase reuse of data in caches. Tiling can lead to dramatic performance

increases when a whole problem does not fit in cache. We prefer the term “tiling”

instead of “blocking” and “tile” instead of “block.” Tiling and tile have become the more

common term in recent times.

TLB is an abbreviation for Translation Lookaside Buffer. A TLB is a specialized cache

that is used to hold translations of virtual to physical page addresses. The number

of elements in the TLB determines how many pages of memory can be accessed

simultaneously with good efficiency. Accessing a page not in the TLB will cause a TLB

miss. A TLB miss typically causes a trap to the operating system so that the page table

can be referenced and the TLB updated.

Trip count is the number of times a given loop will execute (“trip”); same thing as

iteration count.

Uniform Memory Access (UMA): Used to categorize memory design characteristics in a

distributed memory architecture. UMA = memory access latency is same for all memory.

NUMA = memory access latency is different for different memories. Compare with

NUMA. See Chapter 20.

Vector operations are low-level operations that can act on multiple data elements at

once in SIMD fashion.

Vector parallelism is a mechanism for implementing parallelism in hardware using the

same flow of control on multiple data elements.

Vectorization is the act of transforming code to enable simultaneous computations

using vector hardware. Multiprocessor instructions such as MMX, SSE, AVX, AVX2, and

GLOSSARY

743

AVX-512 instructions utilize vector hardware, but vector hardware outside of CPUs may

come in other forms that are also targeted by vectorization. The vectorization of code

tends to enhance performance because more data is processed per instruction than

would be done otherwise. See also vectorize.

Vectorize refers to converting a program from a scalar implementation to a vectorized

implementation to utilize vector hardware such as SIMD instructions (e.g., MMX, SSE,

AVX, AVX2, AVX-512). Vectorization is a specialized form of parallelism.

vi is a text-based editor that was shipped with most UNIX and BSD systems written by

Bill Joy, popular only to those who have yet to discover emacs (according to James). Yes,

it is open source. Compares unfavorably to emacs and Atom. Yes, Ron, James did look at

the “vi” nutshell book you gave to him… he still insists on using vi just long enough to get

emacs downloaded and installed.

Virtual memory decouples the address used by software from the physical addresses

of real memory. The translation from virtual addresses to physical addresses is done in

hardware that is initialized and controlled by the operating system.

Glossary

745
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5

Index

A
A-B-A problem, 200–201
affinity_partitioner, 370, 417–419,

427–433, 629–630
Algorithms

parallel_deterministic_
reduce, 431–432, 642, 644, 645

parallel_do, 57–67, 629–631
parallel_for, 27, 42–45, 631–634
parallel_for_each, 635, 636
parallel_invoke, 12, 37–41, 280–282,

636, 637
parallel_pipeline, 67–76, 638–640
parallel_reduce, 46–51, 641–643
parallel_scan, 645–648
parallel_sort, 648–650
pipeline, 651, 652

Algorithm vs. patterns, 233
alignas() method, 212
aligned_space, 224
async_node, 516
Atomic variables, 137–163, 600, 693–698
auto_partitioner, 416–417, 427–431
available_devices() function, 545

B
blocked_range, 50, 415, 626
blocked_range2d, 414–415, 423–426,

464–466

blocked_range3d, 415
blocked_rangeNd, 415
Buffering nodes, 655, 661

C
Cache, 581, 616
Cache affinity, 417, 420, 427, 428
cached_aligned_allocator

template, 223
Cache lines, 421, 422
Cache-oblivious algorithm, 420–424
Coarse-grained locking, 145
combinable<T> object, 168, 169
combine_each() function, 166
compare_and_swap (CAS), 160
Composability, 9, 251–276, 405, 583

NCR (see Non-Composable
Runtime (NCR))

nested parallelism, 255–257
TBB

parallelism, 260
thread pool (the market) and

arenas, 260–263
work stealing, 263–274

work isolation, 274
composite_node, 497
Concurrent containers, 79–205,

673–692
Contention, 145, 155
Context switching, 617

https://doi.org/10.1007/978-1-4842-4398-5

746

Continuation task, 290
blocking style, 290
continuation-passing style, 291
ref_count, 296
scheduler bypass, 297

Control flow nodes, 655, 659

D
Data Analytics Acceleration Library

(DAAL), 607
Data parallelism, xxxi, 81, 237, 238
Data placement, 581, 584, 589, 595
Data placement and processor affinity,

