

Network-on-Chip

The Next Generation
of System-on-Chip

Integration

Network-on-Chip

The Next Generation
of System-on-Chip

Integration

Santanu Kundu
Santanu Chattopadhyay

Network-on-Chip

The Next Generation
of System-on-Chip

Integration

Santanu Kundu
Santanu Chattopadhyay

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20141014

International Standard Book Number-13: 978-1-4665-6526-5 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a photo-
copy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20141014

International Standard Book Number-13: 978-1-4665-6526-5 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a photo-
copy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

The Open Access version of this book, available at www.taylorfrancis.com, has been made available
under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.

v

Contents

Preface ... xiii
Authors .. xvii

 1. Introduction ...1
1.1 System-on-Chip Integration and Its Challenges1
1.2 SoC to Network-on-Chip: A Paradigm Shift.....................................3
1.3 Research Issues in NoC Development ...5
1.4 Existing NoC Examples ...8
1.5 Summary .. 10
References ... 10

 2. Interconnection Networks in Network-on-Chip 13
2.1 Introduction ... 13
2.2 Network Topologies .. 14

2.2.1 Number of Edges ...25
2.2.2 Average Distance ...25

2.3 Switching Techniques ... 29
2.4 Routing Strategies ...30

2.4.1 Routing-Dependent Deadlock ... 31
2.4.1.1 Deterministic Routing in M × N MoT

Network ...33
2.4.2 Avoidance of Message-Dependent Deadlock 41

2.5 Flow Control Protocol...43
2.6 Quality-of-Service Support ..45
2.7 NI Module ..46
2.8 Summary ..48
References ...48

 3. Architecture Design of Network-on-Chip ..53
3.1 Introduction ...53
3.2 Switching Techniques and Packet Format53
3.3 Asynchronous FIFO Design ..54
3.4 GALS Style of Communication ... 57
3.5 Wormhole Router Architecture Design ... 57

3.5.1 Input Channel Module ..58
3.5.2 Output Channel Module ..58

3.6 VC Router Architecture Design ..63
3.6.1 Input Channel Module ..65
3.6.2 Output Links ..66

vi Contents

3.6.2.1 VC Allocator ..66
3.6.2.2 Switch Allocator ... 69

3.7 Adaptive Router Architecture Design ... 70
3.8 Summary .. 73
References ... 73

 4. Evaluation of Network-on-Chip Architectures75
4.1 Evaluation Methodologies of NoC ...75

4.1.1 Performance Metrics ... 78
4.1.2 Cost Metrics ..80

4.2 Traffic Modeling .. 81
4.3 Selection of Channel Width and Flit Size ..84
4.4 Simulation Results and Analysis of MoT Network

with WH Router ..84
4.4.1 Accepted Traffic versus Offered Load85
4.4.2 Throughput versus Locality Factor85
4.4.3 Average Overall Latency at Different Locality Factors86
4.4.4 Energy Consumption at Different Locality Factors88

4.5 Impact of FIFO Size and Placement in Energy and
Performance of a Network ...90

4.6 Performance and Cost Comparison of MoT with Other NoC
Structures Having WH Router under Self-Similar Traffic 93
4.6.1 Network Area Estimation ... 94
4.6.2 Network Aspect Ratio ... 96
4.6.3 Performance Comparison ... 97

4.6.3.1 Accepted Traffic versus Offered Load................. 97
4.6.3.2 Throughput versus Locality Factor 98
4.6.3.3 Average Overall Latency under

Localized Traffic ..99
4.6.4 Comparison of Energy Consumption 102

4.7 Simulation Results and Analysis of MoT
Network with Virtual Channel Router .. 103
4.7.1 Throughput versus Offered Load 104
4.7.2 Latency versus Offered Load ... 104
4.7.3 Energy Consumption .. 105
4.7.4 Area Required .. 108

4.8 Performance and Cost Comparison of MoT with Other
NoC Structures Having VC Router .. 109
4.8.1 Accepted Traffic versus Offered Load 109
4.8.2 Throughput versus Locality Factor 109
4.8.3 Average Overall Latency under Localized Traffic 110
4.8.4 Energy Consumption .. 111
4.8.5 Area Overhead ... 113

4.9 Limitations of Tree-Based Topologies .. 114

viiContents

4.10 Summary .. 115
References ... 116

 5. Application Mapping on Network-on-Chip ... 119
5.1 Introduction ... 119
5.2 Mapping Problem ... 120
5.3 ILP Formulation .. 123

5.3.1 Other ILP Formulations .. 127
5.4 Constructive Heuristics for Application Mapping 128

5.4.1 Binomial Merging Iteration .. 130
5.4.2 Topology Mapping and Traffic Surface Creation 131
5.4.3 Hardware Cost Optimization .. 132

5.5 Constructive Heuristics with Iterative Improvement 134
5.5.1 Initialization Phase .. 134
5.5.2 Shortest Path Computation ... 135
5.5.3 Iterative Improvement Phase ... 136
5.5.4 Other Constructive Strategies .. 137

5.6 Mapping Using Discrete PSO ... 141
5.6.1 Particle Structure ... 141
5.6.2 Evolution of Generations .. 142
5.6.3 Convergence of DPSO ... 143
5.6.4 Overall PSO Algorithm ... 144
5.6.5 Augmentations to the DPSO .. 144

5.6.5.1 Multiple PSO ... 144
5.6.5.2 Initial Population Generation 145

5.6.6 Other Evolutionary Approaches .. 148
5.7 Summary .. 150
References ... 150

 6. Low-Power Techniques for Network-on-Chip 155
6.1 Introduction ... 155
6.2 Standard Low-Power Methods for NoC Routers 158

6.2.1 Clock Gating ... 158
6.2.2 Gate Level Power Optimization .. 159
6.2.3 Multivoltage Design .. 160

6.2.3.1 Challenges in Multivoltage Design 161
6.2.4 Multi-VT Design .. 164
6.2.5 Power Gating .. 165

6.3 Standard Low-Power Methods for NoC Links 166
6.3.1 Bus Energy Model .. 167
6.3.2 Low-Power Coding .. 168
6.3.3 On-Chip Serialization ... 170
6.3.4 Low-Swing Signaling .. 171

viii Contents

6.4 System-Level Power Reduction ... 172
6.4.1 Dynamic Voltage Scaling .. 172

6.4.1.1 History-Based DVS ... 174
6.4.1.2 Hardware Implementation 178
6.4.1.3 Results and Discussions 179

6.4.2 Dynamic Frequency Scaling .. 179
6.4.2.1 History-Based DFS ... 181
6.4.2.2 DFS Algorithm .. 183
6.4.2.3 Link Controller ... 183
6.4.2.4 Results and Discussions 184

6.4.3 VFI Partitioning ... 185
6.4.4 Runtime Power Gating .. 186

6.5 Summary .. 188
References ... 188

 7. Signal Integrity and Reliability of Network-on-Chip 191
7.1 Introduction ... 191
7.2 Sources of Faults in NoC Fabric .. 193

7.2.1 Permanent Faults ... 194
7.2.2 Faults due to Aging Effects... 194

7.2.2.1 Negative-Bias Temperature Instability 194
7.2.2.2 Hot Carrier Injection .. 195

7.2.3 Transient Faults .. 195
7.2.3.1 Capacitive Crosstalk .. 195
7.2.3.2 Soft Errors .. 199
7.2.3.3 Some Other Sources of Transient Faults 203

7.3 Permanent Fault Controlling Techniques 204
7.4 Transient Fault Controlling Techniques .. 205

7.4.1 Intra-Router Error Control .. 205
7.4.1.1 Soft Error Correction ... 206

7.4.2 Inter-Router Link Error Control .. 210
7.4.2.1 Capacitive Crosstalk Avoidance Techniques210
7.4.2.2 Error Detection and Retransmission 216
7.4.2.3 Error Correction ... 220

7.5 Unified Coding Framework ... 221
7.5.1 Joint CAC and LPC Scheme (CAC + LPC)222
7.5.2 Joint LPC and ECC Scheme (LPC + ECC)223
7.5.3 Joint CAC and ECC Scheme (CAC + ECC) 224
7.5.4 Joint CAC, LPC, and ECC Scheme

(CAC + LPC + ECC) .. 227
7.6 Energy and Reliability Trade-Off in Coding Technique227
7.7 Summary ..230
References ... 231

ixContents

 8. Testing of Network-on- Chip Architectures ..235
8.1 Introduction ...235
8.2 Testing Communication Fabric ...236

8.2.1 Testing NoC Links ... 237
8.2.2 Testing NoC Switches..238
8.2.3 Test Data Transport ... 239
8.2.4 Test Transport Time Minimization—A Graph

Theoretic Formulation ... 241
8.2.4.1 Unicast Test Scheduling 242
8.2.4.2 Multicast Test Scheduling 244

8.3 Testing Cores ... 245
8.3.1 Core Wrapper Design .. 246
8.3.2 ILP Formulation ...250
8.3.3 Heuristic Algorithms ..253
8.3.4 PSO-Based Strategy ...258

8.3.4.1 Particle Structure and Fitness258
8.3.4.2 Evolution of Generations 259

8.4 Summary .. 260
References ... 260

 9. Application-Specific Network-on-Chip Synthesis 263
9.1 Introduction ... 263
9.2 ASNoC Synthesis Problem ..264
9.3 Literature Survey .. 265
9.4 System-Level Floorplanning ... 268

9.4.1 Variables .. 268
9.4.1.1 Independent Variables ... 268
9.4.1.2 Dependent Variables .. 268

9.4.2 Objective Function ... 269
9.4.3 Constraints .. 269
9.4.4 Constraints for Mesh Topology ... 270

9.5 Custom Interconnection Topology and Route Generation 271
9.5.1 Variables .. 272

9.5.1.1 Independent Variables ... 272
9.5.1.2 Derived Variables ... 273

9.5.2 Objective Function ... 273
9.5.3 Constraints .. 274

9.6 ASNoC Synthesis with Flexible Router Placement277
9.6.1 ILP for Flexible Router Placement 278

9.6.1.1 Variables .. 278
9.6.1.2 Objective Function ... 279
9.6.1.3 Constraints .. 279

x Contents

9.6.2 PSO for Flexible Router Placement 281
9.6.2.1 Particle Structure and Fitness Function 282
9.6.2.2 Local and Global Bests 282
9.6.2.3 Evolution of Generation283
9.6.2.4 Swap Operator ..283
9.6.2.5 Swap Sequence ...283

9.7 Summary ..284
References ...284

 10. Reconfigurable Network-on-Chip Design .. 289
10.1 Introduction ... 289
10.2 Literature Review .. 290
10.3 Local Reconfiguration Approach .. 291

10.3.1 Routers ... 292
10.3.2 Multiplexers .. 293
10.3.3 Selection Logic.. 294
10.3.4 Area Overhead ... 294
10.3.5 Design Flow .. 296

10.3.5.1 Construction of CCG 298
10.3.5.2 Mapping of CCG .. 299
10.3.5.3 Configuration Generation 299

10.3.6 ILP-Based Approach .. 299
10.3.6.1 Parameters and Variables300
10.3.6.2 Objective Function ...300
10.3.6.3 Constraints ..300

10.3.7 PSO Formulation .. 301
10.3.7.1 Particle Formulation and Fitness Function ... 302

10.3.8 Iterative Reconfiguration ..303
10.4 Topology Reconfiguration ...304

10.4.1 Modification around Routers ...305
10.4.2 Reconfiguration Architecture ..306

10.4.2.1 Application Mapping 307
10.4.2.2 Core-to-Network Mapping309
10.4.2.3 Topology and Route Generation 310

10.5 Link Reconfiguration .. 311
10.5.1 Estimating Channel Bandwidth Utilization 311

10.6 Summary .. 312
References ... 314

 11. Three-Dimensional Integration of Network-on-Chip 317
11.1 Introduction ... 317
11.2 3D Integration: Pros and Cons .. 318

11.2.1 Opportunities of 3D Integration 319
11.2.2 Challenges of 3D Integration ... 321

xiContents

11.3 Design and Evaluation of 3D NoC Architecture 323
11.3.1 3D Mesh-of-Tree Topology .. 326

11.3.1.1 Number of Directed Edges 326
11.3.1.2 Average Distance ... 327

11.3.2 Performance and Cost Evaluation 331
11.3.2.1 Network Area Estimation336
11.3.2.2 Network Aspect Ratio 339

11.3.3 Simulation Results with Self-Similar Traffic340
11.3.3.1 Accepted Traffic versus Offered Load340
11.3.3.2 Throughput versus Locality Factor 341
11.3.3.3 Average Overall Latency under

Localized Traffic ...342
11.3.3.4 Energy Consumption345

11.3.4 Simulation Results with Application-Specific Traffic 349
11.4 Summary ..350
References ... 351

 12. Conclusions and Future Trends ...353
12.1 Conclusions ..353
12.2 Future Trends ..354

12.2.1 Photonic NoC ...354
12.2.2 Wireless NoC ..354

12.3 Comparison between Alternatives ... 355
References ... 357

Index ... 359

xiii

Preface

System-on-chip (SoC) is a paradigm for designing today’s integrated circuit
(IC) chips that put an entire system onto a single silicon floor (instead of
printed circuit boards containing a number of chips accomplishing the sys-
tem task). With the increasing number of cores integrated on such a chip,
on-chip communication efficiency has become one of the key factors in
determining the overall system performance and cost. The communication
medium used in most of the modern SoCs is a shared global bus. In spite of
its fairly simple structure, extensibility, and low area cost, at the system level,
it can be used for only up to tens of cores on a single chip. This restriction is
mainly due to the following reasons: nonscalable wire delay with technology
shrinking, nonscalable system performance with number of cores attached,
decrease in operating frequency with each additional core attached, high
power consumption in long wires, and so on. In many-core-based SoCs, the
major challenge that designers face today is to come up with a scalable, reus-
able, and high-performance communication backbone.

Network-on-chip (NoC) is an emerging alternative that overcomes the
above-mentioned bottlenecks for integrating a large number of cores on a
single SoC. NoC is a specific flavor of interconnection networks where the
cores communicate with each other using a router-based packet-switched
network. Interconnection networks have been studied for more than the past
two decades and a solid foundation of design techniques has been reported
in the literature. NoC is today becoming an emerging research and develop-
ment topic including hardware communication infrastructure design, soft-
ware and operating system services, computer aided design (CAD) tools for
NoC synthesis, NoC testing, and so on.

However, two-dimensional (2D) IC design has limited floorplanning
choices with increasing number of cores attached. An attractive solution to
this problem is the three-dimensional (3D) IC technology that stacks mul-
tiple layers of active silicon using special vertical interconnects, known as
through-silicon via (TSV). The introduction of 2D NoC in a 3D IC platform is
a gradual process and is known as 3D NoC. Although a number of 2D NoC
implementations have already been fabricated in industries (e.g., Intel, IBM,
Arteris, Tilera, etc.), research in 3D NoC is still in its infancy and demands
more concentration from academia and industries.

Aim and scope: This book aims to cover the important aspects of NoC
design: communication infrastructure design, communication methodology,
evaluation framework, mapping of applications onto NoC, and so on. Apart
from these, it also proposes to focus on other upcoming NoC issues, such
as low-power NoC design, signal integrity issues, NoC testing, synthesis,
reconfiguration, and 3D NoC design.

xiv Preface

Organization: The book consists of 12 chapters. The contents of various
chapters are as follows:

•	 Chapter 1 presents the evolution of NoC from SoC—its research and
developmental challenges.

•	 Chapter 2 discusses NoC protocols, elaborating flow control, avail-
able network topologies, routing mechanisms, fault tolerance,
 quality-of-service support, and the design of network interfaces.

•	 Chapter 3 presents the router design strategies followed in NoCs.
It elaborates on clocking strategies, first-in first-out (FIFO) design,
globally asynchronous and locally synchronous style of communi-
cation, router architecture design for both single- and virtual chan-
nel wormhole routers, adaptive router design, and so on.

•	 Chapter 4 describes the evaluation mechanism of NoC architec-
tures. After introducing the performance and cost metrics, it pres-
ents a detailed discussion on traffic modeling, simulator design, and
performance evaluation and comparison between different NoC
structures.

•	 Chapter 5 presents the application mapping strategies followed in
NoCs. Given an application task graph, several mapping strategies
have been developed to associate the intellectual properties (IPs)
carrying out these tasks with the routers. The chapter enumerates
various strategies such as integer linear programming, constructive
and iterative heuristics, and meta-search techniques for the mapping
problem.

•	 Chapter 6 reports on low-power design techniques specifically
followed in NoCs. These include various low-power approaches
adopted for NoC design, for example, low-power encoding, on-chip
serialization, low-swing signaling, static voltage scaling, dynamic
voltage scaling, dynamic frequency scaling, voltage–frequency
island partitioning, clock gating, and so on. This chapter also
includes energy–performance trade-offs.

•	 Chapter 7 discusses on the signal integrity and reliability issues of
NoC. As technology shrinks toward ultra-deep submicron level,
crosstalk, electromagnetic interference, synchronization failures,
and soft errors are the most important factors affecting the system
reliability. This chapter surveys different protection techniques that
have been adopted for NoC design until now. It also focuses on
energy–reliability trade-offs.

•	 Chapter 8 presents the details of NoC testing strategies reported so
far. NoC testing can be broadly classified into three subproblems:
testing the IP cores, testing the routers, and testing the links. It has a
detailed discussion on each of the three issues.

xvPreface

•	 Chapter 9 discusses the problem of synthesizing application-specific
NoCs. The NoC synthesis problem addresses the issue of evolving
the best possible NoC topology for a given application task graph. It
includes the issues such as topology generation, router placement,
and scheduling algorithm development on the designed topology.

•	 Chapter 10 deals with reconfigurable NoC design issues. The sub-
topics include using field programmable gate array (FPGA) for NoC
reconfiguration, designing a router architecture that aids in dynamic
change of interconnection pattern between the routers, reconfigu-
rable link design, and revisiting the application mapping problem
from the reconfiguration viewpoint.

•	 Chapter 11 highlights the limited floorplanning choices of 2D NoC
and also focuses on 3D NoC design, which is the amalgamation of
2D NoC and 3D IC. In 3D IC, multiple layers of active silicon are
stacked using special vertical interconnects, known as through-silicon
via. The actual benefit of 3D IC relies on the fact that the relatively
long wires (approximately in millimeters) of 2D IC can be replaced
by these TSVs whose lengths are about tens of microns. This chapter
explores the design space of integrating multiple cores onto different
silicon layers focusing on the performance and cost metrics.

•	 Finally, Chapter 12 presents the conclusions and enumerates the
directions for future research and development in the field of NoC.

Santanu Kundu
LSI India Research and Development Pvt. Ltd.

(An Avago Technologies Company)

Santanu Chattopadhyay
Indian Institute of Technology, Kharagpur

xvii

Authors

Santanu Kundu received his BTech degree in instrumentation engineering
from Vidyasagar University, Medinipur, West Bengal, India, in 2002.
Thereafter, he served in industry for a couple of years as an electronics
engineer and returned to academia for pursuing higher studies in 2004. He
received his MTech in instrumentation and electronics engineering from
Jadavpur University, Kolkata, West Bengal, India, in 2006. Immediately after
that he joined the electronics and electrical communication engineering
department at the Indian Institute of Technology, Kharagpur, West Bengal,
India, for pursuing a PhD with specialization in microelectronics and very
large scale integration (VLSI) design. He received his PhD degree in 2011.
Currently he is working as a system-on-chip (SoC) senior design engineer at
LSI India R&D Pvt. Ltd., Bangalore, Karnataka, India. His research interests
include network-on-chip architecture design in 2D and 3D environments,
performance and cost evaluation, signal integrity in nanometer regime,
fault-tolerant schemes, and power–performance–reliability trade-off.

Santanu Chattopadhyay received his BE in computer science and tech-
nology from Calcutta University (BE College), Kolkata, West Bengal, in 1990.
In 1992 and 1996, he received his MTech in computer and information
 technology and PhD in computer science and engineering, respectively, both
from the Indian Institute of Technology (IIT), Kharagpur, West Bengal, India.
Before joining the IIT, Kharagpur, he was a faculty member at BE College,
Howrah, West Bengal, India, and the IIT, Guwahati, Assam, India. He is cur-
rently a professor in the electronics and electrical communication engineer-
ing department at the IIT, Kharagpur. His research interests include CAD
tools for low-power circuit design and test, system-on-chip testing, and
network-on-chip design and test. He has more than hundred publications
in refereed international journals and conferences. He is the coauthor of the
book Additive Cellular Automata—Theory and Applications published by the
IEEE Computer Society Press in 1997. He has also written textbooks such as
Compiler Design, System Software, and Embedded System Design, all published
by PHI Learning, New Delhi, India. He is a member of the editorial board of
the journal IET Circuits, Devices and Systems.

1

1
Introduction

1.1 System-on-Chip Integration and Its Challenges

Continuous reduction in time to market, required by the multimedia and
consumer electronics commodities, makes full-custom design inappro-
priate. It has led to the design based on reuse of intellectual property (IP)
cores. With the growing complexity in consumer-embedded products, a
single-chip implementation integrating numerous IP cores performing vari-
ous functions and possibly operating at different clock frequencies is now
a well-established one. Such an implementation is conveniently known as
system-on-chip (SoC). Depending on application domains and versatility, SoC
can be classified into two categories: (1) general-purpose multiprocessor SoC
(MPSoC) and (2) application-specific SoC.

Improving the performance and efficiency of a traditional large unipro-
cessor architecture is no longer achievable, thus enhancing the demand
for parallel processing. This, in turn, has resulted in a revolution in micro-
processor architecture—chip multiprocessing (CMP) system. For boosting
up the performance of CMP-based systems, researchers have adopted SoC
platform to build a general-purpose MPSoC for supporting a wide range of
applications. This type of SoC is categorized by having a homogeneous set
of processing elements and storage arrays. Application-specific SoC, as the
name suggests, is dedicated to a specific application. This type of SoC, in
many cases, contains heterogeneous processing elements (e.g., processors,
controllers, and digital signal processors) and a number of domain-specific
hardware accelerators. This heterogeneity may lead to a specific traffic pat-
tern requirement. Hence, a prior knowledge of traffic pattern is required
when the system is designed.

Shared medium arbitrated bus is the commonly used communication back-
bone in modern SoCs. Although this architecture has the advantages of sim-
ple topology, extensibility, and low area cost, a shared bus allows only one
communication at a time that may block all other buses in the hierarchy. Thus,
bus-based SoC does not scale the system performance with the number of
cores attached. Its bandwidth is also shared by all the cores (Grecu et al. 2004).

2 Network-on-Chip

Usage of segmented bus architecture where a shared bus is segmented to
multiple buses using bridges also suffers from the same problem of band-
width sharing. There is also a problem of distributing a synchronous clock
signal over the whole chip. In deep submicron (DSM) technologies, accord-
ing to the International Technology Roadmap for Semiconductors (ITRS)
report (ITRS 2001), the delay of local wires and logic gates reduces with
every process generation, whereas global wire delay increases exponen-
tially, or at best linearly, by inserting repeaters as shown in Figure 1.1. For a
relatively long bus, this delay is significant due to its high intrinsic parasitic
resistance and capacitance. As the IP blocks are connected to the bus, they
will add more capacitance to it, which may enhance the delay. In ultra-DSM
processes, it has been observed that long wires mostly fall in the critical
path of the design (Sylvester and Keutzer 2000; Kapur et al. 2002). The long
wires in DSM regime also introduce many signal integrity problems, such
as crosstalk noise, crosstalk delay, IR drop, and electromagnetic interference
(EMI). Moreover, the power consumption of the global wires along with
their drivers and repeaters can be a significant portion of the overall SoC
power budget. Therefore, in DSM technologies, on-chip communication
efficiency has become one of the key factors determining the overall system
performance and cost. The major challenge, SoC researchers face today, is
to come up with structured, scalable, reusable, and high-performance inter-
connection architectures.

250
0.1

10

Re
la

tiv
e

de
la

y

100

180
Process technology node (nm)

130 90 65 45 32

Gate delay
(fan-out of 4)
Local
(scaled)
Global with
repeaters
Global without
repeaters

Figure 1.1
Projected relative delay for local and global wires and for logic gates at different technologies.
(Data from ITRS, International technology roadmap for semiconductors, Technical report,
International Technology Roadmap for Semiconductors, 2001.)

3Introduction

1.2 SoC to Network-on-Chip: A Paradigm Shift

Several research groups from academia and industry have started to find
out the communication backbone of next-generation many-core-based SoCs
for supporting the new inter-core communication demands. Point-to-point
dedicated links can be a good alternative to global bus for a limited number
of cores in a SoC in terms of bandwidth, latency, and power consumption.
However, the number of links needed increases exponentially as the number
of cores increases. Thus, for a large system, it may create a routing problem
(Bjerregaard and Mahadevan 2006). A centralized crossbar switch overcomes
some of the limitations of the buses. Again, connecting large number of cores
to a single switch is not very effective as it is not ultimately scalable and,
thus, is an intermediate solution only (Bjerregaard and Mahadevan 2006).
At the system level, up to a certain number of cores on a single chip, the per-
formance of traditional bus-based SoCs are expected to be satisfactory. But
in a many-core regime, as the number of cores residing on a SoC increases
significantly, it has a profound effect in shifting the focus from computation
to communication.

To overcome the above-mentioned problems, several research groups have
started to investigate systematic platform-based approaches to design the
communication backbone of MPSoC. On-chip interconnection network is
one solution to integrate IPs in complex SoCs. Network-on-chip (NoC) has
emerged as the viable alternative for the design of modular and scalable
communication architectures. The IP cores communicate with each other via
the router-based network. A core is attached to a router through a network
interface (NI) module (Benini and Micheli 2002). The network is used for
packet-switched on-chip communication among routers, whereas the NIs
enable seamless communication between various cores and the network.
The need for global synchronization can thus disappear. NoC supports the
globally asynchronous locally synchronous (GALS) style for multicore communi-
cation in SoCs.

The concept of on-chip network has been borrowed from off-chip intercon-
nection networks where a single router is implemented per chip (Gratz et al.
2006). The bandwidth of off-chip networks is typically lower than that of
on-chip networks. Off-chip networks are constrained by bit width, as each
extra bit incurs one more pin. Also, the off-chip routers need to be connected
by explicit board traces. This affects the overall system latency and aggra-
vates the synchronization problem (Jerger and Peh 2009).

The introduction of on-chip networks in SoC design is an evolution of bus
interconnect technology. Figure 1.2 shows a NoC structure where heteroge-
neous IP cores (CPU, DSP, etc.) communicate with each other via a network
and NI modules. The function of NI is to isolate the computation from com-
munication. The network consists of switches (routers) and point-to-point

4 Network-on-Chip

communication links between them. Routers route the packets from the
source node to the destination node depending on the underlying network
topology and routing strategy. The length of the point-to-point links should
be small to reduce wire delay.

To mitigate the ever increasing design productivity gap and to meet the
time-to-market requirement, reuse of IP cores is widely used in SoC develop-
ment. Besides IP cores, the bus interface protocol can also be reused to inte-
grate the IPs. While reuse is one of the key challenges that IC design houses
try to address, reuse of IPs, NI, and communication infrastructure such as
routers, underlying network, and flow control protocols can be adopted
in the NoC paradigm. Although selection of network topology and router
architecture is purely application specific, reusing these in different appli-
cations will not give the optimal solution. Hence, the reusability is limited
to a particular type of applications. For example, the network topology and
router architecture used for mobile application cannot be same as those of
video processing application. For similar applications, the design and verifi-
cation effort due to reuse will be drastically reduced.

NoC is a specific flavor of interconnection networks and involves several
abstraction layers such as physical, data link, network, and transport layers
(Jantsch and Tenhunen 2003), which are described as follows:

•	 The physical layer determines the number and length of wires con-
necting resources and switches.

•	 The data link layer defines the protocol of communication between
a resource and a switch, and between the two switches. Both the

Switch

Switch

SwitchSwitch

Switch

Switch

NoC

Accel
MPEG

NIDRAM NI

CPU NI

NI

DSPNI
NIDMA

Figure 1.2
The NoC paradigm. (Data from Angiolini, F., NoC Architectures, n.d., http://www-micrel.deis
.unibo.it/MPHS/slidecorso0607/nocsynth.pdf.)

5Introduction

physical and data link layers are dependent on the technology. Thus,
for each new technology, these layers are defined.

•	 The network layer defines how a packet is transmitted over the net-
work from an arbitrary sender to an arbitrary receiver directed by the
receiver’s network address. This layer is also technology dependent.

•	 The transport layer is technology independent. In this layer, message
size can be variable. This layer breaks the message into network
layer packets.

Interconnection networks have been studied for more than the past two
decades and a solid foundation of design techniques has been described in
several text books (Duato et al. 2003; Dally and Towles 2004). With increasing
communication demand, the introduction of interconnection network in SoC
design has paved the route to NoC research almost a decade ago. Mullins
(2009) has listed more than 400 related articles addressing all these aspects.
NoC is today becoming an emerging research topic including hardware com-
munication infrastructure, software and operating system services, CAD
tools for NoC synthesis, and so on.

1.3 Research Issues in NoC Development

The major research problems in NoC design can be broadly classified into
four different dimensions—communication infrastructure, communication
paradigm, evaluation framework, and application mapping—as addressed
in the works of Ogras et al. (2005) and Marculescu et al. (2009). This section
first highlights these issues briefly followed by other associated issues.

The first dimension of research is focused on choice of communication infra-
structure. The communication infrastructure design essentially points to
the design of underlying hardware acting as the backbone for the on-chip
communication network. Selection of network topology, design of router
architecture with proper buffer organization, determining inter-router link
width, clocking strategies, floorplanning, and layout design are the key
design aspects of this dimension. The routers are often connected in certain
topologies whose performance behaviors are well known to the distributed
system design community and suit well for on-chip realizations. Individual
routers are designed using some specific switching techniques, such as
wormhole and virtual cut-through. Flow control is performed via handshak-
ing signals between adjacent routers. The router’s buffer space minimization
and simplified buffer control mechanisms are two important features of the
NoC design, as they directly affect the overall area–power overheads and
network latency. To solve the problem of clock skew, the individual cores

6 Network-on-Chip

and routers are allowed to operate at their own clocks, giving rise to a GALS
scheme. Another important hardware aspect in designing a complete NoC
is the integration of cores with the routers. This needs the design of NI mod-
ules between the two.

The second dimension of research deals with the communication paradigm
on a given NoC platform. Once the infrastructure has been finalized, the next
important task is to design the communication methodology between the
cores via the established network. Routing policies, switching techniques,
congestion control, power and thermal management, and fault tolerance
and reliability issues are the main focus of this set. It, first of all, necessi-
tates the fixing of routing strategy. This is one of the very rich areas of
research in NoC design. It has profound effect on the performance of the
NoC as this chiefly determines the number of hops to be traversed in each
communi cation, congestion, traffic load distribution in different routers,
and so on. The domain is often complicated by the requirement to support
the quality-of-service (QoS). Arbitration of network resources in terms of
FIFOs and channels between the contending simultaneous communica-
tions is essential to ensure freedom from problems such as livelock and
deadlock. Like off-chip communications, on-chip communications also suf-
fer from capacitive crosstalk and electromagnetic radiations, corrupting the
data being transmitted. This makes it essential to adopt some fault-tolerant
schemes in the communication. As all designs are now invariably power
aware, the same is the requirement for NoC as well. It is required to judge
very critically the voltages and frequencies at which individual cores and
routers are made to operate to satisfy the overall performance requirement
with a minimum power budget.

The third dimension of research is paying attention to the design of an
evaluation framework for NoC by applying stochastic and application-specific
traffic. As the MPSoCs contain a large number of cores connected in some
topology via routers and interconnection links, it is mandatory to have a
clear idea about their performance before any investment is made in manu-
facturing the systems. The potential faults and drawbacks, if any, must be
identified at the design phase to avoid huge loss after getting the silicon
chips. Though many theoretical studies exist that can predict the behavior of
such a system, they are mostly for congestion-free environment and under
the assumption that all cores are equally active in producing traffic load to
the network. Both of these assumptions are highly optimistic for any prac-
tical design of moderate size. This necessitates the design of high-quality
NoC simulators to produce a behavior similar to that of the actual NoC. The
simulator should model the network at the granularity of individual hard-
ware blocks and wires in terms of functionality, delay, power, and so on.
In the absence of the actual traffic pattern for applications, often synthetic
traffic is used. This synthetic traffic should mimic the behavior of the actual
core that it corresponds to. With confidence gained after determining the
throughput, latency, and bandwidth of the network through simulation,

7Introduction

the designer can quickly proceed to accurate estimation of area and power
 consumption of the network, as it can be a significant portion of the overall
SoC cost budget.

The fourth dimension of research is related to application mapping. Mapping
of cores with regular and irregular sizes onto an underlying NoC platform
to achieve the required performance for a specific application is the major
issue of this dimension. Performance and energy-aware task scheduling for
heterogeneous NoC is another important problem of this class of research.
Figure 1.3 summarizes the major dimensions of NoC research as discussed
above.

Another important aspect is NoC testing. In any system development
 process, testing occupies a major part of its turnaround time. The problem
is further complicated by the fact that the test volume becomes huge for
a NoC. It is necessary to apply test patterns to all the cores and get their
responses. The test patterns are to be transported from the system inputs
to the core inputs and the responses are to be carried through the network
from the core outputs to the system outputs. This gives rise to test schedule
optimization problems. The NoC infrastructure itself needs to be tested. The
power consumption during test is also a major concern.

While attempting to realize an application, or a set of applications, in
NoC, it is imperative to use a NoC infrastructure most suitable for the
application(s). This gives rise to the issue of application-specific NoC syn-
thesis. Unlike general standard topologies (such as mesh), NoC synthesis
approaches an attempt to derive the topology, routing policy, and so on to
obtain the best possible performance of the NoC implementation. While the
architecture may be synthesized for a single application, for a set of applica-
tions it is quite common to evolve a reconfigurable architecture. Depending
upon the communication needs of various applications running at different
points in time, a reconfigurable architecture can adapt itself to make it suit-
able for the currently running application. The reconfiguration may be in the
form of link reconfiguration, router port reconfiguration, buffer reconfigura-
tion, and so on.

Communication
infrastructure design

Communication
methodology design

NoC architecture design

Evaluation framework
design

Application
mapping

Network topology Routing strategies Interconnection
modeling

Traffic configuration

NoC simulator

Quality of service
Arbitration

Fault-tolerant scheme

Power minimization
techniques

Switching techniques
Flow control protocol

Buffering

Clocking strategies
Network interface

Figure 1.3
Major NoC research dimensions.

8 Network-on-Chip

In the many-core era, integrating large number of cores on a two-dimensional
integrated circuit (2D IC) has limited the floor planning choice. Although the
size of an individual core is reduced up to a certain level due to technology
shrinking, chip sizes may become larger for incorporating huge number of
cores on a single silicon die. After the advent of three-dimensional (3D) IC
(Davis et al. 2005) that stacks multiple layers of active silicon using special ver-
tical interconnects, known as through-silicon vias (TSVs), the above- mentioned
problem of long interconnects can be solved. The actual benefit of 3D IC relies
on the fact that the relatively long wires (approximately in millimeters) of 2D
IC can be replaced by these TSVs whose lengths are about tens of microns.
These shorter TSVs minimize the link delay and link energy consumption sig-
nificantly and at the same time more immunity to noise (Topol et al. 2006; Flic
and Bertozzi 2010). Due to increased connectivity, 3D ICs have the potential for
enhancing system performance, achieving better functionality, and producing
higher packaging density compared to their traditional 2D counterpart (Davis
et al. 2005). Combining these two emerging paradigms, NoC and 3D IC, a new
area of research, 3D NoC, has evolved (Pavlidis and Friedman 2007). In a 3D
NoC, an entire 2D NoC is divided into a number of blocks, and each block is
placed on a separate silicon layer. The 3D NoC research is still in its infancy
and needs attention of more researchers to exploit its full potential for using as
communication backbone for future many-core-based SoCs.

1.4 Existing NoC Examples

Several research groups from academia and industry have implemented NoC
to support MPSoC platform. Intel has introduced 80-core-based Teraflops
research chip (Vangal et al. 2008) where each core is placed inside a tile of
dimension 2 mm × 1.5 mm. The cores are connected in a 2D mesh topology
and support wormhole switching of 32-bit flit size with two virtual channels.
The routers have been implemented in 65-nm technology with five-stage pipe-
lining. The operating frequency of the router has been found to be 4.27 GHz
when implemented on a chip. IBM launched Cyclops-64 (C64), a peta-flop
supercomputer, built on a multicore system-on-a-chip technology. Each C64
chip has 80 custom-designed 64-bit processor cores, which are connected in
a 3D mesh fashion (Zhang et al. 2006). The routers have been implemented
using two virtual channels to support two service classes. It uses both input
and output queuing with seven-stage pipelining and operates at 533 MHz. It
can transfer bidirectional data in parallel. Tilera Inc. has introduced a 64-core-
based TILE64 processor (Wentzlaff et al. 2007). The routers are connected in an
8 × 8 2D mesh fashion and follow XY routing having a 32-bit link width with
no virtual channel. The routers are working at 1 GHz when implemented
on silicon in 90-nm technology having both input and output buffering. For

9Introduction

supporting highly local traffic inside a node, Intel has introduced single-chip
cloud computer (SCC) having 48 cores (SCC 2010). Two cores are connected
with each router of a 6 × 4 2D mesh. The operating frequency of each core is
1 GHz, whereas the routers are targeted to work with 2 GHz in 45-nm technol-
ogy. The routers have been implemented with eight virtual channels and four-
cycle latency. The link width has been taken as 128 bits. ST Microelectronics
have implemented STNoC (Coppola et al. 2004), a spidergon topology-based
NoC that follows a credit-based flow control. Philips have developed a topol-
ogy-independent NoC, Æthereal (Rijpkema et al. 2003), for supporting guar-
anteed throughput (GT) and best effort (BE) services. The router has been
implemented by an input-buffering scheme with first-in first-out (FIFO)
depth of 8 bits and width of 32 bits. It uses a standard credit-based end-to-
end flow control. Both the routers and the NI operate at 500 MHz in 130-nm
technology at the layout level. Arteris is another custom NoC that operates at
750 MHz in 90-nm technology (Arteris 2005). It has a set of configuration and
modeling tools—NoC compiler, NoC verifier, and NoC explorer—for getting
optimized performance and power result for any application.