NUMA
hwloc_alloc_membind, 592
hwloc_get_obj_by_type, 591
hwloc library, 589
hwloc_set_cpubind, 593
nodes, bind, 590
numa_node, 592

Data structures, 180
associative containers, 180
hashing, 181
map vs. set, 181
multiple values, 181
unordered, 182
unordered associative containers, 180

Data type definitions, triad, 553
Deadlock, 156, 662
Debugging macros, 625
Dependency graphs, 97, 451, 507

continue_node objects, 98
edges, 97
implementation, 99

addEdges functions, 103, 104
continue_node objects, 104
createNode function, 104
dependencies, 100

forward substitution, 103
parallel_reduce, 100
serial blocked code, 99
serial tiled implementation, 99
synchronization points, 101

scalability, 105
Design patterns, 235
Determinism, 47–49, 431–432, 641–645
Device Filters, 547
Device selector, 547, 548, 551
Divide-and-conquer pattern, 243, 244
3D stereoscopic images, 72–76
DYLD_INSERT_LIBRARIES, 216, 217
Dynamic memory interface

replacement, 214
Dynamic priorities, 376, 377

E
Embarrassing parallelism, 239
enumerable_thread_specific (ETS) class, 165

combine_each() function, 167
parallel histogram computation, 165
reduction, 166, 167

Environment variable, 624
ETS, see enumerable_thread_specific

(ETS) class
Event-based coordination

pattern, 246, 247
Exception handling, 399–401

example, 724
tbb_exception and movable_exception

classes, 402–403, 725

F
Fair mutexes, 151
False sharing, 155, 163, 171, 210

alignas() method, 212

INDEX

747

histogram vector, 210, 211
jemalloc and tcmalloc, 213
padding, 210–212

Fibonacci Sequence, 278, 279
Fine-grained locking, 153, 183, 673

convoying, 155, 157
deadlock, 156
oversubscription, 155

Fire-and-forget tasks, 301, 302
First-in-first-out (FIFO), 193
Floating-point settings, 721, 722
Floating-point types, 47, 48
Flow graph, 25–27, 79–107, 451–579,

653–667
Flow Graph Analyzer (FGA)

tool, 507–510
for_each, 114, 123, 124
Fork-join layer, 8

TBB library, 27–29
Fork-join pattern, 243, 244
Forward substitution, 62–67
Functional parallelism, 37, 81

See also Task parallelism

G
Generic algorithms, 36
GPU kernel execution, 543
Grainsize, 414, 419–421
Graph object, 653

H
Hard thread limits, see Thread limits
Hardware Transactional

Memory (HTM), 152
Hash functions, 181
HASH MAPS, 190

Heterogeneous triad computation, 521
Heterogeneous triad, flow

graph, 524
High-Performance Computing (HPC),

431, 614
Huge pages, 228, 229
hwloc, 583, 589, 594, 595
hwloc and TBB

baseline triad implementation,
595, 596, 601

on_scheduler_entry, 600
PinningObserver class, 598, 599

I
Imbalanced pipeline, 436–438
Integrated Development Environment

(IDE), 502
Intel Advisor tool, 501
Isolate function

for correctness
deadlock, 339, 340

nested parallelism, 342
task_arena, 352
in task arenas

correctness issues, 345–348
namespace, 343

J
jemalloc, 213
join_node, 475
Join nodes, 655, 660

K
Kernel arguments, 561, 562
key() function, 578

Index

748

L
Lambda expressions, 13–15
Lambda expressions–vs-user-defined

classes, 35, 36
LD_PRELOAD environment variable, 216
libnuma, 589
Lightweight policy, 460, 662
likwid, 584, 587, 594
likwid-bench, 587, 589
likwid-perfctr, 601
limiter_node, 472, 473
Linear pipeline, 92
Line of sight problem, 56, 57
llalloc, 213
Local allocation policy, 589
Locality, 581
Lock-free techniques, 183, 673
Locking, 145
Lock preemption, 617
Low-level implementation of a

wavefront, 302
data dependence flow, 304
2D wavefront pattern, 302, 303
parallelization strategy, 304
recycling, 307
sequential version, 303
task-based implementation, 304, 305