Kumar et al. (2007) implemented a 36-core shared memory chip multi-
processing (CMP) system in 65-nm technology targeting 3.6 GHz router with
single-cycle latency. The cores are connected in a 6 × 6 2D mesh having a flit size
of 128 bits. The router has 12 unreserved virtual channels and 1 reserved virtual
channel for each of three message classes. It has been implemented with single-
stage pipelining. Lee et al. (2004) implemented a hierarchical star-connected
on-chip network by using a 16:1 serialized link. The routers and cores operate
at 1.6 GHz and 100 MHz, respectively, in 180-nm technology. The authors have
also implemented a custom NoC, Slim-spider (Lee et al. 2006), ensuring low-
power consumption where each router operates at 1.6 GHz in 180-nm technol-
ogy taking a flit size of 8 bits. Adriahantenaina et al. (2003) implemented a fat
tree-based NoC, scalable, programmable, integrated network (SPIN), in 130-nm
technology taking a flit size of 32 bits. The operating frequency of routers is
found to be 200 MHz at the layout level. Another fat tree-based NoC, extended
generalized fat-tree (XGFT) (Kariniemi et al. 2006), uses a flit size of 32 bits and
operates at 400 MHz. Xpipes (Bertozzi et al. 2005), a custom NoC, consists of
soft macros of switches, NIs, and links. It takes a flit width of 32 bits and sup-
ports error detection and retransmission. Kavaldjiev et al. (2006) modified the
traditional virtual channel router and the new router is working at 500 MHz
in 180-nm technology supporting the 2D mesh topology with 16-bit flit size.
Pande et al. (2005) reported that the area overhead of the routers is reason-
ably low compared to that of full SoC. Feero and Pande (2009) designed a 3D
NoC architecture based on 3D mesh, 3D butterfly fat-tree (BFT), and 3D fat tree
topologies having 64 IP cores of size 2.5 mm × 2.5 mm each. They used a flit size
of 32 bits and four virtual channels each of two flits deep. The frequency of each
router is found to be 1.66 GHz in 90-nm technology after synthesis.

Some asynchronous NoCs have also been reported in the literature.
MANGO (Bjerregaard and Sparsoe 2005), a clock-less NoC, uses the 2D mesh

10 Network-on-Chip

topology with a flit size of 32 bits. The NIs synchronize the clocked open core
protocol (OCP) interfaces to the clock-less network in a GALS fashion and the
overall network is running at 795 MHz in 130-nm technology at the regis-
ter transfer level (RTL) level. Silistix Inc. has introduced its industry leading
asynchronous NoC, CHAINworks (Rostislav et al. 2005), for the design and syn-
thesis of complex devices. FAUST (Lattard et al. 2008), another asynchronous
NoC implemented in 130-nm technology for telecom requirements, uses the
2D mesh technology with a flit size of 32 bits. In the work of Salminen et al.
(2008), a list of NoC proposals has been presented in a tabular form that effec-
tively characterizes many of the NoCs that are not covered here.

1.5 Summary

NoC is a very active research field with many practical applications in
industry as it is expected to be an efficient communication backbone of next-
generation many-core-based SoCs. This chapter focuses on the upcoming
technology trends and the needs of NoC in designing many-core-based
SoCs. It also briefly covers different horizons of research in the field of NoC
design. Finally, a set of NoCs that has been designed till date from the indus-
try and academia has also been covered.

The research dimensions of NoC noted in this chapter have been taken up
in subsequent chapters and discussed in detail.

References

Adriahantenaina, A., Charlery, H., Greiner, A., Mortiez, L., and Zeferino, C. A. 2003.
SPIN: A scalable, packet switched, on-chip micro-network. Proceedings of the IEEE
Conference on Design, Automation and Test in Europe, pp. 70–73, Munich, Germany.

Angiolini, F. n.d. NoC architectures. http://www-micrel.deis.unibo.it/MPHS/slide-
corso0607/nocsynth.pdf.

Arteris, 2005. A comparison of network-on-chip and buses. White Paper. http://www
.arteris.com/noc-whitepaper.pdf.

Benini, L. and Micheli, G. D. 2002. Network on chips: A new SoC paradigm. IEEE
Computer, vol. 35, no. 1, pp. 70–78.

Bertozzi, D., Jalabert, A., Murali, S., Tamhankar, R., Stergiou, S., Benini, L., and
Micheli, G. D. 2005. NoC synthesis flow for customized domain specific multi-
processor systems-on-chip. IEEE Transactions on Parallel and Distributed Systems,
vol. 16, no. 2, pp. 113–129.

Bjerregaard, T. and Mahadevan, S. 2006. A survey of research and practices of
 network-on-chip. ACM Computing Surveys, vol. 38, no. 1, pp. 1–51.

11Introduction

Bjerregaard, T. and Sparsoe, J. 2005. A router architecture for connection-oriented
 service guarantees in the MANGO clockless network-on-chip. Proceedings of the
Design, Automation and Test in Europe Conference, pp. 1226–1231, Munich, Germany.

Coppola, M., Locatelli, R., Maruccia, G., Pieralisi, L., and Scandurra, A. 2004. Spidergon:
A novel on-chip communication network. Proceedings of the International Sym-
posium on System on Chip, p. 15, Tampere, Finland.

Dally, W. J. and Towles, B. 2004. Principles and Practices of Interconnection Networks.
Morgan Kaufmann Publishers, San Francisco, CA.

Davis, W. R., Wilson, J., Mick, S., Xu, J., Hua, H., Mineo, C., Sule, A. M., Steer, M., and
Franzon, P. D. 2005. Demystifying 3D ICs: The pros and cons of going vertical.
IEEE Design and Test of Computers, vol. 22, no. 6, pp. 498–510.

Duato, J., Yalamanchili, S., and Ni, L. 2003. Interconnection Networks: An Engineering
Approach. Morgan Kaufmann Publishers, San Francisco, CA.

Feero, B. S. and Pande, P. P. 2009. Networks-on-chip in a three dimensional environ-
ment: A performance evaluation. IEEE Transactions on Computers, vol. 58, no. 1,
pp. 32–45.

Flic, J. and Bertozzi, D. 2010. Designing Network On-Chip Architectures in the Nanoscale
Era. Chapman & Hall/CRC Computational Science, Boca Raton, FL.

Gratz, P., Changkyu, K., McDonald, R., Keckler, S. W., and Burger, D. 2006. Imple-
mentation and evaluation of on-chip network architectures. Proceedings of the
IEEE International Conference on Computer Design, pp. 477–484, San Jose, CA.

Grecu, C., Pande, P. P., Ivanov, A., and Saleh, R. 2004. Structured interconnect archi-
tecture: A solution for the non-scalability of bus-based SoCs. Proceedings of the
ACM Great Lakes Symposium on VLSI, pp. 192–195, Boston, MA.

ITRS. 2001. International technology roadmap for semiconductors. Technical report,
International Technology Roadmap for Semiconductors.

Jantsch, A. and Tenhunen, H. 2003. Networks on Chip. Kluwer Academic Publishers,
Boston, MA.

Jerger, N. E. and Peh, L. S. 2009. On-Chip Networks (Synthesis Lectures on Computer
Architectures). Morgan & Claypool Publishers, San Rafael, CA.

Kapur, P., Chandra, G., McVittie, J. P., and Saraswat, K. C. 2002. Technology and reli-
ability constrained future copper interconnects—Part II: Performance implica-
tions. IEEE Transactions on Electron Devices, vol. 49, no. 4, pp. 598–604.

Kariniemi, H. 2006. On-line reconfigurable extended generalized fat tree network-
on-chip for multiprocessor system-on-chip circuits. PhD dissertation, Tampere
University of Technology, Finland.

Kavaldjiev, N., Smit, G. J. M., Jansen, P. G., and Wolkotte, P. T. 2006. A virtual channel
network-on-chip for GT and BE traffic. Proceedings of the IEEE Computer Society
Annual Symposium on Emerging VLSI Technologies and Architectures, Karlsruhe,
Germany.

Kumar, A., Kundu, P., Singh, A. P., Peh, L. S., and Jha, N. K. 2007. A 4.6Tbits/s
3.6GHz single-cycle NoC router with a novel switch allocator in 65nm CMOS.
Proceedings of the IEEE International Conference on Computer Design, pp. 63–70,
Lake Tahoe, CA.

Lattard, D., Beigne, E., Clermidy, F., Durand, Y., Lemaire, R., Vivet, P., and Berens, F.
2008. A reconfigurable baseband platform based on an asynchronous network-
on-chip. IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp. 223–235.

Lee, K., Lee, S. J., Kim, S. E., Chol, H. M., Kim, D., Kim, S., Lee, M. W., and Yoo, H. J.
2004. A 51mW 1.6GHz on-chip network for low-power heterogeneous SoC

12 Network-on-Chip

platform. Proceedings of the IEEE International Solid-State Circuits Conference, San
Francisco, CA.

Lee, K., Lee, S. J., and Yoo, H. J. 2006. Low-power network-on-chip for high-
performance SoC design. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 14, no. 2, pp. 148–160.

Marculescu, R., Ogras, U. Y., Peh, L. S., Jerger, N. E., and Hoskote, Y. 2009. Outstanding
research problems in NoC design: Systems, microarchitecture, and circuit per-
spectives. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 1, pp. 3–21.

Mullins, R. D. 2009. On-chip network bibliography. http://www.cl.cam.ac.uk/~rdm34
/onChipNetBib/onChipNetwork.pdf.

Ogras, U. Y., Hu, J., and Marculescu, R. 2005. Key research problems in NoC design:
A holistic perspective. Proceedings of the IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis, pp. 69–74, Jersey City, NJ.

Pande, P. P., Grecu, C., Jones, M., Ivanov, A., and Saleh, R. 2005. Performance eval-
uation and design trade-offs for MP-SOC interconnect architectures. IEEE
Transactions on Computers, vol. 54, no. 8, pp. 1025–1040.

Pavlidis, V. F. and Friedman, E. G. 2007. 3-D Topologies for networks-on-chip. IEEE
Transactions on VLSI Systems, vol. 15, no. 10, pp. 1081–1090.

Rijpkema, E., Goossens, K. G. W., and Radulescu, A. 2003. Trade offs in the design
of a router with both guaranteed and best-effort services for network on chip
(extended version). IEE Proceedings of the Computers and Digital Techniques, vol. 150,
no. 5, pp. 294–302, Munich, Germany.

Rostislav, D., Vishnyakov, V., Friedman, E., and Ginosar, R. 2005. An asynchronous router
for multiple service levels networks on chip. Proceedings of the IEEE International
Symposium on Asynchronous Circuits and Systems, pp. 44–53, New York.

Salminen, E., Kulmala, A., and Hamalainen, T. D. 2008. Survey of network-on-chip
proposals. White Paper, © OCP-IP ns2.ocpip-server.com/uploads/documents/
OCP-IP_Survey_of_NoC_Proposals_White_Paper_April_2008.pdf.

SCC. 2010. Single-chip cloud computer. http://techresearch.intel.com/UserFiles/en-us
/File/SCC_Sympossium_Mar162010_GML_final.pdf.

Sylvester, D. and Keutzer, K. 2000. A global wiring paradigm for deep submicron
design. IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems, vol. 19, no. 2, pp. 242–252.

Topol, A. W., Tulipe, D. C. L., Shi, L., Frank, D. J., Bernstein, K., Steen, S. E., Kumar,
A., Singco, G. U., Young, A. M., Guarini, K. W., and Ieong, M. 2006. Three-
dimensional integrated circuits. IBM Journal of Research and Development, vol. 50,
nos. 4/5, p. 491.

Vangal, S. R., Howard, J., Ruhl, G., Dighe, S., Wilson, H., Tschanz, J., Finan, D., Singh, A.,
Jacob, T., Jain, S., Erraguntla, V., Roberts, C., Hoskote, Y., Borkar, N., and Borkar,
S. 2008. An 80-tile sub-100-W TeraFLOPS processor in 65-nm CMOS. IEEE
Journal of Solid-State Circuits, vol. 43, no. 1, pp. 29–41.

Wentzlaff, D., Griffin, P., Hoffmann, H., Bao, L., Edwards, B., Ramey, C., Mattina, M.,
Miao, C. C., Brown, J. F., and Agarwal, A. 2007. On-chip interconnection archi-
tecture of the TILE processor. IEEE Micro, vol. 27, no. 5, pp. 15–31.

Zhang, Y. P., Jeong, T., Chen, F., and Wu, H. 2006. A study of the on-chip interconnec-
tion network for the IBM Cyclops64 multi-core architecture. Proceedings of the
IEEE International Parallel and Distributed Symposium, Rhode Island.

13

2
Interconnection Networks
in Network-on-Chip

2.1 Introduction

In most modern multiprocessor system-on-chip (MPSoC) architectures,
processors and memories are combined in an integrated node. With this
arrangement, each processor can access its local memory without using the
network. Interconnection networks are also used to connect I/O devices such
as disk drives and displays as shown in Figure 2.1. To meet the performance
requirement of a specific application, network designer must work within
technology constraints to implement the topology, routing, and flow control
mechanisms of the network.

In a network topology, the nodes are connected in a different fashion such as
mesh and tree. Once a topology has been chosen, routing determines the path
through which packets will traverse to the destination. If there are multiple

Processor
+ cache

Memory I/O

Processor
+ cache

Memory I/O

Processor
+ cache

Memory I/O

I/OI/OI/OI/O

Processor
+ cache

Memory I/O

Processor
+ cache

Memory

Processor
+ cache

Memory

Processor
+ cache

Memory

Processor
+ cache

Memory

Interconnection network

Figure 2.1
Interconnection network.

14 Network-on-Chip

paths exist from source to destination, a good routing mechanism selects a
path through which the number of hops will be minimized. Another impor-
tant aspect in routing is the load balancing. If a particular path is overutilized
while another sits idle, known as load imbalance, the total bandwidth of mes-
sages being delivered by the network is reduced. Flow control, however, man-
ages the allocation of resources to packets as they progress along their route.
A good flow control mechanism forwards packets with minimum delay and
is also capable of handling faults in communication. Each of these aspects has
been described in detail in the subsequent sections as follows.

Section 2.2 focuses on the basics of network topology, the parameters to con-
sider while selecting a topology, and also the merits and demerits of selecting
a topology in network-on-chip (NoC) paradigm. Section 2.3 depicts different
switching techniques applicable to NoC. Section 2.4 describes the routing
strategies of NoC. It shows how a deadlock can occur in a network and also
the deadlock avoidance techniques. Section 2.5 and Section 2.6 discusses the
flow control technique and the quality of service, respectively. Section 2.7
describes the design of network interface module, whereas Section 2.8 sum-
marizes the chapter.

2.2 Network Topologies

Selecting a network topology is the most important step of NoC design as it
deals with the wire length, the node degree, the routing strategies, and so on.
The interconnection architectures having smaller diameter, lower average
distance, smaller node degree, more number of links, and larger bisection
width are preferable (Dally and Towles 2004). A network diameter is defined
as the maximum shortest distance (in terms of the number of hops) between
any pair of nodes in a network graph, whereas an average distance is the
average of the distances (hop count) between all pairs of nodes in a network
graph. A large diameter signifies that packets have to cross more number of
hops to reach their farthest destinations, whereas a large average distance
denotes the higher average overall latency. A bisection width is defined as
the minimum number of wires to be removed to bisect the network. A larger
bisection width enables faster information exchange. A node degree can be
defined as the number of channels connecting the node to its neighbors.
Lower the number of node degree is easier to build the network. The number
of links is another important parameter for choosing any topology. A topol-
ogy with large number of links can support high bandwidth.

In the NoC paradigm, researchers have come up with a number of intercon-
nection architectures with their pros and cons. The mesh architecture having
a single core connected with each router is the most common interconnec-
tion topology. A mesh-based interconnection architecture called Chip-Level

15Interconnection Networks in Network-on-Chip

Integration of Communicating Heterogeneous Elements (CLICHÉ) was proposed
by Kumar et al. (2002). Mesh structures have large bisection width, but with
a drawback of large diameter. Every switch, except those at the corners and
boundaries, is connected to four neighboring switches and one intellectual
property (IP) block as shown in Figure 2.2. A mesh network having M rows
and N columns has the following parameters:

Diameter: (M + N − 2)
Average distance: (M + N)/3
Bisection width: min(M,N)
Number of links: 2 × [M × (N − 1) + N × (M − 1)]
Number of routers required: (M × N)
Node degree: 3 (corner), 4 (boundary), 5 (center)

The torus interconnection architecture has been proposed to solve the large
diameter problem of mesh by connecting the routers at the edges via wrap-
around links (Dally and Towles 2001). In the torus architecture, the difference
with mesh is that the switches at the edges are connected to the switches
at the opposite edges through wraparound channels as shown in Figure 2.3.
A torus network having M rows and N columns has the following parameters:

Diameter: ⌊M/2⌋ + ⌊N/2⌋
Bisection width: 2 × min(M,N)

Figure 2.2
A 4 × 4 2D mesh with single core connected to each router.

16 Network-on-Chip

Number of routers required: (M × N)
Node degree: 5

For a larger network, this wraparound link will be long enough and will
cause excessive delay.

A folded torus solves the problem of excessive delay in the long wraparound
connections of torus by folding it (Dally and Seitz 1986). Figure 2.4 shows a
4 × 4 folded torus network. A folded torus network having M rows and N
columns has the following parameters:

Diameter: ⌊M/2⌋ + ⌊N/2⌋
Bisection width: 2 × min(M,N)
Number of routers required: (M × N)
Node degree: 5

To reduce the average hop count of a mesh structure, a concentrated mesh
(CMESH) topology (Balfour and Dally 2006) has been proposed where four
cores are connected to each router. Thus, the number of routers required

Figure 2.3
A 4 × 4 2D torus with single core connected to each router.

17Interconnection Networks in Network-on-Chip

for implementing the CMESH network is one-fourth of that of a tradi-
tional mesh structure as shown in Figure 2.5. To make the bisection width
same as that of the mesh structure, additional long interconnection links
are attached along the perimeter of the network. The node degree of each
router in the CMESH network is 8, much higher than in the mesh, torus,
and folded structures. A CMESH network having M × N IP blocks has the
following parameters:

Diameter: (M/2 + N/2 − 4)
Bisection width: min [{(M/2 + (()2 12× log N −)}, {N/2 + (()2 12× log M −)}]
Number of routers required: (M × N)/4

Another interesting network is the octagon structure, in which connection
between any two nodes (within an octagon subnetwork of eight nodes)
requires at most two hops (Karim et al. 2002). Each node in this network
is associated with an IP and a switch as shown in Figure 2.6. For embed-
ding more than eight processors, more octagons can be combined together
by using bridge nodes. For a system consisting of more than eight nodes,

Figure 2.4
A 4 × 4 2D folded torus with single core connected to each router.

18 Network-on-Chip

the network is extended to a multidimensional space. A network having N
IP blocks has the following parameters:

Diameter: 2 × ⌈(N/8)⌉
Bisection width: 6 for N ≤ 8 or 6 × (1 + ⌊N/8⌋) for N > 8

Figure 2.5
A 2D concentrated mesh with four cores to each router.

Figure 2.6
A 2D octagon network with single core to each router.

19Interconnection Networks in Network-on-Chip

Number of routers required: 8 for N ≤ 8 or (8 + 7 ⌊N/8⌋) for N > 8
Node degree: 4 (member node), 7 (bridge node)

The concept of octagon network can be extended to any arbitrary even num-
ber of nodes using a spidergon topology (Coppola et al. 2004). However, both
octagon and spidergon may lead to a significant increase in the wiring com-
plexity for large-sized networks. In the spidergon topology, all nodes are
connected to three neighbors and an IP as shown in Figure 2.7. A spidergon
network having N IP blocks has the following parameters:

Diameter: ⌈N/4⌉
Bisection width: N/2 + 2
Number of routers required: N
Node degree: 4

A binary tree architecture has also been proposed for NoC (Jeang et al. 2004).
It has the advantages of having nice recursive structure and desired low diam-
eter but with a drawback of having small bisection width. In the binary tree
architecture, four IPs are connected at the leaf-level node, but none at the others
as shown in Figure 2.8. In particular, tree-based topologies require long inter-
connection links between the routers toward the root of the tree, which increase
the delay and power consumption of links. A binary tree-based network with
N IP blocks (N i= 2 , where i = 2, 3, 4, . . .) has the following parameters:

Diameter: 2 22× (log)N −
Bisection width: 1

Figure 2.7
A 2D spidergon network with single core to each router.

20 Network-on-Chip

Number of routers required: (N/2 − 1)
Node degree: 5 (leaf), 3 (stem), 2 (root)

A fat tree-based generic interconnect template called Scalable, Programmable
Integrated Network (SPIN) has been proposed for on-chip interconnection
(Guerrier and Greiner 2000). Every node has four children and the parent is
replicated four times at any level of the tree as shown in Figure 2.9. The func-
tional IP blocks reside at the leaves and the switches reside at the vertices.
The disadvantages of a fat tree architecture are its large switch size and high
node degree. A fat tree-based network with N IP blocks (N = 2i, where i = 4,
5, 6, . . .) has the following parameters:

Diameter: 2 2 22× ()()/log N −
Bisection width: N/2 when i is even, N/4 when i is odd

Figure 2.8
A 2D binary tree network with four cores to each leaf level router.

Figure 2.9
A 2D SPIN network with four cores to each level router.

21Interconnection Networks in Network-on-Chip

Number of routers required: (/) ()/N N4 22× ()log
Node degree: 8 (non-root node), 4 (root node)

Pande et al. (2003b) proposed a butterfly fat tree (BFT) interconnection archi-
tecture in which four IP cores are placed at each leaf as shown in Figure 2.10.
BFT has the advantages of having large bisection width and low diameter. It
uses lesser number of switches to build large networks. However, the num-
ber of links in BFT based network is lesser than other available topologies,
which leads to more congestion and lesser throughput in a real traffic sce-
nario. A BFT-based network with N IP blocks (N = 2i, where i = 4, 5, 6, . . .) has
the following parameters:

Diameter: 2 2 22()/)× () −log N

Bisection width: N N× (.) log /0 5 2 2 for i is even, (/) (.) log /N N2 0 5 2 2× for i
is odd

Number of routers needed: (/) (.) log /N N2 1 0 5 2 2×

 −
Node degree: 6 (non-root), 4 (root)

A derivative of BFT, extended-BFT interconnection (EFTI) (Hossain et al. 2005),
has been proposed for improving the packet latency and throughput over BFT.
The node degree of EFTI is higher than that of BFT and it has long wraparound
interconnection wires as shown in Figure 2.11. An EFTI-based network with N
IP blocks (N = 4i, where i = 2, 3, 4, . . .) has the following parameters:

Diameter: log2N – 2
Bisection width: 2 0 5 2 2(.) /+ ×N Nlog

Number of routers needed: (/) (.) /N N2 1 0 5 2 2× − log

Node degree: 8 (non-root), 4 (root)

Figure 2.10
A 2D BFT network with four cores to each router.

22 Network-on-Chip

Kundu and Chattopadhyay (2008a, 2008b) proposed a mesh-of-tree (MoT)
interconnection network for NoC. MoT enjoys the advantages of having
smaller diameter and node degree compared to mesh. Compared to BFT, it
has more number of edges and hence reduced congestion. A QUOTE(M × N)
MoT-based network (M and N denoting the number of row trees and column
trees, respectively) has the following parameters:

Number of nodes = 3 × (M × N) − (M + N)
Diameter = 2 22 2log logM N +
Bisection width = min (M, N);
Node degree = 4 (leaf), 3 (stem), 2 (root)
Symmetric and recursive structure

Figure 2.12 shows a 4 × 4 MoT structure, having four row and four column
trees. The row and column trees are formed by the white and black nodes,
respectively, as shown in Figure 2.12a. The leaf level nodes are common to
both the trees. Two cores (shown as white circles in Figure 2.12b) have been
attached to each leaf level node, whereas the stem and root nodes are not

IP

IP

IP IP IP

IP

IP

IPIP

IP IP IP IP

IP

IP IP IP

IP IP

IPIP

IP

IPIPIPIP

IP

IP

IP

IP

IP

IP

IP

IP

IP

IPIP

IP

IP

IP

IP

IP IP IP IP

IP IP

IP IP

IPIPIPIP

IP

IP IP

IP IP IP

IPIPIP

R1

R1

R1 R1 R1

R2
R2

R1

R1 R1R1

R2
R2

R1

R1

R2 R2

R3
R3

R3
R3

R2R2

R1 R1

R1 R1

R1

IP

IP

Figure 2.11
EFTI network.

23Interconnection Networks in Network-on-Chip

having any core attached to them. The simplified 4 × 4 model of MoT graph
is shown in Figure 2.12b in which L, S, and R denote the leaf, stem, and root
level nodes, respectively.

Kim et al. (2007) proposed a flattened butterfly topology for NoC implementa-
tion in which four cores are connected to each router as shown in Figure 2.13.
The routers are oriented in a two-dimensional (2D) grid fashion such that each
of them is connected to all other routers in the same row and also in the same col-
umn by exploiting the nature of express cubes (Dally 1991). Express cube requires
long wires and high connectivity routers. The channels can be increased to the
point that wire delays dominate node delay. Moreover, the number of links
increases quadratically with the number of interconnected nodes. A flattened
butterfly-based network with N IP blocks has the following parameters:

Diameter: 2
Bisection width: N N×()0 5 2 2. /log

Number of routers needed: N/4
Node degree: 10

Another express cube-based topology, multidrop express channels (MECS)
(Grot et al. 2009), eliminates the problem of increasing the number of links of
flattened butterfly quadratically by introducing point-to-multipoint commu-
nication links. But in point-to-multipoint links, every additional node adds
to parasitic capacitance of the links and causes system performance and fre-
quency degradation.

The performance of an on-chip communication network is characterized
by its throughput. It is directly proportional to the number of directed edges
(E) and inversely proportional to the average distance (D) of the network

R

R

R

R R
R

R R

L LS

L LS

L LS

L LS L LS

L LS

L LS

L LS

S

S S

S SS

SS

(a) (b)

Figure 2.12
MoT topology (a) and its simplified graph (b).

24 Network-on-Chip

(Decina et al. 1991). Thus, theoretically, the E/D ratio is a good indicator
for the throughput of a network, without considering contention among
packets. Another important performance metric is latency of the network.
Theoretically, zero-load latency is a widely used parameter to illustrate the
impact of topology in which no contention among packets has been consid-
ered. In wormhole switching, taking equal clock cycle delay of the routers,
zero-load latency is defined as (Dally and Towles 2004)

T Dt t

L
b

zero load r c
p= + + (2.1)

where:
D is the average distance
tr is the delay (in clock cycle) of each router
tc is the link delay (in clock cycle)

The third term of the above equation signifies the serialization delay of the
packet, where Lp is the length of the packet in bits and b is the communication
channel bandwidth. Thus, taking tc and (/)L bp as fixed quantities, the zero-load

Figure 2.13
Flattened BFT interconnection network.

25Interconnection Networks in Network-on-Chip

latency of a network is proportional to the average distance of the network.
Thus, for any topology, knowledge of the number of directed edges (E) and
the average distance (D) are equally important as its diameter and bisection
width. Kundu et al. (2012) presented a general formulation to find both of these
parameters for an M × N MoT structure having two cores connected to each
leaf level node, where each row tree and column tree is a complete binary tree.
This formulation has been presented in Sections 2.2.1 and 2.2.2.

2.2.1 Number of edges

The number of edges in each complete binary tree having k number of leaf
nodes is (2k − 2) (West 2002). In an M × N MoT topology, each row tree and
column tree is a complete binary tree having N and M leaf nodes, respec-
tively. Thus, the number of edges É of an undirected MoT graph can be for-
mulated as follows:

É M N N M MN M N= − + −[] = − +() () ()2 2 2 2 4 2 (2.2)

As in the MoT structure, adjacent routers are connected by two unidirec-
tional opposite edges, the number of directed edges will be

 – ()()E M N MN M NMoT × = = +2 8 4É (2.3)

2.2.2 Average Distance

The average distance of a network is the average of the minimum distances
(in hop count) between all pairs of IP cores. In a complete binary tree having
N number of leaf nodes with two cores connected to each router, the distri-
bution of destination cores from a specific source core is shown in Table 2.1.
Thus, the summation of minimum distances to all the destination cores from

TABLe 2.1

Distribution of Destination Cores from a Specific Core
in a Complete Binary Tree

Minimum Distance Number of Cores

0 20

2 21

4 22

6 23

. . .

. . .

. . .

. . .

. . .

. . .

2 2log N 2 2()log N

26 Network-on-Chip

a specific source core in a complete binary tree having two cores in each leaf
level router can be written as

S N

N

N
b = + + + + + ()×

=

()0 2 2 2 4 2 6 2 2 2

4

0 1 2 3
2

2

2. . . . log

log

log

NN N− −() 4 1

 (2.4)

A ()21×N MoT consists of two row-wise binary trees of depth log2 N and N
column-wise binary trees of depth 1 (which can be written as log2

12 . Each
row tree consists of ()21 × N cores. Thus, the summation of distances of
()21×N cores lying in the second row tree from any specific core of the first
row tree is [() (log)]2 2 2 20 1

2
1× + × ×S Nb . Hence, the summation of minimum

distances to all the destination cores from a specific source core in a ()21×N
MoT can be written as

S N S S NMoT b b2 2 2 2 21 0 1

2
1×() = + × + ×()×

()log (2.5)

In the same way, a ()22 ×N MoT can be split into two ()21×N MoTs (as shown
in Figure 2.14) where each ()21×N MoT consists of 21 row-wise binary trees.
The depth of each column tree of ()22 ×N MoT is 2 (which can be writ-
ten as log2

22 . Thus, the summation of distances of ()22 ×N cores lying
in the second ()21×N MoT (shown as dotted box in the figure) from any
specific core of the first ()21×N MoT (shown as firm box in the figure) is

S

S

S S S

R R R R

S S S

S

S

S

S S

R

R

R

R

S

L L L L

L

LLL

L L

L

L

L L

L L

S

S

Figure 2.14
Splitting of a ()2 22 2× MoT into two ()2 21 2× MoTs.

27Interconnection Networks in Network-on-Chip

[() (log)]2 2 2 21 2
2

2× + × ×S Nb . The following equation shows the summation
of minimum distances to all the destination cores from a specific source core
in a ()22 ×N MoT:

S N S N S NMoT MoT b2 2 2 2 2 22 1 1 2

2
2×() = ×() + × + × ×

()log (2.6)

Similarly, Equations 2.7 and 2.8 show the summation of minimum distances
to all the destination cores from a specific source core in ()23 ×N and ()24 ×N
MoTs, respectively:

S N S N S NbMoT MoT2 2 2 2 2 23 2 2 3

2
3×() = ×() + × + ×

()log (2.7)

S N S N S NbMoT MoT2 2 2 2 2 24 3 3 4

2
4×() = ×() + × + ×

()log (2.8)

In general, a ()log2 2 M N× MoT can be split into two [](log)2 2 1M N− × MoTs where
each [](log)2 2 1M N− × MoT consists of 2 2 1(log)M − row-wise binary trees. The
depth of each column tree of the ()log2 2 M N× MoT is log ()log

2 2 2 M . Thus, the
summation of minimum distances of ()log2 2 M N× cores lying in the second
[](log)2 2 1M N− × MoT from any specific core of the first [](log)2 2 1M N− × MoT is
[()] log ()[](log) log log2 2 2 22 2 21

2
M

b
M MS N− × × ×+ . For a ()log2 2 M N× MoT, the sum-

mation of minimum distances to all the destination cores from a specific
source core can be written as

S N S N

S

M M

M M

MoT MoT

b

2 2

2 2

2 2

2 2

1

1

log (log)

log log

×() = × +

× + ×

−

()− NN M()×

{ }()2 22

2log log

 (2.9)

After simplification, the above equation becomes

S N S M N MN MN MN M NM

MoT MoT2 4 8 42
2

log () log () ()×()= × = × − + + (2.10)

It is noticeable that due to the symmetrical structure of MoT topology, the
summation of minimum distances to all the destination cores from any
source core is always the same. Hence, the average distance of M × N MoT
network connecting C number of cores can be written as

D M N

MN MN MN M N
C

MoT ×() =
× − + +

−
log ()()4 8 4

1
2 (2.11)

In general, for an M × (C/2M) MoT network (where M is the number of row
trees and C is the total number of cores attached) having two cores con-
nected to each leaf node, the number of directed edges (Equation 2.4) and the
average distance (Equation 2.11), respectively, can be written as

28 Network-on-Chip

 E M
C
M

M
C
M

M
C
M

MoT ×

 = ×

− +

2

8
2

4
2

D M
C
M

M C M M C M

M C M
MoT ×

 =

× × × () −

×

2

4 2 2

8 2

2/ log /

/ + + ()

−

4 2

1

M C M

C

/

()

Theoretically, E/D is a good indicator for the throughput of a network, with-
out considering contention among packets (Decina et al. 1991). It can be
shown that the value of ()E DMoT MoT reaches its maximum and DMoT reaches
its minimum when the condition M = ⌈C/2M⌉ holds. This implies that the
MoT network will show maximum throughput and minimum latency in a
congestion-free environment when the number of row trees and that of col-
umn trees are same.

Similarly, for an M = ⌈C/M⌉ mesh network (where M is the number of
nodes in each row and C is the total number of cores attached in the net-
work), the average distance (D) and the number of directed edges (E), respec-
tively, can be written as follows (Pavlidis and Friedman 2007):

D

M C M
=

+ ()
3

 (2.12)

E M

C
M

C
M

M= × ×

−

 +

× −()

2 1 1 (2.13)

E
D

C
M C M

 = ×

+
−

2

6
3 (2.14)

It can be shown that for a mesh network having a single core connected
to each router, the value of (E/D) reaches its maximum and the value of D
reaches its minimum when the condition M = ⌈C/M⌉ holds. This signifies
that a square mesh network with an equal number of row and column trees
is expected to show the best performance. The performance will degrade as
the network becomes more and more rectangular in nature. Thus, to connect
2n cores, where n is odd, a mesh network that connects a single core to each
router may not be the ideal choice to the NoC designers due to its rectangular
shape. This statement is also true for a mesh network connecting two cores
to each router for 2n cores, where n is even.

Pande et al. (2005) compared a set of network topologies with 256 cores
in terms of throughput, latency, energy consumption, and area overhead.
They have reported that SPIN and octagon networks have very high

29Interconnection Networks in Network-on-Chip

throughput, but their energy consumption and silicon area overheads are
much higher than both mesh and BFT networks. Folded torus shows almost
similar results as mesh does. In deep submicron era where low-power design
is a major goal, for a NoC designer, it is always preferable to choose a topol-
ogy with lower average energy profile. Thus, although the performance of
mesh network is comparatively inferior to that of SPIN- and Octagon-based
networks, it is widely used in the industry (Vangal et al. 2008; Wentzlaff
et al. 2007).

2.3 Switching Techniques

Switching techniques determine when and how internal switches of the
 network are set to connect router inputs to outputs for transferring the mes-
sages. They can be classified as circuit switching and packet switching. In
circuit switching, a physical path from source to destination is reserved prior
to the transmission of the data. The base latency of a circuit-switched mes-
sage is determined by the time to set up a path and the time to transmit the
data. Banerjee et al. (2007) designed a circuit switching-based NoC router.
However, this switching technique is inefficient as it produces excessive
blocking, which in turn affects the network bandwidth and also leads to
excessive communication latency.

In the packet switching technique, each message is partitioned into fixed
length packets and the packets are transmitted without reserving the entire
path. Packet-switched networks can further be classified as store-and-forward
(SAF), virtual cut-through (VCT), and wormhole. In SAF switching, a packet is
completely buffered at each immediate node before it is forwarded to the
next node. Therefore, it needs huge silicon area. The latency in communica-
tion depends on the size of the packet. CLICHÉ is an example of SAF switch-
ing (Kumar et al. 2002). In VCT switching, a packet is forwarded to the next
router as soon as there is enough space to store the packet. VCT switching
overcomes the latency penalty of SAF switching but also requires huge sili-
con area to store the entire packet. In both SAF and VCT switching, message
flow control is performed at packet level. In Proteo network, VCT switching
technique has been adopted (Tortosa et al. 2004).

In wormhole switching, packets are divided into flow control units (flits)
such as header flit, payload flit, and tailer flit. The header flit contains infor-
mation about source and destination addresses. The payload flit consists
of data, whereas the tailer flit contains the end of packet information. The
buffers are expected to store only a few flits. As a result, the buffer space
requirement in the switches can be small, compared to SAF and VCT switch-
ing. Header flit decoding enables the switches to establish the path, whereas
payload and tailer flits simply follow this path in a pipelined fashion. If a

30 Network-on-Chip

certain flit faces a busy channel, subsequent flits also have to wait at their
current locations.

In the absence of contention, VCT and wormhole switching have the same
latency. Otherwise, VCT has lower latency and higher acceptance rate com-
pared to wormhole switching (Banerjee et al. 2004). However, VCT requires
larger silicon area and consumes higher energy due to larger buffer size.
Therefore, a trade-off is necessary between energy consumption, area, and
performance. Wormhole switching is preferable for large packet size, whereas
VCT switching is a better choice for short packets. When wormhole switch-
ing is employed, the header flit gets blocked if the output channel is already
assigned to another packet. This problem is known as head-of-line (HoL)
blocking. This affects the overall system performance. To mitigate this effect,
Dally (1992) proposed the usage of several virtual channels (VCs) within each
physical channel. When a particular packet is blocked, VC allows other pack-
ets to use the link that would otherwise be left idle. Usage of VC improves
the overall performance at the cost of increased energy consumption and
silicon area overhead. However, VC cannot eliminate the HoL blocking prob-
lem completely. Duato et al. (2003) compared the performance of VCT- and
VC-based wormhole switching, both having an equal buffer capacity. It has
been observed that the VC-based wormhole switching achieves much higher
throughput, whereas the average latency in both the cases is almost identical
before saturation. In NoC design, wormhole routers with limited number
of VCs are preferable. The optimum number of VCs per physical channel is
determined by power–performance trade-off of the overall system. Pande
et al. (2005) reported that the optimum value of VCs per physical channel is
4, beyond which the throughput increment is marginal, whereas the energy
consumption and area overhead increase. To reduce zero-load latency and
router energy in a VC-based network, Kumar et al. (2007) introduced the
express cube structure that allows packets to virtually bypass the intermedi-
ate routers along their path in a completely nonspeculative fashion.

2.4 Routing Strategies

Routing strategies determine the traversal path of a packet from the source
to the destination. Depending on the number of destinations of a single
packet, routing algorithm can be classified as unicast and multicast. In unicast
routing, each packet has a single destination, whereas in multicast routing, a
single packet has multiple destinations. For on-chip communication, unicast
routing seems to be a practical approach due to the presence of point-to-point
communication links between various components inside a chip (Agarwal
et al. 2009). Routing techniques can be further classified as source and distrib-
uted based on the position at which routing decision takes place. In source

31Interconnection Networks in Network-on-Chip

routing, precomputed routing table is stored in the network interface (NI).
Æthereal uses source routing (Goossens et al. 2005). In distributed routing,
each packet carries the source and destination addresses. The routing deci-
sion is implemented in each router either by a routing table or by executing
a finite-state machine. SoCIN is an example of distributed routing (Zeferino
and Susin 2003). Depending on the adaptability, both source and distrib-
uted routing can further be classified as deterministic, oblivious, and adaptive
(Duato et al. 2003). In deterministic (or static) routing, packets always follow
a specific path from source to destination. This assures in-order delivery of
packets. Oblivious routing, however, selects the path randomly or cyclically.
Both deterministic and oblivious routing do not consider the current state
of the network. In adaptive (or dynamic) routing, the routing decisions are
made according to the current state of the network (congestion, available
links, etc.) and alternative paths are chosen dynamically to avoid congested
or faulty regions of the network. Therefore, in-order delivery is not guar-
anteed and reordering of packets at destination NI is a necessity. Adaptive
routing can be classified as progressive and backtracking. Progressive routing
moves the header forward, reserving a new channel at each routing opera-
tion. Backtracking routing allows the header to backtrack as well, releasing
previously reserved channels. Backtracking algorithms are mainly used for
fault-tolerant routing. Both deterministic and adaptive routing can be mini-
mal and non-minimal, based on the number of hops traversed from source to
destination. Delay and power consumption in communication are higher in
non-minimal routing than in minimal routing as it traverses more number
of hops. Adaptive routing that follows a minimal path from source to desti-
nation is further classified as minimal fully adaptive and partially adaptive. The
challenges of any routing scheme are that the routing should be livelock and
deadlock free.

Livelock arises when packets travel around their destination node, but
unable to reach it because the channels to do so are occupied by other pack-
ets. It can only occur in adaptive routing when packets are allowed to fol-
low non-minimal paths. Deadlock occurs when a set of messages is blocked
forever because each message in the set holds one or more resources needed
by another message in the set. There are two ways in which a deadlock can
occur in a network—routing-dependent deadlock and message-dependent
deadlock.

2.4.1 routing-Dependent Deadlock

Depending on the routing information, a deadlock situation will arise if
there exists any cycle in its channel dependency graph (Dally and Seitz 1987).
A channel dependency graph is a directed graph whose vertices are the
channels of the interconnection network, whereas edges show the depen-
dency between any pair of channels. Figure 2.15 shows a scenario of routing-
dependent deadlock in a mesh network. Figure 2.15a depicts that s1, s2, s3,

32 Network-on-Chip

s4, and s5 are the sources of packets, whereas d1, d2, d3, d4, and d5 are their
respective destinations. Packet P1 originated from s1 traversed through the
channels c0–c1–c2 and blocked by the packet P2 originated from s2. Packet
P2 originated from s2 traversed through the channels c3–c4–c5 and blocked
by the packet P3 originated from s3. Packet P3 originated from s3 traversed
through the channels c6–c7–c8 and blocked by the packet P4 originated from
s4. Similarly, the packet P4 originated from s4 traversed through the chan-
nels c9–c10–c11 and blocked by the packet P1 originated from s1. Figure 2.15b
shows the formation of a cycle (c2–c5–c8–c11–c2) in the channel dependency
graph of the above communication. Due to this routing-dependent deadlock,
none of the packet can reach to its destination.

For handling routing-dependent deadlock, any of the two techniques—
deadlock avoidance and deadlock recovery—can be adopted. In order to
avoid routing-dependent deadlock in a network, the sufficient condition is to
show the nonexistence of a cycle in the channel dependency graph.

Dimension-ordered routing is the most simplistic approach to avoid dead-
lock in deterministic routing. In a 2D mesh, this routing is known as XY
routing where a packet is forwarded first in X-dimension until it reaches the
X-coordinate of the destination and then it is forwarded in Y-dimension until
it reaches the destination. Figure 2.16a depicts the scenario and Figure 2.16b
shows its channel dependency graph where no cycle exists, and hence this
routing can avoid deadlock in the network. Like XY routing, YX routing is
also deadlock free.

For SAF and VCT switching, as the buffer has the capacity to store the
entire packet, it is much simpler to avoid deadlock. Deflection routing or
hot potato routing (Greenberg and Hajek 1992) is used for these switching
techniques.

(a) (b)

s1 s2 C0 C1 C2

C3 C4 C5

C6 C7 C8

C9 C10 C11

C12

P1 P1

P1
P2 P2

P3 P3

P4 P4

P4
P5

P2

P3

c3

c5

c8

c11 c12

c7

c6

s3

c4

c2

c0

c1

c9

c10

d2

d3

d5

s4

d4

d1

s5

Figure 2.15
Routing-dependent deadlock in mesh network: (a) packet traversal path; (b) channel depen-
dency graph.

33Interconnection Networks in Network-on-Chip

For ring, torus, and folded torus, Dally and Seitz (1987) proposed a
 deadlock avoidance technique by splitting each physical channel into
a group of VCs. For a ring network, Figure 2.17 shows that the packets at
a node numbered less than their destination node are routed on the firm
channels (C00, C01, and C02), whereas the packets at a node numbered greater
than their destination node are routed on the dotted channels (C11, C12, and
C13). For example, if a packet originated from n3 and destined for n2, it tra-
versed through the following channels: C13–C00–C01.

For routing in BFT, a least common ancestor (LCA) algorithm was proposed
by Pande et al. (2003a). For deadlock free routing in any irregular topology
or faulty regular topology, instead of using VC, up*/down* routing is used
(Schroeder et al. 1991). A deterministic routing in an M × N MoT network
was proposed by Kundu and Chattopadhyay (2008a, 2008b) and presented
here in detail.

2.4.1.1 Deterministic Routing in M × N MoT Network

To propose a routing algorithm for any network, the following steps are
required: (1) addressing of each node, (2) proof of livelock free, and (3) proof
of deadlock free routing.

c0
c0

s1

s4 s3

s2

s5d4d3

d2d5 d1

c1
c1 c16

c16

c5

c5

c4

c4

c2

c2

c17c17 c6

c6

c11

c11

c10

c10

c7

c7

c18

c18 c15

c15

c14

c14

c3

c3

c9

c9

c8

c8

c19

c19

c13c13
c12c12

(a) (b)

Figure 2.16
XY routing in 2D mesh topology (a) and its channel dependency graph (b).

C00 C01 C02

C12n2 n3n1n0
C11

C13

Figure 2.17
Routing-dependent deadlock avoidance in ring network using VC.

34 Network-on-Chip

2.4.1.1.1 Addressing Scheme

The address of each node in an M × N MoT network consists of four fields:
(1) row number (RN), (2) column level (CL), (3) column number (CN), and (4) row
level (RL). For each row tree, RN is fixed; thus, for a 4 × 4 MoT, RNs are 00,
01, 10, and 11. RLs are gradually increased by 1 from leaf level to root level of
the row tree. In a row tree, CL is 00 for all the nodes. CN is assigned taking
parent–child relationship as shown in Figure 2.18. For example, 00–00–10–00
and 00–00–11–00 are the children and 00–00–1X–01 is the row parent where
X denotes “don’t care.” Similarly, for each column tree, CN is fixed. For a
4 × 4 MoT, CNs are 00, 01, 10, and 11. CLs are gradually increased by 1 from
leaf level to root level of each column tree. In a column tree, RL is 00 for all
the nodes and RNs are assigned taking parent–child relationship as shown
in Figure 2.18. For example, 00–00–00–00 and 01–00–00–00 are the children
and 0X–01–00–00 is the column parent where X denotes “don’t care.” A core
has the same RN, CL, CN, and RL similar to its associated router node.
A core has only one additional Core-ID bit. For example, the addresses of
Core1 and Core2 attached to the leaf node 11–00–11–00 are 0–11–00–11–00 and
1–11–00–11–00, respectively.

In the above addressing scheme, Xs (don’t cares) are used in the addresses
of stem and root nodes. As all the nodes have different addresses, the RN and
CN are represented using 4-bit numbers (0 = 01; 1 = 10; X = 11). Therefore, each
node has 12-bit address; for example, node address 10–00–XX–10 becomes
1001–00–1111–10. Therefore, in 4 × 4 MoT, each core has a 13-bit address. The
bit size required for addressing a core in M × N MoT is given below:

Core-ID = 1 bit
Row number = 2 2log M bit
Column level = log log2 2 2()M bit
Column number = 2 2log N bit
Row level = log log2 2 2()N bit

2.4.1.1.2 Routing Algorithm

The routing algorithm follows the deterministic approach. The algorithm
ensures that the packet will reach its destination always through a specified
shortest path. Thus, the proposed network is always livelock free. The fol-
lowing abbreviations have been used to describe the algorithm:

•	 addr (curr) denotes the address of the current node.
•	 addr (dest) denotes the address of the destination node.

Each leaf and stem router executes the same algorithm as proposed below.
In root routers, no routing is performed and routers are replaced by first-in
first-out (FIFOs).

35Interconnection Networks in Network-on-Chip

R
00

00
X

X
10

00
00

00
00

0X
01

00
00

01
00

00
00

00
00

0X
01

00
00

10
00

0X
01

10
00

0X
01

11
00

01
00

11
00

01
00

10
00

00
00

1X
01

01
00

1X
01

00
00

11
00

10
00

10
00

1X
01

10
00

1X
01

11
00

11
00

11
00

11
00

10
00

10
00

1X
01

11
00

1X
01

10
00

11
00

01
00

0X
01

00
00

01
00

0X
01

01
00

01
00

01
00

10
00

00
00

1X
01

00
00

11
00

00
00

10
00

0X
01

11
00

0X
01

10
00

01
00

1X
01

01
00

11
00

01
00

01
00

X
X

10

XX100000

XX101100

XX101000

XX100100

10
00

X
X

10

11
00

X
X

10

L
S

S
S

S

S S S

S
S

S

S

S S S

L
LL

L L L L

L L

L L
LLLL

S SR

R

R
R

R

R R

Fi
g

u
r

e
2.

18
A

dd
re

ss
in

g
of

 a
 4

 ×
 4

 M
oT

 n
et

w
or

k.

36 Network-on-Chip

Algorithm

If (RN of addr (curr) ≠ RN of addr (dest)) // Step1
 Route to Column Parent;
 Else If (CL of addr (curr) ≠ CL of addr (dest)) // Step2
 Route to Column Child having equal RN as addr (dest);
 Else If (CN of addr (curr) ≠ CN of addr (dest)) // Step3
 Route to Row Parent;
 Else If (RL of addr (curr) ≠ RL of addr (dest)) // Step4
 Route to Row Child having equal CN as addr (dest);
 Else If (Destination Core-ID field = 0) // Step5
 Route to Core1;
 Else Route to Core2;

In step 1, a difference in RN of current and destination addresses signifies
that current and destination routers are at different row trees. Therefore,
the packet needs to be routed toward the root of the column tree until RN
of the current router becomes equal to that of the destination router. For
example, if router addresses associated with source and destination cores
are 00–00–00–00 and 11–00–11–00, respectively, the path traversed by the
packet is 00–00–00–00 → 0X–01–00–00 → XX–10–00–00. Therefore, after
step 1, the packet will reach a node whose RN of the current router is the
same as that of the destination router.

In step 2, a difference in CL of current and destination addresses signifies
that the current router is not at the leaf level as all destination routers are.
Therefore, the packet needs to traverse toward the leaf level of the column
tree for which RN is equal to the destination. For the above example, the
path traversed by the packet is XX–10–00–00 → 1X–01–00–00 → 11–00–00–
00. Therefore, after step 2, the packet reaches a node whose RN and CL are
same as those of destination, that is, the packet has arrived at a node which
is on the same row tree as the destination.

In step 3, the difference in CN of current and destination addresses sig-
nifies that current and destination routers are at different column trees.
Therefore, the packet should be routed toward the root of the row tree until
CN of the current router becomes equal to that of the destination router. For
the above example, the path traversed by the packet is 11–00–00–00 → 11–00–
0X–01 → 11–00–XX–10. Therefore, after step 3, the packet will reach a node
whose first three fields are same as destination.

In step 4, a difference in RL of current and destination addresses signifies
that the current router is not at leaf level. Therefore, the packet should traverse
toward the leaf level of the row tree, where CN is same as destination. For the
above example, the path traversed by the packet is 11–00–XX–10 → 11–00–1X–
01 → 11–00–11–00. Therefore, after step 4, the packet reaches a router whose
all four fields are same as destination; in other words, the packet reaches a
router to which the destination core is attached.

37Interconnection Networks in Network-on-Chip

In step 5, based on the Core-ID bit, the packet gets forwarded to the
 destination core. Therefore, the proposed routing algorithm always governs
the packet to reach the destination in a specified path.

2.4.1.1.3 Proof for Shortest Path

Here, a general proof has been given to show that the above algorithm will
always govern the packet to traverse in a shortest path from source to desti-
nation. From the addressing scheme of M×N MoT, the RN and CN fields are
of log2M and log2N bits. According to step 1 of the algorithm, the packet
will first follow that path leading to a node where RN of the current address
is the same as that of the destination address. That is,

if (RN of addr (curr) ≠ RN of addr (dest))
{ for (i = log2M; i > = 1; i––) {
 if (ith bit position of the RN of addr (curr) ≠ ith bit
position of the RN of addr (dest))
 {k = i; break ;} }
Route upwards by k hops in column tree. }

Therefore, the packet will traverse k hops in upward direction through a
column tree and will reach to a node where RN becomes the same as the
destination. However, CL of that node is equal to k. As the cores are attached
only at the leaf level, the CL fields of the destination router are always
zero. According to step 2 of the algorithm, the packet will follow that path
where CL is gradually decreasing to zero, having RN same as destination.
Therefore, the packet will traverse k hops in downward direction through a
column tree. Thus, the packet will traverse a total of 2k hops and will reach a
node having RN and CL fields same as those of destination. Now, according
to step 3 of the algorithm, it will follow that path where CN of the current
address is the same as that of the destination address. Arguing in the same
way as above, the packet will traverse l hops in upward direction and then
in downward direction through a row tree before reaching the destination,
where l is the most significant bit position at which the column numbers of
source and destination differ. Therefore, the packet will traverse a total of
(2k + 2l) hops and will reach a node to which the destination core is attached.
We can consider this situation as if the source and the destination were the
two extreme nodes of a ()2 2k l× MoT. In general, ()2 2k l× MoT has the diam-
eter of (2k + 2l). As the diameter signifies the minimum number of hops to
be traversed between two nodes that are at maximum distance, the rout-
ing algorithm always governs the packet to traverse in a shortest path from
source to destination.

2.4.1.1.4 Avoidance of Routing-Dependent Deadlock

In a multiprocessor on-chip network, communication channels and buffers
constitute the set of permanent reusable resources. The processors that send or

38 Network-on-Chip

receive messages compete for these resources. Deadlock occurs when a set of
messages is blocked forever because each message in the set holds one or more
resources needed by another message in the set. A practical routing algorithm
must be deadlock free. The sufficient condition to avoid deadlock in a network
is that there should not be any cycle in the channel dependency graph.

Here, a general proof has been given to show that the proposed routing algo-
rithm is deadlock free. Two opposite unidirectional links are used between two
adjacent routers as shown in Figure 2.19. All the channels in the M × N MoT
are labeled as shown in the figure (considering M = 4, N = 4) in different steps.
Each channel has a unique label. The labeling scheme is mentioned as follows:

 1. Label those channels in ascending order which are directed from
the leaf levels to the root of the column trees, for example, labels 1–24
as shown in Figure 2.19.

 2. Label those channels in ascending order which are directed from
the root of the column trees to the leaf levels, for example, labels
25–48 as shown in Figure 2.19.

 3. Label those channels in ascending order which are directed from
the leaf levels to the root of the row trees, for example, labels 49–72
as shown in Figure 2.19.

 4. Label those channels in ascending order which are directed from
the root of the row trees to the leaf levels, for example, labels 73–96
as shown in Figure 2.19.

In step 1 of the routing algorithm, if RN of the source address is different
from that of the destination address, the packet will be directed from the
leaf level to the root of the column tree until the RN becomes the same as
destination. Therefore, the packet will traverse from a lower labeled channel
to a higher labeled channel as mentioned in step 1 of the labeling scheme, for
example, labels 1–3 in Figure 2.19.

In step 2, if CL of the current node is different from that of the destination
node, the packet will be directed from the root of the column tree to the leaf
level where RN is same as destination. Therefore, the packet will traverse
from a lower labeled channel to a higher labeled channel as mentioned in
step 2 of the labeling scheme, for example, labels 28–30 in Figure 2.19.

In step 3, if CN of the current node is different from that of the destination
node, the packet will be directed from the leaf level to the root of the row tree
until CN becomes the same as destination. Therefore, the packet will again tra-
verse from a lower labeled channel to a higher labeled channel as mentioned
in step 3 of the labeling scheme, for example, labels 49–51 in Figure 2.19.

In step 4, if RL of the current node is different from that of the destination
node, the packet will be directed from the root of the row tree to the leaf level
where RN is same as destination. Therefore, the packet will traverse from
a lower labeled channel to a higher labeled channel as mentioned in step 4

39Interconnection Networks in Network-on-Chip
51

RR
49

78 50 84
34

36
C

SL

8

56

8257L
976

35
7

54

41
13

74

42
58

L
14

52
L C
S

CR

CR

CR
RS RS

80
79

15 37
85

64
87

66
L

RS
L L

60

40

75 53
47

19 48
81

46 24

22
44

45
23

93 71

72

92
91

RR

12

31
63

61
25

28
3

L L

RS RS

77

30
55 83

C
S

29 2

1

90
88 L L 9469

689662
RS RS

L C
S L

26
4

89 67 95

27
5

10
32

C
S

33
11

6
RRRR

70
39

86
16

38
18

17

C
S

RS
L

65

C
S

43

CR

21
59

20

L C
S L

73

Fi
g

u
r

e
2.

19
L

ab
el

in
g

of
 c

ha
n

ne
ls

 in
 4

 ×
 4

 M
oT

.

40 Network-on-Chip

of the labeling scheme, for example, labels 76–78 in Figure 2.19. Ultimately,
the packet will reach to that node where the destination core is connected.

In step 5, based on the Core-ID bit, the packet will go to the destination core.
After tracing the labels of the channels from source to destination, it can be

observed that the channel labels are always increasing, and thus the channel
dependency graph is acyclic. Therefore, this network is always deadlock free.
The labeling of the channels by applying the above-mentioned scheme in the
2 × 2 MoT and its channel dependency graph has been shown in Figure 2.20. In
the figure, the channel label is always increasing in a particular direction from
start to end and has not formed any cycle. Thus, the 2 × 2 MoT-based network
is deadlock free. Similarly, the channel dependency graph of M × N MoT by
applying the same labeling scheme will be acyclic, and hence deadlock free.

For wormhole switching, Glass and Ni (1992) proposed the turn model to
solve the routing-dependent deadlock in adaptive routing in 2D mesh. For
partially adaptive routing, west-first, north-last, and negative-first turn mod-
els were proposed by Glass and Ni (1994). In the west-first turn model, the
packet first routed toward the west, if necessary, and then adaptively south,
east, and north. The prohibited turns are the two to the west. Similarly, in
the north-last turn model, the packet first routed adaptively toward the west,
south, east, and then north. In the negative-first turn model, the packet is
routed first toward adaptively the west and south, and then adaptively the
east and north. Figure 2.21 depicts the scenarios.

Another deadlock-free turn model for partially adaptive routing, odd–
even turn model, was proposed by Chiu (2000). In the odd-even turn model,
two rules are being followed:

 1. Any packet is not allowed to take an east-north or east-south turn at
any nodes located in an even column.

 2. Any packet is not allowed to take an north-west or south-west turn
at any nodes located in an odd column.

1

(b)

6

5 2

11 15

16 12

9 13

14 10

3

7 4

8

L
9

6 1 14 10
8 3

74

13
L

L
1511

16

5

(a)

2

RR

CRCR

L RR
12

Figure 2.20
Labeling of 2 × 2 MoT (a) and its channel dependency graph (b).

41Interconnection Networks in Network-on-Chip

A VC-based deadlock-free fully and partially adaptive routing in 2D mesh
was proposed by Duato (1993). When restricted to a minimal path, this rout-
ing algorithm is referred to Duato’s protocol. Ascia et al. (2008) proposed a
neighbors-on-path (NoP) congestion-aware selection in 2D mesh and used it in
the odd–even turn model-based adaptive routing. The experimental results
show that the latency of the system gets improved after adopting this selec-
tion policy with nonuniform traffic.

Deadlock recovery, however, is useful when the deadlock situation is rare.
It allows a deadlock to occur, but once the deadlock situation is detected,
it breaks at least one of the cyclic dependencies by using any of the recov-
ery schemes, regressive (abort-and-retry) and progressive (preemptive), to
gracefully recover. Regressive recovery scheme removes a packet from a
dependency cycle by aborting and later reinjecting the packet into the net-
work after some delay. Progressive recovery scheme removes a packet from
a dependency cycle by rerouting it onto a deadlock-free lane.

2.4.2 Avoidance of Message-Dependent Deadlock

On-chip communication, depending on the behavior of the IP modules, can
lead to four types of message dependencies—request–response, response–
request, request–request, and response–response. Message-dependent
deadlocks arise when dependency cycles on the resources (free from routing-
dependent deadlock) exist due to message dependencies between the NoC
and IP cores at the network end points (Song and Pinkston 2003). Figure 2.22
shows the coupling between the reception of request and the generation of
responses, which introduces a dependency between the request and response
buffers in the NI and thus causing deadlock in the network. In the figure, two
master and slave pairs communicate via two shared input-buffered routers.
The two connections between m1 and s1 are drawn with continuous lines
and the connections of m2 and s2 with dashed lines. Responses from s1
enter the network, turn the east, and end up in b2. This buffer is shared by
responses destined for m1 and requests going to s2. From b2, the dependen-
cies continue through the slave s2, and the shared buffer b1, back to s1, clos-
ing the cycle. As a result, a deadlocked situation can occur.

In response–request dependency, the master sends a request, the slave
responds to that request, and then the master reacts on the response from
the slave by sending an additional request. Request–request dependencies

(a) (b) (c)

Figure 2.21
Turn model: (a) west-first; (b) north-last; (c) negative-first.

42 Network-on-Chip

are created when reception of a request on the slave side is coupled to the
 generation of a request on the master side. This occurs when IP modules pro-
cess a certain input that is sent to them by the preceding module and then write
their output to the succeeding module. In such protocols, an initial request
passes through a number of intermediate IPs, generating new requests until
the final destination is reached. Potentially, a response is travelling in the
other direction, creating response–response dependencies on the way back.
Two prominent examples of request–request and response–response proto-
cols are cache coherency protocols and collective communication protocols.

Hansson et al. (2007) proposed four solutions to avoid message-dependent
deadlock—increased buffer sizing, end-to-end flow control, strict order-
ing, and use of virtual circuit. Buffer sizing solves the deadlock problem by
ensuring enough space by oversizing the buffers. This can be implemented
by designing the NIs such that NI buffers are guaranteed to consume all mes-
sages sent to them. While extensively used in parallel computers, this method
is prohibitively expensive in NoCs and is not used in any known architecture.
Instead of adapting the buffer size to the maximum requirements, end-to-end
flow control does the other way around: it assures that no more is ever injected
than what can be consumed. This approach, end-to-end flow control, is used
in the Æthereal (Radulescu et al. 2005) NoC. As illustrated in Figure 2.23, it
removes a dependency edge from the network to the NI.

In strict ordering, deadlock avoidance is performed by introducing logi-
cally independent networks, physical or virtual, for each message type.
A major drawback of the strict ordering is that buffers cannot be shared
between the different message classes, increasing the amount of buffer-
ing required. The partitioning into logical networks leads to inefficient uti-
lization of network resources and increased congestion due to unbalance.

NI

R R

s1

s2m2

m1

b1

b2

Request

Response

Request

Response

Request

Response

Request

Response

NI

NI NI

Figure 2.22
Request–response message-dependent deadlock.

43Interconnection Networks in Network-on-Chip

Having virtual instead of physical networks mitigates the aforementioned
problem as shown in Figure 2.23. However, the router complexity increases
as it must forward messages considering the message type. Virtual circuits
represent the extreme case of strict ordering as every connection has its own
logical network. This way of implementing unconditional delivery is found
in the guaranteed service networks of Æthereal (Radulescu et al. 2005) and
Nostrum (Millberg et al. 2004).

2.5 Flow Control Protocol

Flow control protocol determines how packets traverse through the network and
reach from source to destination. It also supports error control scheme either at
an end-to-end level or at a switch-to-switch level in the presence of transmission
error. For the end-to-end case, a standard flow control protocol is credit based.
In a credit-based flow control, an upstream node keeps count of data transfers.
Available free slots are termed as credits. Once the transmitted data packet is
either consumed in the receiver NI or further transmitted to the core, a credit is
sent back. Æthereal (Radulescu et al. 2005), SPIN (Guerrier and Greiner 2000),
and QoS architecture and design process for network-on-chip (QNOC) (Bolotin
et al. 2004) use the end-to-end credit-based flow control technique.

Murali et al. (2005) reported that the average packet latency is higher in
an end-to-end flow control compared to a switch-to-switch flow control.
The later scheme can further be classified as flit level (ssf) and packet level (ssp).

NI B

AC

R R

s1

s2m2

m1

Request

Response

Request

Response

Request

Response

Request

Response

NI

NI NI

Figure 2.23
Solutions to message-dependent deadlock.

44 Network-on-Chip

In a switch-to-switch flow control, ssp shows more latency than ssf. In NoC,
ssf flow control technique is widely used. Pullini et al. (2005) proposed three
types of relevant switch-to-switch flit-level flow control protocols, namely,
STALL/GO, T-Error, and ACK/NACK.

STALL/GO is a very simple realization of an ON/OFF flow control proto-
col. However, it cannot handle faults. Two wires are used for flow control
between each pair of sender and receiver: one going forward and flagging
data availability, and the other going backward and signaling either a condi-
tion of buffers filled (STALL) or buffers free (GO). When there is an empty
buffer space, a GO signal is activated. Upon the unavailability of buffer
space, a STALL signal is activated. Figure 2.24 depicts the STALL/GO proto-
col implementation for NoC.

The T-Error flow control, however, can be deployed to improve either link
performance or system reliability by catching timing errors. The T-Error pro-
tocol (Figure 2.25) aggressively deals with communication over physical links,
either stretching the distance among repeaters or increasing the operating fre-
quency with respect to a conventional design. As a result, timing errors become
likely on the link. Faults are handled by a repeater architecture leveraging
upon a second delayed clock to resample input data, to detect any inconsis-
tency, and to emit a VALID control signal. If the surrounding logic is to be kept
unchanged, a resynchronization stage must be added between the end of the
link and the receiving switch. This logic handles the offset among the original
and delayed clocks, thus realigning the timing of DATA and VALID wires; this
incurs a one-cycle latency penalty. The corresponding hardware was imple-
mented by Tamhankar et al. (2005). However, T-Error lacks a really thorough
fault handling in a real-time system operating in a noisy environment.

The ACK/NACK flow control protocol (Figure 2.26) is used for detection
and retransmission purposes. While flits are sent on a link, a copy is kept
locally at the sender. When flits are received, either an ACK or a NACK is
sent back. Upon receipt of the ACK, the sender deletes the local copy of
the flit, whereas upon receipt of the NACK, the sender stops transmitting
from its queue and retransmits flits from its local copy starting from the
corrupted one, with a go-back-N policy. The other flits which are on the fly
in that time window will be discarded and resent. If NACKs were only
due to sporadic errors, the impact on performance would be negligible.

S

FLIT

REQ

STALL

R

FLIT

REQ

STALL

FLIT

REQ

STALL

Figure 2.24
STALL/GO protocol implementation.

45Interconnection Networks in Network-on-Chip

This flow control technique is used in XPIPES (Bertozzi and Benini 2004;
Bertozzi et al. 2005).

2.6 Quality-of-Service Support

Quality of service (QoS) is an important aspect of NoC architecture where
instead of maximizing the average performance of a network, attention is given
to a fair allocation policy such that each application gets sufficient resources
to meet its throughput, latency, and bandwidth requirements. NoC traffic falls
into two broad categories: guaranteed throughput (GT) and best effort (BE).

S R

DATA

VALID

STALL

DATA

VALID

STALL

DATA

VALID

STALL

DATA

VALID

RE
SY

N
C

STALL

CK

CKD

DATA D0 D1 D2 D3 D4

V3V2V1V0VALID

Figure 2.25
T-Error protocol implementation.

S

FLIT

REQ

ACK

R

FLIT

REQ

ACK

FLIT

REQ

ACK

Figure 2.26
ACK/NACK protocol implementation.

46 Network-on-Chip

The GT service guarantees both latency and throughput over a finite time
interval and also supports uncorrupted, lossless, and ordered data transfer. BE
scheme, however, forwards packets as soon as possible, but no guarantees are
given for latency and throughput in general. Vellanki et al. (2004) proposed a
mesh-based router architecture for supporting QoS by modifying a traditional
VC-based router design. In this scheme, two out of four VCs are reserved for
supporting GT services. For high GT load, those traffics are allowed to trans-
mit through the BE VCs, but not vice versa. Reservation-based schemes for GT
traffic generally leads to degradation of average performance for BE traffic.
Nostrum (Millberg et al. 2004) ensures bandwidth for guaranteed through-
put traffic by reserving time slots for its transmission on inter-router links. If
no guaranteed throughput traffic is injected into the network, the time slots
are not utilized. Æthereal (Goossens et al. 2005), another mesh-based NoC,
supports guaranteed throughput traffic by utilizing a centralized scheduler
for allocation of link bandwidth. Andreasson and Kumar (2004) proposed a
scheme where BE traffic may use the reserved path when there is no GT traffic
present.

2.7 NI Module

An NI module is used to interface a core with the interconnection network. By
definition, NI module decouples the computation from communication and
performs a protocol conversion between the IP core and the router to which
the core is connected. The Open Core Protocol (OCP) (OCP 2003) is a widely
used interface standard for simplifying the integration task between the IP
cores and the network fabric. Wrapping of IP cores with OCP interface exhibits
a higher reusability and cost-effective plug-and-play-based system implemen-
tation. The NI is generic with respect to the network and performs different
services. There are many works reported in the literature on NI design. This
book has taken the work reported by Singh et al. (2007) as an example. They
showed that the NI architecture can be divided into three parts: (1) generic
core interface (GCI), (2) packet maker (PM), and (3) packet disassembler (PD),
as shown in Figure 2.27. The function of each part has been described below.

 1. GCI: It lies between the network and the core-specific wrapper like
OCP. It abstracts the network communication protocol from the core-
specific wrapper for heterogeneous system implementation. If a new
core is added to the system, the core-specific wrapper views the NI
as a black box.

 2. PM: The core-specific wrapper transmits the message to PM mem-
ory. The PM performs the following tasks at the source core and
maintains data integrity:

47Interconnection Networks in Network-on-Chip

 a. It packetizes the message stored in PM memory and breaks them
into several flits (such as header, payload, tailer, and invalid flits)
before queuing them into asynchronous FIFO having indepen-
dent read and write clocks.

 b. In case of source routing, NI maintains the routing information
in a look-up table.

 c. It inserts redundant bits (parity or cyclic redundancy [CRC]) in
the packet tailer for supporting end-to-end flow control with
proper retransmission mechanism.

 3. PD: It performs the following tasks at the destination core:
 a. It writes the incoming flits from the asynchronous FIFO to the

PD memory.
 b. It decodes the packet header from the PD memory, extracts

the control information required by the core, and passes it
to GCI.

 c. The core wrapper reads the payload and tailer from the PD mem-
ory to obtain the total message. It also performs error detection
for end-to-end flow control.

 d. It ensures in-order delivery of packets, which is extremely impor-
tant for adaptive routing.

Application core

Core-specific wrapper

Generic core interface
Network interface

PM PD

Asynchronous FIFO Asynchronous FIFO

Router

Read module

Header

Write module

PM FIFO

Header

PD FIFO

PM

Memory

PD

Memory

Figure 2.27
The NI architecture.

48 Network-on-Chip

As the routers and IP cores are operated by independent clocks, the asyn-
chronous FIFO in NI performs the synchronization task in clock domain
crossing. Apart from the above services, NI also performs cache coherency
by implementing directory-based protocols (Acacio et al. 2004).

2.8 Summary

This chapter presents different aspects of NoC design. It has been observed
that the 2D mesh topology with wormhole packet switching and determin-
istic routing is the most common and widely used in academia and industry
so far. Besides mesh architecture, this chapter also considers MoT topology
as an example and shows an addressing scheme and a deterministic rout-
ing strategy in it. It proves that the MoT-based network, with the proposed
routing algorithm, is always livelock and deadlock free. It also proves that
the packets will always follow a specific shortest path from source to destina-
tion. The number of edges of an M × N MoT graph and the average distance
of the network have been formulated. It has been shown that the network
can achieve the maximum throughput and the minimum latency when the
number of row trees and that of column trees are equal.

Toward the design of a complete NoC-based SoC, Chapter 3 presents the
design of wormhole and VC router architecture in detail.

References

Acacio, M. E., Gonzalez, J., Garcia, J. M., and Duato, J. 2004. An architecture for
high-performance scalable shared-memory multiprocessors exploiting on-chip
integration. IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 8,
pp. 755–768.

Agarwal, A., Iskander, C., and Shankar, R. 2009. Survey of network on chip (NoC)
architectures and contribution. Journal of Engineering, Computing, and Architecture,
vol. 3, no. 1.

Andreasson, D. and Kumar, S. 2004. On improving best-effort throughput by better
utilization of guaranteed-throughput channels in an on-chip communication
system. Proceedings of the IEEE Norchip Conference, pp. 265–268, Oslo, Norway.

Ascia, G., Catania, V., Palesi, M., and Patti, D. 2008. Implementation and analysis
of a new selection strategy for adaptive routing in networks-on-chip. IEEE
Transactions on Computers, vol. 57, no. 6, pp. 809–820.

Balfour, J. and Dally, W. J. 2006. Design tradeoffs for tiled CMP on-chip networks.
Proceedings of the ACM International Conference on Supercomputing (ICS),
pp. 187–198, Christchurch, New Zealand.

49Interconnection Networks in Network-on-Chip

Banerjee, A., Mullins, R., and Moore, S. 2007. A power and energy exploration
of network-on-chip architectures. Proceedings of International Symposium on
Networks-on-Chip, pp. 163–172, Princeton, NJ.

Banerjee, N., Vellanki, P., and Chata, K. S. 2004. A power and performance model for
network on chip architecture. Proceedings of the IEEE Design, Automation and Test
in Europe Conference and Exhibition, pp. 1250–1255, Paris, France.

Bertozzi, D. and Benini, L. 2004. Xpipes: A network-on-chip architecture for gigascale
systems-on-chip. IEEE Circuits and Systems Magazine, vol. 4, no. 2, pp. 18–31.

Bertozzi, D., Jalabert, A., Murali, S., Tamhankar, R., Stergiou, S., Benini, L., and
Micheli, G. D. 2005. NoC synthesis flow for customized domain specific multi-
processor systems-on-chip. IEEE Transactions on Parallel and Distributed Systems,
vol. 16, no. 2, pp. 113–129.

Bolotin, E., Cidon, I., Ginosar, R., and Kolodny, A. 2004. QNoC: QoS architecture and
design process for network on chip. Journal of Systems Architecture: the Euromicro
Journal (special issue), vol. 50, no. 2/3, pp. 105–128.

Chiu, G. M. 2000. The odd-even turn model for adaptive routing. IEEE Transactions on
Parallel and Distributed Systems, vol. 11, no. 7, pp. 729–738.

Coppola, M., Locatelli, R., Maruccia, G., Pieralisi, L., and Scandurra, A. 2004.
Spidergon: A novel on-chip communication network. Proceedings of the
International Symposium on System on Chip, p. 15, Tampere, Finland.

Dally, W. J. 1991. Express cubes: Improving the performance of k-ary n-cube intercon-
nection networks. IEEE Transactions on Computers, vol. 40, no. 9, pp. 1016–1023.

Dally, W. J. 1992. Virtual-channel flow control. IEEE Transactions on Parallel and
Distributed Systems, vol. 3, no. 2, pp. 194–205.

Dally, W. J. and Seitz, C. L. 1986. The torus routing chip. Journal of Distributed
Computing, vol. 1, no. 4, pp. 187–196.

Dally, W. J. and Seitz, C. L. 1987. Deadlock-free message routing in multiprocessor
interconnection networks. IEEE Transactions on Computers, vol. C-36, no. 5,
pp. 547–553.

Dally, W. J. and Towles, B. 2001. Route packets, not wires: On-chip interconnection net-
works. Proceedings of the Design Automation Conference, pp. 683–689, Las Vegas, NV.

Dally, W. J. and Towles, B. 2004. Principles and Practices of Interconnection Networks.
Morgan Kaufmann Publishers, San Francisco, CA.

Decina, M., Trecordi, V., and Zanolini, G. 1991. Throughput and packet loss in deflec-
tion routing multichannel-metropolitan area networks. IEEE GLOBECOM,
pp. 1200–1208, Phoenix, AZ.

Duato, J. 1993. A new theory of deadlock-free adaptive routing in wormhole networks.
IEEE Transactions On Parallel and Distributed Systems, vol. 4, no. 12, pp. 1320–1331.