Low-level tasking interface, 284
lscpu, 584, 586
lstopo, 585

M
Macros, 624
malloc, 207

Linux, 216
macOS, 216
Windows, 217

map/multimap and set/multiset
interfaces, 191, 192

Map pattern, 239, 240
Map vs. set, 181
Math Kernel Library (MKL), 607
max_number_of_live_tokens, 444
Memory allocation, 589, 591, 592

replacing new and delete, 225
Memory allocation/deallocation, 208
Memory allocators

allocator concept, 670
functions, 669
memory_pool and fixed_pool, 672
memory pool concept, 673
special controls, 670
template classes, 668

memory_pool_allocator, 223
Message-driven layer, 8
Message passing, 86, 96, 508
multifunction_node, 484, 485
Multiresolution, 277
Mutex, 138, 145, 146, 150
Mutex flavors, 151–153
Mutual exclusion, 137, 138, 145, 158, 693

N
NDRange concept, 536, 543, 553, 555–557,

561–568
Nested composition, 254–256
Nested parallelism, 320, 606

composability, 253, 254
Nesting pattern, 238, 239
New/delete operators, 224–227
new operators, replacing, 225
Node granularity

FG loop function, 453, 454, 457–459
FG loop per worker function, 455, 456,

458, 459

INDEX

749

master loop function, 454, 455, 458, 459
serial loop function, 453

Nodes, 653
Non-Composable Runtime (NCR)

concurrent executions, 272
construct processes, 273
two-level deep nesting, 270

Non-preemptive priorities
in task class

priority inversion, 374
priority levels, 374
task execution, 375
thread priorities, 375
threads, 374

Non-Uniform Memory Access (NUMA), 581
locality, 582

note_affinity function, 363, 367
numactl command, 589

O
OpenCL, 251, 524, 535

NDRange, 536, 562
streaming_node, 536

opencl_buffer.begin() function, 572
opencl_buffer.data() member function, 572
opencl_device, 536, 545, 546, 548, 550, 551
opencl_program, 536, 541, 543, 569
OpenMP, 239

composability, 253
NCP, 270

Ordering issues, 578

P
Padding, 210–212
Parallel Continuation Machine (PCM), 614
parallel_deterministic_reduce,

431, 432, 642

parallel_do algorithm, 57–67, 629–631
Parallel execution, 623
parallel_for algorithm, 27, 42–45, 631–634
parallel_for_each algorithm, 635, 636
parallel_invoke algorithm, 12, 37–41,

280–282, 636, 637
Parallel loop/pipeline, 79
Parallel patterns vs. parallel

algorithms, 233, 234
parallel_pipeline algorithm, 67–72, 638

filter_t, 639
flow_control, 638
Hello, World example, 640

parallel_pipeline function, 438
parallel_policy, 131
Parallel programming, patterns, 235
parallel_reduce algorithm, 641–643
parallel_scan algorithm, 52–54, 645–648
parallel_sort algorithm, 648–650
Parallel STL, 29, 109
parallel_unsequenced_policy, 132
Partitioners, 420, 628
par_unseq execution policy, 118
Patterns, 233

algorithm structures, 235
branch-and-bound, 244–246
data parallelism, 237, 238
design patterns, 235
divide-and-conquer, 244
event-based coordination, 246, 247
finding concurrency, 235
fork-join, 243, 244
implementation mechanisms, 236
map pattern, 239, 240
nesting, 238, 239
parallel patterns vs. parallel

algorithms, 233, 234
parallel programming, 235

Index

750

pipeline, 246
reduce pattern, 241–243
scan operation, 242
scan pattern, 242
supporting structures, 236
TBB templates, 234
workpile pattern, 240

Performance portability (portable), 725
Pipeline, xxxi, 81, 651, 652

tbb::parallel_pipeline, 67–76, 442,
638–640

Pipeline parallelism, 81
Pipeline pattern, 246
Portable Hardware Locality (hwloc)

package, 358
Precompiled kernel, 541, 561
Preview features, 626
Priorities, 373–385, 492

algorithms, 376
enqueued tasks, 377
flow graph, 492
task_group_context, 376

Priority inversion, 374
Privatization, 137, 163, 164

histogram computation, 176
Processor affinity, 581, 584, 595
Proportional splitting

constructor, 626
Proxy methods, 207, 214

environment variables, 216
functions, 220
Linux, 216
macOS, 216
routines, 215
tbb_mem.cpp, 219
test program, 218, 219

pstlvars scripts, 17–18

Q
queueing_lightweight policy, 460
queueing_mutex, 152

R
RandomAccessIterator, 648
Ranges, 413, 414

default constructor, 627
requirements, 627
splitting constructors, 626

Range type
parallel quicksort, 440, 441
quicksort, 439, 440

Recursive mutexes, 151
Recursive implementation, 278
reduce operation, 124, 127
Reduce pattern/map-reduce

associative operations, 46
blocked_range, 50
floating-point types, 47, 48
maximum value loop, 49
numerical integration, 51, 52
rectangular integral method, 51

Reduction, 163, 164
histogram computation, 176

Reduction patterns (reduce and scan),
241–243

Reduction template, 170–173
rejecting_lightweight policy, 460
Relaxed sequential semantics, 10
reset() function, 478
Resource Acquisition Is Initialization

(RAII), 147
Rule of thumb, 412

10,000 cycle, 459
1 microsecond, 452, 459, 461

Patterns (cont.)