Duato, J., Yalamanchili, S., and Ni, L. 2003. Interconnection Networks: An Engineering
Approach. Morgan Kaufmann Publishers, San Francisco, CA.

Glass, C. J. and Ni, L. M. 1992. The turn model for adaptive routing. International
Symposium on Computer Architecture, pp. 278–287, Gold Coast, Australia.

Glass, C. J. and Ni, L. M. 1994. The turn model for adaptive routing. Journal of the
ACM, vol. 41, no. 5, pp. 874–902.

Goossens, K., Dielissen, J., and Radulescu, A. 2005. The Æthereal network on chip:
Concepts, architectures, and implementations. IEEE Design and Test of Computers,
vol. 22, no. 5, pp. 21–31.

Greenberg, H. J. and Hajek, B. 1992. Deflection routing in hypercube networks. IEEE
Transactions on Communications, vol. COM-40, no. 6, pp. 1070–1081.

50 Network-on-Chip

Grot, B., Hestness, J., Keckler, S. W., and Mutlu, O. 2009. Express cube topologies
for on-chip interconnects. Proceedings of the International Symposium on High-
Performance Computer Architecture, pp. 163–174, Raleigh, NC.

Guerrier, P. and Greiner, A. 2000. A generic architecture for on-chip packet-switched
interconnections. Proceedings of the Design, Automation and Test in Europe,
pp. 250–256, Paris, France.

Hansson, A., Goossens, K., and Radulescu, A. 2007. Avoiding message-dependent
deadlock in network-based systems on chip. VLSI Design, Hindawi Publishing
Corporation, vol. 2007, article id. 95859, pp. 1–10.

Hossain, H., Akbar, M., and Islam, M. 2005. Extended-butterfly fat-tree interconnec-
tion (EFTI) architecture for network-on-chip. IEEE Pacific Rim Conference on
Communication, Computers, and Signal Processing, pp. 613–616, Victoria, British
Columbia, Canada.

Jeang, Y. L., Huang, W. H., and Fang, W. F. 2004. A binary tree architecture for
application specific network on chip (ASNOC) design. Proceedings of the
IEEE Asia-Pacific Conference on Circuits and Systems, pp. 877–880, Tainan,
Taiwan.

Karim, F., Nguyen, A., and Dey, S. 2002. An interconnect architecture for networking
systems on chips. IEEE Micro, vol. 22, no. 5, pp. 36–45.

Kim, J., Balfour, J., and Dally, W. J. 2007. Flattened butterfly topology for on-chip net-
works. Computer Architecture Letters, vol. 6, no. 2, pp. 3–40.

Kumar, A., Peh, L. S., Kundu, P., and Jha, N. K. 2007. Express virtual channels: Towards
the ideal interconnection fabric. Proceedings of the International Symposium on
Computer Architecture, pp. 433–436, San Diego, CA.

Kumar, S., Jantsch, A., Soininen, J. P., Forsell, M., Millberg, M., Oberg, J., Tiensyrja, K.,
and Hemani, A. 2002. A network on chip architecture and design methodology.
Proceedings of the IEEE Computer Society Annual Symposium on VLSI, pp. 117–124,
Pittsburgh, PA.

Kundu, S. and Chattopadhyay, S. 2008a. Mesh-of-tree deterministic routing for
 network-on-chip architecture. ACM Great Lake Symposium on VLSI, pp. 343–346,
Orlando, FL.

Kundu, S. and Chattopadhyay, S. 2008b. Network-on-chip architecture design based
on mesh-of-tree deterministic routing topology. International Journal for High
Performance Systems Architecture, vol. 1, no. 3, pp. 163–182.

Kundu, S., Soumya, J., and Chattopadhyay, S. 2012. Design and evaluation of mesh-
of-tree based network-on-chip using virtual channel router. Microprocessors and
Microsystems, vol. 36, no. 6, pp. 471–488.

Millberg, M., Nilsson, E., Thid, R., and Jantsch, A. 2004. Guaranteed bandwidth using
looped containers in temporally disjoint networks within the Nostrum network
on chip. Proceedings of the Design, Automation, and Test in Europe, pp. 890–895, Paris,
France.

Murali, S., Theocharides, T., Vijaykrishnan, N., Irwin, M. J., Benini, L., and Micheli, G.
D. 2005. Analysis of error recovery schemes for networks on chips. Proceedings
of the IEEE Design and Test of Computers, pp. 434–442.

OCP. 2003. Open Core Protocol. Available at: http://www.ocpip.org.
Pande, P. P., Grecu, C., Ivanov, A., and Saleh, R. 2003a. Design of a switch for network

on chip applications. Proceedings of the International Symposium on Circuits and
Systems, vol. 5, pp. 217–220, Bangkok, Thailand.

51Interconnection Networks in Network-on-Chip

Pande, P. P., Grecu, C., Ivanov, A., and Saleh, R. 2003b. High-throughput switch-based
interconnect for future SoCs. Proceedings of the IEEE International Workshop on
System-on-Chip for Real Time Applications, pp. 304–310, Calgary, Alberta, Canada.

Pande, P. P., Grecu, C., Jones, M., Ivanov, A., and Saleh, R. 2005. Performance eval-
uation and design trade-offs for MP-SOC interconnect architectures. IEEE
Transactions on Computers, vol. 54, no. 8, pp. 1025–1040.

Pavlidis, V. F. and Friedman, E. G. 2007. 3-D topologies for networks-on-chip. IEEE
Transactions on VLSI Systems, vol. 15, no. 10, pp. 1081–1090.

Pullini, A., Angiolini, F., Bertozzi, D., and Benini, L. 2005. Fault tolerance overhead
in network-on-chip flow control schemes. Proceedings of the ACM Symposium on
Integrated Circuits and Systems Design, pp. 224–229, Florianópolis, Brazil.

Radulescu, A., Dielissen, J., Pestana, S. G., Gangwal, O. P., Rijpkema, E., Wielage, P.,
and Goossens, K. 2005. An efficient on-chip network interface offering guaran-
teed services, shared memory abstraction, flexible network programming. IEEE
Transactions on CAD of Integrated Circuits and Systems, vol. 24, no. 1, pp. 4–17.

Schroeder, M. D., Birrell, A. D., Burrows, M., Murray, H., Needham, R. M., Rodeheffer,
T. L. 1991. Autonet: A high speed, self configuring, local area network using
point-to-point links. IEEE Journal on Selected Areas in Communications, vol. 9,
pp. 1318–1335.

Singh, S. P., Bhoj, S., Balasubramanian, D., Nagda, T., Bhatia, D., and Balsara, P.
2007. Network interface for NoC based architectures. International Journal of
Electronics, vol. 94, no. 5, pp. 531–547.

Song, Y. H. and Pinkston, T. M. 2003. A progressive approach to handling message-
dependent deadlock in parallel computer systems. IEEE Transactions on Parallel
and Distributed Systems, vol. 14, no. 3, pp. 259–275.

Tamhankar, R. R., Murali, S. and Micheli, G. D. 2005. Performance driven reliable
link design for network on chips. Proceedings of the Asia South Pacific Design
Automation Conference, pp. 749–756, Shanghai, People’s Republic of China.

Tortosa, D. S., Ahonen, T., and Nurmi, J. 2004. Issues in the development of a practical
NoC: The Proteo concept. Integration, the VLSI Journal, vol. 38, no. 1, pp. 95–105.

Vangal, S. R., Howard, J., Ruhl, G., Dighe, S., Wilson, H., Tschanz, J., Finan, D., et al.
2008. An 80-tile sub-100-W TeraFLOPS processor in 65-nm CMOS. IEEE Journal
of Solid-State Circuits, vol. 43, no. 1, pp. 29–41.

Vellanki, P., Banerjee, N., and Chata, K. S. 2004. Quality-of-service and error control
techniques for mesh-based network-on-chip architectures. Integration, the VLSI
Journal, vol. 38, pp. 353–382.

Wentzlaff, D., Griffin, P., Hoffmann, H., Bao, L., Edwards, B., Ramey, C., Mattina, M.,
Miao, C. C., Brown, J. F., and Agarwal, A. 2007. On-chip interconnection archi-
tecture of the TILE processor. IEEE Micro, vol. 27, no. 5, pp. 15–31.

West, D. B. 2002. Introduction to Graph Theory. 2nd Edition. Pearson Education, Upper
Saddle River, NJ.

Zeferino, C. A. and Susin, A. A. 2003. SoCIN: A parametric and scalable network-on-
chip. Proceedings of the IEEE Symposium on Integrated Circuits and Systems Design,
pp. 169–175, São Paulo, Brazil.

53

3
Architecture Design of Network-on-Chip

3.1 Introduction

This chapter focuses on the architectural design of wormhole and virtual chan-
nel (VC) routers for NoC. The salient contributions of this chapter are as follows:

 1. To support globally asynchronous locally synchronous style of com-
munication, a gray counter-based dual-clock first-in first-out (FIFO)
has been designed and used in NoC router.

 2. Design of wormhole router for mesh-of-tree (MoT) topology has
been described in detail.

 3. To mitigate the head-of-line (HoL) blocking problem of wormhole
router-based network, VC router has also been implemented.

The rest of the chapter is organized as follows: Section 3.2 describes the
switching technique and packet format of 4 × 4 MoT-based NoC. Sections
3.3 and 3.4 discuss the design of dual-clock FIFO and globally asynchronous
locally synchronous (GALS) style of communication, respectively. Sections
3.5 and 3.6 present a detailed architecture design of wormhole and VC
routers, respectively. Section 3.7 describes an adaptive router architecture.
Finally, Section 3.8 summarizes this chapter.

3.2 Switching Techniques and Packet Format

Both wormhole and VC routers follow the packet switching technique.
Messages are sent in terms of packets, which are further decomposed into
flits (flow control units) in the network interface. A flit is a smaller unit over
which flow control is performed. A packet is composed of header, payload,
and tailer flits. Header flit carries information about the source and destina-
tion core addresses, whereas payload and tailer flits contain the actual infor-
mation. For a 4 × 4 MoT, a flit size of 32 bits has been considered. From the
addressing scheme described in Chapter 2, each core address in a 4 × 4 MoT

54 Network-on-Chip

requires 13 bits. Hence the header flit consists of 13-bit destination core
address, 13-bit source core address, 2 optional bits for supporting different
traffic classes (unused here), 2 bits for VC identification (vc_id), and 2 bits for
packet framing: end-of-packet (eop) and begin-of-packet (bop). The vc_id bits
are used only for VC-based routers. In wormhole router architecture, these
two bits are also left unused. The packet format is shown in Figure 3.1. The
eop and bop bits identify the type of the flits: eop = 0, bop = 1 denotes the
header flit; eop = 0, bop = 0 denotes the payload flit; eop = 1, bop = 0 denotes
the tailer flit; eop = 1, bop = 1 denotes the invalid flit.

3.3 Asynchronous FIFO Design

In NoC, the cores and routers are operating at their own clock frequencies
and there is, as such, no dependency between these clocks. Moreover, the
inter-router communication should support mesochronous clocking strat-
egy where the clock frequency for each router is the same but phases may
vary. Therefore, to start with the router design, it is essential to design a
low-latency FIFO with independent read and write clocks. The major chal-
lenge of dual-clock asynchronous FIFO is that the FULL and EMPTY signals
of the FIFO are dependent on both the clocks. Synchronization of a binary
count value from one clock domain to another is problematic because more
than one bit of an n-bit counter may change at a time, which may cause glitch
in FULL and EMPTY signals. Thus a binary counter-based FIFO is ineffi-
cient. In gray code, only one bit changes in each clock. Thus synchronization
from one clock domain to another becomes simpler. Cummings (2002) and
Cummings and Alfke (2002) implemented the gray-code counter-based FIFO
capable of handling metastability. In a mod-N gray counter, N is an integral
power of 2. But if N is a nonintegral power of 2 (2m – N), buffer locations will
be wasted, where m N= log2 . A scalable gray code concept has been proposed
by Jiang (2004) and Cheng (2004) to solve this problem. In this technique, for
a mod-N gray counter, first the difference of (2m – N) is obtained. Now there

eop (1-bit) bop (1-bit) (2-bit) (2-bit) (13-bit) (13-bit)

0 1
Header flit

vc_id Unused Source core address Destination core address

…
0
…

…
0
…

…
Payload flit

…
1 0 Tailer flit
1 1 Invalid flit

Figure 3.1
Packet format for a 4 × 4 MoT-based network.

55Architecture Design of Network-on-Chip

are two ways to solve the problem if the difference is even. One method is to
compute (2m – N)/2 and skip these many locations from the top and the bot-
tom. The other method is to skip these many locations on both sides from the
center. These two techniques are shown in Figure 3.2 for a mod-6 gray code.
However, this scalable gray code concept fails if (2m – N) is odd (e.g., N = 5).
In this chapter, FIFO depth has been taken as 6 where the patterns 010 and
110 are skipped to get a mod-6 gray counter.

The block diagram of FIFO with a gray-code counter is shown in Figure 3.3.
The FIFO memory has been designed as a stack of six write registers followed
by a 6:1 multiplexer (MUX) and a single read register as shown in Figure 3.4.
In the FIFO, read and write counters are two separate gray counters, synchro-
nous with read and write clocks, respectively. The write pointer denotes the
position to where the next incoming flit will be written and the read pointer
denotes the position from where a flit will be read next. Initially write direction
(wr_dir) and read direction (rd_dir) signals are reset. The individual direction
bits are getting inverted if the respective counter wraps around after reaching
the maximum count.

Asynchronous comparator module compares the write and read pointers and
generates the asynchronous full and empty signals. This module contains
only a combinational comparison logic. The functionality of the asynchro-
nous comparator module is as follows:

full = ((wr_addr = = rd_addr) && (wr_dir ! = rd_dir))
empty = ((wr_addr = = rd_addr) && (wr_dir = = rd_dir))

These asynchronous full and empty signals are synchronized by write clock
and read clock, respectively, to generate FULL and EMPTY signals. Here,
two D flip-flops (marked as synchronizer in Figure 3.3) are cascaded to reduce
the probability of metastability. An attempt to read from an empty FIFO pro-
duces an invalid data at the output port.

Method 1 Method 2
000

001

011

010

110

111

101
100

001

011

010

110

111

101

100

000

Skipped

Figure 3.2
Scalable gray coding scheme.

56 Network-on-Chip

FIFO memory

din

wr_en

wr_clk

wr_clk

wr_addr
reset

reset

reset
reset

data_out

rd_en

rd_clk

rd_addr

data_in

wr_en & ! FULL

wr_clk

data_out

rd_en & ! EMPTY

rd_clk

Write counter Read counter
wr_ptr

wr_dir

FULL

rd_ptr
rd_dir rd_clk

D

DQ

Q

D

DQ

Q

wr_dir rd_dir
wr_ptr rd_ptr

asynch_full asynch_empty
EMPTYSynchronizer SynchronizerAsynchronous comparator

Figure 3.3
Dual-clock asynchronous FIFO.

data_in din dout

reset

wr_clk
wr_en

din dout

reset

wr_clk
wr_en

din dout

dout data_out
reset

wr_clk
wr_en

din dout

reset

wr_clk
wr_en

din

reset

rd_clk

rd_addr

rd
_c

lk
rd

_e
n

re
se

t

rd_en

din dout

reset

wr_clk
wr_en

din dout

reset

wr_clk
wr_en

reset

(wr_en &
 wr_addr [000])

(wr_en &
 wr_addr [001])

(wr_en &
 wr_addr [011])

(wr_en &
 wr_addr [111])

(wr_en &
 wr_addr [101])

(wr_en &
 wr_addr [100])

wr_clk

Figure 3.4
Design of FIFO memory.

57Architecture Design of Network-on-Chip

3.4 GALS Style of Communication

The communication strategy in NoC follows the GALS style by using a
dual-clock FIFO in each router. Each router in the network has a sepa-
rate clock (e.g., rd-clk1 for router-1, rd-clk2 for router-2, etc.) as shown in
Figure 3.5. As NoC supports mesochronous clocking, these clock frequen-
cies have been assumed to be the same, whereas phases may differ. The
input FIFO of router-2 sends a request signal (in-req2 = 1) to router-1 until
it is full. Router-1, after receiving the request signal (in-req2), sends 32-bit
data (flit2) and a data valid signal (in-val2) to router-2 which is synchro-
nous with router-1’s own clock (rd-clk1). Router-1 also sends this clock sig-
nal to router-2, which uses it as the write clock of its input FIFO (wr-clk2
in Figure 3.5). The in-req2 signal is synchronous with wr-clk2, which is the
same as rd-clk1. Therefore, all the signals (in-req2, flit2, and in-val2) between
router-1 and router-2 in Figure 3.5 are synchronous with rd-clk1. Similarly,
in-req3, flit3, and in-val3 signals are synchronous with rd-clk2. As each
router uses a separate local clock and these clocks are globally independent
of each other throughout the network, this communication strategy leads
to the GALS style.

3.5 Wormhole Router Architecture Design

The MoT-based router architecture is described in this section. Externally,
each leaf level router has four links, whereas the stem and root level routers
are having three and two links, respectively, as shown in Figure 3.6. Two
cores are connected to each leaf level router via the local channels. No core is
attached to the stem and root level routers. Each router is connected to its adja-
cent modules via two opposite dedicated unidirectional channels, each one

in-req1 in-req2 in-req3

flit1 flit2 flit3

in-val1 in-val2 in-val3

wr-clk1 wr-clk2 wr-clk3

R
o
u
t
e
r

R
o
u
t
e
r

1 2

rd-clk1 rd-clk2

Figure 3.5
GALS style of communication in NoC.

58 Network-on-Chip

with its data, framing, and flow control signals. Each channel includes n bits
for data and two bits for packet framing (eop and bop) as shown in Figure 3.6.
The flow control signals are used for the following (as shown in the figure).

•	 To request for incoming data (in-req) from the previous module
•	 To request for outgoing data (out-req) from the present module
•	 To validate the incoming (in-val) data
•	 To validate the outgoing (out-val) data

Next, we look into the circuitry inside the wormhole routers. The router con-
sists of instances of two kinds of modules: input channel and output chan-
nel. A brief description of each module is given in the following section.

3.5.1 input Channel Module

Each input channel module is composed of four architectural blocks as
shown in Figure 3.7: (1) input flow controller (IFC), (2) input FIFO buffer (IB),
(3) routing computation (RC) unit, and (4) input read switch (IRS).

The IFC block implements the logic that performs the translation between
the handshake and the FIFO flow control protocols. It sends in-req signal to
the previous router when its FIFO is not full. The in-req signal is connected
with the out-req port of the output channel of the previous router. If the
incoming flit is valid (in-val = 1) and FIFO is not full, flit will be written into
the FIFO buffer synchronously with the wr-clk. The in-val signal is coming
from the out-val port of the output channel of the previous router.

The IB block is designed as mentioned in Section 3.3. Data (data-out) is coming
out from the FIFO synchronously with the router’s own clock (router-clk).

The RC unit performs the routing function. It detects the header from the
outgoing flits of FIFO and runs the routing algorithm to select an output chan-
nel. After detecting the header, it sends a request to one of the output channels.
The selected output channel, in turn, sends a grant signal to that request, when
it is free. This grant signal comes to the IRS block of the input channel module.
The input channel module also sends a read-ok signal to the selected output
channel. The read-ok signal is turned high if the outgoing flit is a valid one. The
request signal remains high until the tailer comes out from FIFO.

The IRS block receives three x-RD signals and three x-gnt signals from other
output channel modules (Figure 3.7) and generates a granted read enable
 signal (rd-en) for reading from FIFO, provided that the FIFO is not empty.

3.5.2 Output Channel Module

Each output channel consists of four blocks: (1) switch arbiter (SA), (2) out-
put flow control (OFC), (3) output read switch (ORS), and (4) output FIFO
buffer (OB).

59Architecture Design of Network-on-Chip

C
or

e
1

C
or

e
2

in
-r

eq
in

-v
al

in
-r

eq in
-d

at
a

in
-d

at
a

ou
t-

da
ta

ou
t-

re
q

ou
t-

va
l

ou
t-

da
ta

ou
t-

va
l

ou
t-

re
q

in
-v

al
in

-r
eq

in
-v

al
n

n
da

ta
n

n
+

2
n

+
2

n
+

2
in

-d
at

a

ou
t-

re
q

ou
t-

da
ta

ou
t-

va
l

eo
p

bo
p

da
ta eo
p

bo
p

da
ta eo
p

bo
p

Li
nk

 2

N
Lo

ca
l 1

Li
nk

 1
Li

nk
 1

Li
nk

 1

Lo
ca

l 2
(a

)
(b

)
(c

)
Li

nk
 2

Li
nk

 2

Li
nk

 3

N I

O
/P

O
/P

O
/P

O
/P

O
/P

O
/P

I/
P

I/
P

I/
P

I/
PI/
P

I/
P

I/
P

I/
PI/
P

O
/P

O
/P

O
/P

I

Fi
g

u
r

e
3.

6
C

on
ne

ct
io

n
s

fo
r

(a
) l

ea
f,

(b
) r

oo
t,

an
d

 (c
) s

te
m

 le
ve

l r
ou

te
rs

.

60 Network-on-Chip

da
ta

-in
di

n
do

ut

em
pt

y

fu
ll

re
q1

re
q2

re
q3

re
q4

re
q1

gn
t1

di
n

w
r-

cl
k

do
ut fu
ll

ou
t-

re
q

em
pt

y

w
r-

en

rd
-c

lk
rd

-e
n

gn
t2

gn
t3

gn
t1

gn
t2

gn
t3

O
RS

re
q2

O
B

SA

re
ad

-o
k1

re
ad

-o
k2

re
ad

-o
k3

da
ta

-o
ut

 si
gn

al
s

fr
om

 o
th

er
 th

re
e

in
pu

t c
ha

nn
el

s

re
q3

re
qu

es
t s

ig
na

ls
fr

om
 o

th
er

 th
re

e
in

pu
t c

ha
nn

el
s

gr
an

t s
ig

na
ls

to
 o

th
er

 th
re

e
in

pu
t c

ha
nn

el
s

re
ad

-o
k

sig
na

ls
fr

om
 o

th
er

 th
re

e
in

pu
t c

ha
nn

el
s

Crossbar (ST)

x-
RD

1
x-

RD
2

x-
RD

3
x-

gn
t1

x-
gn

t2
x-

gn
t3

da
ta

-o
ut

IR
S

O
FC

x-
RD

ou
t-

va
l

w
ri

te
 cl

k
fo

r n
ex

t r
ou

te
r

ro
ut

er
-o

ut

RC

w
r-

cl
k

w
r-

en

w
r-

en

rd
-e

n

IB IF
C

w
r-

en

in
-v

al
in

-r
eq

rd
-c

lk

w
r-

cl
k

ro
ut

er
-c

lk

Fi
g

u
r

e
3.

7
W

or
m

ho
le

 r
ou

te
r

ar
ch

it
ec

tu
re

 fo
r

le
af

 le
ve

l n
od

es
 h

av
in

g
co

n
ne

ct
iv

it
y

4.

61Architecture Design of Network-on-Chip

When more than one input channel modules send their request signals
to a particular output channel, the SA selects one request signal by follow-
ing a round-robin strategy for avoiding the starvation problem. It sends
a grant signal (x-gnt) to that request (Figure 3.7). Thus, the input channel
receives the grant (x-gnt) signal and starts passing flits in a pipelined fash-
ion till this x-gnt signal is high. This grant signal is also an input to the
ORS block. The read-ok and data-out signals from the input channel are also
input to the ORS block as shown in Figure 3.7. The ORS block just passes
the selected data and the read-ok signal to the OB depending on the x-gnt
signal. Depending on the out-req signal that represents the availability of
the FIFO buffer of next router’s input channel, rd-en is generated and data
(router-out) comes out from OB synchronously with router-clk. The OFC
block takes the full signal of OB and generates the x-RD signal by invert-
ing it. It also takes the router-out signal and generates the out-val signal by
checking the eop and bop bits.

The implementation of round-robin arbiter is presented in the following text.
The round-robin arbiter is based on priority logic. Figure 3.8 shows a design
of priority logic with three inputs and three outputs. The priority of inputs is
in descending order from in1 to in3. Thus, in1 has the highest priority, in2 has
the next highest priority, and in3 has the lowest priority. The D flip-flop is used
for avoiding glitch due to ANDing. The round-robin arbiter consists of a single
priority logic as shown in Figure 3.9. The input to the priority logic is selected
by a MUX. Here, in1 has the highest priority, in2 has the next highest priority,
and in3 has the lowest priority. The inputs to the MUX are fed in a round-robin
fashion. The output of the priority logic will generate the grant signals (gnt1,
gnt2, gnt3) by using a look-up table (LUT), which is shown in Table 3.1. The
select line of the MUX is generated by using a Moore finite state machine (FSM)
and changes its value only when all the outputs of the priority logic block are
at logic 0. The D flip-flops are used to generate glitch-free grant signals.

The data path of the above wormhole architecture is shown in Figure 3.10.
One IB and one RC are connected to every incoming physical channel, where-
 as one OB and one SA are connected to every outgoing physical channel.

in1
in2
in3

in1
in2

in1

D Q

clr

D Q

clr

D Q

clr

out3

out2

out1

En

clk
reset

Figure 3.8
Implementation of priority logic.

62 Network-on-Chip

The control units generate the read enable and write enable signals for the
FIFOs and also send a request signal to the previous router for incoming flits.
After coming out from the IB, the header flit of any packet goes to the RC for
generating a request signal by executing the routing algorithm to access an
outgoing physical channel. If more than one request signal tries to access
the same outgoing physical channel simultaneously, the SA selects one of
them in a round-robin fashion to avoid starvation and sends a grant signal

TABLe 3.1

Grant Signal Generation Logic

sel [1] sel [0] out1 out2 out3 g1 g2 g3

0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 0
0 1 1 0 0 0 1 0
0 1 0 1 0 0 0 1
0 1 0 0 1 1 0 0
1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 1
1 0 0 1 0 1 0 0
1 0 0 0 1 0 1 0

In1, In2, In3

mux_out [2:0]

mux_out [2]

mux_out [1]

in1

in2
Priority

logic

FF FF FF

LUT

in3

out1

out2

out3

out3
out2
out1

mux_out [0]

Sel [1:0]

00

10 01

0

1

2

In2, In3, In1

req1

req2

req3

gnt2

gnt1

gnt1

gnt3 gnt2 gnt1
gnt2

gnt3 g3 g2 g1

gnt3

In3, In1, In2

In1

In2

In3

Figure 3.9
Round-robin arbiter.

63Architecture Design of Network-on-Chip

to establish the path through the switch traversal (ST). The header flit gets
forwarded through this established path and stored in the OB. Till that time,
the payload and tailer flits wait in the IB. Depending on the availability of
the buffer space in the OB, the payload and tailer flits pass through the estab-
lished path sequentially and get stored in the OB.

The router has been designed in Verilog HDL and synthesized in Synopsys
Design Vision supporting 90-nm complimentary metal oxide semiconductor
(CMOS) technology with Faraday library to generate a gate-level netlist. For
a leaf router in the MoT-based network having a node degree of 4, a synthe-
sis of the design using single-stage pipelining inside the SA module shows
that the critical path lies from the IB to the SA (Figure 3.10) and the delay of
the critical path is found to be 600 ps. Hence, the router can be operated at
1.66 GHz. The overall router architecture has three-cycle latency, one cycle
each in IB, SA, and OB.

3.6 VC Router Architecture Design

In the wormhole router architecture, a header flit gets blocked if the required
output channel is already assigned to some other packet. Since only the header
flit has the destination address, all the remaining flits must wait in their chan-
nels until the header flit can make its progress. The physical channels used by
any of these blocked flits cannot be used to route other packets. This essen-
tially slows down the whole network. A solution to this problem is to use VCs

Li
nk

co
nt

ro
l

Ph
ys

ic
al

ch
an

ne
l

IB

IB

Ph
ys

ic
al

ch
an

ne
l

Critical path
Header

flit

RC

RC

SA

Routing
algorithm

request

request

Header
flit

Crossbar
control

OB

OB

Li
nk

co
nt

ro
l

Li
nk

co
nt

ro
l

Ph
ys

ic
al

ch
an

ne
l

Ph
ys

ic
al

ch
an

ne
l

Li
nk

co
nt

ro
l

Routing
algorithm

C
ro

ss
ba

r (
ST

)

IB
(input buffering)

RC
(route computation)

OB
(output buffering)

SA
(switch allocator)

ST
(switch traversal)

Figure 3.10
Wormhole router architecture data path.

64 Network-on-Chip

(Dally 1992). Many VCs are multiplexed over a single physical channel. Thus,
even if one VC gets blocked, other VCs can make use of this physical channel,
and thus higher utilization of the physical resources can be made.

A generic nonspeculative VC router was implemented by Mullins et al.
(2004) with P input/output ports and V number of VCs per input port as
shown in Figure 3.11. Each incoming packet has separate VC identifier (vc_id)
bits. These vc_id bits are the same for all the flits in a packet. According to the
vc_id bits, the packets are demultiplexed and buffered in FIFOs. This stage
is known as VC allocation. Next, each of these VCs is multiplexed again and
passes through a P × P crossbar. Thus, only one VC can advance from an
input port to the crossbar per cycle. This stage is known as switch allocation.

Kavaldjiev et al. (2006) reported that due to the conflicts at the input VCs,
maximum throughput of a network cannot be achieved. To overcome this
problem, they eliminated the multiplexer after the FIFOs in each input port
and connected the channels directly to the crossbar. Although the description
of above nonspeculative router implies that VC allocation and switch alloca-
tion are performed sequentially to reduce the number of pipeline stages in
the router architecture. Peh and Dally (2001) described a speculative scheme
where both VC allocation and switch allocation may be performed in parallel.
Mullins et al. (2006) implemented a speculative single-cycle router clocked
at 250 MHz. In NoC design, nonspeculative routers still attract a lot of atten-
tion from the research and development community (Kumar et al. 2007).

VC identifier Routing logic

VC allocator

Switch allocator

Crossbar
(P × P)

VC identifier

Input channel

Output channel

Output channel
Input channel

credit out

credits in

v

VC buffer

Input port

v

VC buffer

credit out

Figure 3.11
Generic nonspeculative VC router architecture.

65Architecture Design of Network-on-Chip

In this book, we have implemented a nonspeculative router as discussed in
the work of Kavaldjiev et al. (2006).

The router consists of two types of modules—input links and output links.
Each input link module consists of four input channels. Incoming flits are
written into the FIFO of the input channel depending on their vc_id bits by
using a 1:4 demultiplexer (DEMUX) as shown in Figure 3.12. A brief descrip-
tion of the input channel is given in Section 3.6.1.

3.6.1 input Channel Module

Each input channel has an single FIFO (IB), a routing computation (RC) unit,
an IRS, and a control logic. The block diagram of the input channel module
is shown in Figure 3.13.

The full signal generated from each IB is sent back to its previous router.
The rd-en signals are coming from all the output link modules of the present
router. The IRS module generates the read signal for the FIFO. The header
module checks for the header flit. The RC module generates the request sig-
nals to access one of the output physical links. From each input channel, both
request and data signals go to the output link module through crossbar.

Input channel-1
vc–id

vc–id

Input channel-2

Input channel-3

Input channel-4

Input channel-1

VC allocation

Switch allocation

Input channel-2

Input channel-3

Input channel-4

Figure 3.12
Modified VC router architecture.

66 Network-on-Chip

3.6.2 Output Links

The output link module consists of two major architectural components—
VC allocator and switch allocator. These two components are briefly described
in Sections 3.6.2.1 and 3.6.2.2.

3.6.2.1 VC Allocator

In the generic VC router architecture (Mullins et al. 2004), VC allocator needs
two stages of arbitration. The first stage has a V:1 arbiter at each input VC,
followed by a second stage of P*V:1 arbiters for each output VC. In the modi-
fied router architecture (Figure 3.12), as all the request signals from each input
channel are coming to the crossbar, the first-stage arbiters are eliminated. The
number of request signals reaching each output link module is (P – 1)*V. Thus,
in each output link module, a (P – 1)*V input arbiter is required. For designing
an arbiter with such a large number of inputs, a tree of smaller arbiters is used.

A single (P – 1)*V input arbiter is replaced by a single (P – 1) input arbiter and
(P – 1) groups of V input arbiters. Each V input arbiter arbitrates in a round-
robin fashion between the incoming requests from different input channels of
a specific input link module. The (P – 1) input arbiters select the winner of them
in a round-robin fashion, thus selecting a single request at a time from a set of
(P – 1)*V inputs. The implementation of a (P – 1)*V input tree arbiter is shown in
Figure 3.14. The all_vc_busy signal has the control to reset all the grant signals.

The VC allocator module uses the above tree arbiter to allocate the VCs.
Figure 3.15 depicts the overall VC allocator architecture. The outputs of the
control logic module (g1, g2, g3, etc.) are ANDed with the incoming request
signals. Initially, gnt1 = gnt2 = gnt3 = … = 0, and g1 = g2 = g3 = … = 1. Now,
if any of the request signals (say req1) is granted, the corresponding grant

data-in

wr-en

wr-clk

rd-clk rd-en

full empty

rok (to all o/p links)

rd-en signals

request
to crossbar

data
to crossbar

from all o/p links

dout

reset

IB RC

IRS

Tailer DFF tailer
(to all o/p links)

Header

ce

clk

rd-clk

din

Figure 3.13
Input channel module for VC router.

67Architecture Design of Network-on-Chip

signal (gnt1) is at logic 1. The g1 signal is latched at logic 0 one clock cycle
after the gnt1 becomes high. It remains at logic 0until req1 is reset to 0. Thus,
gnt1 signal will remain high for one clock cycle. As the arbiter selects a single
request signal at a time, no two grant signals will overlap with each other.
The encoder module encodes all the grant signals. The width of the encoder
output signal is log () *[]2 1P V− .

To store the status of each VC of the next router’s input link module, a
V-bit status register is used. Each bit (b_1, b_2, etc.) signifies whether the cor-
responding VC of the next router’s input link is engaged or not. The status
register has been implemented using D-type flip-flops. Initially, all the D flip-
flops are reset. Hence, b_1 = b_2 = … = b_v = 0 and ce_1 = ce_2 = … = ce_v = 0.
Now, if any grant signal is high, the ce_1 signal is set; as a result, b_1 gets
latched at logic-1. When a particular status register is set by a grant signal, it
will remain high until the tailer of the corresponding packet comes. The tailer
signal from each input channel module is used as an input to a (P – 1)*V:1
MUX. The number of MUXes used in each VC allocator module is V. When
ce_1 is set, the encoder output selects the corresponding tailer signal. For
example, tailer1 is selected if gnt1 is set, tailer2 is selected if gnt2 is set, and
so on. This selected tailer signal is used to reset the individual bits of the

all_vc_busy

req_1

req_v

req_1

req_v

Arbiter

Arb1

Arb
(P–1)
V:1

gnt_1

gnt_v

gnt_1

gnt_v

(P−1):1

V:1

Figure 3.14
(P – 1)*V input tree arbiter.

68 Network-on-Chip

gn
t1

gn
t2

O
R

gn
t(P

−1
)*

V

gn
t_

or

g1
gn

t1
ce

_1

ce
_V

S_
V

S_
1

re
g_

1
D ce D cerd

_c
lk

cl
r_

1

b_
1

b_
1

b_
1

b_
2

b_
V

b_
2

rd
_c

lk

cl
r_

V
cl

r_
V

cl
r_

1

D

Vc
c

Vc
c

Vc
c

cl
r_

2

b_
Vb_

2b_
1

Q
ce

ce
_Vce
_1

ce
_2

ceD
Q

DSt
at

us
re

gi
st

er

ce

Q

re
g_

V

gn
t2

gn
t3

E n c o d e r

gn
t4

g4

C
on

tr
ol

lo
gi

c

C
on

tr
ol

lo
gi

c
M

U
X

_V

A
ll

ta
ile

r s
ig

na
ls

A
ll

ta
ile

r S
ig

na
ls

M
U

X
_1

A
N

D
al

l_
vc

_b
us

y

g3 g2 g1
A

N
D

AND AND AND

(P
–1

)*
V

in
pu

t a
rb

ite
r

g2
re

q1 g3 g4

re
q2

re
q4

re
q3

Fi
g

u
r

e
3.

15
V

C
 a

llo
ca

to
r

m
od

u
le

.

69Architecture Design of Network-on-Chip

status register. If more than one request signal is high at a time, the output
bits of the status register will be set on a cycle-by-cycle basis in the follow-
ing order: b_1, b_2, b_3, … b_v. When all the status register bits are set, the
all_vc_busy signal will be at logic-1, which signifies that all the VCs of the next
router’s input link module are engaged. This all_vc_busy signal is used to
disable the tree arbiter as shown in Figure 3.14.

3.6.2.2 Switch Allocator

Individual flits are arbitrated to access the outgoing physical channels via
crossbar on each cycle by the switch allocator module. Switch allocator mod-
ule needs two stages of arbitration (Mullins et al. 2004). The first stage has V:1
arbiter for each input VC.

It is followed by a second stage of P:1 arbiters for each output port. In
the modified router architecture, as all the request signals from each input
channel are coming to the crossbar, the first-stage arbiters are eliminated.
As the status register stores the status of each VC of the next router’s input
link module (Figure 3.15), the switch allocator module needs a V:1 arbiter to
access the outgoing physical channel. The architecture of the switch allocator
module is shown in Figure 3.16. The inputs to the switch allocator module
are all rok signals, incoming flits from each input channel, and the full signals
(full_vc_1, full_vc_2, etc.) from each VC of the next router’s input link module.

reg_1

reg_V

All rok signals full_vc_1

ready_vc_1
gnt_vc_1

gnt_vc_Vfull_vc_V

Arbiter
V:1 Encoder

encoded_vc_id

encoded_vc_id

Change
vc_id
bits

router_out

ready_vc_V
b_V

All rok signals

rd_en_1_from_VC_1

rd_en_1_from_VC_V

rd_en_(P–1)*V_from_VC_V

rd_en(P–1)*V_from_VC_1

A
ll

in
co

m
in

g
fli

ts

s_1 b_1

rd_clk

rd_clk

s_V

s_1

s_V

gnt_vc_1

gnt_vc_V

s_1
s_2

s_V

Encoder

ce_1
D
ce

D
ce

Figure 3.16
Switch allocator module.

70 Network-on-Chip

The rok signals from each input channel module are used as input signals
to a (P – 1)*V:1 MUX. The number of MUXes used in each switch allocator
module is V. From the VC allocator module, when ce_1 is set, the encoder out-
put selects the corresponding rok signal. For example, rok1 is selected if gnt1
is set, rok2 is selected if gnt2 is set, and so on. Now if the full signal coming
from the first VC of the next router’s input link is at logic 0 and the status bit
b_1 is at logic 1, the ready_vc_1 signal becomes set, which signifies that this
VC is ready to accept the incoming flits. This signal is used as an input to the
V:1 round-robin arbiter to access the outgoing physical link. In the same way,
the other inputs of the arbiter (ready_vc_2, ready_vc_3, etc.) can send requests
to access the outgoing physical link. Depending on the winner of the arbi-
tration process, the encoder module generates the encoded_vc_id signal. For
example, encoded_vc_id = 00 for gnt_vc_1 = 1, encoded_vc_id = 01 for gnt_
vc_2 = 1, and so on. These encoded_vc_id bits are used to select the incoming
flits to access the outgoing physical channel as shown in Figure 3.16. It also
overwrites the existing vc_id bits such that the outgoing flits will be written
into a newly allocated VC of the next router’s input link module. The arbiter
output signals are also used as rd_en signals to the IRS block of each input
channel module.

The router is designed in Verilog HDL and synthesized in Synopsys Design
Vision supporting 90-nm CMOS technology with Faraday library to generate
a gate-level netlist. For a leaf router in the MoT-based network having a node
degree of 4, a synthesis of the design shows that the critical path lies from
the IB to (P – 1)*V input arbiter inside the VC allocator module and the delay
of the critical path is found to be 600 ps. Hence, the router can operate at
1.66 GHz. The overall router architecture has four-cycle latency, one cycle
each in FIFO, (P – 1)*V input arbiter of the VC allocator, status register of the
VC allocator module, and V:1 arbiter of the switch allocator module.

3.7 Adaptive Router Architecture Design

A number of adaptive router architectures for NoC have been proposed
in the literature. Among these architectures, this chapter adopts the work
cited by Hu and Marculescu (2004a) for its simplicity in implementation. The
authors proposed a dynamic adaptive–deterministic (DyAD) routing for a
2D mesh. DyAD is a new paradigm for NoC router design that exploits the
advantages of deterministic and adaptive routing. Indeed, based on this
idea, any suitable deterministic and adaptive routing scheme can be com-
bined to form a DyAD router (although care must be taken for issues such
as deadlock freedom). DyAD selects minimal odd–even routing as the adap-
tive routing and XY routing as the deterministic routing. The odd–even is
able to achieve much higher saturation throughput compared to XY routing.

71Architecture Design of Network-on-Chip

When the network is not congested, a DyAD router works in a deterministic
mode and hence enjoying low routing latency. On the contrary, when the
network becomes congested, the DyAD router switches back to the adaptive
routing mode and thus avoids the congested links by exploiting other rout-
ing paths; this leads to higher network throughput.

This section presents the actual router design, DyAD–OE, which imple-
ments the concept of DyAD for odd–even routing. Combining odd–even
and XY to form a DyAD router may lead to deadlock. Thus, a new rout-
ing scheme has been developed, called oe-fixed, as the deterministic routing
mode in DyAD–OE. The oe-fixed is indeed a deterministic version of odd–even
based on removing the odd–even’s adaptiveness. For instance, in the odd–
even mode, if a packet with a given source and destination can be routed to
two outputs, it will always be routed to a single output in oe-fixed. Figure 3.17
illustrates the architecture of the DyAD–OE implementation.

In Figure 3.17, each input controller has a separate FIFO (typically several
flits implemented by registers for performance and power efficiency), which
buffers the input packets before delivering them to the output ports. When a

Congestion flag to north neighbor

Addr decoder Port controller

North input FIFO

East input FIFO

Addr decoder

Addr decoder

Addr decoder

Addr decoder

Port controller

Port controller

Port controller

Port controller
Congestion flag to east neighbor

Congestion flag to south neighbor

Congestion flag to west neighbor

South input FIFO

West input FIFO

Local input FIFO

Mode controller

Crossbar arbiter

Crossbar
switch

North out port

South out port

West out port

Local out port

East out port

Congestion flag of east neighbor
Congestion flag of west neighbor
Congestion flag of south neighbor
Congestion flag of west neighbor

Figure 3.17
DyAD–OE router architecture.

72 Network-on-Chip

new header flit is received, the address decoder first processes that flit and then
sends the destination address to the port controller; this determines which
output port the packet should be delivered to. In the odd–even mode, there
can be more than one output direction to route packets. In this case, the port
controller will choose the direction in which the corresponding downstream
router has more empty slots in its input FIFO. Once the router has made its
decision on which direction to route, the port controller sends the connection
request to the crossbar arbiter in order to set up a path to the corresponding
output port. Except for the local input controller, each input port controller
also monitors its FIFO occupation ratio. If the ratio reaches the preset conges-
tion threshold (~60%), a value of 1 will be asserted (indicating to the upstream
router that the downstream router is congested) on the corresponding con-
gestion flag wire. Otherwise, a value of 0 will be asserted, indicating to the
upstream router that congestion is not an issue.

The crossbar arbiter maintains the status of the current crossbar connection
and determines whether to grant connection permission to the port control-
ler. When there are multiple input port controllers request for the same avail-
able output port, the crossbar arbiter uses the first-come-first-served policy
to decide which input port to grant the access, such that the starvation at a
particular port can be avoided.

The mode controller continuously monitors its neighboring congestion to
determine if the deterministic or the adaptive routing mode needs to be
used. Although more advanced techniques can be used to determine the
optimal routing mode, we use the following simple policy: if any congestion
flag from its neighboring routers is asserted, then the mode controller com-
mands all the input port controllers to work in the adaptive (odd–even) mode;
otherwise, it switches the port controllers to the deterministic (oe-fixed) mode.

It has been observed in simulation that XY routing performs better than
both odd–even and DyAD–OE routing under uniform traffic load. The reason
why XY performs best under uniform traffic is because it embodies global,
long-term information about this traffic pattern. However, the adaptive algo-
rithms select the routing paths based on local, short-term information. This
type of decision benefits only the packets in the immediate future, which
tend to interfere with other packets. Thus, the evenness of uniform traffic is
not necessarily maintained in the long run. However, for most of the applica-
tions in the real world, each node will communicate with some nodes more
frequently compared to others. XY routing has serious problems in dealing
with such nonuniform traffic patterns because of its determinism. More pre-
cisely, XY routing blindly maintains the unevenness of the nonuniform traf-
fic, just as it maintains the evenness for the uniform traffic. In this scenario,
XY routing is clearly outperformed by odd–even and DyAD–OE under trans-
pose1 traffic. It has been observed in simulation that odd–even and DyAD–OE
have 53.3% and 61.7% improvement over XY, respectively, in terms of sus-
tainable throughput. In fact, for the same traffic pattern and injection rate,
DyAD–OE achieves shorter average packet latency compared to odd–even

73Architecture Design of Network-on-Chip

throughout the experiments. Another interesting fact is that DyAD–OE does
keep the advantage of deterministic routing when the network is not con-
gested. However, the average latency a packet experiences in odd–even is 14%
higher compared to that in DyAD–OE, when the network is lightly loaded.
Other nonuniform traffic patterns (such as transpose2 and hot spot) have been
simulated as well and the results were similar to those under the transpose1
traffic pattern. Simulation has been carried out for different network sizes
(ranging from 4 × 4 to 8 × 8 tiles) and different FIFO sizes (ranging from
three to eight flits) and also with realistic traffic such as multimedia traffic.
All the results reflect the same characteristic (Hu and Marculescu 2004b).

3.8 Summary

In this chapter, the architecture design of wormhole and VC for NoC has
been described. The implementation of GALS style of communication with
dual-clock FIFO has also been discussed in detail. The evaluation of perfor-
mance and cost of NoC by applying self-similar traffic with varying locality
factors will be discussed in Chapter 4. The simulation results are compared
with a well-known tree-based topology, butterfly fat-tree (BFT), and two
variants of mesh topology connecting single/two cores to each router under
the same bisection width constraint.

References

Cheng, Y. 2004. Gray code sequences. U.S. Patent 6703950, March 9, 2004.
Cummings, C. E. 2002. Simulation and synthesis techniques for asynchronous FIFO

design. Synopsys User Group, San Jose, CA, http://www.sunburst-design.com/
papers/ CummingsSNUG2002J_FIFO1.pdf.

Cummings, C. E. and Alfke, P. 2002. Simulation and synthesis techniques for asyn-
chronous FIFO design with asynchronous pointer comparisons. Synopsys
User Group, San Jose, CA, http://www.sunburst-design.com/papers/
CummingsSNUG 2002J_FIFO2.pdf.

Dally, W. J. 1992. Virtual-channel flow control. IEEE Transactions on Parallel and
Distributed Systems, vol. 3, no. 2, pp. 194–205.

Hu, J. and Marculescu, R. 2004a. DyAD-smart routing for networks-on-chip.
Proceedings of Design and Automation Conference, pp. 260–263, July 7–11,
San Diego, CA.

Hu, J. and Marculescu, R. 2004b. Smart routing for networks-on-chip. Technical report,
ECE Department, Carnegie Mellon University, http://www.ece.cmu.edu/_sld/pubs.
Accessed at September 2007.

74 Network-on-Chip

Jiang, H. J. 2004. Scalable gray code counter and applications thereof. U.S. Patent
6762701, July 13, 2004.

Kavaldjiev, N., Smit, G. J. M., Jansen, P. G., and Wolkotte, P. T. 2006. A virtual chan-
nel network-on-chip for GT and BE traffic. Proceedings of IEEE Computer Society
Annual Symposium on Emerging VLSI Technologies and Architectures, March 2–3,
Karlsruhe, Germany.

Kumar, A., Kundu, P., Singh, A. P., Peh, L. S., and Jha, N. K. 2007. A 4.6Tbits/s
3.6GHz single-cycle NoC router with a novel switch allocator in 65nm
CMOS. Proceedings of IEEE International Conference on Computer Design,
pp. 63–70, October 7–10, Lake Tahoe, CA.

Kundu, S. and Chattopadhyay, S. 2008. Network-on-chip architecture design based
on mesh-of-tree deterministic routing topology. International Journal for High
Performance Systems Architecture, Inderscience Publishers, vol. 1, no. 3, pp. 163–182.

Kundu, S., Soumya, J., and Chattopadhyay, S. 2012. Design and evaluation of mesh-
of-tree based network-on-chip using virtual channel router. Microprocessors and
Microsystems Journal, vol. 36, pp. 471–488.

Mullins, R., West, A., and Moore, S. 2004. Low-latency virtual-channel routers for on-
chip networks. Proceedings of 31st Annual International Symposium on Computer
Architecture, pp. 188–197, June 19–23, Munich, Germany.

Mullins, R., West, A., and Moore, S. 2006. The design and implementation of a low-
latency on-chip network. Proceedings of Asia and South Pacific Design Automation
Conference, pp. 164–169, January 24–27, Yokohama, Japan.

Peh, L.-S. and Dally, W. J. 2001. A delay model and speculative architecture for
pipelined routers. Proceedings of International Symposium on High-Performance
Computer Architecture, pp. 255–266, Monterrey, Mexico.

75

4
Evaluation of Network-on-Chip
Architectures

4.1 Evaluation Methodologies of NoC

This section presents the strategy to evaluate the performance and cost of
networks-on-chip (NoCs). In the NoC paradigm, while evaluating the per-
formance of an interconnect infrastructure, its energy consumption profile
and silicon area overhead must also be considered, as it can be a significant
portion of the overall system-on-chip (SoC) cost budget. It has been reported
in the work of Pande et al. (2005) that Scalable, Programmable Integrated
Network (SPIN) and octagon network have very high throughput, but their
energy consumption and silicon area overhead are much higher than both
mesh and butterfly fat tree (BFT). Folded torus shows almost similar results
like mesh. In the deep submicron (DSM) era where high-performance and
low-power design is a major goal, for a NoC designer it is always preferable
to choose a topology with lower average energy per packet profile. Taking
this fact into consideration, mesh topology is widely used in academia and
industry.

In this chapter, a thorough comparative study of performance evaluation,
estimation of energy consumptions and area overhead of different mesh-
and tree-based NoC topologies have been shown with the same number of
intellectual property (IP) cores under the same bisection width constraint as
reported in Kundu et al. (2012). A bisection width is defined as the minimum
number of wires to be removed in order to bisect the network into two equal
halves. A network with higher bisection width is expected to show better
performance. This chapter considers two variants of mesh structure—one
core and two cores connected to each router, BFT, and mesh-of-tree (MoT)
network structures—and compares their performance and cost for a 32-core-
based system. The bisection width of all the above networks is taken as 4.
Each IP core has been inserted into a tile of dimension 2.5 mm × 2.5 mm,
similar to that discussed in the work of Feero and Pande (2009).

Although the total chip area can be obtained only after layout, Figures 4.1
through 4.4 show the possible distributions of cores, routers, and links for

76 Network-on-Chip

chip area estimations of all the topologies with 32 tiles. These diagrams
will enable us to compare the area overheads of NoC topologies under con-
sideration. In all the figures, the routers are denoted by small black nodes.
Here, it has been considered that a single link traversal of length 2.5 mm can
be completed within a single clock cycle. The length of tile-to-router link
(also termed as local link) is taken as 1.25 mm. For designing a mesh struc-
ture with 32 tiles, the probable distribution of cores, routers, and links of a
4 × 8 network is shown in Figure 4.1, where a single core has been attached
to each router. Depending on the connectivity, the routers of this network
can be classified into three types: (1) center having node degree 5, (2) edge
having node degree 4, and (3) corner having node degree 3. The lengths
of most of the inter-router links in Figure 4.1 are 2.5 mm, whereas links
between the first two rows and between the last two columns are taken as
few micrometers.

The second variation of mesh network has two cores connected to each
router. A similar distribution of cores, routers, and links for such a 4 × 4
mesh structure has been shown in Figure 4.2. This structure also has three
types of routers: (1) center having node degree 6, (2) edge having node degree
5, and (3) corner having node degree 4. As wire delay increases exponentially
with its length, links more than 2.5 mm are pipelined. The registers used for
pipelining are shown as small white nodes in Figure 4.2. The links between
the first two rows are few micrometers long. In this book, mesh topology
having a single core attached to each router is termed as Mesh-1 network
(Figure 4.1), whereas the mesh with two cores connected to each router is
called Mesh-2 network (Figure 4.2).

A 32-core BFT-based NoC (Pande et al. 2003) with four cores attached to
each leaf level router is shown in Figure 4.3. This network also has three
types of routers: (1) leaf having node degree 6, (2) stem having node degree
6, and (3) root having node degree 2. The MoT-based NoC with two cores

2.5 mm

Tile

Router

2.
5

m
m

≈20 mm

≈1
0

m
m

Figure 4.1
Possible distribution of cores, routers, and links in a 4 × 8 mesh structure with a single core to
each router (Mesh-1).

77Evaluation of Network-on-Chip Architectures

attached to each leaf level router is shown in Figure 4.4. The three types of
routers in this network are (1) leaf with node degree 4, (2) stem with node
degree 3, and (3) root with node degree 2. In MoT, as shown in Figure 4.4,
the inter-router links between the leaf and the stem of the column tree are
few micrometers long. In any tree-based topology, link length increases with
growing network size. Hence, the links of BFT and MoT are pipelined after
every 2.5 mm. The registers used for pipelining are shown as white nodes
in Figures 4.3 and 4.4. From Figures 4.1 through 4.4, it can be observed that
the wire density of mesh networks is more uniform across any cross section
compared to that of BFT and MoT.

Routers for all the above-mentioned networks have been designed in Verilog
HDL and synthesized using Synopsys Design Vision supporting 90-nm com-
plementary metal oxide semiconductor (CMOS) technology. For a specific

Tile

Router

2.5 mm

2.
5

m
m

≈20 mm

≈1
0

m
m

Figure 4.2
Possible distribution of cores, routers, and links in a 4 × 4 mesh structure with two cores to
each router (Mesh-2).

Tile

Router

≈20 mm

≈1
0

m
m

2.5 mm

2.
5

m
m

Figure 4.3
Possible distribution of cores, routers, and links in BFT networks with four cores to each
Leaf router.

78 Network-on-Chip

network structure, critical path delay of a router increases with increasing node
degree. This happens as the routing logic and arbitration complexity increase
with increasing node degree. Hence, in a network, the router with a highest
node degree has the minimum frequency. To support mesochronous clocking,
the clock having minimum frequency is applied to all the routers of a network.
Table 4.1 shows the clock frequencies of different types of wormhole (WH)
routers used in implementing the networks under consideration. Though MoT
has the highest minimum frequency, in this work, to provide a consistent com-
parison with other networks, all the routers are driven at 1.5-GHz clock.

For evaluating the performance of these networks, a SystemC-based cycle-
accurate NoC simulator has been developed. The simulator operates at the
granularity of individual architectural components of the router. It supports
mesochronous clocking strategy where the routers are driven by the same
clock frequency with varying phase.

4.1.1 Performance Metrics

The performance of an on-chip communication network is characterized
by its throughput and latency. Throughput is the maximum accepted traf-
fic from the network and it is related to the peak data rate sustainable by
the network. Although the ratio of the number of edges (E) and the average
distance (D) of a particular network is a good indicator of throughput in
contention-free traffic, in an actual traffic scenario, the average time spent
by the flits in the network will increase due to traffic congestion, and hence
throughput and latency values will differ from their theoretical counter-
parts. In this book, throughput is defined as (Pande et al. 2005)

 Throughput
Total packets completed Packet length

Number of IP blo
=

×
ccks Total time×

 (4.1)

Tile

Router

≈20 mm

≈1
0

m
m

2.5 mm

2.
5

m
m

Figure 4.4
Possible distribution of cores, routers, and links in a 4 × 4 MoT structure with two cores to each
Leaf router.

79Evaluation of Network-on-Chip Architectures

TA
B

Le
 4

.1

C
on

ne
ct

iv
it

y,
 N

u
m

be
r

of
 W

H
 R

ou
te

rs
, a

nd
 F

re
qu

en
cy

 o
f D

if
fe

re
nt

 T
yp

es
 o

f W
H

 R
ou

te
rs

 to
 Im

pl
em

en
t t

he
 N

et
w

or
ks

 u
nd

er

C
on

si
de

ra
ti

on
 fo

r
C

on
ne

ct
in

g
32

 C
or

es

N
et

w
or

k
s

Ty
p

e-
1

R
ou

te
r

Ty
p

e-
2

R
ou

te
r

Ty
p

e-
3

R
ou

te
r

P
os

it
io

n
N

od
e

D
eg

re
e

N
u

m
b

er
 o

f
R

ou
te

rs
Fr

eq
u

en
cy

(G

H
z)

P
os

it
io

n
N

od
e

D
eg

re
e

N
u

m
b

er
 o

f
R

ou
te

rs
Fr

eq
u

en
cy

(G

H
z)

P
os

it
io

n
N

od
e

D
eg

re
e

N
u

m
b

er
 o

f
R

ou
te

rs
Fr

eq
u

en
cy

(G

H
z)

M
es

h-
1

C
en

te
r

5
12

1.
60

E
d

ge
4

16
1.

68
C

or
ne

r
3

4
1.

72
M

es
h-

2
C

en
te

r
6

 4
1.

55
E

d
ge

5
 8

1.
60

C
or

ne
r

4
4

1.
68

B
FT

L

ea
f

6
 8

1.
52

St
em

6
 4

1.
52

R
oo

t
4

4
1.

90
M

oT
L

ea
f

4
16

1.
66

St
em

3
16

1.
70

R
oo

t
2

8
1.

90

N
ot

e:
 I

n
B

FT
 n

et
w

or
k

w
it

h
2n

co
re

s,
 th

e
no

d
e

d
eg

re
e

of
 r

oo
t r

ou
te

rs
 is

 4
 w

he
n

n
is

 e
ve

n
an

d
 2

 w
he

n
n

is
 o

d
d

.

80 Network-on-Chip

where:
Total packets completed refers to the number of packets that successfully

arrive at their destination IP cores
Packet length is measured in terms of flits
Number of IP blocks refers to the number of IP blocks involved in the

communication
Total time denotes the simulation time (in clock cycles)

Hence, throughput is represented as flits/cycle/IP. Network bandwidth (BW)
refers to the maximum number of bits that can be sent successfully to the des-
tination through the network per unit time. It is represented as bits/sec (bps).

 BW
Throughput Number of IP cores Flit size

Clock period
=

× ×
 (4.2)

Depending on the source–destination pair and the routing algorithm, each
packet may have a different latency. There is also some overhead in the
source and destination that contributes to the overall latency. Therefore, for
any packet i, the overall latency (Li) is defined as

 Li = + +Sender overhead Transport latency Receiver overhead (4.3)

Let P be the total number of packets reaching their destination IPs. The aver-
age overall latency, Lavg, is then calculated as (Pande et al. 2005)

 L
P

i
i

P

avg = =∑ 1 (4.4)

4.1.2 Cost Metrics

Energy consumption by the network is one of the most important cost metrics
in NoC design. Energy consumption of each router is determined by using
Synopsys Prime Power in 90-nm CMOS technology with Faraday library by
running their gate-level netlists. The clock frequency to each router is been
fixed at 1.5 GHz. The number of toggles of every individual I/O pin of the
router and their probability of remaining in logic 1 state for the entire sim-
ulation window is calculated from the NoC simulator. This information is
then fed to Synopsys Prime Power tool to estimate the power of each router
with the following parameters: process = normal, supply voltage = 1 V, and
temperature = 75°C.

Energy consumption of the links is determined separately from that of
the routers. Links can be modeled as semiglobal interconnects. Copper wire
(resistivity = 17 nΩ·m) is chosen as interconnection link. The width and
thickness of the wires are taken to be 0.25 and 0.5 µm, respectively. The spac-
ing between two adjacent wires is kept at 0.25 µm. The spacing between two
adjacent metal layers is fixed at 0.75 µm and is filled by a dielectric material

81Evaluation of Network-on-Chip Architectures

having a relative permittivity of 2.9. Table 4.2 shows the parasitic resistance,
capacitance, and inductance per meter length of the wires, extracted by the
Field Solver tool from HSPICE supporting 90-nm CMOS technology with a
three-wire model.

In a three-wire model, the middle wire is considered as the victim line,
whereas the other two wires are known as aggressor lines. In an n-bit chan-
nel, coupling effect on a wire by the nonadjacent lines is negligible. A nonideal
input signal is supplied to the link driver and a load capacitance of 5 fF is con-
nected to the other end of the link. Here, repeater is placed exactly at the mid-
dle of a 2.5-mm long wire. It has been observed that the worst-case link delay
is much lesser than the router clock period of 666 ps (frequency = 1.5 GHz).
The delay of the links having a length of tens of microns is also very less.
Hence, the links are not falling into the critical path of the overall NoC.

Energy consumption in the victim line for all possible transitions in the
wires of a three-wire model can be calculated using HSPICE. Table 4.3 shows
a look-up table where the first and last rows for every state indicate the energy
consumption (in Joules) per transition in the middle wire of lengths 1.25 and
2.5 mm, respectively. This look-up table is used to calculate the link energy
from the NoC simulator for 200,000 cycles. It can be observed from Table 4.3
that energy consumption in the middle line is negative for some of the transi-
tions (e.g., 000 → 101 in 2.5-mm wire), as also observed and explained in the
work of Sotiriadis and Chandrakasan (2002). Due to the capacitive coupling
for some specific state transitions, the current flows back to the power supply
through the middle wire.

4.2 Traffic Modeling

In this chapter, traffic injected by the IP cores follows self-similar distribu-
tion. In the following, a precise way of self-similar traffic generation has
been presented. It has been shown that modeling of self-similar traffic can
be obtained by aggregating a large number of ON–OFF message sources
(Park and Willinger 2000). The length of time each message spends in either

TABLe 4.2

Parasitic Capacitance, Inductance, and Resistance of a Three-Wire Model

Self-
Capacitance

(pF/m)

Coupling
Capacitance

(pF/m)

Self-
Inductance

(µH/m)

Mutual
Inductance

(µH/m)
Resistance

(kΩ/m)

Line 1 134.54 Lines 1–2 70.33 Line 1 0.33 Lines 1–2 0.17 Line 1 137.93
Line 2 175.92 Lines 2–3 70.33 Line 2 0.32 Lines 2–3 0.17 Line 2 137.93
Line 3 134.54 Lines 1–3 1.99 Line 3 0.33 Lines 1–3 0.09 Line 3 137.93

82 Network-on-Chip

TA
B

Le
 4

.3

E
ne

rg
y

(i
n

Jo
u

le
s)

 o
n

th
e

M
id

d
le

 L
in

e
of

 T
h

re
e-

W
ir

e
M

od
el

 O
bt

ai
ne

d
 f

ro
m

 H
SP

IC
E

L
en

gt
h

(m

m
)

N
ex

t S
ta

te

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

Present State

00
0

1.
25

5.
25

E
-1

8
1.

04
E

-1
3

7.
70

E
-1

4
1.

72
E

-1
3

1.
04

E
-1

3
2.

12
E

-1
3

1.
72

E
-1

3
2.

76
E

-1
3

2.
5

3.
41

E
-1

8
–9

.6
1E

-1
4

2.
94

E
-1

3
2.

04
E

-1
3

–9
.6

1E
-1

4
–1

.9
3E

-1
3

2.
04

E
-1

3
1.

13
E

-1
3

00
1

1.
25

1.
07

E
-1

3
4.

16
E

-1
8

2.
74

E
-1

3
1.

60
E

-1
3

2.
14

E
-1

3
1.

11
E

-1
3

3.
65

E
-1

3
2.

68
E

-1
3

2.
5

9.
56

E
-1

4
3.

41
E

-1
8

3.
84

E
-1

3
2.

94
E

-1
3

–2
.6

2E
-1

6
–9

.6
2E

-1
4

2.
91

E
-1

3
2.

04
E

-1
3

01
0

1.
25

1.
80

E
-1

3
3.

47
E

-1
3

3.
77

E
-1

8
1.

91
E

-1
3

3.
47

E
-1

3
5.

13
E

-1
3

1.
91

E
-1

3
3.

82
E

-1
3

2.
5

2.
76

E
-1

3
2.

92
E

-1
3

2.
65

E
-1

8
9.

97
E

-1
4

2.
92

E
-1

3
1.

90
E

-1
3

9.
97

E
-1

4
1.

99
E

-1
3

01
1

1.
25

1.
22

E
-1

3
9.

93
E

-1
4

2.
07

E
-1

4
2.

69
E

-1
8

3.
14

E
-1

3
2.

92
E

-1
3

2.
15

E
-1

3
1.

98
E

-1
3

2.
5

1.
88

E
-1

3
2.

75
E

-1
3

–9
.9

8E
-1

4
2.

65
E

-1
8

2.
66

E
-1

3
2.

92
E

-1
3

5.
30

E
-1

6
9.

96
E

-1
4

10
0

1.
25

1.
07

E
-1

3
2.

14
E

-1
3

2.
74

E
-1

3
3.

65
E

-1
5

4.
16

E
-1

8
1.

11
E

-1
3

1.
60

E
-1

3
2.

68
E

-1
3

2.
5

9.
57

E
-1

4
–2

.6
2E

-1
6

3.
84

E
-1

3
2.

92
E

-1
3

3.
41

E
-1

8
–9

.6
2E

-1
4

2.
94

E
-1

3
2.

04
E

-1
3

10
1

1.
25

2.
01

E
-1

3
9.

93
E

-1
4

4.
45

E
-1

3
3.

34
E

-1
3

9.
93

E
-1

4
3.

07
E

-1
8

3.
34

E
-1

3
2.

43
E

-1
3

2.
5

1.
91

E
-1

3
9.

57
E

-1
4

4.
48

E
-1

3
3.

84
E

-1
3

9.
57

E
-1

4
3.

41
E

-1
8

3.
84

E
-1

3
2.

94
E

-1
3

11
0

1.
25

1.
22

E
-1

3
3.

14
E

-1
3

2.
07

E
-1

4
2.

15
E

-1
3

9.
93

E
-1

4
2.

92
E

-1
3

2.
69

E
-1

8
1.

98
E

-1
3

2.
5

1.
88

E
-1

3
2.

66
E

-1
3

–9
.9

8E
-1

4
5.

30
E

-1
6

2.
75

E
-1

3
2.

92
E

-1
3

2.
65

E
-1

8
9.

96
E

-1
4

11
1

1.
25

4.
21

E
-1

4
2.

75
E

-1
4

3.
27

E
-1

4
1.

40
E

-1
4

2.
75

E
-1

4
1.

86
E

-1
4

1.
40

E
-1

4
1.

60
E

-1
8

2.
5

9.
26

E
-1

4
1.

88
E

-1
3

–1
.9

9E
-1

3
–9

.9
7E

-1
4

1.
88

E
-1

3
2.

75
E

-1
3

–9
.9

7E
-1

4
2.

65
E

-1
8

83Evaluation of Network-on-Chip Architectures

the ON or the OFF state should be selected according to a distribution that
exhibits long-range dependence. The Pareto distribution [F(x) = 1 – x–α, with
1 < α < 2] is found to fit well to this kind of traffic. The duration of each
ON–OFF period is assumed to be a random variable Ti (i є {ON, OFF}). The
degree of self-similarity is expressed using only a single parameter, namely,
Hurst parameter (HP). The value α at ON slot is related to HP as given below:

 HP where 0.5 < HP <1ON= −3
2
α

, (4.5)

If the network utilization parameter is given by ρ, the αOFF parameter is
obtained as

 α ρ α
ρ α ρ α

OFF
ON

ON
= −

− − −
()

() ()ON

1
1 1

 (4.6)

For a random variable U with uniform distribution on [0, 1], the following
transformation can be used to generate the random number P of time slots
during active and idle periods:

 P ii i=

, ∈

−
round ON, OFF}U {

1
α (4.7)

The active and idle periods in each iteration is calculated as

 T
P

i
i=

IR
 (4.8)

where IR is the packet injection rate within the ON slot. The pseudocode of
the algorithm for generating a self-similar traffic is shown in Figure 4.5.

Algorithm: Generation of Self-Similar Traffic

1. Set IR, HP, ρ, and time to 0.
2. Calculate αON from HP by using (Eq. 5.5).
3. Calculate αOFF from ρ and αON by using (Eq. 5.6)
4. While time ≤ SIMULATION_TIME do

4.1 Generate a random number U between 0 and 1.
4.2 Calculate PON and POFF by using (Eq. 5.7).
4.3 Calculate T TON OFFand by using (Eq. 5.8).
4.4 For j ← 0 to PON do

Generate packet for the destination.
4.5 time ← time + TON + TOFF

5. Stop

Figure 4.5
Pseudocode of the algorithm for generating self-similar traffic.

84 Network-on-Chip

In the simulation process, the parameters ρ and HP have been set to 0.3 and
0.75, respectively. Hence, from Equations 4.5 and 4.6, the values of αON and
αOFF are calculated to be 1.5 and 1.21, respectively. The packet injection rate
within the ON slot is varying as 0.002, 0.004, 0.006, and so on. The user may
also choose between uniform and localized traffic patterns. In our simula-
tion, we have fixed the packet length to be of 64 flits, as in the work of Pande
et al. (2005). The packet injection is continued for a simulation time of 200,000
cycles of the routers’ clock including 10,000 cycles to make the network sta-
ble from initial transient effects. For accurate estimation of the energy con-
sumption, we have assumed that each traffic generator module injects traffic
into the network with a switching activity of 0.9 as it is expected to introduce
a large number of transitions, and thus energy consumption in the network.

4.3 Selection of Channel Width and Flit Size

To design a NoC-based system, selection of flit size and channel width plays
a crucial role in the overall system performance and cost. Although there are
several works reported in the literature that use wider flits [e.g., 64 bits (Soteriou
et al. 2007), 96 bits (Rijpkema et al. 2003), 128 bits (Millberg et al. 2004), and 256
bits (Chi and Chen 2004)], Salminen et al. (2008) recommended the usage of
32-bit flit size and the same link width for mesh topology. Tilera’s 64-core-based
TILE64 processor chip, implemented in 90-nm technology, uses 32-bit-wide
two unidirectional inter-router links where the routers are connected in an
8 × 8 two-dimensional (2D) mesh fashion (Wentzlaff et al. 2007). Intel’s 80-core-
based Teraflops research chip (Vangal et al. 2008) also uses 32-bit flit size and
39-bit wider links (including some handshaking signals) in 65-nm technology
where the routers are connected in an 8 × 10 mesh network. XPIPES (Bertozzi
and Benini 2004) and Dy-AD mesh (Hu and Marculescu 2004) also use 32-bit
link width in 100- and 160-nm technologies, respectively. Considering all these
examples, this chapter also uses both flit size and link width equal to 32 bits for
all the networks under consideration, keeping the wire dimension unchanged.

4.4 Simulation Results and Analysis of MoT Network
with WH Router

In this section, the evaluation methodology mentioned is applied to find out
the performance and energy consumption of MoT-based network consisting
of 32 IP cores by varying the offered load and locality factor in a self-similar
traffic. In the WH router architecture, FIFOs of depth 6 are used at both input
and output channels.

85Evaluation of Network-on-Chip Architectures

4.4.1 Accepted Traffic versus Offered Load

The accepted traffic depends on the rate at which the IP blocks inject traffic
into the network. Ideally, accepted traffic should increase in direct propor-
tion to the increasing offered load. However, due to the limitation of routing
and arbitration strategy and the unavailability of enough buffer space within
the WH router (FIFO depth being much lesser than the size of the packet),
the network suffers from contention. Therefore, the accepted traffic satu-
rates after a certain value of the offered load. Figure 4.6 depicts this scenario
for uniformly distributed traffic in a MoT-based network. The maximum
accepted traffic where the network is saturated is termed as throughput and
it relates to the maximum sustainable data rate by the network.

4.4.2 Throughput versus Locality Factor

Locality factor is defined as the ratio of local traffic to total traffic and its
value is zero for uniformly distributed traffic. For a 4 × 4 MoT, as shown in
Figure 4.7, the possible distances (d) of the destinations from any source are
d = 0, 2, 4, 6, and 8. There is only one destination core at the nearest cluster
(d = 0). For example, if the locality factor is 0.5, 50% of traffic is targeted at the
nearest cluster from source. The rest of the traffic is distributed according to
their distances from the source, such that a destination at the nearer cluster
gets more traffic compared to one at farther cluster. In a 4 × 4 MoT, for a local-
ity factor of 0.5, the distribution of the traffic is as follows:

•	 Fifty percent of the total traffic goes to the cluster having d = 0.
•	 Rest 50% of the traffic is distributed as follows:
•	 (8 * 50)/(2 + 4 + 6 + 8) = 20% of the total traffic goes to the cluster

having d = 2

0.002 0.004 0.006 0.008 0.010 0.012
Offered load (packets/cycle/IP)

A
cc

ep
te

d
tr

affi
c

(fl
its

/c
yc

le
/I

P)

0.014 0.016 0.018 0.020
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 4.6
Accepted traffic with varying offered load at uniformly distributed traffic.

86 Network-on-Chip

•	 (6 * 50)/(2 + 4 + 6 + 8) = 15% of the total traffic goes to the cluster
having d = 4

•	 (4 * 50)/(2 + 4 + 6 + 8) = 10% of the total traffic goes to the cluster
having d = 6

•	 (2 * 50)/(2 + 4 + 6 + 8) = 5% of the total traffic goes to the cluster
having d = 8

Now, as there are more than one destination cores in some clusters (d = 2, 4,
6, and 8), the traffic gets randomly distributed among them.

The effect of traffic spatial localization on the throughput of the MoT-based
network is shown in Figure 4.8. It can be observed that network throughput
increases with increasing locality factor. This is due to the fact that as the
locality factor increases, more traffic is destined for their local clusters, thus
traversing lesser number of hops, which in turn increases throughput.

4.4.3 Average Overall Latency at Different Locality Factors

The average overall latency of any network depends on both the offered load
and the locality factor. Figure 4.9 shows the average overall latency profile
with an offered load under uniformly distributed and localized traffic in a

Source

d = 0

d = 2 d = 4

d = 2

d = 2 d = 4

d = 4

d = 6

d = 4

d = 4

d = 6

d = 6
d = 6

d = 2

d = 4

d = 4

d = 4

d = 4 d = 6

d = 6

d = 6

d = 6 d = 8

d = 8

d = 8 d = 8

d = 8d = 8

d = 8

d = 8

d = 4

L
S

S

S

R

R

R R R

R

R

R

S

L

L

L

L
S

S

S S

L

L

L

L
S

S

S S S

S

S

S

L

L

L L

L

L

L

Figure 4.7
Distances of the destination cores from any source in 4 × 4 MoT. L, S, and R represent Leaf,
Stem, and Root routers respectively.

87Evaluation of Network-on-Chip Architectures

4 × 4 MoT topology. It shows that at lower traffic, the latency variation is not
significant. This is due to the fact that at lower traffic, the contention in the
network is less, but it increases as the offered load increases, which in turn
increases the latency. The simulation result shows that as the offered load
increases toward the network saturation point, the latency increases expo-
nentially, which signifies that the packets take much more time to reach their
destinations. Therefore, it is always desirable to operate the network below its
saturation point. The effect of spatial localization of traffic on the average over-
all latency in a MoT based network is also shown in Figure 4.9, where locality
factors are represented by LF. It can be observed that localization of traffic has
significant impact on the latency, which decreases with increasing locality fac-
tor. As the locality factor increases, more traffic goes to local cluster and hence
traverses lesser number of hops. Moreover, this causes lesser contention in the
network. Therefore, the network can carry more traffic, before going to satura-
tion, which in turn enhances the operating point of the network.

0.0
0.0

0.1

0.2

0.3

�
ro

ug
hp

ut
 (fl

its
/c

yc
le

/I
P)

0.4

0.5

0.6

0.7

0.3
Locality factor

0.5 0.8

Figure 4.8
Variation of throughput with locality factor in MoT having 32 cores.