INDEX

751

S
Scalability

analysis, 503
Scalable mutexes, 151
scalable_allocation_command function, 230
scalable_allocation_mode function, 229
scalable_allocator template, 222
Scalable memory allocation, 207
Scaling, xxiv, xlii, 623, 662
Scan pattern, 242
Scheduler, 259–269, 314–315, 319
sequenced_policy, 131
sequencer_node, 483, 485
Shared Virtual Memory (SVM), 524
simple_partitioner, 416, 417, 419
Single Instruction Multiple Data (SIMD)

extensions, 114
layer, 9, 29–31
operations, 131
parallelism, 134, 135
STL library, 110

Soft thread limit, see Thread limits
source_node, 472, 475
source_node interface, 516, 657
speculative_spin_mutex, 152
SPIR, 541, 570, 578
Splitting constructor, 413
Standard Template Library (STL), 5, 183,

607, 613–616, 673
algorithms, 117

Intel’s Parallel, 118–120
pre-built packages, 117, 118

execution policies, 112, 113
parallel_policy, 131
parallel_unsequenced_policy, 132
sequenced_policy, 131
unsequenced_policy, 132
use of, 132–134

iterators, 120–123
SIMD parallelism, 134, 135
std::for_each, 113–116, 124–126
std::for_each_n, 124–126
std::reduce, 127, 128
std::transform, 126, 127
std::transform_reduce, 128–130
transform_iterator class, 123

static_partitioner, 416, 428, 429
HPC, 431
random work stealing, 429
thread, 430

Static priorities, 376, 377
std::aligned_alloc, 208
std::allocate_shared, 208
std::allocator<T> Signature, 222
std::for_each, 113–116, 122,

124–126
std::for_each_n, 124–126
std::make_shared, 208
std::reduce, 127, 128
std::transform, 126, 127, 171
std::transform_reduce, 128–130
STL containers, 673
Streaming computations, 91
Strong scaling, xlii
Synchronization, 137

atomic<T> class, 698
C++11 mutex, 695
image histogram

computation, 138, 139
grayscale picture, 138
mutual exclusion, 138
sequential implementation, 140

mutex
concept, 145, 697
example, 146, 695

scoped locking, 693

Index

752

T
task_arena, 320, 595, 599, 721
Task arenas, 260–262, 713–715

for isolation
abstraction, 352
Double-Edged Sword, 349–352

isolation for correctness, 353–355
Task cancellation, 388, 389
Task granularity, 412, 413
task_group class

parallel Fibonacci code, 282
recycling, 297
run() and wait(), 283

Task_group_context (TGC), 376, 390, 721
Task groups

high-level APIs, 709
[structured_]task_group, 709
task_group, 710

Task parallelism, xxx
See also Functional parallelism

Task priorities
enqueued with normal

priority, 377, 378
executing algorithms, 380, 381
generic-wrapper-task

approach, 382
task_group, 382
using concurrent_priority_

queue, 383, 384
parallel_for algorithms, 379
used in real time systems, 373

Tasks, xxii
Task scheduler

approaches for setting number of
threads

more task_scheduler_init
object, 323, 324

single task_scheduler_init
object, 320, 322

using class task_arena, 325–328
using global_control

object, 329–332
architecture, 314, 315
controlling thread count

changes in global_control
objects, 332, 333

class task_arena class
interface, 316, 317

global_control object, 318, 319
task_scheduler_init class

interface, 316
low-level APIs, 710
task class, 716
task_arena class, 713
task_scheduler_init class, 711, 712
this_task_arena members, 715

task_scheduler_init objects, 319
task_scheduler_observer, 359, 370,

582, 595, 599
Task scheduling, 268
Task-to-thread affinity

affinity_id, 366
affinity_partioner, 370
execute task trees, 365, 366
functions, 364
loop algorithms, 362
master thread’s local

deque, 369
note_affinity function, 363, 367, 368
set_affinity, 366
type affinity_id, 363
usage, 357

tbb_allocator template, 222
tbb::concurrent_hash_map, 191

INDEX

753

TBB exceptions
template, 403
virtual functions, 402, 404–406

tbbmalloc, 213, 222
TBBMALLOC_CLEAN_ALL_BUFFERS, 230
TBBMALLOC_CLEAN_THREAD_

BUFFERS, 230
tbbmalloc_proxy library, 214
TBBMALLOC_SET_SOFT_HEAP_

LIMIT, 230
TBB_MALLOC_USE_HUGE_

PAGES, 228, 229
tbb::parallel_reduce, 52
TBB_runtime_interface_version, 625
tbbvars scripts, 17
tcmalloc, 213
Templates, 627, 636
Think Parallel, xix, xx–xxi, xxix, xlviii, 201, 233
Thread limits, 318–320
Thread Local Storage (TLS), 164, 179, 341

combinable, 699–701
enumerable_thread_specific,

699, 703, 705
flatten2d class, 699, 706, 707

Thread migration, 602
Thread pinning, 582, 583, 602
Thread pools, 272
Thread pool (the market) and task arenas,

260–263
Threads, xxii, 725, 726
Thread-to-core affinity

creation
allow OS, 358
hwloc package, 358
OS, 358
task_scheduler_observer object,

359–362
usage, 357

Thumb, rules of, 459
tick_count class, 708
Timing, 708
TLS, see Thread Local Storage (TLS)
Triad computation, heterogeneous

implementation, 523, 552
Triad vector operation, 522
True sharing, 155, 171, 210

U
unlimited_node, 471–473, 485
Unordered associative

containers, 180, 185
bucket methods, 192
built-in locking vs. no visible

locking, 192
collisions, 186
concurrent_hash_map, 186–190
erase methods, 191
hash map, 185
iterators, 192, 193
map/multimap and set/multiset

Interfaces, 191, 192
parallel scaling, 191

Unsafe parallel implementation
image histogram computation, 141
shared histogram vector, 143
shared variable/shared mutable

state, 143
Unsequenced execution policy, 114,

118, 727
unsequenced_policy, 132

V
Vectorized execution, 113
VTune, 584

Index

754

W, X, Y
Workpile pattern, 240
Work stealing

cache-oblivious algorithms, 265
dispatchers, 265
loop pattern, 265
per-thread task dispatchers, 264
pseudo-code, 269

scheduler bypass, 268
schedulers, 263
snapshot of, 266, 267
spawning mechanism, 268
split tasks, 264

Z
zero_allocator, 223

INDEX

	Table of Contents
	About the Authors
	Acknowledgments
	Preface
	Part 1
	Chapter 1: Jumping Right In: “Hello, TBB!”
	Why Threading Building Blocks?
	Performance: Small Overhead, Big Benefits for C++
	Evolving Support for Parallelism in TBB and C++
	Recent C++ Additions for Parallelism

	The Threading Building Blocks (TBB) Library
	Parallel Execution Interfaces
	Interfaces That Are Independent of the Execution Model
	Using the Building Blocks in TBB

	Let’s Get Started Already!
	Getting the Threading Building Blocks (TBB) Library
	Getting a Copy of the Examples
	Writing a First “Hello, TBB!” Example
	Building the Simple Examples
	Steps to Set Up an Environment

	Building on Windows Using Microsoft Visual Studio
	Building on a Linux Platform from a Terminal
	Using the Intel Compiler
	tbbvars and pstlvars Scripts
	Setting Up Variables Manually Without Using the tbbvars Script or the Intel Compiler

	A More Complete Example
	Starting with a Serial Implementation
	Adding a Message-Driven Layer Using a Flow Graph
	Adding a Fork-Join Layer Using a parallel_for
	Adding a SIMD Layer Using a Parallel STL Transform

	Summary

	Chapter 2: Generic Parallel Algorithms
	Functional / Task Parallelism
	A Slightly More Complicated Example: A Parallel Implementation of Quicksort

	Loops: parallel_for, parallel_reduce, and parallel_scan
	parallel_for: Applying a Body to Each Element in a Range
	A Slightly More Complicated Example: Parallel Matrix Multiplication

	parallel_reduce: Calculating a Single Result Across a Range
	A Slightly More Complicated Example: Calculating π by Numerical Integration

	parallel_scan: A Reduction with Intermediate Values
	How Does This Work?
	A Slightly More Complicated Example: Line of Sight

	Cook Until Done: parallel_do and parallel_pipeline
	parallel_do: Apply a Body Until There Are No More Items Left
	A Slightly More Complicated Example: Forward Substitution

	parallel_pipeline: Streaming Items Through a Series of Filters
	A Slightly More Complicated Example: Creating 3D Stereoscopic Images