0.002
0

200

400

600

800

1000

LF = 0.0

LF = 0.3

LF = 0.5

LF = 0.8

Offered load (packets/cycle/IP)

Av
er

ag
e

ov
er

al
l l

at
en

cy
(n

um
be

r o
f c

lo
ck

 c
yc

le
s)

0.004 0.006 0.008 0.010 0.012 0.014 0.016

Figure 4.9
Latency profile of MoT with offered load at different locality factors.

88 Network-on-Chip

4.4.4 energy Consumption at Different Locality Factors

Total energy consumption in NoC is the summation of energy consumed by
the routers and communication links. Both the factors are network topology
dependent. The total energy consumption of a MoT-based network for uni-
formly distributed self-similar traffic is shown in Figure 4.10 (simulation for
200,000 clock cycles with a 666-ps clock period taken as evaluation parameter).
It can be observed that the network energy consumption increases linearly
with the offered load but saturates as the offered load increases to the through-
put limit. Beyond saturation, no additional packets can be injected successfully
into the network and, consequently, no additional energy is consumed.

Figure 4.11 depicts the component-wise energy consumption of the net-
work at saturation. It can be observed that the energy consumption of all
the FIFOs is 60% of the total network energy consumption, whereas all the
links consume only 30% of it. The combined energy consumption of all the
routing logic, arbiters, and control logics is about 10% of the same. Thus, from
Figure 4.11, this can be concluded that FIFOs are the most energy hungry
component in NoC.

The average energy consumption per cycle of a MoT-based NoC at satura-
tion with uniformly distributed and localized traffic is shown in Figure 4.12.
With increasing locality factor, packets traverse lesser hops to reach their
destinations. Although the energy consumption of the local link increases
with increasing locality factor, the stem and root routers and the inter-router
links consume lesser energy due to lesser switching. From Figure 4.12, it
can be noticed that the average energy consumption of the overall network
decreases as the locality factor increases.

To get an idea about the energy spent per packet, the average packet
energy is computed. This is another important attribute for characterizing
NoC structures. Figure 4.13 shows the average packet energy consumed at
different locality factors at saturation. As the energy consumption decreases

0.002
0.004

0.006
0.008

0.010
0.012

0.014
0.016

0.018
0.020

Offered load (packets/cycle/IP)

Network

Router

Link

En
er

gy
 c

on
su

m
pt

io
n

(μ
J)

0

50

100

150

200

250

300

350

Figure 4.10
Energy consumption in MoT network with uniformly distributed load.

89Evaluation of Network-on-Chip Architectures

Other logic
10%

Link
30%

FIFO
60%

Figure 4.11
Percentage energy consumption by FIFOs, links, and other logics. Other logic includes routing
logic, arbitration, and control logic.

1300
0.0 0.3

Locality factor

Av
er

ag
e

en
er

gy
(p

J/
cy

cl
e)

0.5 0.8

1320

1340

1360

1380

1400

1420

1440

Figure 4.12
Average cycle energy at saturation with varying locality factors.

0.0
0

2

4

6

8

10

12

0.3

A
ve

ra
ge

 e
ne

rg
y

pe
r

pa
ck

et
 (n

J)

0.5
Locality factor

0.8

Figure 4.13
Average packet energy at saturation with varying locality factors.

90 Network-on-Chip

and the number of accepted traffic increases with increasing locality factor,
the average energy consumption per packet also decreases.

4.5 Impact of FIFO Size and Placement in Energy
and Performance of a Network

In Section 4.4, we have seen that FIFO is the most energy-consuming element
in the network. The WH router uses both input and output buffering. There
are considerable amount of works in the literature (Pande et al. 2003; Wentzlaff
et al. 2007; Zhang et al. 2006) that follow similar methodology of placing
the FIFO buffers at both input and output channels of a router. Researchers
have also proposed alternative WH routers that use only input buffering
(Kumar et al. 2007; Zeferino and Susin 2003). Since both the schemes are
widely used in literature, this section evaluates and compares the two. We
will proceed with the better one in remaining analysis. Moreover, it has also
been reported in literature (Marculescu et al. 2009; Ogras et al. 2005) that
the performance and energy consumption of NoC are largely dependent on
the depth of the FIFO buffer. Experimentation has been carried out on this
issue as well. Table 4.4 reports the percentage performance degradation and
network energy saving in MoT at saturation by varying FIFO size at differ-
ent locality factors. FIFO Depth i–j in the second column of Table 4.4 signifies

TABLe 4.4

Energy and Performance Variation in MoT at Saturation by Varying FIFO Depths

FIFO
Depth

Locality Factor

0 0.3 0.5 0.8

Throughput
degradation (%)

4–6 7.183 5.763 4.574 3.504
4–4 15.024 11.318 7.944 6.261
6–0 1.192 1.391 0.229 0.156
4–0 12.674 8.642 7.029 6.439

Latency increment (%) 4–6 44.94 58.539 53.831 102.942
4–4 62.889 107.06 103.456 146.595
6–0 13.641 12.187 11.716 14.317
4–0 71.101 130.541 131.809 163.581

Energy saving (%) 4–6 14.425 13.623 12.403 13.668
4–4 23.93 23.206 21.516 22.235
6–0 37.063 36.899 36.321 35.443
4–0 41.043 42.06 41.228 41.779

Note: Bold values signifies that FIFO depth 6–0 is the optimum solution in terms of throughput,
latency, and energy consumption.

91Evaluation of Network-on-Chip Architectures

that FIFO at the input channel has depth i and that at the output channel has
depth j, where j = 0 signifies that no FIFO is present at the output channel. In
this study, FIFO Depth 6–6 (FIFO depths at both the input and output chan-
nels are 6) has been taken as the reference. When contention occurs, FIFO at
the input channel allows some more data flits to make progress even though
the output channel is not available. However, FIFO at the output channel
allows a few flits to cross the crossbar even when the FIFO of the next router’s
input channel is full. Thus, decreasing the depth of any of the FIFOs will
generate FULL signal more frequently and thus have a negative impact on
performance. This is readily reflected in Table 4.4, as performance degrades
with decreasing FIFO depth.

Table 4.4 shows that the elimination of output channel FIFO in the MoT
router has very little impact on throughput and latency. In this case, the
number of flits stored in the router data path is lesser than that in reference
case (FIFO Depth 6–6) by 6. However, after getting the grant signal from any
output channel, header passes directly to the next router, saving one cycle
delay of FIFO at the output channel. This diminishes the negative impact of
eliminating FIFO at the output channel to some extent.

Network energy consumption also decreases with reducing the total FIFO
size of the router. From Table 4.4, it can be concluded that the elimination of the
output buffer reduces the energy consumption significantly at the cost mar-
ginal performance degradation. Therefore, to optimize the performance and
energy consumption, the WH router is modified by eliminating FIFO at the
output channel (FIFO Depth 6–0). This modified router architecture is used in
rest of the chapter. The modified router architecture has only two-cycle latency,
one cycle each in FIFO at the input channel and arbiter. The energy consump-
tion profile of the MoT-based network after elimination of FIFO at the output
channel with uniformly distributed offered load is shown in Figure 4.14.

0.002
0.004

0.006
0.008

0.010
0.012

0.014
0.016

0.018
0.020

0

40

80

120

160

200

240

Network

Router

Link

Offered load (packets/cycle/IP)

En
er

gy
 c

on
su

m
pt

io
n

(μ
J)

Figure 4.14
Network energy consumption in MoT with modified router under uniformly distributed
offered load.

92 Network-on-Chip

The component-wise energy consumption of the network with the modi-
fied router under uniformly distributed offered load at saturation is shown
in Figure 4.15. It can be observed that the energy consumption of all the
FIFOs is about 41% of the total network energy consumption, whereas all the
links consume only about 46% energy. The combined energy consumption
of all the routing logic, arbiters, and control logic is about 13% of the same.
Thus, even after the architecture modification, FIFOs are the most energy-
consuming elements of a router.

The dynamic power reported by Synopsys Prime Power tool consists of
switching power and internal power; the internal power is the summation
of short-circuit power and internal node switching power. As the internal
node switching power is dominated by the transition of clock in any sequen-
tial design (Synopsys Prime Power Manual 2006), the capacitances inter-
nal to the cell are either charging or discharging with every transition of
clock, and hence consume very high internal power. It can be observed from
Figure 4.14 that the change in the total router energy consumption is not sig-
nificant with variation in the offered load. The routers consume a significant
amount of energy even at very low traffic, though switching of input data
is low. This appears as the internal power consumption due to free-running
clock dominates over the switching and leakage power. Therefore, to reduce
the internal power, it is essential to stop the free-running clock, when the
network is idle. The implementation of clock gating in FIFO is presented
in Chapter 6. The total energy consumption of a MoT-based network after
clock gating in FIFO with uniformly distributed self-similar traffic is shown
in Figure 4.16. It is noticeable that the link energy consumption exceeds the
router energy consumption after clock gating in FIFO. It can be observed
from Figure 4.17 that the energy consumption of all the FIFOs is 27% of the
total energy, whereas all the inter-router links consume 55% of it. The com-
bined energy consumption of all the routing logic, arbiters, and control logic
is about 18% of the same.

Other logic
13%

Link
46%

FIFO
41%

Figure 4.15
Component-wise energy consumption with modified router at saturation. Other logic includes
routing logic, arbitration, and control logic.

93Evaluation of Network-on-Chip Architectures

4.6 Performance and Cost Comparison of MoT with Other NoC
Structures Having WH Router under Self-Similar Traffic

This section compares the proposed MoT-based network with other network
topologies under consideration consisting of 32 IP cores. For deterministic
routing in mesh networks, XY routing (Duato et al. 2003) is used, whereas
a least common ancestor (LCA) routing (Pande et al. 2003) can be adopted
for BFT-based networks. In the BFT-based network, localized traffic is con-
strained within a cluster of four cores. In case of mesh networks having single
core with each router, the number of destination cores in the local cluster is 2,
3, or 4 depending on the position of the source. Figure 4.18 depicts the two
scenarios for BFT and mesh. In the mesh-based network having two cores
with each router, such as MoT, there is only a single core in the local cluster.
The performance and cost of all the networks are evaluated and compared

0.002
0

30

60

90

120

150

0.004 0.006 0.008 0.010 0.012 0.014
Offered load (packets/cycle/IP)

En
er

gy
 c

on
su

m
pt

io
n

(μ
J)

0.016 0.018 0.020

Network

Router

Link

Figure 4.16
Network energy consumption in MoT after clock gating in FIFO.

Link
55%

FIFO
27%

Other logic
18%

Figure 4.17
Component-wise energy consumption of the MoT network after clock gating in FIFO at satura-
tion. Other logic includes routing logic, arbitration, and control logic.

94 Network-on-Chip

after eliminating FIFO at the output channel from the routers and applying
clock gating to FIFO at the input channel.

4.6.1 Network Area estimation

Table 4.5 shows the silicon area required by each type of router to implement
the networks under consideration taking a 32-bit flit size. For fair compari-
son of the networks, this section revisits all the networks having 32 cores as
shown in Figures 4.1 through 4.4. Although each tile is taken as a square
of side 2.5 mm, inter-tile spacing varies significantly with the underlying
topology due to varying sizes of routers, which in turn causes variations in
estimated chip dimensions. It can also be noticed that the number of links
running through inter-tile spaces are varying in different networks. While
a mesh structure (both Mesh-1 and Mesh-2) has a uniform wiring density,
MoT and BFT have nonuniform wire densities and use flyover links over
the top of another router. Thus, to compare the chip dimensions of different
topologies, this work has taken a uniform channel width of 32 bits for all
the networks. The width of each wire and inter-wire spacing is taken to be
0.25 µm as mentioned earlier. The dimension of each router is assumed to be
a perfect square.

The dimension of a mesh-based network can be estimated as follows: The
routers in each row are placed between two row-wise adjacent tiles such that

TABLe 4.5

Silicon Area Required for Each Type of Router after Clock Gating

Networks

Type-1 Router Type-2 Router Type-3 Router

Position
Area

(mm2) Position
Area

(mm2) Position
Area

(mm2)

Mesh-1 Center 0.079 Edge 0.061 Corner 0.045
Mesh-2 Center 0.115 Edge 0.079 Corner 0.057
BFT Leaf 0.115 Stem 0.115 Root 0.022
MoT Leaf 0.057 Stem 0.041 Root 0.022

Source Sourced = 0 d = 1d = 0 d = 2 d = 3

d = 4

d = 5

d = 6

d = 2

Figure 4.18
Distribution of destination cores from any source in BFT and mesh networks.

95Evaluation of Network-on-Chip Architectures

the breadth of the chip increases just because of the channel width. The length
of the chip will increase by the length of all center routers and two edge rout-
ers of a row. Thus, a better estimation of the chip dimension of a 4 × 8 Mesh-1
network considering unidirectional opposite links increases the area from
20 mm × 10 mm to 22.18 mm × 10.128 mm, and that of a 4 × 4 Mesh-2 network
becomes 21.24 mm × 10.128 mm. For the BFT-based network, the length of the
chip increases because of the leaf, stem, and root routers, whereas its breadth
increases just because of the channel width. The estimated dimension of the
BFT network becomes 22.33 mm × 10.128 mm. For the MoT-based network, all
routers and repeaters of a row tree can be placed between row-wise adjacent
tiles such that they do not increase the breadth of the chip. It can be noted
that only the stem routers of the column trees of each 2 × 2 MoT subnetwork
will increase the breadth of the chip. The length of the chip will be increased
because of the routers and repeaters of the row tree. Taking all these facts
into account, the estimated chip dimension of the 4 × 4 MoT increases to
21.5 mm × 10.4 mm. Assuming each router to be a perfect square, the length
of each side of the stem router is about 200 µm, which is almost 6 times wider
than the cross section of two opposite unidirectional 32-bit links. Thus, unlike
mesh and BFT networks, MoT network connects up to 16 cores in a single row
tree; the channel width will not increase the breadth of the chip.

Table 4.6 depicts the total area and area overheads due to underlying net-
works for 32-core- and 256-core-based systems. It may be noted that for a
32-core system, the 4 × 8 Mesh-1 network needs more area than the 4 × 4
MoT. In the same way, for a 256-core system where 16 cores are placed in each
row, the areas of 16 × 16 Mesh-1 and 16 × 8 MoT networks are incremented
from 40 mm × 40 mm to 44.42 mm × 40.512 mm and 43.272 mm × 41.6 mm,
respectively. Table 4.6 shows that the 16 × 16 Mesh-1 network requires almost
the same area as that of the 16 × 8 MoT network. In both the cases, Mesh-2
network requires the least area, whereas BFT needs the maximum area.
Although there exists a possibility of trading-off this additional area for
energy/performance benefits, in this book, we do not explore this avenue as
it goes deep into the physical design issues of systems involving these NoC
topologies.

TABLe 4.6

Area Overhead for 32- and 256-Core-Based NoCs

Networks

32 Cores 256 Cores

Overall
Area (mm2) Overhead (%)

Overall
Area (mm2) Overhead (%)

Mesh-1 224.64 12.32 1799.87 12.49

Mesh-2 215.12 7.56 1725.65 7.85

BFT 226.16 13.08 1890.82 18.17

MoT 223.6 11.8 1800.12 12.5

96 Network-on-Chip

4.6.2 Network Aspect ratio

Besides the channel width and flit size, the network aspect ratio also has
an important role in determining the overall performance and cost of NoC.
In general, for an M × C M/ Mesh-1 network (M is the number of nodes
in each row and C is the total number of cores attached in the network),
Equations 4.9 and 4.10 give the average distance (D) and the number of
directed edges (E) as mentioned in the work of Pavlidis and Friedman (2007):

 D
M C M

=
+ /

3
 (4.9)

 E M
C
M

C
M

M= × ×

−

 +

× −

2 1 1() (4.10)

E
D

C
M C M

= ×
+

−

2

6
3

/ (4.11)

The ratio of E to D is shown in the above equation. The E/D ratio is a good
indicator of network throughput (Decina et al. 1991). It can be shown that for
the Mesh-1 network, the value of E/D reaches its maximum and the value of D
reaches its minimum when the condition M C M= / holds. This signifies that
a square mesh network with an equal number of rows and columns is expected
to show the best performance. The performance will degrade as the network
becomes more and more rectangular in nature. Thus, to connect 2n cores, where
n is odd, a mesh network that connects single core to each router may not be the
ideal choice to the NoC designers due to its rectangular shape. This statement
is also true for a Mesh-2 network for 2n cores, where n is even.

Table 4.7 shows different topological parameters such as diameter, aver-
age distance in hops (D), number of directed edges (E), number of destina-
tion cores in the local cluster, and bisection width of all the networks under
consideration for connecting 32 IP cores. It may be observed that although
Mesh-1 has the highest E/D ratio, its diameter is also the highest among all.

TABLe 4.7

Topological Parameters of Different Networks with 32 Cores

Networks

Number of
Destination Core
in Local Cluster

Number
of Edges

(E)
Average

Distance (D)
Edges/

Avg. Dist.
Bisection

Width Diameter

Mesh-1 2, 3, 4 104 4.000 26.00 4 10
Mesh-2 1 48 2.645 18.15 4 6
BFT 3 40 2.840 14.08 4 4
MoT 1 96 5.161 18.60 4 8

97Evaluation of Network-on-Chip Architectures

Thus, it is difficult to comment on the superiority of any network based on
the values noted in Table 4.7 alone. It is necessary to perform a detailed simu-
lation to compare the topologies.

4.6.3 Performance Comparison

4.6.3.1 Accepted Traffic versus Offered Load

Figure 4.19 compares the accepted traffic of all the networks under consid-
eration by applying uniformly distributed self-similar traffic. Although in
a contention-free environment, the E/D ratio is a good indicator of network
throughput, in actual traffic condition, the network dimension has a significant
role to play. Due to the rectangular structure of a Mesh-1 network, packets
are expected to traverse more hops in the horizontal direction under uniform
distribution. Thus, the network suffers more contention. In a Mesh-2 network,
due to its square structure for 32 cores, traffic movement is identical in both
horizontal and vertical directions. But due to lesser number of directed edges
(Table 4.7), it also experiences contention compared to the Mesh-1 network. In
BFT, due to lesser number of edges, packets suffer more contention as they tra-
verse toward the root. For a 4 × 4 MoT, as the number of row trees and column
trees are same, packet traversal through the row trees and column trees is iden-
tical. Moreover, MoT networks have more number of edges and the connectiv-
ity of the routers is also the least (Table 4.1) among all the networks considered
here. Thus, the packets are expected to experience lesser contention as they
traverse toward the roots of the trees. In our simulation, it can be observed
that the throughput of the MoT-based network is higher than other topologies
considered here under uniformly distributed traffic, as shown in Figure 4.19.

0.002
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
cc

ep
te

d
tr

affi
c

(fl
its

/c
yc

le
/I

P)

0.004 0.006 0.008 0.010
Offered load (packets/cycle/IP)

0.012 0.014 0.016 0.018 0.020

BFT

Mesh-1

Mesh-2

MoT

Figure 4.19
Accepted traffic with uniformly distributed offered load in different networks under
consideration.

98 Network-on-Chip

4.6.3.2 Throughput versus Locality Factor

The effect of spatial localization of traffic on the network throughput is
shown in Figure 4.20. It can be observed that localization of traffic has sig-
nificant impact on all the networks as it enhances the throughput. As the
locality factor increases, more traffic is directed toward their local clusters,
thus traversing lesser number of hops and increasing the throughput.

In BFT, localized traffic is constrained within a cluster consisting of
a single subtree having four cores. It can be observed that the through-
put of the BFT-based network is the least among all the networks under
uniformly distributed traffic. For localized traffic, although its through-
put increases with increasing locality factor, it always has the minimum
value compared to other networks. This is due to the fact that the BFT-
based networks are more congested, since there are three destination
cores in local cluster and the routers have high connectivity as shown in
Table 4.1.

In Mesh-1 network, localized traffic is constrained within the four destina-
tion IPs placed at the shortest Manhattan distance, whereas Mesh-2 network
has a single core in its local cluster. Although Mesh-2 network has higher
connectivity than Mesh-1 network, the former enjoys the advantage of hav-
ing only a single core in its local cluster. Thus, under localized traffic, Mesh-2
network has higher throughput than Mesh-1 network. In case of highly
localized traffic, the benefit of connecting two cores to each router is clearly
reflected. At highly localized traffic, as there is a single destination core in
the local cluster, more packets reach their destinations, resulting in higher
throughput.

The MoT-based networks enjoy the benefits of both small node degree and
single destination node in local cluster. As a result, throughput remains the
highest among all the networks under localized traffic as well.

0.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.3
Locality factor

BFT

Mesh-1

Mesh-2

MoT

�
ro

ug
hp

ut
 (fl

its
/c

yc
le

/I
P)

0.5 0.8

Figure 4.20
Variation of throughput of different networks under consideration with locality factor.

99Evaluation of Network-on-Chip Architectures

4.6.3.3 Average Overall Latency under Localized Traffic

In a contention-free environment, zero-load latency (in cycles) is a widely
used performance metric. Zero-load latency of a network is the latency where
only one packet traverses through the network (Pavlidis and Friedman
2007). Table 4.8 shows the zero-load latency of all the networks in terms
of cycle delay of a source router. According to the WH router architecture,
each router has two-cycle latency (one cycle in each IB and SA unit), whereas
 single-cycle latency is taken for the root routers of MoT and BFT networks.
The cycle latency of inter-router link traversal of all the networks is taken
from Figures 4.1 through 4.4.

Under an actual traffic scenario, contention of packets being a major chal-
lenge, the latency of any network depends on both the offered load and the
locality factor. Simulation has been carried out to estimate the average over-
all latency for all the networks with uniformly distributed and localized load
as shown in Figures 4.21 through 4.24. It shows that at lower load, the latency
variation is not significant. This is because at lower traffic, contention in the
network is less. The contention increases as the offered load increases, which
in turn increases the latency. The simulation results show that as the offered
load increases toward the network saturation point, the latency increases
exponentially. The packets take much longer time to reach their destinations.
Therefore, it is always desirable to operate the network below its saturation
point.

In determining the network contention, the network structure has an
important role to play. It can be observed from Figure 4.21 that under uni-
formly distributed traffic, the latency profile of the BFT-based network is the
worse among all the topologies. This happens as the BFT-based network has
the least number of edges. Packets experience more contention as they tra-
verse toward the root of the tree. However, in Mesh-1 network, due to its rect-
angular structure, more packets are traversing in the horizontal direction.
Thus, the network suffers from more contention. Due to the square struc-
ture of Mesh-2 network, contention in this network is lesser than in Mesh-1

TABLe 4.8

Number of Links, FIFOs, and Zero-Load Latency of Network Topologies under
Consideration with 32 Cores

Networks

Number of Links

Number of
FIFOs

Zero-Load
Latency (cycle)

Few
Micrometers 1.25 mm 2.5 mm

Mesh-1 24 64 80 136 10
Mesh-2 8 64 64 80 8.45
BFT 0 64 96 80 10
MoT 32 64 80 128 12.32

100 Network-on-Chip

network. Thus, packets take lesser time to reach their destinations compared
to Mesh-1. Hence, this network has better latency profile under uniformly
distributed traffic.

Although the MoT-based network has the maximum zero-load latency as
shown in Table 4.8, under an actual traffic condition, the 4 × 4 MoT network
experiences lesser contention than others. While comparing with Mesh-2
network with the same number of cores in the local cluster, it can be observed
that the proposed MoT-based network has better latency profile under uni-
formly distributed traffic. A MoT network has more edges and lesser connec-
tivity than a Mesh-2 network. Hence, it encounters lesser contention under
uniformly distributed offered load.

Next, we have studied the effect of traffic spatial localization on the
average overall latency of all the networks under consideration (shown in
Figures 4.22 through 4.24). The average overall latency of all the networks
decreases with increasing locality factor. As the locality factor increases,
more traffic is destined for their local clusters. Hence, packets traverse lesser
number of hops and cause lesser contention in the network. With increasing
locality factor, simulation results show that the rate of decrease of latency in
Mesh-2 and MoT networks is higher compared to others. Due to the presence
of only a single core in their local clusters, more packets reach their desti-
nations facing less contention, at medium (locality factor = 0.5) and highly
(locality factor = 0.8) localized traffic. Thus, an actual benefit of having single
destination core in the local cluster is observed in medium and highly local-
ized traffic. Although Mesh-2 network has higher connectivity and suffers
from more contention than MoT-based network under uniform distribution,
it has been observed that the latency profile of Mesh-2 network comes closer
to that of MoT-based network with increasing locality factor. This is due to
the fact that the contention in both the networks becomes almost identical
at highly localized traffic as both have single destination core in their local
clusters.

0.002
0

200

400

600

800

1000

1200

BFT
Mesh-1
Mesh-2
MoT

Av
er

ag
e

ov
er

al
l l

at
en

cy
(n

um
be

r o
f c

lo
ck

 c
yc

le
s)

0.004 0.006 0.008
Offered load (packets/cycle/IP)

0.010 0.012

Figure 4.21
Latency variation with offered load (locality factor = 0.0).

101Evaluation of Network-on-Chip Architectures

0.002
0

200

400

600

800

1000

1200
Av

er
ag

e
ov

er
al

l l
at

en
cy

(n
um

be
r o

f c
lo

ck
 c

yc
le

s)

0.004 0.006 0.008
Offered load (packets/cycle/IP)

0.010 0.012

BFT
Mesh-1
Mesh-2
MoT

Figure 4.22
Latency variation with offered load (locality factor = 0.3).

0.002
0

300

600

900

1200

1500

Av
er

ag
e

ov
er

al
l l

at
en

cy
(n

um
be

r o
f c

lo
ck

 c
yc

le
s)

0.004 0.006 0.008
Offered load (packets/cycle/IP)

0.010 0.012 0.014

BFT
Mesh-1
Mesh-2
MoT

Figure 4.23
Latency variation with offered load (locality factor = 0.5).

0.002
0

300

600

900

1200

1500

0.004 0.006 0.008
Offered load (packets/cycle/IP)

0.010 0.012 0.014 0.016

Av
er

ag
e

ov
er

al
l l

at
en

cy
(n

um
be

r o
f c

lo
ck

 c
yc

le
s)

BFT
Mesh-1
Mesh-2
MoT

Figure 4.24
Latency variation with offered load (locality factor = 0.8).

102 Network-on-Chip

4.6.4 Comparison of energy Consumption

This section reports the comparison of energy consumption of all the net-
works at saturation. A network with more number of channels will definitely
have higher network throughput but at the cost of more link energy con-
sumption. Therefore, the average energy consumption per packet reception
is a meaningful metric while comparing the energy consumption of vari-
ous network structures. The number of FIFOs required to build a network
is a topology-dependent parameter. Table 4.8 contains information about the
number of links along with their lengths and the number of FIFOs required
to implement the networks under consideration. It can be observed from
Table 4.8 that for connecting 32 IP cores, 64 unidirectional local links of
length 1.25 mm are required. There are also some very short links (of the
order of few micrometers) that exist in the proposed MoT and both type of
mesh networks. They consume very small energy. It has been observed that
Mesh-1 and MoT-based networks require 80 links of length 2.5 mm, whereas
for BFT and Mesh-2, the number of 2.5-mm links is 96 and 64, respectively.

Table 4.8 shows that the number of FIFOs required to implement the BFT
and Mesh-2 networks connecting 32 cores is less compared to the other two
networks under consideration. As the throughput of the BFT network is the
least, Figure 4.25 shows that at uniformly distributed traffic, aggregation of
average energy consumption per cycle of router and repeater is the least in
BFT networks. Due to more number of FIFOs in Mesh-1 and MoT networks,
they consume higher router energy compared to the other two. It has also been
observed that links consume more energy than the routers for all the networks
at saturation. With increasing locality factor, as more packets are reaching to
their local clusters, energy consumption of the local links increases, whereas
that of the inter-router links decreases. The toggling of data in those ports of
a router connected to cores also increases, whereas the toggling in other ports

Link

Mesh-1BFT
0

200

400

600

800

A
ve

ra
ge

 e
ne

rg
y

pe
r c

yc
le

(p
J/

cy
cl

e)

368.157
202.212

355.702
292.704

325.368
205.128

370.292
305.793

Mesh-2 MoT

Router + repeater

Figure 4.25
Average energy consumption per cycle at saturation under uniformly distributed traffic.

103Evaluation of Network-on-Chip Architectures

decreases at high locality factors. It has been observed that the overall energy
consumption decreases with increasing locality factors for all the networks.

Due to the relatively lesser number of FIFOs and inter-router links, the
energy consumption of Mesh-2 network turns out to be the least for all local-
ity factors. The energy consumption of BFT and Mesh-2 networks are almost
the same under uniform distribution, as shown in Figure 4.25. However,
due to higher throughput, Mesh-2 network has lesser average energy con-
sumption per packet reception at saturation, as shown in Figure 4.26. The
throughput of the BFT network is significantly lesser than that of Mesh-2
and MoT networks at highly localized traffic, which causes higher average
energy consumption per packet. As Mesh-1 network has higher number of
FIFOs and inter-router links, and its throughput is lesser for any locality fac-
tor, simulation result shows that the average energy consumption per packet
of the Mesh-1 network is inferior to others.

Although the MoT-based network requires more FIFOs and inter-router
links than Mesh-2 networks, at high locality factor, the toggle of the data in
stem and root routers of MoT networks is significantly less. At a high locality
factor, throughputs of both the networks are almost the same. As a conse-
quence, the average energy consumption per packet reception in the MoT
network is slightly higher than that in Mesh-2 network, but lesser than other
networks considered here.

4.7 Simulation Results and Analysis of MoT Network
with Virtual Channel Router

The usage of WH router in NoC design leads to performance degradation due
to contention in the network. Virtual channel (VC) router, however, mitigates
the network contention problem, to some extent, by using multiple FIFOs at

0.0
0

1

2

3

4

5

6

0.3 0.5
Locality factor

Av
er

ag
e

en
er

gy
 p

er
pa

ck
et

 (n
J)

0.8

BFT

Mesh-1

Mesh-2

MoT

Figure 4.26
Average energy consumption per packet received at network saturation under different
 locality factors.

104 Network-on-Chip

every incoming physical channel, at the cost of extra energy consumption
and area overhead. The design of VC router is shown in Chapter 3. This sec-
tion presents a comparison of performance and cost between the MoT net-
works with WH and VC routers for a 32-core-based system.

4.7.1 Throughput versus Offered Load

Figure 4.27 compares the throughput of VC and WH router-based MoT net-
works under uniformly distributed self-similar traffic. It can be observed
that at lower injection load, the accepted traffic of VC router-based net-
work increases linearly as also in WH router-based network, but saturates
at a higher value. The simulation result depicts that almost 24% through-
put improvement can be achieved by using VC router-based network over
WH-based network under uniformly distributed self-similar traffic.

Figure 4.28 compares the throughput of both the networks under the
localized traffic condition. It can be observed that the rate of increment of
throughput decreases with increasing locality factor. This can be explained
as the locality factor increases, more traffic is going to their local clusters hav-
ing only a single core. Hence the network suffers less contention. At higher
localization of traffic, throughputs of both the networks are almost identical.

4.7.2 Latency versus Offered Load

Figure 4.29 compares the average overall latency of MoT network under uni-
formly distributed self-similar traffic by using VC- and WH-based routers.
At lower offered load, due to lesser contention in the network, the latency
of both the cases is identical. At higher value of the offered load, it can be

0.002
0.004

0.006
0.008

0.010
0.012

0.014
0.016

0.018
0.020

0.022
0.024

0.026
0.028

0.030

Offered load (packets/cycle/IP)

0.00

0.05

0.10

0.15

WH

VC

0.20

0.25

0.30

0.35

0.40

A
cc

ep
te

d
tr

affi
c

(fl
its

/c
yc

le
/I

P)

Figure 4.27
Comparison of accepted traffic in WH- and VC-based MoT networks under uniformly distrib-
uted offered load.

105Evaluation of Network-on-Chip Architectures

observed that the MoT network with VC routers has lesser latency than that
with WH router-based one.

Similar trend is also observed for localized traffic as shown in Figures 4.30
through 4.32. It can be noticed that for a particular offered load, due to
lesser contention in VC-based network, the latency gap between WH- and
VC-based networks is gradually decreasing with increasing locality factor.

4.7.3 energy Consumption

The total energy consumption of MoT network after applying clock gating
to all the VCs under uniformly distributed self-similar traffic is shown in
Figure 4.33 (simulation performed for 200,000 clock cycles with 666-ps clock

0.0
0.0 0.3 0.5

Locality factor

�
ro

ug
hp

ut
(fl

its
/c

yc
le

/I
P)

0.8

WH

VC

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.28
Throughput comparison of WH- and VC-based MoT networks under uniformly distributed
and localized offered load.

0.002

Av
er

ag
e

ov
er

al
l l

at
en

cy
(n

um
be

r o
f c

lo
ck

 c
yc

le
s)

0

200

400

600

800

1000

1200

0.004 0.006
Offered load (packets/cycle/IP)

0.008 0.010 0.012 0.014

WH

VC

Figure 4.29
Latency comparison of WH- and VC-based MoT networks under uniformly distributed offered load.

106 Network-on-Chip

period). The component-wise energy consumption details are shown in
Figure 4.34.

While comparing with the WH-based MoT network as shown in Figures 4.16
and 4.17, the energy consumption of VC router is significantly large. This is
due to the fact that VC routers are having four FIFOs in each incoming physi-
cal channel and more complex round-robin arbiter. As VC-based network
has higher throughput, its links consume more energy than the WH-based
network, due to higher switching. Hence, VC-based network improves the
performance at the cost of higher energy consumption. Figure 4.35 shows
the comparison of energy per packet metric in WH and VC-based networks

0.002
0

200

400

600

800

1000

1200

0.004 0.006 0.008
Offered load (packets/cycle/IP)

0.010 0.012 0.014 0.016

WH

VC

Av
er

ag
e

ov
er

al
l l

at
en

cy
(n

um
be

r o
f c

lo
ck

 c
yc

le
s)

Figure 4.31
Latency comparison of WH- and VC-based MoT networks under localized offered load (local-
ity factor = 0.5).

0.002
0

200

400

600

800

1000

1200
Av

er
ag

e
ov

er
al

l l
at

en
cy

(n
um

be
r o

f c
lo

ck
 c

yc
le

s)

0.004 0.006 0.008
Offered load (packets/cycle/IP)

0.010 0.012 0.014 0.016

WH

VC

Figure 4.30
Latency comparison of WH- and VC-based MoT networks under localized offered load (local-
ity factor = 0.3).

107Evaluation of Network-on-Chip Architectures

0.002
0

200

400

600

800

1000

1200

0.004 0.006 0.008
Offered load (packets/cycle/IP)

0.010 0.012 0.014 0.016 0.018

WH
VC

Av
er

ag
e

ov
er

al
l l

at
en

cy
(n

um
be

r o
f c

lo
ck

 c
yc

le
s)

Figure 4.32
Latency comparison of WH- and VC-based MoT networks under localized offered load (local-
ity factor = 0.8).

0.002
0.004

0.006
0.008

0.010
0.012

0.014
0.016

0.018
0.020

0.022
0.024

0.026
0.028

0.030
0

50

100

En
er

gy
 c

on
su

m
pt

io
n

(μ
J)

150

200

250

300
Before saturation

After saturation

Offered load (packets/cycle/IP)

Network

Router

Link

Figure 4.33
Network energy consumption in MoT network after clock gating in VC routers.

Link
35%

FIFO
28%Other

logic
37%

Figure 4.34
Component-wise energy consumption after clock gating in all the VC routers. Other logic
includes routing logic, arbitration, and control logic.

108 Network-on-Chip

under uniformly distributed and localized traffic. It can be observed that
the energy per packet in a VC-based network is higher than in a WH-based
network for all locality factors.

4.7.4 Area required

The silicon area required for leaf, stem, and root routers of MoT network in
both WH and VC schemes is shown in Table 4.9. As described in Section
4.6.1, only the stem routers of the column trees of each 2 × 2 MoT subnetwork

0.0

Av
er

ag
e

en
er

gy
 p

er
pa

ck
et

 (n
J)

0

2

4

6

8

0.3
Locality factor

WH

VC

0.5 0.8

Figure 4.35
Comparison of average packet energy at saturation under different locality factors in both
WH- and VC-based MoT networks.

TABLe 4.9

Area Required for Each Type of WH and VC Routers for Designing a
MoT-Based NoC

Router

Type-1 Router Type-2 Router Type-3 Router

Position
Area

(mm2) Position
Area

(mm2) Position
Area

(mm2)

WH Leaf 0.057 Stem 0.041 Root 0.022
VC Leaf 0.183 Stem 0.18 Root 0.08

TABLe 4.10

Area Overhead for 32- and 256-Core MoT-Based NoCs with WH and VC Routers

Router

32 Cores 256 Cores

Overall Area
(mm2) Overhead (%)

Overall Area
(mm2) Overhead (%)

WH 223.6 11.8 1800.12 12.5
VC 247.7 23.85 2006.57 25.4

109Evaluation of Network-on-Chip Architectures

contribute to increase the breadth of the chip, whereas the length of the chip
gets increased due to the routers and repeaters of the row tree. Table 4.10
depicts the total area of the hand layouts and area overheads due to underly-
ing networks for 32- and 256-core-based systems.

4.8 Performance and Cost Comparison of MoT with Other
NoC Structures Having VC Router

4.8.1 Accepted Traffic versus Offered Load

Figure 4.36 compares the accepted traffic in all the networks with VC router
for uniformly distributed self-similar traffic. It can be observed that the
accepted traffic in all the VC router-based networks saturate at higher values
compared to their WH counterparts. The relative ranking of the networks in
terms of accepted traffic under uniformly distributed offered load is almost
identical to that obtained in WH router-based networks. From Figure 4.36,
it can be noticed that accepted traffic in 4 × 4 MoT network is more than in
other networks taken here into consideration.

4.8.2 Throughput versus Locality Factor

The effect of traffic spatial localization on throughput in different VC router-
based networks is shown in Figure 4.37. Like the WH router-based network,
throughput of the VC router-based network also increases with locality factor.
As VC can mitigate the traffic contention, throughput in all the networks
is higher than in WH case at low locality factors. In higher localization of
traffic, as the traffic traverses toward its local clusters, the contention is less.