	Summary
	For More Information

	Chapter 3: Flow Graphs
	Why Use Graphs to Express Parallelism?
	The Basics of the TBB Flow Graph Interface
	Step 1: Create the Graph Object
	Step 2: Make the Nodes
	Step 3: Add Edges
	Step 4: Start the Graph
	Step 5: Wait for the Graph to Complete Executing

	A More Complicated Example of a Data Flow Graph
	Implementing the Example as a TBB Flow Graph
	Understanding the Performance of a Data Flow Graph

	The Special Case of Dependency Graphs
	Implementing a Dependency Graph
	Estimating the Scalability of a Dependency Graph

	Advanced Topics in TBB Flow Graphs
	Summary

	Chapter 4: TBB and the Parallel Algorithms of the C++ Standard Template Library
	Does the C++ STL Library Belong in This Book?
	A Parallel STL Execution Policy Analogy
	A Simple Example Using std::for_each
	What Algorithms Are Provided in a Parallel STL Implementation?
	How to Get and Use a Copy of Parallel STL That Uses TBB
	Algorithms in Intel’s Parallel STL

	Capturing More Use Cases with Custom Iterators
	Highlighting Some of the Most Useful Algorithms
	std::for_each, std::for_each_n
	std::transform
	std::reduce
	std::transform_reduce

	A Deeper Dive into the Execution Policies
	The sequenced_policy
	The parallel_policy
	The unsequenced_policy
	The parallel_unsequenced_policy

	Which Execution Policy Should We Use?
	Other Ways to Introduce SIMD Parallelism
	Summary
	For More Information

	Chapter 5: Synchronization: Why and How to Avoid It
	A Running Example: Histogram of an Image
	An Unsafe Parallel Implementation
	A First Safe Parallel Implementation: Coarse-Grained Locking
	Mutex Flavors

	A Second Safe Parallel Implementation: Fine-Grained Locking
	A Third Safe Parallel Implementation: Atomics
	A Better Parallel Implementation: Privatization and Reduction
	Thread Local Storage, TLS
	enumerable_thread_specific, ETS
	combinable

	The Easiest Parallel Implementation: Reduction Template
	Recap of Our Options
	Summary
	For More Information

	Chapter 6: Data Structures for Concurrency
	Key Data Structures Basics
	Unordered Associative Containers
	Map vs. Set
	Multiple Values
	Hashing
	Unordered

	Concurrent Containers
	Concurrent Unordered Associative Containers
	concurrent_hash_map
	Concurrent Support for map/multimap and set/multiset Interfaces
	Built-In Locking vs. No Visible Locking
	Iterating Through These Structures Is Asking for Trouble

	Concurrent Queues: Regular, Bounded, and Priority
	Bounding Size
	Priority Ordering
	Staying Thread-Safe: Try to Forget About Top, Size, Empty, Front, Back
	Iterators
	Why to Use This Concurrent Queue: The A-B-A Problem
	When to NOT Use Queues: Think Algorithms!

	Concurrent Vector
	When to Use tbb::concurrent_vector Instead of std::vector
	Elements Never Move
	Concurrent Growth of concurrent_vectors

	Summary

	Chapter 7: Scalable Memory Allocation
	Modern C++ Memory Allocation
	Scalable Memory Allocation: What
	Scalable Memory Allocation: Why
	Avoiding False Sharing with Padding

	Scalable Memory Allocation Alternatives: Which
	Compilation Considerations
	Most Popular Usage (C/C++ Proxy Library): How
	Linux: malloc/new Proxy Library Usage
	macOS: malloc/new Proxy Library Usage
	Windows: malloc/new Proxy Library Usage
	Testing our Proxy Library Usage

	C Functions: Scalable Memory Allocators for C
	C++ Classes: Scalable Memory Allocators for C++
	Allocators with std::allocator<T> Signature

	scalable_allocator
	tbb_allocator
	zero_allocator
	cached_aligned_allocator
	Memory Pool Support: memory_pool_allocator
	Array Allocation Support: aligned_space

	Replacing new and delete Selectively
	Performance Tuning: Some Control Knobs
	What Are Huge Pages?
	TBB Support for Huge Pages
	scalable_allocation_mode(int mode, intptr_t value)
	TBBMALLOC_USE_HUGE_PAGES
	TBBMALLOC_SET_SOFT_HEAP_LIMIT
	int scalable_allocation_command(int cmd, void ∗param)
	TBBMALLOC_CLEAN_ALL_BUFFERS
	TBBMALLOC_CLEAN_THREAD_BUFFERS

	Summary

	Chapter 8: Mapping Parallel Patterns to TBB
	Parallel Patterns vs. Parallel Algorithms
	Patterns Categorize Algorithms, Designs, etc.
	Patterns That Work
	Data Parallelism Wins
	Nesting Pattern
	Map Pattern
	Workpile Pattern
	Reduction Patterns (Reduce and Scan)
	Fork-Join Pattern
	Divide-and-Conquer Pattern
	Branch-and-Bound Pattern
	Pipeline Pattern
	Event-Based Coordination Pattern (Reactive Streams)
	Summary
	For More Information

	Part 2
	Chapter 9: The Pillars of Composability
	What Is Composability?
	Nested Composition
	Concurrent Composition
	Serial Composition

	The Features That Make TBB a Composable Library
	The TBB Thread Pool (the Market) and Task Arenas
	The TBB Task Dispatcher: Work Stealing and More

	Putting It All Together
	Looking Forward
	Controlling the Number of Threads
	Work Isolation
	Task-to-Thread and Thread-to-Core Affinity
	Task Priorities

	Summary
	For More Information

	Chapter 10: Using Tasks to Create Your Own Algorithms
	A Running Example: The Sequence
	The High-Level Approach: parallel_invoke
	The Highest Among the Lower: task_group
	The Low-Level Task Interface: Part One – Task Blocking
	The Low-Level Task Interface: Part Two – Task Continuation
	Bypassing the Scheduler

	The Low-Level Task Interface: Part Three – Task Recycling
	Task Interface Checklist
	One More Thing: FIFO (aka Fire-and-Forget) Tasks
	Putting These Low-Level Features to Work
	Summary
	For More Information

	Chapter 11: Controlling the Number of Threads Used for Execution
	A Brief Recap of the TBB Scheduler Architecture
	Interfaces for Controlling the Number of Threads
	Controlling Thread Count with task_scheduler_init
	Controlling Thread Count with task_arena
	Controlling Thread Count with global_control
	Summary of Concepts and Classes

	The Best Approaches for Setting the Number of Threads
	Using a Single task_scheduler_init Object for a Simple Application
	Using More Than One task_scheduler_init Object in a Simple Application
	Using Multiple Arenas with Different Numbers of Slots to Influence Where TBB Places Its Worker Threads
	Using global_control to Control How Many Threads Are Available to Fill Arena Slots
	Using global_control to Temporarily Restrict the Number of Available Threads

	When NOT to Control the Number of Threads
	Figuring Out What’s Gone Wrong
	Summary

	Chapter 12: Using Work Isolation for Correctness and Performance
	Work Isolation for Correctness
	Creating an Isolated Region with this_task_arena::isolate
	Oh No! Work Isolation Can Cause Its Own Correctness Issues!
	Even When It Is Safe, Work Isolation Is Not Free

	Using Task Arenas for Isolation: A Double-Edged Sword
	Don’t Be Tempted to Use task_arenas to Create Work Isolation for Correctness

	Summary
	For More Information

	Chapter 13: Creating Thread-to-Core and Task-to-Thread Affinity
	Creating Thread-to-Core Affinity
	Creating Task-to-Thread Affinity
	When and How Should We Use the TBB Affinity Features?
	Summary
	For More Information

	Chapter 14: Using Task Priorities
	Support for Non-Preemptive Priorities in the TBB Task Class
	Setting Static and Dynamic Priorities
	Two Small Examples
	Implementing Priorities Without Using TBB Task Support
	Summary
	For More Information

	Chapter 15: Cancellation and Exception Handling
	How to Cancel Collective Work
	Advanced Task Cancellation
	Explicit Assignment of TGC
	Default Assignment of TGC

	Exception Handling in TBB
	Tailoring Our Own TBB Exceptions
	Putting All Together: Composability, Cancellation, and Exception Handling
	Summary
	For More Information

	Chapter 16: Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism
	Task Granularity: How Big Is Big Enough?
	Choosing Ranges and Partitioners for Loops
	An Overview of Partitioners
	Choosing a Grainsize (or Not) to Manage Task Granularity
	Ranges, Partitioners, and Data Cache Performance
	Cache-Oblivious Algorithms
	Cache Affinity