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4
0.

01
6

Offered load (packets/cycle/IP)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

A
cc

ep
te

d
tr

affi
c

(fl
its

/c
yc

le
/I

P)

Before saturation

After saturation

0.
01

8
0.

02
0

0.
02

2
0.

02
4

0.
02

6
0.

02
8

0.
03

0

BFT

Mesh-1

Mesh-2

MoT

Figure 4.36
Accepted traffic with uniformly distributed offered load in VC router-based networks.

110 Network-on-Chip

Hence, a marginal improvement in throughput is observed compared to its
WH counterpart. From Figure 4.37, it can be noticed that the throughput in
4 × 4 MoT network is more than in other networks taken here into consider-
ation under localized traffic condition.

4.8.3 Average Overall Latency under Localized Traffic

For a MoT network, Figures 4.29 through 4.32 show that introducing VC
router in building the network improves the average overall latency com-
pared to its WH counterpart under both uniformly distributed and localized
traffic conditions. A similar trend has been observed for all other networks
under consideration. The relative position of the VC router-based networks
in this comparative study of average latency is found to be similar to that of
WH case as shown in Figures 4.38 through 4.41.

0.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Throughput increases

with locality factor

0.3
Locality factor

�
ro

ug
hp

ut
(fl

its
/c

yc
le

/I
P)

0.5 0.8

BFT

Mesh-1

Mesh-2

MoT

Figure 4.37
Throughput variation with locality factor in different VC router-based networks under
consideration.

Before saturation

Av
er

ag
e

ov
er

al
l l

at
en

cy
(n

um
be

r o
f c

lo
ck

 c
yc

le
s)

BFT

Mesh-1

Mesh-2

MoT

After saturation

0.002
0

200

400

600

800

1000

1200

0.004 0.006 0.008
Offered load (packets/cycle/IP)

0.010 0.012 0.014

Figure 4.38
Latency variation in different VC router-based networks under consideration with uniformly
distributed offered load.

111Evaluation of Network-on-Chip Architectures

The 4 × 4 MoT network shows the best latency profile, whereas the BFT
network shows the worst under uniform distribution and localized traffic
conditions. Due to the square network structure and having a single desti-
nation core in the local cluster, Mesh-2 network shows better latency profile
than BFT and Mesh-1 networks. As both MoT and Mesh-2 networks have a
single destination core in their local clusters, at highly localized traffic, the
contention in both the networks becomes almost identical, and hence their
latency profile is close to each other as shown in Figure 4.41.

4.8.4 energy Consumption

Table 4.11 depicts the clock frequencies of different types of VC routers used
in implementing the networks under consideration after applying clock

Before saturation

After saturation

Offered load (packets/cycle/IP)

Av
er

ag
e

ov
er

al
l l

at
en

cy
(n

um
be

r o
f c

lo
ck

 c
yc

le
s)

0.002
0

200

400

600

800

1000

1200

0.004 0.006 0.008 0.010 0.012 0.014 0.016

MoT

Mesh-2

Mesh-1

BFT

Figure 4.39
Latency variation in different VC router-based networks under consideration with offered load
(locality factor = 0.3).

Before saturation

After saturation

0.002
0

200

400

600

800

1000

1200

Av
er

ag
e

ov
er

al
l l

at
en

cy
(n

um
be

r o
f c

lo
ck

 c
yc

le
s)

0.004 0.006 0.008 0.010
Offered load (packets/cycle/IP)

0.012 0.014 0.016

BFT

Mesh-1

Mesh-2

MoT

Figure 4.40
Latency variation in different VC router based networks under consideration with offered load
(locality factor = 0.5).

112 Network-on-Chip

gating to the FIFO. Though MoT has the highest minimum frequency, in
this work, to support mesochronous clocking and to provide a consistent
comparison with other networks, all the routers are driven at 1.5-GHz clock.

Figure 4.42 shows the average energy consumption per cycle at saturation
under uniformly distributed traffic in VC router-based networks. It can be
observed that the router energy is higher than the link energy. Due to lesser
number of routers in BFT and Mesh-2 networks, the aggregation of router
and repeater energies of these two networks is lesser than that of Mesh-1
and MoT networks. Figure 4.43 shows the average energy consumption per
packet in all the networks under consideration with a VC-based router. Due
to higher energy consumption in Mesh-1 network, its average energy con-
sumption per packet is the highest among all in any traffic condition. The
Mesh-2 network, due to its least energy consumption, shows the least energy
per packet. Although MoT consumes higher energy than BFT, due to higher
throughput of MoT networks, it shows almost similar average energy con-
sumption per packet as BFT.

Before saturation

After saturation

0.002
0

200

400

600

800

1000

1200

0.004 0.006 0.008 0.010 0.012
Offered load (packets/cycle/IP)

Av
er

ag
e

ov
er

al
l l

at
en

cy
(n

um
be

r o
f c

lo
ck

 c
yc

le
s)

0.014 0.016 0.018

BFT

Mesh-1

Mesh-2

MoT

Figure 4.41
Latency variation in different VC router-based networks under consideration with offered load
(locality factor = 0.8).

TABLe 4.11

Frequency of Different Types of VC Routers after Clock Gating in FIFO to
Implement the Networks under Consideration for Connecting 32 Cores

Networks

Type-1 Router Type-2 Router Type-3 Router

Position
Frequency

(GHz) Position
Frequency

(GHz) Position
Frequency

(GHz)

Mesh-1 Center 1.56 Edge 1.60 Corner 1.66
Mesh-2 Center 1.52 Edge 1.56 Corner 1.60
BFT Leaf 1.52 Stem 1.52 Root 1.90
MoT Leaf 1.66 Stem 1.70 Root 1.90

113Evaluation of Network-on-Chip Architectures

4.8.5 Area Overhead

The area occupied by each type of router in the VC-based networks under
consideration is shown in Table 4.12. For a fair estimation of network area,
this section once again revisits all the networks having 32 cores as shown in
Figures 4.1 through 4.4. By placing the routers in the similar way as in WH case,
the dimension of the 4 × 8 Mesh-1 network increases from 20 mm × 10 mm
to 24.434 mm × 10.128 mm, and that of the 4 × 4 Mesh-2 network becomes
22.392 mm × 10.128 mm. The dimensions of BFT and MoT networks become
23.872 mm × 10.128 mm and 22.839 mm × 10.848 mm, respectively. For a
256-core system, where 16 cores are placed in each row, the areas of 16 × 16
Mesh-1, 16 × 8 Mesh-2, BFT, and 16 × 8 MoT networks are incremented

Link
Mesh-1BFT

0

200

400

600

800

1000

1200

1400

1600

Av
er

ag
e

en
er

gy
 p

er
 c

yc
le

(p
J/

cy
cl

e)

433.1565
578.36106

437.019
930.88818

388.6275
583.35606

468.8445
870.54858

Mesh-2 MoT

Router + repeater

57% 68% 60% 65%

43%

32%

40%

35%

Figure 4.42
Average energy consumption per cycle at saturation under uniformly distributed traffic in dif-
ferent VC router-based networks under consideration.

0.0 0.3
Locality factor

0

2

4

6

8

Av
er

ag
e

en
er

gy
pe

r
pa

ck
et

 (n
J)

10
Average energy decreases with

increasing locality factor

0.5 0.8

BFT

Mesh-1

Mesh-2

MoT

Figure 4.43
Average energy consumption per packet received at saturation under different locality factors
in VC router-based networks.

114 Network-on-Chip

from 40 mm × 40 mm to 49.034 mm × 40.512 mm, 44.92 mm × 40.512 mm,
49.5 mm × 40.512 mm, and 46.243 mm × 43.392 mm, respectively. Table 4.13
shows the area required by each network having 32- and 256-core-based
systems. It can be observed that the area overhead of Mesh-2 network is
lesser than that of Mesh-1 network and the area overhead of MoT network is
slightly more than that of Mesh-1 network.

4.9 Limitations of Tree-Based Topologies

Although simulation results show the performance and energy consump-
tion benefits of MoT-based NoC over Mesh-1 network having 32 cores under
the same bisection width constraint, the tree-based topologies may not be a
good choice for NoC designers while attempting large number of cores. This
is because the lengths of the edges of tree-based topologies increase with
increasing network size, whereas that of the mesh structure does not vary.
In general, the longest edge of MoT topology is the connection between stem
and root routers and its length can be estimated as max(l1, l2)/4, where l1 and
l2 are the length and the breadth of the hand layout, respectively. As the wire
delay increases with its length, it is essential to pipeline the links after a cer-
tain length such that its delay does not fall into a critical path of the design.

TABLe 4.13

Area Overhead for 32- and 256-Core-Based NoCs

Networks

32 Cores 256 Cores

Overall Area
(mm2) Overhead (%)

Overall Area
(mm2) Overhead (%)

Mesh-1 247.47 23.74 1986.47 24.15
Mesh-2 226.79 13.40 1819.80 13.74
BFT 241.78 20.89 2018.02 26.13
MoT 247.7 23.85 2006.57 25.4

TABLe 4.12

Silicon Area Required for Each Type of Router after Clock Gating

Networks

Type-1 Router Type-2 Router Type-3 Router

Position Area (mm2) Position Area (mm2) Position Area (mm2)

Mesh-1 Center 0.331 Edge 0.242 Corner 0.220
Mesh-2 Center 0.400 Edge 0.318 Corner 0.263
BFT Leaf 0.290 Stem 0.330 Root 0.080
MoT Leaf 0.183 Stem 0.180 Root 0.080

115Evaluation of Network-on-Chip Architectures

Therefore, the cycle latency of the packets will increase while traversing
through those links, which, in turn, will enhance the cycle latency of the
overall system. Moreover, the feedback signals will come back after multiple
clock cycles that can be overcome by deploying deeper FIFO. The above limi-
tation is also true for other tree-based topologies such as fat tree, flattened
butterfly, and BFT. For a BFT-based network, the length of the longest edge
is max(l1, l2)/2.

Table 4.14 depicts the number of unidirectional opposite edges of different
lengths in BFT and MoT networks with increasing number of cores consid-
ering the tile size of 2.5 mm × 2.5 mm. It can be observed that BFT requires
more number of long edges than MoT. Thus, packets in the BFT network
experience more pipeline stages and hence more cycle latency compared to
those in MoT. The above problem of having long edges in any tree-based
topology can be addressed in the following two ways: current-mode signal-
ing (Bashirullah et al. 2003) in NoC link and integrating the cores in three-
dimesnional (3D) integrated circuit (IC) with multiple silicon layers in a stack
(Feero and Pande 2009).

4.10 Summary

This chapter presents a thorough performance and cost evaluation of MoT
topology by applying self-similar traffic and compares a well-known tree-
based topology, BFT, and two variants of mesh topology connecting sin-
gle/two cores to each router under same bisection width constraint. It is
customary to say that if this constraint does not hold, the network with
more bisection width is expected to perform better under uniformly dis-
tributed and low localized traffic. The simulation results place MoT to be

TABLe 4.14

Number of Unidirectional Opposite Edges of Different Lengths for BFT and MoT
Networks with Increasing Number of Cores

Number of
Cores

Layout
Dimension
(mm × mm)

BFT MoT

Number of Edges of
Different Length (mm)

Number of Edges of
Different Length (mm)

2.5 5 10 20 2.5 5 10 20

16 10 × 10 – 16 – – 24 – – –
32 20 × 10 – 48 – – 48 16 – –
64 20 × 20 – 64 32 – 96 48 – –
128 40 × 20 – 128 96 – 192 96 32 –
256 40 × 40 – 256 128 64 384 192 96 –

116 Network-on-Chip

the best in terms of performance for both WH and VC router-based NoCs.
This evaluation corresponds to self-similar traffic with varying locality fac-
tors. In terms of per packet energy consumption and area overhead, the WH
router-based MoT network ranks second in the list, next to the mesh struc-
ture that connects two cores to each router. With VC router, MoT consumes
lesser average packet energy than the mesh network that connects single
core to each router and occupies almost similar area such as mesh network
connecting single core to each router. The comparative study shows that
MoT-based NoC also works fine under application-specific traffic. On the
architecture front of WH and VC routers, due to lesser connectivity of MoT
routers, synthesis result shows that they can be operated at a higher fre-
quency compared to other network structures, thus increasing the speed of
the overall network. However, for a system having large number of cores,
it can be predicted that MoTs will suffer in both energy and latency fronts
mainly due to the large number of pipelining stages required for the longer
edges. In BFT networks, this problem is much more severe as they require
more number of long edges as shown in Table 4.14. The upcoming trends
such as current mode signaling in NoC link and 3D NoC are expected to
alleviate this bottleneck, making MoT a more acceptable topology for larger
core-based NoC design.

Although in investigating the promise of any topology in a NoC paradigm,
applying self-similar traffic is expected to produce the average behavior of
the network, Chapter 5 will focus on a different application mapping algo-
rithm in NoC paradigm and also evaluate the performance and cost of each
network under consideration under a set of real benchmark applications.

References

Bashirullah, R., Liu, W., and Cavin, R. K. 2003. Current-mode signaling in deep sub-
micrometer global interconnects. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 11, no. 3, pp. 406–417.

Bertozzi, D. and Benini, L. 2004. Xpipes: A network-on-chip architecture for gigascale
systems-on-chip. IEEE Circuits and Systems Magazine, vol. 4, no. 2, pp. 18–31.

Chi, H. C. and Chen, J. H. 2004. Design and implementation of a routing switch
for on-chip interconnection networks. Proceedings of Asia-Pacific Conference on
Advanced System Integrated Circuits, pp. 392–395, August 4–5, Fukuoka, Japan.

Decina, M., Trecordi, V., and Zanolini, G. 1991. Throughput and packet loss in deflec-
tion routing multichannel-metropolitan area networks. IEEE GLOBECOM,
pp. 1200–1208, December 2–5, Phoenix, AZ.

Duato, J., Yalamanchili, S., and Ni, L. 2003. Interconnection Networks: An Engineering
Approach. Morgan Kaufmann Publishers, San Francisco, CA.

Feero, B. S. and Pande, P. P. 2009. Networks-on-chip in a three dimensional environment:
A performance evaluation. IEEE Transactions on Computers, vol. 58, no. 1, pp. 32–45.

117Evaluation of Network-on-Chip Architectures

Hu, J. and Marculescu, R. 2004. DyAD-smart routing for networks-on-chip. Proceedings
of Design and Automation Conference, pp. 260–263, July 7–11, San Diego, CA.

Kumar, A., Kundu, P., Singh, A. P., Peh, L. S., and Jha, N. K. 2007. A 4.6Tbits/s 3.6GHz
single-cycle NoC router with a novel switch allocator in 65nm CMOS. Proceedings
of IEEE International Conference on Computer Design, pp. 63–70, October 7–10,
Lake Tahoe, CA.

Kundu, S., Soumya, J., and Chattopadhyay, S. 2012. Design and evaluation of mesh-
of-tree based network-on-chip using virtual channel router. Microprocessors and
Microsystems Journal, vol. 36, pp. 471–488.

Marculescu, R., Ogras, U. Y., Peh, L. S., Jerger, N. E., and Hoskote, Y. 2009. Outstanding
research problems in NoC design: Systems, microarchitecture, and circuit per-
spectives. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 1, pp. 3–21.

Millberg, M., Nilsson, E., Thid, R., and Jantsch, A. 2004. Guaranteed bandwidth using
looped containers in temporally disjoint networks within the Nostrum network
on chip. Proceedings of IEEE Design, Automation, and Test in Europe, pp. 890–895,
February 16–20, Paris, France.

Ogras, U. Y., Hu, J., and Marculescu, R. 2005. Key research problems in NoC design:
A holistic perspective. Proceedings of IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, pp. 69–74, September, Jersey
City, NJ.

Pande, P. P., Grecu, C., Ivanov, A., and Saleh, R. 2003. High-throughput switch-based
interconnect for future SoCs. Proceedings of IEEE International Workshop on
System-on-Chip for Real Time Applications, pp. 304–310, June 30-July 2, Alberta,
Canada.

Pande, P. P., Grecu, C., Jones, M., Ivanov, A., and Saleh, R. 2005. Performance eval-
uation and design trade-offs for MP-SOC interconnect architectures. IEEE
Transactions on Computers, vol. 54, no. 8, pp. 1025–1040, August.

Park, K. and Willinger, W. 2000. Self-Similar Network Traffic and Performance Evaluation.
Wiley, New York.

Pavlidis, V. F. and Friedman, E. G. 2007. 3-D Topologies for networks-on-chip. IEEE
Transactions on VLSI Systems, vol. 15, no. 10, pp. 1081–1090.

Rijpkema, E., Goossens, K. G. W., and Radulescu, A. 2003. Trade offs in the design
of a router with both guaranteed and best-effort services for network on chip
(extended version). IEE Proceedings of Computers and Digital Techniques, vol. 150,
no. 5, pp. 294–302.

Salminen, E., Kulmala, A., and Hamalainen, T. D. 2008. Survey of network-on-chip
proposals. White Paper, © OCP-IP.

Soteriou, V., Eisley, N., Wang, H., Li, B., and Peh, L. S. 2007. Polaris: A system-level
roadmap for on-chip interconnection networks. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 15, no. 8, pp. 855–868.

Sotiriadis, P. P. and Chandrakasan, A. P. 2002. A bus energy model for deep submicron
technology. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 10, no. 3, pp. 341–350.

Synopsys. 2006. Synopsys Prime Power Manual. Version Y-2006.06. http://www.synopsys
.com/Support/LI/Installation/Documents/Archive/iugux_y2006_06.pdf.

Vangal, S. R., Howard, J., Ruhl, G., Dighe, S., Wilson, H., Tschanz, J., Finan, D. et al.
2008. An 80-tile sub-100-W TeraFLOPS processor in 65-nm CMOS. IEEE Journal
of Solid-State Circuits, vol. 43, no. 1, pp. 29–41.

118 Network-on-Chip

Wentzlaff, D., Griffin, P., Hoffmann, H., Bao, L., Edwards, B., Ramey, C., Mattina, M.,
Miao, C. C., Brown, J. F., and Agarwal, A. 2007. On-chip interconnection archi-
tecture of the TILE processor. IEEE Micro, vol. 27, no. 5, pp. 15–31.

Zeferino, C. A. and Susin, A. A. 2003. SoCIN: A parametric and scalable network-on-
chip. Proceedings of IEEE Symposium on Integrated Circuits and Systems Design,
pp. 169–175, September 8–11, São Paulo, Brazil.

Zhang, Y. P., Jeong, T., Chen, F., and Wu, H. 2006. A study of the on-chip interconnec-
tion network for the IBM Cyclops64 multi-core architecture. Proceedings of IEEE
International Parallel and Distributed Symposium, April 25–29, Rhodes Island.

119

5
Application Mapping on
Network-on-Chip

5.1 Introduction

In chapters 2, 3, and 4, we have seen how to design a router fabric fol-
lowing a specific topology (such as mesh, mesh-of-tree, and butterfly fat
tree). However, a complete network-on-chip (NoC) system consists of the
router fabric and the intellectual property (IP) cores. The router network
is utilized to facilitate communication between these cores. Looking at the
NoC design problem from a system perspective, the whole process starts
with the specification of the system. The specification is refined into a set
of interactive tasks that accomplish the system functionality. For example,
Figure 5.1 shows a task-level decomposition of a video object plane decoder
(VOPD) application. It consists of several tasks, such as down sampler and
run length decoder. The tasks need to communicate between themselves at
the rates specified as edge labels. A label represents the required band-
width between the tasks in megabytes per second. The corresponding
graph-based representation is shown in Figure 5.2a. The router-based com-
munication backbone is utilized for these communications. Assuming that
each task is realized by an IP core, it is desirable that the cores correspond-
ing to two highly communicating tasks be placed close to each other. If
only one core is attached to a router, such cores should be attached to two
neighboring routers, whereas cores having little bandwidth requirement
between them can be placed relatively far apart, without affecting the sys-
tem performance significantly. Once the communication infrastructure of
a NoC is finalized, a major challenge in the overall system design is to
associate the IP cores implementing tasks of an application with the rout-
ers. This problem of application mapping has a very significant role to play in
determining the performance of the overall system, as it directly influences
the communication time, the required link bandwidth, and the admissible
delay in the routers. For example, Figure 5.2b shows a possible mapping of
the application shown in Figure 5.2a onto a mesh topology. The mapping
problem is NP-hard (Pop and Kumar 2004). In this chapter, we will look

120 Network-on-Chip

into the various strategies adopted to solve the problem. To start with, we
will look into the mathematical definition of the problem.

5.2 Mapping Problem

Given an application consisting of a set of communicating tasks, the first step
toward NoC realization is to identify the cores to carry out the tasks. After
the cores participating in an application have been decided, the application
can be represented in the form of a core graph, which is defined as follows:

Definition 5.1

The core graph for an application is a directed graph, G(C, E) with each vertex
ci ∈ C representing a core and the directed edge ei,j ∈ E representing the commu-
nication between the cores ci and cj. The weight of the edge ei,j, denoted by commi,j,
represents the bandwidth requirement of the communication from ci to cj.

However, the given NoC topology can be represented in the form of a
topology graph.

Stripe
memory

4927

363 357
362

IDCTQuantizerAC/DC
prediction

Inverse
scan

353

300
UP

sampler
VOP

recorder

500313

362

70

157 16

16

16

16 16

16

313
94Padding VOP

memory

UP
sampler

Memory

Reference
memory

Arithmetic
decoder

Variable length
decoder

Run-length
decoder

D
M

U
X

Down sampler
and context
calculator

Figure 5.1
Block diagram of a VOPD, IDCT, Inverse Discrete Cosine Transform; DMUX, Demultiplexer.

121Application Mapping on Network-on-Chip

v1 v5 v9 v13

v2 v6 v10 v14

v3 v7 v11 v15

v4 v8 v12 v16

v16

v4 v5 v6 v7 v8

v3

36240

v2

v1

v15
16

v14 v13 v12 v11

70

362

362

362 357 352 300

(a)

v9

v10

313

313
94

500

157

16

16

16 16

16
16

(b)

Figure 5.2
(a) Application graph for VOPD; (b) a possible mapping onto mesh topology.

122 Network-on-Chip

Definition 5.2

The NoC topology graph is a directed graph P(U, F), with each vertex ui ∈ U
representing a node in the topology and the directed edge fi,j ∈ F representing
a direct communication between the vertices ui and uj. The weight of the edge
fi,j, denoted as bwi,j, represents the bandwidth available across the edge fi,j.

A mapping of the core graph G(C, E) onto the topology graph P(U, F) is
defined by the function, map: C → U, such that ci ∈ C, uj ∈ U, and map(ci) = uj.
The function associates core ci to router uj. Mapping is defined only when
|C| ≤ |U|, assuming that at most a single core is associated with a router.
The quality of such a mapping is defined in terms of the total communica-
tion cost of the application under this mapping. The communication between
each pair of cores can be treated as flow of a single commodity, dk, where
k = 1, 2,…, |E|. The value of commodity dk, corresponding to the communica-
tion between cores ci and cj, is equal to commi,j, the bandwidth requirement.
If ci is mapped to the router map(ci) and cj is mapped to map(cj), the set of all
commodities D = {dk} is defined as follows:

 D d value d comm k E e Ek k
i j i j= = = … ∈{ | () | | }, , , ,, ,for and1 2

 source d map c dest d map ck
i

k
j(() () ()) = =and

The link between two individual routers ui and uj of the topology has a maxi-
mum bandwidth of bwi,j. The total commodity flowing through such a link
should not exceed this bandwidth. The quantity xi j

k
, indicating the value of

commodity dk flowing through the link (ui, uj) is given by

x
otherwise

value dk link ui uj Path source dk d
i j
k
,

,

(), (,) ((),
=

∈
0

if eest dk())

where Path(a, b) indicates the deterministic routing path between the mesh
nodes a and b in the topology.

Satisfaction of bandwidth limitations of individual links must be ensured.
That is, all mapping solutions should satisfy the following relation:

x bw i j Ui j

k

k

E

i j,

| |

, , , { , , | |}
=

∑ ≤ ∀ ∈
1

1 2

If all bandwidth constraints are satisfied, the communication cost of a map-
ping solution is given by

 T value d hopcount source d dest dk k

k

E
k= ×

=
∑ () ((), ())
| |

1

123Application Mapping on Network-on-Chip

where hopcount(a, b) is the number of hops between the topology nodes a and
b, assuming that all routers take the same number of clock cycles to pass a
packet from an input port to an output port.

Otherwise, the hopcount metric needs to be replaced by the number of
router cycles involved. For a deterministic shortest path routing, hopcount
corresponds to the minimum number of hops between the constituent nodes.
Since the communication cost is very much dependent on the mapping solu-
tion, the overall mapping problem is to optimize the communication cost,
ensuring that the bandwidth constraints of all individual links are satisfied.
The communication cost affects the performance of the overall system and
its energy consumption, as both of these factors are directly proportional to
the total hopcount. The application mapping problem is to determine the map
function of an application to be mapped onto a given topology graph such
that the overall communication cost T is minimized.

Several strategies have been proposed to solve the mapping problem. The
techniques may broadly be classified belonging to one or more of the follow-
ing categories:

•	 Exact mapping strategies, such as integer linear programming (ILP)
•	 Constructive heuristics with/without iterative improvement
•	 Evolutionary techniques, such as genetic algorithms (GAs), ant col-

ony optimization (ACO), and particle swarm optimization (PSO)

Some proposed techniques from each of the categories will be discussed in
Sections 5.3 through 5.6.

5.3 ILP Formulation

ILP is an exact technique to solve optimization problems. It attempts to
assign values to the unknowns (and thus constructs a solution) satisfying a
set of constraints and optimizing the given objective function. However, as
the problem size grows, it takes exponential time to arrive at the optimum
result. Due to its exact nature, ILP is often used to judge the quality of other
nonexact approaches (such as heuristics and meta-search techniques). Often
approximations are introduced into the ILP formulation to arrive at fast heu-
ristic techniques. In the following, we will discuss about an ILP formulation
of the application mapping problem. We have used the following variables to
express the constraints and the objective function.

•	 U: The set of routers {u1, u2,…} of the topology graph
•	 C: The set of cores {c1, c2,…} of the application

124 Network-on-Chip

•	 mc
u
i
s : The mapping result taking values {0,1}. The variable is set to 1 if

core ci is mapped onto router us.
•	 Pc c

u u
i j

s t: The communication path result ∊ {0,1}. The variable is set to 1
if the communication path exists between routers us and ut to which
the cores ci and cj have been mapped.

•	 BWc ci j : The bandwidth requirement between the cores ci and cj

•	 MDu us t : The Manhattan distance between the routers us and ut

With this, we proceed to define the constraints for mapping.

 1. One-to-one mapping: Each core be mapped to a router and each router
may have at most one core attached to it.

∀ ∈ ≤

∈
∑u U ms c

u

c C
i
s

i

, 1 (5.1)

 ∀ ∈ =
∈

∑c C mi c
u

u U
i
s

s

, 1 (5.2)

 Equation 5.1 implies that any router has at most one core mapped
onto it. Equation 5.2 means each core has to be mapped onto only
one router.

 2. Communication path: For any two communicating cores ci and cj, a
communication path is needed between the routers to which they are
mapped. That is, for E being the set of edges of the application graph,

∀ ∈ =

= =
(,) , ,

, () ()
c c E P

m m
i j c c

u u c
us

c
u

i j
s t i j

t

0
1 1 1

otherwise
if and

 (5.3)

 It can be rewritten as

 m m P
m m

c
u

c
u

c c
u u c

u
c
u

i
s

j
t

i j
s t i

s
j
t

+ − ≤ ≤
+

1
2

 (5.4)

 0 1≤ ≤Pc c
u u
i j
s t (5.5)

If it is assumed that the links of the topology graph do not impose any con-
straint on the amount of traffic they can carry, the objective function is given by

 min
()()

BW MD Pc c u u

u u U

c c
u u

c c

i j s t

s t

i j
s t

i j

× ×

∈∈

∑
EE

∑

 (5.6)

This equation computes the total communication cost for all the edges of the
application graph. It may be noted that for regular topologies such as mesh

125Application Mapping on Network-on-Chip

and tree, computing the Manhattan distance is easy. However, for irregular
topologies, computing the distance may not be that trivial. If cores ci and cj
are mapped to routers us and ut, respectively, Pc c

u u
i j
s t is equal to 1. In such case,

the Manhattan distance between the routers us and ut is multiplied by the
bandwidth requirement of the communication between the cores. Summing
this product over all the edges of the application graph gives the total com-
munication cost of the mapping solution produced.

However, if we need to consider the link bandwidth limitation as well, two
issues are to be resolved. First, for each link the total communication sched-
uled through it should not exceed the limit. Second, the distance between
the cores is not simply the Manhattan distance, but it depends on the route
through which the communication takes place. To incorporate these consid-
erations into the ILP formulation, we need to introduce a few more variables.

•	 L(us,ut) : It is the set of links forming the path from us to ut.
•	 N(us,ut) : It is the set of nodes in the path from us to ut.
•	 lu u

u u
i j
s t : It marks whether the link from ui to uj forms a part of the path

from us to ut. It is equal to 1 if (ui,uj) is a part of the path, otherwise 0.
•	 ni

u us t : It marks if ni is a node on the path from us to ut, otherwise 0.
•	 Lc : It is the link capacity expressed as Mbits/s.
•	 Du us t : It is the distance between the routers us and ut measured in

terms of the number of routers in the path.

While considering the bandwidth constraints for individual links, the shortest
path between two router nodes is not fixed because of the limiting link capacity.
Hence, it is necessary to determine the path that satisfies the link capacities for
individual links between the routers. For such a path, we can compute the dis-
tance (number of hops or routers) between the source and destination routers.

 1. Link capacity constraint: It limits the bandwidth of individual links, so
that the traffic in each link remains within the maximum given link
capacity (Lc).

 ∀ ∈ × ×

∈ ∈
∑ ∑(,)

(,) ,

u u U BW l Pi j c c

c c E

u u
u u

c c
u u

u u U

i j

i j

i j
s t

i j
s t

s t

≤

Lc (5.7)

 In the above equation, if lu u
u u

i j
s t is 1, it implies that the link (ui,uj) is a

part of the path from router us to ut. The link can be a part of other
paths also, between other pairs of routers. Hence, we need to add
all those bandwidths and ensure that the total bandwidth require-
ment is less than the link capacity (Lc). Otherwise, some or all paths
should be modified till all the link capacity constraints are satisfied.

126 Network-on-Chip

 2. Source and destination constraints: The source and destination routers
must belong to the path between themselves.

 ∀ ∈ ∀ ∈ − =()(,) , (,)c c E u u U P ni j s t c c
u u

s
u u

i j
s t s t 0 (5.8)

 3. Starting link constraint: Once the source node is fixed, in the topol-
ogy graph it will have a number of neighbors. Out of these, only one
neighbor is to be chosen for continuation of the path, which is speci-
fied in Equation 5.9. It will make the variable corresponding to only
one link as 1 and the rest will be 0.

∀ ∈ ∀ ∈ − =
∈
∑(,) , (,)

()

c c E u u U P li j s t c c
u u

u u
u u

u u
i j
s t

s k
s t

k s

0
neighbor

 (5.9)

 4. Intermediary node constraint: If a link is a part of the path, the source
and destination nodes of the link must also be included in the path.
This is captured in the following equation:

∀ ∈ ∀ ∈ × − − ≤()(,) , (,)u u U u u U l n ns t i j u u

u u
i
u u

j
u u

i j
s t s t s t2 0 (5.10)

 Excepting the start and end nodes of a path, each other node must
have an incoming edge to it and an outgoing edge from it in the path.

∀ ∈ ∀ ∈ ≠ ≠ × − =

∈

(,) , , ,u u U u U u u u u n ls t i i s i t i
u u

u u
u u

u

s t
i j
s t

j

2 0
neighborr()ui

∑

 (5.11)

 This will form the shortest path under the link capacity constraint.
 5. Shortest path: To compute Du us t, the distance between the routers us

and ut, we need to count the number of routers in the path from us to
ut, such that after mapping all link capacities are satisfied, which is
specified in Equation 5.12. Du us t can take integer values in the range
from 0 to the total number of routers.

∀ ∈ − =

∈
∑(,)

(),

u u U D ls t u u u u
u u

u u U

s t i j
s t

i j

0 (5.12)

 Once Du us t is determined, the total communication cost can be deter-
mined and the objective function to be optimized can be constructed
as follows:

min ,

(,)(,)

BW D Pc c u u c c
u u

u u Uc c E

i j s t i j
s t

s ti j

×

∈∈
∑∑

127Application Mapping on Network-on-Chip

Solving this optimization problem can produce a solution to the mapping
problem.

5.3.1 Other iLP Formulations

A mixed ILP (MILP)-based task mapping for heterogeneous multiprocessor
systems is reported in the work of Bender (1996). In this heterogeneous mul-
tiprocessor, some processors are programmable, whereas others are appli-
cation specific. The model determines the optimization trade-off between
the execution time, the processor (general-purpose or application-specific
processor), and the communication cost. This is a hardware/software code-
sign process that runs iteratively until the design goal is met. An MILP for-
mulation for mapping cores onto NoC while considering the choice of core
placements, switches for each core, and network interfaces (NIs) for commu-
nication has been proposed by Rhee et al. (2004). It is reported that the energy
consumption is much less compared to other mapping techniques for some
real, as well as, random benchmarks. An integrated approach for mapping
of cores onto heterogeneous processor/memory-based NoC topologies and
physical planning has been presented by Murali et al. (2005), where the posi-
tion and size of the cores and network components are computed. For initial
mapping, they followed a greedy mapping of cores onto the specified topol-
ogy, and then in the improvement phase, the relative core positions are fixed
by Tabu search. An MILP-based physical planning algorithm has been for-
mulated to improve the area and power of the final design and also to guar-
antee the quality of service (QoS) for the application. Srinivasan et al. (2006)
presented an MILP formulation for synthesis of custom NoC architectures.
Here the optimization objective is to minimize the power consumption, sub-
ject to the performance constraints. In case of linear programming (LP), the
main bottleneck is runtime. To reduce runtime, they partitioned the applica-
tion task graph into a number of clusters. The MILP formulation for topol-
ogy design is then utilized and partial solutions are generated. At the end,
the final mapped custom topology is generated by adding physical links
between the ports of neighboring routers of the clusters.

The network processors incorporate features such as symmetric multipro-
cessing (SMP), block multithreading, and multiple memory elements to sup-
port high-performance networking applications. Mapping an application
onto a complex multiprocessor, multithreaded network processor is a dif-
ficult task. Ostler and Chatha (2007) presented a two-stage ILP formulation
for process allocation and data mapping on SMP and block multithreading-
based network processor. They compared the normalized results from their
models, such as without optimizations, multithreading-aware data mapping,
process transformation, and multithreading-aware data mapping with pro-
cess transformation. Power/energy control is a very important issue in case
of NoC-based chip multiprocessors (CMPs). Ozturk et al. (2007) attempted
to minimize the energy by shutting down certain communication links in

128 Network-on-Chip

such architectures. This formulation can be used for selecting the links in
use, their voltage and frequency values. The problem of minimizing energy
consumption during application execution while satisfying the performance
constraint may be a combination of some subproblems, such as mapping of
application tasks to IPs, mapping of IPs to the routers of NoC architecture,
assignment of operating voltages to IPs, and routing. Different operating volt-
ages are assigned to IPs if they are operating at multiple voltages. A unified
approach of energy-efficient application mapping that utilizes MILP for-
mulation of the problem has been presented by Ghosh et al. (2009), taking
care of all the subproblems, such as application mapping, operating voltage
assignment, and routing. In the work of Huang et al. (2011), the existing ILP
(Ghosh et al. 2009) is extended to find a trade-off between computation and
communication energy. In the work of Chou et al. (2008), factors that produce
network contention are analyzed. An ILP formulation for contention-aware
application mapping algorithm in a tile-based NoC is proposed to mini-
mize inter-tile network contention. In NoC-based design, the global wires
are replaced by a network of shared links and the routers exchange data
packets simultaneously through the links. Therefore, there is traffic conges-
tion within the links, which significantly degrades the system performance.
The network contention may be source based, destination based, and path
based. The result shows that there is a significant reduction of packet latency
by reducing the network contention, but the loss of communication energy
is high. Tosun et al. (2009) presented an ILP formulation for application map-
ping onto a mesh-based NoC to minimize energy consumption for different
benchmarks. However, the formulation does not include bandwidth con-
straints. The CPU time for different benchmarks reported in this work is also
quite high. To overcome the high CPU time, a clustering-based relaxation
for ILP formulation has been proposed by Tosun (2011a). The tasks of the
application graph are clustered suitably, as in Srinivasan et al. (2006). Based
on the number of clusters, the mesh architecture is divided into smaller sized
meshes. The ILP-based formulation of Tosun et al. (2009) is used to map the
clusters onto the corresponding sub-meshes. At the end, it merges all such
sub-meshes to determine the final solution. It is noted that the CPU time
gets improved with a sacrifice in the communication cost of the mapping
solution.

5.4 Constructive Heuristics for Application Mapping

In constructive heuristics, partial solutions are generated sequentially,
and at the end the final mapping solution is obtained. Some of the techniques
 perform an additional iterative improvement phase after getting the initial
solution. In this section, we look into one of the constructive techniques,

129Application Mapping on Network-on-Chip

known as binomial mapping (BMAP) algorithm (Shen et al. 2007). It works in
the context of mesh topology. The on-chip network (OCN) design flow in
BMAP is shown in Figure 5.3. Given a system-on-chip (SoC) application to
be implemented, first the designer chooses the NI to be used by the cores.
It is assumed that the target NoC will utilize the wormhole architecture
for the routers, and thus, every packet consists of a header flit, a number
of body flits, and a tail flit. From the given SoC application, a traffic model
is extracted. The OCN synthesis process in BMAP can be divided into the
 following three stages:

•	 Mapping: It performs a mapping of the application task graph onto
the topology graph.

•	 Optimization: The mapped network is optimized at this stage.
•	 Simulation: A cycle-accurate simulator can be used to evaluate the

performance of the synthesized NoC.

Out of these three stages, the mapping and the optimization phases consti-
tute the BMAP algorithm.