	Using a static_partitioner
	Restricting the Scheduler for Determinism

	Tuning TBB Pipelines: Number of Filters, Modes, and Tokens
	Understanding a Balanced Pipeline
	Understanding an Imbalanced Pipeline
	Pipelines and Data Locality and Thread Affinity

	Deep in the Weeds
	Making Your Own Range Type
	The Pipeline Class and Thread-Bound Filters

	Summary
	For More Information

	Chapter 17: Flow Graphs: Beyond the Basics
	Optimizing for Granularity, Locality, and Parallelism
	Node Granularity: How Big Is Big Enough?
	What to Do If Nodes Are Too Small

	Memory Usage and Data Locality
	Data Locality in Flow Graphs
	Picking the Best Message Type and Limiting the Number of Messages in Flight

	Task Arenas and Flow Graph
	The Default Arena Used by a Flow Graph
	Changing the Task Arena Used by a Flow Graph
	Setting the Number of Threads, Thread-to-Core Affinities, etc.

	Key FG Advice: Dos and Don’ts
	Do: Use Nested Parallelism
	Don’t: Use Multifunction Nodes in Place of Nested Parallelism
	Do: Use join_node, sequencer_node, or multifunction_node to Reestablish Order in a Flow Graph When Needed
	Do: Use the Isolate Function for Nested Parallelism
	Do: Use Cancellation and Exception Handling in Flow Graphs
	Each Flow Graph Uses a Single task_group_context
	Canceling a Flow Graph
	Resetting a Flow Graph After Cancellation
	Exception Handling Examples

	Do: Set a Priority for a Graph Using task_group_ context
	Don’t: Make an Edge Between Nodes in Different Graphs
	Do: Use try_put to Communicate Across Graphs
	Do: Use composite_node to Encapsulate Groups of Nodes

	Introducing Intel Advisor: Flow Graph Analyzer
	The FGA Design Workflow
	Tips for Iterative Development with FGA

	The FGA Analysis Workflow
	Diagnosing Performance Issues with FGA
	Diagnosing Granularity Issues with FGA
	Recognizing Slow Copies in FGA
	Diagnosing Moonlighting using FGA

	Summary
	For More Information

	Chapter 18: Beef Up Flow Graphs with Async Nodes
	Async World Example
	Why and When async_node?
	A More Realistic Example
	Summary
	For More Information

	Chapter 19: Flow Graphs on Steroids: OpenCL Nodes
	Hello OpenCL_Node Example
	Where Are We Running Our Kernel?
	Back to the More Realistic Example of Chapter 18
	The Devil Is in the Details
	The NDRange Concept
	Playing with the Offset
	Specifying the OpenCL Kernel

	Even More on Device Selection
	A Warning Regarding the Order Is in Order!
	Summary
	For More Information

	Chapter 20: TBB on NUMA Architectures
	Discovering Your Platform Topology
	Understanding the Costs of Accessing Memory
	Our Baseline Example
	Mastering Data Placement and Processor Affinity

	Putting hwloc and TBB to Work Together
	More Advanced Alternatives
	Summary
	For More Information

	Appendix A:
History and Inspiration
	A Decade of “Hatchling to Soaring”
	#1 TBB’s Revolution Inside Intel
	#2 TBB’s First Revolution of Parallelism
	#3 TBB’s Second Revolution of Parallelism
	#4 TBB’s Birds

	Inspiration for TBB
	Relaxed Sequential Execution Model
	Influential Libraries
	Influential Languages
	Influential Pragmas
	Influences of Generic Programming
	Considering Caches
	Considering Costs of Time Slicing
	Further Reading

	Appendix B:
TBB Précis
	Debug and Conditional Coding
	Preview Feature Macros
	Ranges
	Partitioners
	Algorithms
	Algorithm: parallel_do
	Algorithm: parallel_for
	Algorithm: parallel_for_each
	Algorithm: parallel_invoke
	Algorithm: parallel_pipeline
	Algorithm: parallel_reduce and parallel_deterministic_reduce
	Algorithm: parallel_scan
	Algorithm: parallel_sort
	Algorithm: pipeline

	Flow Graph
	Flow Graph: graph class
	Flow Graph: ports and edges
	Flow Graph: nodes
	tbb::flow::tuple vs. std::tuple
	Graph Policy (namespace)

	Memory Allocation
	Containers
	Synchronization
	Thread Local Storage (TLS)
	Timing
	Task Groups: Use of the Task Stealing Scheduler
	Task Scheduler: Fine Control of the Task Stealing Scheduler
	Floating-Point Settings
	Exceptions
	Threads
	Parallel STL

	Glossary
	Index