Application

Traffic modeling

BMAP

Performance
evaluation

Final
NoC

Mapping

Hardware cost
optimization

Network
interface

Figure 5.3
OCN design flow in BMAP.

130 Network-on-Chip

A flowchart depicting the mapping and optimization stages of the BMAP
algorithm is shown in Figure 5.4. It mainly consists of three major opera-
tions: binomial merging iteration, topology mapping and traffic surface cre-
ation, and hardware cost optimization.

5.4.1 Binomial Merging iteration

This iterative step finds the relative positions of the IP cores in the topology.
For this, the IP cores are put into sets, called IP sets. Initially, individual IPs
form single-member sets. Now, depending upon the traffic between the IPs,
the grouping process starts by forming sets with two IPs. The process contin-
ues to iterate merging smaller sized sets into larger sized ones. Each iteration
consists of three steps: calculate IP ranking, merging IP sets, and refreshing IP sets.

Modeled traffic

BMAP mapping iterations

Technology mapping and traffic surface
creation

Hardware cost optimization

S1: Select IP - Set with highest rank.
S2: Merge the IP - Set with largest traffic IP - Set.
S3: Update IP - Set and traffic for each IP - Set.
S4: If more than one IP - Set exists, go to S1.

S1: Eliminate dummy routers.
S2: Select router to unfold.
S3: If hardware cost is not met, go to S1.

Synthesized network

Figure 5.4
BMAP flowchart.

131Application Mapping on Network-on-Chip

 1. Calculate IP ranking: Ranking of an individual IP core can be calculated
by summing up the traffic from the core to other IPs and from other
IPs to the core. For IP core i, rank is computed as follows:

ranking communication communication() (,) (,)i i j j i

j

N

= +
=

∑
1

 In the above equation, communication(i,j) indicates the bandwidth
requirement for communication from IP core i to IP core j. As noted
earlier, these communication requirements are extracted from the
traffic load of the IPs obtained via simulation of the original SoC.

 2. Merging IP sets: Based upon the IP ranking, the IP sets are merged.
To start with, each IP set consists of a single IP. Thus, in the first step
of iteration, two-element sets are formed. Since the IPs are ranked,
IP sets corresponding to two highest ranked IPs are merged to form
a two-core IP set. Next two IP sets are merged in a similar fashion
creating two-core sets. Thus, at the end of the first iteration, each IP
set contains two cores. In general, at the end of ith iteration, each IP
set consists of 2i–1 cores, which is shown in Figure 5.5. At any stage,
an IP set corresponds to a sub-mesh. All such sub-meshes are of
equal dimension, say d d1 2× . If d1 = d2, there are 16 possible ways
to merge two such sub-meshes (as shown in Figure 5.6a). However,
if d1 ≠ d2, there are four possible merges. It may be noted that in
Figure 5.6b, the edges A1, A2, D1, and D2 are not aligned as this
affects the aspect ratio of the resultant mesh. A square-shaped mesh
has less average distance than a rectangular mesh. Among all these
4 or 16 contact options between the boundaries of sub-meshes for the
IP sets, the best one is chosen that minimizes the traffic load.

 3. Refreshing IP sets: The new requirements of the merged IP sets are
recalculated. If the merging of IP sets i and j creates the IP set k, the
ranking of k is obtained as follows:

ranking ranking ranking communication

commun
() () () (),k i j i j= + −

− iication(),j i

5.4.2 Topology Mapping and Traffic Surface Creation

At the end of BMAP, the IP cores are mapped to individual routers. The accu-
mulated traffic at each router is calculated by considering the traffic flow
through the entire network. Since the underlying topology is mesh, a mini-
mal path XY routing is used. The process shows the traffic distribution at
various routers. The information so produced is used in the next stage to
optimize the hardware. It helps in selecting proper routers from the given
library of hardware models.

132 Network-on-Chip

5.4.3 Hardware Cost Optimization

Since the routers are the dominant hardware components in an OCN, BMAP
algorithm attempts to optimize the same, using the traffic loading informa-
tion generated at the previous stage. The routers, specially the buffers, con-
sume a good amount of area and power in the network. This hardware cost
is optimized using the strategies as follows:

Iteration 1

Iteration 3

IP
 -

Se
ts

 o
f t

w
o

co
re

s

IP - Sets of single cores

IP - Sets of eight cores IP - Sets of four cores

Single IP - Set of 16 cores

Ite
ra

tio
n

2

Ite
ra

tio
n

4

Figure 5.5
Example binomial merging.

133Application Mapping on Network-on-Chip

 1. Dummy router elimination: In the binomial merging process of BMAP
algorithm, it is assumed that the mesh network is of the dimension
2 2n n× such that the number of IP cores k ≤ 2 2n n× . If the number of
cores is less than that of possible routers, in the final network there
will be a few routers to which no core is attached. Such routers con-
stitute dummy routers. Communication between such dummy cores
or routers is zero. Hence, after the iterative merging process, such
routers are put to the boundary of the mesh. These dummy routers
can be removed without sacrificing the network speed. This saves
the area, as well as the power, since the idle routers also consume
static power.

 2. Router selection: In an OCN development environment, several alter-
native router designs may be available, with varying cost, in terms
of area, performance, power, and so on. For example, a router has a
number of channels. Since the buffers are the most costly compo-
nents (in terms of area and power consumption) of a router, several
trade-offs can be made. For fastest operation, each of the individ-
ual input–output channels may have their own buffer. However, a
number of channels can be made to share their buffer space, and
therefore reduce the cost of the router. Buffer depths can also vary.
Routers having low bandwidth cores attached to them may use a
less costly router, whereas the routers having high traffic passing
through them may have separate buffers (with possibly higher
depth) in each channel.

Four merging cases:
B1–B2, B1–C2
C1–B2, C1–C2

Sixteen merging cases:

A1

D1 D2

B1

B1

D1 D2

(b)

(a)

B2C1 C2

A1 A2

B2 C2

A2

C1

A1–A2, A1–B2
A1–C2, A1–D2
B1–A2, B1–B2
B1–C2, B1–D2
C1–A2, C1–B2
C1–C2, C1–D2
D1–A2, D1–B2
D1–C2, D1–D2

Figure 5.6
Merging of IP sets: (a) 16 cases in d1 = d2; (b) 4 cases in d1 ≠ d2. (Data from Shen, T., et al., A new
binomial mapping and optimization algorithm for reduced-complexity mesh-based on-chip
network, Proceedings of NOCS’07, 317–322, 2007.)

134 Network-on-Chip

 3. Unfolding: Some of the routers and links in the network may need to
sustain very high traffic load, more than their capacity. This may hap-
pen as the communication requirements are decided by the application.
Unfolding technique uses duplicate resources (i.e., duplicate routers
and links) so that the extra traffic can be carried through the network.

5.5 Constructive Heuristics with Iterative Improvement

These methods attempt to solve the mapping problem by first constructing
a candidate solution that satisfies all the bandwidth requirements. The solu-
tion is then improved using an iterative approach to obtain solutions with
less overall communication cost. One of the very prominent works in this
category is the NMAP algorithm proposed by Murali and Micheli (2004a).
The algorithm, though presented for mesh topology, can also be extended to
other topologies. The algorithm has three phases as follows:

•	 Initialization phase: It computes an initial mapping.
•	 Minimum path computation phase: It identifies the minimum cost

available path between two mapped cores.
•	 Iterative improvement phase: It invokes the second phase for each

pair-wise swapping of mapped core positions.

5.5.1 initialization Phase

This phase constructs an initial mapping solution for the application on a mesh
topology. To start with, the cores are sorted based on their communication
demands. The core with the highest communication demand is placed at one
of the mesh nodes having the maximum number of neighbors. Let the core
having the highest communication be c1 and let it be associated with router uj.
Next, the core having maximum communication with c1 is identified; let it be c2.
The core c2 is placed at one of the neighbors of uj, so that the communication
cost is the minimum. Since, at this time, only one core has been placed, c2 can
get mapped to any of the neighbors of uj. However, in general, at any stage
of the algorithm, let R be the set of cores already mapped and W be the set of
corresponding router positions. Let ck be an unmapped core with the maxi-
mum communication requirement with the cores in R. Then, ck is chosen as the
next candidate for mapping. The core ck can be mapped to any of the available
router positions. Associating ck with router rm will incur a certain communica-
tion cost. For all available mapping positions, the communication costs are
evaluated. The core is mapped to the router position resulting in the minimum
communication cost. The procedure is repeated until all the cores are mapped.

135Application Mapping on Network-on-Chip

Procedure Initialize(G, P)

Input: G(V,E)—the task graph, P(U,F)—the topology graph
Output: A mapping function map: V→U, such that map(c) gives the map-
ping of core c onto a router
Begin
 Placed = NULL /* Initialize the set Placed to a null set */
 maxs = Core in V with maximum communication
 maxt = Node with maximum neighbors in U
 map(maxs) = maxt /*Map core maxs to the router with maximum

neighbors */
 U = U – {maxt}
 V = V – {maxs}
 Placed = Placed ∪ {maxt}
 While (|V| > 0) do
 begin
 nexts = Core in V having maximum communication with

cores corresponding to routers in Placed
 for all router position u Uj ∈ do
 commcostj = 0
 for all cores ck corresponding to routers in Placed do
 uk = router corresponding to ck

 commcostj = commcostj + comm(nexts, ck) *
hopcount(uj, uk)

 nextt = Router position uj with minimum commcost
 map(nexts) = nextt
 U = U – {nextt}
 V = V – {nexts}
 Placed = Placed ∪ {nextt}
 end
 return map, Placed
End

5.5.2 Shortest Path Computation

This phase identifies the shortest paths for communication between the
cores placed at different routers. The set Placed is used to identify the routers
having cores associated with them. To start with, if two cores are mapped to
adjacent routers, the corresponding edge weight is set to be equal to the total
bandwidth requirement between them. The communications of the applica-
tion graph are sorted in descending order of bandwidth requirement. The
first such communication is picked up. The minimum path between the cor-
responding router pair is identified. The weights of all edges in the topology
graph belonging to the path are incremented by the bandwidth requirement.

136 Network-on-Chip

If, at the end, the bandwidth constraints are satisfied by all the edges of the
topology graph, the mapping is successful. In such case, the overall com-
munication cost is computed and returned; otherwise a very high-constant
MAXVALUE is returned, indicating that the mapping violates the band-
width constraints of at least one edge. In a mesh topology, the shortest path
between two nodes always lies between the minimum quadrant involving
the nodes. Hence the algorithm restricts the minimum path search within
the quadrant only.

Procedure shortestpath(Placed)

Input: A set of router positions having cores, that is, the Placed set com-
puted earlier
Output: Total communication cost if bandwidths are satisfied,
MAXVALUE otherwise
Begin

Initialize edge weights of Placed with total communication band-
width for adjacent nodes and MAXVALUE for others

Sort communications in core graph with decreasing communica-
tion cost

 For each communication d do
 begin

Make quadrant graph Q with source(d) and dest(d) as the
corner vertices

 Path = Minpath(Q)
Increase edge weights for edges in Path by the bandwidth

requirement of the communication
 end
 If all bandwidth constraints are satisfied
 Cost = Total communication cost
 Else
 Cost = MAXVALUE
 Return Cost

End

5.5.3 iterative improvement Phase

This phase attempts to improve upon the result obtained in the shortest path
computation phase. For this, it tries to swap the position of two cores (i.e.,
their router allotment) and check whether it leads to a better solution or not.
In case it results in a better solution, the new mapping and the correspond-
ing cost are remembered.

137Application Mapping on Network-on-Chip

Procedure iterative_improvement(G, P)

Input: The application core graph G and the topology graph P
Output: Best communication cost and mapping via swapping
Begin
 Bestcommcost = shortestpath(Placed) /* Find the communication cost

for current placement */
 Bestmapping = Placed
 For i = 1 to number of nodes in topology graph do

 For j = i + 1 to number of nodes in topology graph do
 begin
 Ptemp = Placed
 Swap nodes wi and wj in Ptemp
 commcost = shortestpath(Ptemp)
 If (commcost < bestcommcost)
 begin
 Bestmapping = Ptemp
 Bestcommcost = commcost
 end
 end

 Return Bestcommcost, Bestmapping
End.

5.5.4 Other Constructive Strategies

PMAP, a two-phase mapping algorithm for placing clusters onto processors,
was presented by Koziris et al. (2000), where highly communicating clusters
are placed on adjacent nodes of the processor network. Each cluster contains
all tasks that are to be executed in the same processor having zero interconnec-
tion overhead to increase parallelism. A tool, SUNMAP, was presented by
Murali and Micheli (2004b) to automatically select the best standard topology
for a given application and produce a mapping of cores onto that topology. It
minimizes the average communication delay, area, power dissipation subject
to bandwidth and area constraints. MOCA is a two-phase heuristic for low-
energy mesh-based on-chip interconnection architecture proposed by
Srinivasan and Chatha (2005) to reduce the communication energy consider-
ing the bandwidth and latency constraints. In the first phase, the cores are
mapped to different routers of the mesh by invoking a bipartitioning-based
slicing tree generation technique. In the second phase, it attempts to find a
minimal path from source to destination for each traffic trace. It does not give
good solution when latency constraints are considered. All the mapping tech-
niques proposed earlier use the communication weighted model (CWM) to
account for the overall communication volume of each channel. It does not

138 Network-on-Chip

consider communication timing. To capture both timing of application com-
munication and communication volume, communication dependence and
computation model (CDCM) was proposed by Marcon et al. (2005a, 2005b),
which maps applications on regular NoC under bandwidth constraint and
minimizes average communication delay. Marcon et al. (2008) compared dif-
ferent algorithms for obtaining low-energy mappings onto NoCs using a
CWM. They also proposed two heuristics, largest communication first (LCF)
and greedy incremental (GI) for low-energy mapping using CWM. UMARS, a
unified mapping, routing, and slot allocation algorithm presented by Hansson
et al. (2005), couples mapping, path allocation, and time slot allocation to mini-
mize communication energy. This technique maps cores onto the NoC topol-
ogy, routes the communication, and allocates time division multiplexed access
(TDMA) time slots on network channels so that application constraints are
met. SMAP (Saeidi et al. 2007) is a simulation-based environment, which per-
forms application mapping and task routing for a two-dimensional (2D) mesh-
based NoC to minimize the execution time and communication energy. In this
technique, the highest priority task is mapped at the center and other tasks are
mapped from the mapped tasks spirally to the boundaries of the mesh-based
NoC by placing highly communicating cores as close as possible to each other.
Spiral is a mapping algorithm proposed by Mehran et al. (2007), which reduces
the cumulative energy consumption of communication links and the overall
system execution time. In this mapping technique, the high-priority resources
are mapped spirally from the center to the boundaries of the mesh-based NoC
by placing highly communicating cores as close as possible to each other as in
the work of Saeidi et al. (2007). A simulated annealing (SA)-based application
mapping technique proposed by Harmanani and Farah (2008) for a 2D mesh-
based NoC minimizes the area requirement and the maximum bandwidth. It
also proposes an efficient routing algorithm that selects a route among alterna-
tive paths based on the network state and occupancy of queues. Cluster-based
technique combined with SA was proposed by Lu et al. (2008) for application
mapping onto a 2D mesh-based NoC. In this technique, mapping is done
 cluster-wise, instead of node-wise, to reduce the mapping complexity.
Clustering is a technique to partition nodes into groups according to the physi-
cal distance among them in the network topology. Clustering exploits the
knowledge about the network architecture and communication demand of
applications. Therefore, in this mapping technique, first a cluster-based core to
node initial mapping is done and then a SA technique is applied upon it to find
good mapping solution. Elmiligi et al. (2008a, 2008b, 2009) analyzed different
approaches to minimize the total communication energy by inserting some
permissible longer links and by-passing some routers of application-specific
NoC. In this process, by network partitioning, the area cost is reduced by
reducing both the router area and the number of links. Elmiligi et al. (2009)
proposed an efficient methodology to choose the most power-efficient applica-
tion-specific NoC architecture. They compared different topologies taking
only one application benchmark and reported the best one, but that topology

139Application Mapping on Network-on-Chip

may not be good for other applications. Topology design is one of the significant
factors that affects the net delay and energy consumption of an application-
specific NoC. The topology must satisfy the design constraints. For very-high
I/O rate streaming type of application mapping, a guaranteed and high-
throughput pipelined mechanism for NoC is introduced in the work of Yu
et al. (2009). They proposed a pipeline-based high-throughput low-energy
mapping algorithm that performs task allocation, pipelined task scheduling,
and communication scheduling simultaneously on the heterogeneous NoC
and minimizes the energy consumption. Onyx, a new bandwidth-constrained
application mapping, was presented by Janidarmian et al. (2009) to minimize
the overall communication cost of NoC. In this technique, a core with the high-
est communication bandwidth is mapped at the center. Then the ranking of
other unmapped cores is settled according to the communication volume with
mapped cores. The unmapped cores are placed at the nearest possible distance
with their related cores by looking the lozenge-shaped path with one or two
hop distances and so on till the empty tile is identified. CHMAP (Tavanpour
et al. 2009) is a chain-mapping algorithm that produces chains of connected
cores in order to introduce a method for application mapping onto a mesh-
based NoC. Crinkle, a mapping algorithm, was presented by Saeidi et al. (2009)
to reduce the overall communication cost. In this technique, priority lists are
prepared depending on the interconnection degree of nodes and communica-
tion bandwidth before mapping onto a mesh-based NoC. Depending on the
priority lists, the heuristic maps the tasks from the corner of 2D mesh platform
and ends on another corner in a zigzag manner. A multiobjective optimization
strategy was proposed by Tornero et al. (2009) to determine the pareto optimal
NoC configurations to optimize an average delay of the network and routing
robustness. In this technique, both the topological mapping and the routing
are considered concurrently. Wang et al. (2009, 2010) proposed a power-aware
template-based efficient mapping (TEM) algorithm for NoC to generate good
mapping solutions with low runtime under bandwidth and latency con-
straints. CMAP (Chen et al. 2009) is a fast constructive application mapping
algorithm that maps tasks onto NoC minimizing the total communication cost
and energy. It is a hybrid of two constructive mapping algorithms, link-based
mapping (LBMAP), and sort-based mapping (SBMAP). After comparing the
results of these two, the better one is taken as output. Citrine is a two-step 2D
mesh mapping algorithm proposed by Janidarmian et al. (2010), which uses
the mapping technique Onyx (Janidarmian et al. 2009) to retrieve the order of
cores, and then a branch-and-bound search tries to search different permuta-
tions by a lozenge-shaped rule of Onyx. RMAP is a reliability-aware applica-
tion mapping technique for a mesh-based NoC proposed by Patooghy et al.
(2010). It divides the application graph into two subgraphs, which minimizes
the communication traffic between the subgraphs and maximizes the traffic
within each subgraph. Then one subgraph is mapped onto upper triangular
nodes of the NoC and the other is mapped to lower triangular nodes of the
NoC. This technique utilizes the nonuniformity of traffic distribution over the

140 Network-on-Chip

network channels to efficiently route the packets of redundant communica-
tions. In the work of Yang et al. (2010b), all the nodes and the interconnections
among nodes of a 2D mesh-based NoC are abstracted as a tree. In this tree
model, the vertex with highest communication volume is selected as root
node. The vertices communicating to the root (node) are the children of that
node and so on. During mapping, the root node is placed at the center of the
mesh-based NoC, and the traversal is made from the center toward the bor-
ders of the NoC. The child nodes are placed by seeing the tree structure and
the communication volume of interconnects from the center toward the bor-
ders. Yang et al. (2010a) proposed a two-step multiapplication mapping algo-
rithm that maps multiple applications simultaneously onto different regions of
NoC to minimize network latency and energy consumption for a set of appli-
cations. The algorithm consists of an application mapping phase followed by a
task mapping phase. The application mapping phase deals with the multiple
applications mapping to optimize the layout of multiple applications on the
NoC. After the application mapping phase, the role of task mapping phase is
to map the tasks of the application so that the average communication distance
is minimized. The task mapping of each application follows the tree model-
based mapping as described in the work of Yang et al. (2010b). LMAP is a map-
ping algorithm proposed by Sahu et al. (2010) to reduce both static and dynamic
costs of a mesh-based NoC. In the initial mapping phase, a Kernighan–Lin
(K–L) partitioning scheme is used to identify the closeness of cores by analyz-
ing their bandwidth or communication requirements. This bipartitioning is
applied (recursively) until the closest two cores are left in one final partition.
After initial mapping, an iterative improvement phase is applied to arrive at a
final mapping. CastNet is an energy-aware application mapping and routing
technique for 2D NoC proposed by Tosun (2011b). Before mapping, a priority
list of the tasks is formed based on its total communication with its neighbors.
Depending on the priority list, the initial task is selected. For mapping the first
task, a set of initial node positions is selected. A set of solutions is generated by
this technique for each initial node position of the initial task. The remaining
tasks are placed on the nodes of NoC according to the priority list. After each
mapping the priority list is also updated. Finally, from the set of solutions, the
best one is taken as the solution for mapping of applications onto NoC.

All the application mapping techniques of NoC discussed above are
based on the mesh-based network architecture. But it is essential to check
the suitability of other network topology when applications are mapped
onto that. An energy-aware mapping technique was proposed by Chang
et al. (2008), which maps the IPs onto a tree-based NoC architecture such
that the total communication energy can be minimized. In this technique,
first an energy-aware mapping is formulated, and then a recursive bipar-
titioning algorithm is used to solve it. An application mapping heuristic
was proposed by Majeti et al. (2009) for generating an optimal tree-based
topology for multimedia applications to minimize energy consumption
while meeting the design constraints. Application mapping techniques were

141Application Mapping on Network-on-Chip

proposed by Sahu et al. (2011a, 2011b) to map applications onto butterfly fat
tree- and mesh-of-tree-based NoCs, respectively. In this technique, a K–L
partitioning scheme was used by Sahu et al. (2010) to identify the closeness
of cores by analyzing their bandwidth or communication requirements. An
energy-aware mapping algorithm has been presented in Hu and Merculescu
(2007) that computes the network energy in terms of energy consumed per
bit transmission through the routers and the links. A bandwidth constrained
mapping has been presented in Reshadi et al. (2010).

5.6 Mapping Using Discrete PSO

PSO is a population-based stochastic technique developed by Kennedy and
Eberhart (1995), inspired by social behavior of bird flocking or fish school-
ing. In a PSO system, multiple candidate solutions coexist and collaborate
simultaneously. Each solution, called a particle, flies in the problem space
according to its own experience as well as the experience of neighboring
particles. It has been successfully applied in many problem areas. In a PSO,
each single solution is a particle in the search space, having a fitness value.
The quality of a particle is evaluated by its fitness. Inspired by its success in
solving problems in continuous domain, several researchers have attempted
to apply it in discrete domain as well (Wang et al. 2003). A well-known prob-
lem that was attempted to be solved using discrete PSO (DPSO) technique
is the travelling salesman problem (TSP) (Wang et al. 2003). A solution to a
TSP problem consists of a sequence of all cities, such that the total distance
travelled is minimized. Structurally, the NoC application mapping problem
is very much similar to TSP. If the router positions in the topology graph are
given unique numbers in the range 0 to number_of_routers – 1, the solution
associates each core of the application graph to one such router. Thus, the
mapping problem can also be viewed as an ordering of the cores. This leads
to a DPSO formulation of the application mapping problem.

5.6.1 Particle Structure

In application mapping, a particle corresponds to a possible mapping of
cores to the routers. An example of a particle structure is shown in Figure 5.7.
The numbers shown within circles in the boxes are the core numbers pres-
ent in the core graph. The numbers outside the box are the router numbers
of the topology graph. The figure shows that core 1 is attached to router 0,
core 4 is attached to router 1, and so on. If the number of nodes (routers)
present in the topology graph is greater than the number of cores present in
the core graph, dummy nodes are added to the core graph to make the two
numbers same. Dummy nodes are connected to all core nodes and between

142 Network-on-Chip

themselves. Edges connecting a core node to dummy nodes and the edges
between dummy nodes are assigned a cost 0. Let N be the number of cores
present in the core graph for mapping cores onto the topology graph, after
connecting dummy nodes, if required. For these N cores, there are N node
positions in the topology graph. A particle is a permutation of numbers from
1 to N, which shows the placement of cores to the node positions of the topol-
ogy graph. The overall communication cost is influenced by the position of
cores in a particle. The overall communication cost forms the fitness func-
tion. Fitness of a particle pi is equal to the overall communication cost after
placement of cores of the core graph to different routers as specified by the
particle.

5.6.2 evolution of generations

In the general DPSO framework, let the position of a particle (in an
n-dimensional space) at kth iteration be p p p pk k k k n=< >, , ,, , ,1 2 . For ith par-
ticle, the quantity is denoted as pk

i. Let pbesti be the local best solution that
particle i has seen so far and gbestk be the global best particle of iteration k.
The new position of particle i is calculated as follows:

 p s I s p pbest s p gbest pk
i

k
i

k k k
i

+ = × ⊕ × → ⊕ × → ×1 1 2 3[() ()]

In the above equation, a → b represents the minimum length sequence of
 swapping to be applied on components of a to transform it to b. For exam-
ple, if a = <1, 3, 4, 2> and b = <2, 1, 3, 4>, a b→ = <swap(1, 4), swap(2, 4),
swap(3, 4)>. The operator ⊕ is the fusion operator. Applied on two swap
sequences, a ⊕ b is equal to the sequence in which the sequence of swaps
in a is followed by the sequence of swaps in b. The constants s1, s2, s3 are
the inertia, self-confidence, and swarm confidence values, respectively. The
quantity s a bi × →() means that the swaps in the sequence a b→ will be
applied with a probability si. I is the sequence of identity swaps, such as
<swap(1, 1), swap(2, 2),…, swap(n, n)>. It corresponds to the inertia of the
particle to maintain its current configuration. The final swap correspond-
ing to s I s p pbest s p gbestk

i
k k1 2 3× ⊕ × → ⊕ × →() () is applied on particle pk

i to
generate pk

i
+1.

In reference to the application mapping problem, for a particle p, the router
associated with a core is identified by the position index of the core in p.
The indexing of the position takes values between 0 and N – 1 (N being the

3 1 6 4 8 5 2 7Core number

0 1 2 3 4 5 6 7Router number

Figure 5.7
A particle structure.

143Application Mapping on Network-on-Chip

number of routers). The index corresponds to the router number, as shown
in Figure 5.7. Let the swap operator be SOj,k (where j and k = 0, 1, . . . , N – 1)
that swaps the jth and kth positions of particle p to create a new particle pnew.
For example, consider the particle p = {1, 4, 3, 6, 2, 8, 5, 7}, where the numbers
represent the core numbers of the core graph and the position represents
the router numbers in the topology graph. The swap operator SO4,6 swaps
the cores at positions 4 and 6, which creates a new particle pnew = {1, 4, 3, 6,
5, 8, 2, 7}.

To align a particle pi with its local best, the swap sequence is identified. Let
this be SSi

l best_ . Then another swap sequence is identified to align the particle with
the global best. Let this be SSi

g best_ . Now the swap sequence SSi
l best_ is applied on

particle pi with a probability of s2. Let the modified particle be pi
l best_ . Then the

swap sequence SSi
g best_ is applied on pi

l best_ with a probability of s3. This cre-
ates a new particle pi

new. Its fitness is evaluated and the local best is updated
for particle i, if it is better than the previous local best for the particle. If the
best fitness in a generation is better than the global best of the previous gen-
eration, the global best is also updated.

Procedure Compute_Swap_Sequence

Input: Source sequence Sour_seq Destination sequence Dest_seq
Output: Swap sequence Swap_seq to align Sour_seq to Dest_seq
Begin
 For i = 1 to total number of nodes in Sour_seq
 Swap_seq[i] = Index of Sour_seq[i] in Dest_seq
 End for
End

Assuming that none of the sequences are sorted, the time complexity of the
procedure Compute_Swap_Sequence is O(n2), n being the number of nodes.

5.6.3 Convergence of DPSO

From Guilan et al. (2008), it can be found that the convergence condition for
this DPSO is given by

1 11

2

2 3 1
2−() ≤ + ≤ +s s s s()

Setting the values of s1 = 1.0, s2 = 0.04, and s3 = 0.02 is observed to produce
good results for most of the applications we have experimented with. A typi-
cal trace of the evolution of a particle with these parameter settings shows
that in the process of convergence, it is safe to assume that the particle has
converged to its final value if there are no significant improvements in the
solution quality for last 100 generations.

144 Network-on-Chip

5.6.4 Overall PSO Algorithm

The overall PSO algorithm is presented as follows:

Initialization

For each particle
 Initialize particle with random solution
 Evaluate fitness value of each particle
 Set local_best of each particle to itself
End for
Set global_best to the best fit particle
Evolutions
Do
 For each particle pi

 Identify SSi
l best_ and SSi

g best_

 pi
new = Modify pi by applying SSi

l_best with probability
s2 followed

 by SSi
g best_ with probability s3

 Evaluate fitness of pi
new

 If fitness of pi
new is better than the local best for pi then

update local_best for pi End for
 Find the particle with the best fitness and update global_best
While maximum generation (prespecified) not attained and global_best is
not remaining unaltered for a prespecified number of generations

5.6.5 Augmentations to the DPSO

The DPSO formulation discussed in Section 5.6.4 can be augmented in the
following two ways to achieve better solutions.

5.6.5.1 Multiple PSO

The PSO formulation can be run several times to improve upon the global
best solution. Suppose that the ith run of the PSO produces the local best
pbesti

k for each particle k and the global best gbesti. The (i + 1)th run of the
PSO starts with a new set of particles. However, the global and local best
information of the particles is passed from ith to (i + 1)th PSO. The number
of times for which the PSO is run, that is, the terminating criteria, is decided
by the following:

 1. There may be a user-specified upper limit. In the work of Sahu et al.
(2012), it has been kept at 200 individual PSO runs.

 2. The global best cost does not improve in the last 20 PSO runs.

145Application Mapping on Network-on-Chip

5.6.5.2 Initial Population Generation

For an application with n cores to be mapped onto a mesh topology having n
routers in it, the total number of possible mappings is n!. Thus, exploration of
the promising region of this huge search space depends to a great extent on
the initial population with which each PSO starts evolving. To augment the
solution quality, in the initial set of particles, some particles are included that
are generated via a deterministic mapping technique discussed in this sec-
tion. For the topology with n routers, exactly n deterministically generated
particles are included. The remaining particles are generated randomly. The
deterministic particle generation works as follows.

First, the edges of the core graph are sorted on descending communication
requirements, as specified in edge label. Let e = (c1,c2) be the edge with the
maximum bandwidth requirement. Mapping process starts with this edge.
For core c1, the total bandwidth requirement is computed by summing up
the labels of all edges of c1 to its neighbors. The same is done for c2. Let the
value computed for c1 be higher than that for c2. The mapping process gen-
erates solutions with c1 mapped to each router position of the topology. For
a particular placement of c1, the remaining cores are mapped judiciously to
obtain a good solution. Thus, a set of particles equal to the number of rout-
ers gets created. The set forms a subset of particles for the initial population.

Suppose that c1 is mapped onto router u1, and in the topology graph, u1 has
neighbors u2, u3, and u4. Since all these routers are one hop away from u1, all
of them are equally suitable for mapping of c2. In general, at a point during
execution of this constructive mapping algorithm, a subset of cores is already
mapped onto the routers of the topology graph. Let this set of cores be C′ and
the corresponding router set be U′. The algorithm now considers those edges of
the core graph of which exactly one vertex has already been mapped. It selects
such an edge with the highest bandwidth requirement. Let the unmapped core
of that edge be ci. We try out the mapping of ci to each router placed at a one-
hop distance from any router in U′ (the set of routers with already assigned
cores). For each such mapping, the cost of mapping is evaluated by considering
the subgraph consisting of cores in the set ′ ∪C ci{ }. If there is a single mapping
with the minimum cost, it is accepted for mapping of ci, and the process con-
tinues with the next candidate node selected in a similar fashion. However, if
multiple mappings of ci are of the same cost, let us assume M m m mk= { , , , }1 2
be the set of k candidate positions for ci resulting in equal mapping cost for the
subgraph with a vertex set ′ ∪C ci{ }. To distinguish between these k positions,
temporarily select m1 to be the mapping of ci. With this, we proceed to find the
mapping for the remaining cores in a similar fashion, as noted earlier. That is,
for the next core to be mapped, the router positions neighboring to the topol-
ogy subgraph ′ ∪U m1 are evaluated. However, in this case we do not distin-
guish between contending positions with minimum cost values. Instead, we
take the first such position and continue with mapping of the remaining cores.
When all cores are mapped, the cost of the final mapping solution is taken as

146 Network-on-Chip

the predicted cost of selecting router position m1 for ci. Similarly, other k – 1
positions m2, m3,…, mk are evaluated and the core ci is mapped onto the router
position with the minimum predicted cost. The process continues by selecting
the next core. The following algorithm enumerates the process:

Initial Mapping Algorithm: Map_Graph

Input: Core graph G, Topology graph P
Output: Mapping of G onto P
Begin
 Sort edges of G on descending order of communication cost
 For each router position u of P do
 Mark all cores of G as unmapped
 Best_Cost = ∞
 Best_Mapping = Φ
 Mapping = Find_Mapping (G, P, u)
 Output Mapping as a particle
 End for
End

Procedure Find_Mapping
Input: Core graph G, Topology graph P,
 Core: core to be mapped,
 Start_Posn: Position in P where first core to be mapped
Output: Mapping of all cores of G onto P with the first core mapped to
Start_Posn
Begin
 Let (c1,c2) be the edge of G with the highest required bandwidth

Cost Bandwidth requirement of c c

c neighbour c

i

i

1 1

1

=
∈

∑
()

(,)

 Cost Bandwidth requirement of c c
c neighbour c

i

i

2 2

2

=
∈

∑
()

(,)

 If (Cost1 > Cost2) then Core = c1 else Core = c2

 Mapping[Start_Posn] = Core
 Mark Core as mapped
 While there exist unmapped cores in G do
 Let (ci,cj) be the edge of G with highest bandwidth such that exactly

one of ci and cj is already mapped
 Let c = ci if cj is already mapped else c = cj

 Positions. = set of positions in P with one hop distance from already
mapped positions

 Evaluate_Positions(Positions). Min_Positions = Set of. Positions with
minimum cost

147Application Mapping on Network-on-Chip

 If (cardinality of set Min_Positions =.)
 Best_Position = Min_Position[0]
 Else
 Best_Position = Predict_Best(Min_positions, G, P, c). Mark cc

mapped
 End while
Return Mapping
End

Procedure Predict_Best
Input: Core graph G, Topology graph P,
 Core: core to be mapped,
 Posn: set of contending position of P
Output: Predicted best position of core amongst Posn
Begin
 Min_Cost = ∞
 Newly_Marked_Cores = Φ
 For each position p in Posn do
 Mapping[Core] = p
 Newly_Marked_Cores = Newly_Marked_Cores ∪ {Core}
 Mark Core mapped
 While there exists unmapped cores in G do
 Let (ci, cj) be the edge of G with the highest band-

width such that exactly one of ci and cj is
already mapped

 Let c = ci if cj is already mapped else c = cj Positions
= Set of positions in P one hop distance from

already mapped positions
 Evaluate_Positions(Positions)
 Best_Position = First Position with minimum cost
 Mapping[Best_Position] = c
 Mark c mapped
 End while
 Cost = Total communication cost for this mapping
 If Min_cost > Cost then
 Min_cost = Cost
 Min_posn = Φ
 End If
 Unmark all cores in Newly_Marked_Cores
 Newly_Marked_Cores = Φ
 End for
 Return Min_posn
End

148 Network-on-Chip

5.6.6 Other evolutionary Approaches

A two-step GA for mapping applications onto NoC was proposed by Lei and
Kumar (2003), which reduces the overall execution time. In the first step, the
tasks are assigned onto different IPs assuming the edge delays to be constant
and equal to the average edge delay. In the second step, the IPs are mapped to
tiles of NoC taking the actual edge delay, based on the network traffic model,
and the total system delay is minimized. In this mapping, some delay factors,
such as the message sending probability of cores, the packet length, and the
network contention for communication, are not been considered. Zhou et al.
(2006) proposed a delay model for application mapping onto NoC considering
all these factors. Their proposed GA-based delay model can map the applica-
tion onto NoC optimally with a minimum average delay. PLBMR, a PSO-based
two-phase application mapping algorithm proposed by Zhou et al. (2007),
minimizes the NoC communication energy and allocates the routing path for
balancing the link load. In the first phase, the PSO maps IP cores onto NoC
to minimize the energy consumption, and in the second phase, the routing
paths are allocated to every pair to satisfy the link–load balance. Ascia et al.
(2004) proposed a pareto-based multiobjective evolutionary computing tech-
nique that optimizes the performance and power consumption of mapped
NoC. Ascia et al. (2006) used the above technique for application task map-
ping. For dynamic evaluation, an event-driven trace-based simulator was used
to compare their results with a pareto-based branch-and-bound approach and
a pareto-based NMAP approach. A multiobjective GA-based application map-
ping for NoC was presented by Benyamina and Boulet (2007), which targets
mapping with a network assignment (NA) for heterogeneous distributed
embedded systems to improve the performance and reduce the power con-
sumption and area. This technique first allocates tasks to cores and then maps
the cores to different tiles of NoC satisfying communication requirements.
The mapping of IP cores onto NoC tiles, together with routing path alloca-
tion, is referred to as NA. The NA is usually performed after task mapping to
reduce the on-chip intercommunication distance. The GA-based optimization
technique, MGAP, proposed by Jena and Sharma (2007) minimizes the power
consumption by reducing the number of switches in the communication path
between cores and also maximizes the throughput. Although Lei and Kumar
(2003) used a similar technique, they considered the dynamic effect of traffic.
They also gave a set of solutions using pareto mapping as used in the work of
Ascia et al. (2004, 2006). A multiobjective GA (MOGA)-based application map-
ping technique was proposed by Bhardwaj and Jena (2009), where one–one
as well as many–many mapping between switches and tiles were taken into
consideration to minimize energy consumption and the required link band-
width. It is used to find an optimal solution from the pareto optimal solutions
as in the work of Jena and Sharma (2007). Darbari et al. (2009a, 2009b) proposed
CGMAP, a GA-based application mapping technique that uses the chaotic
mapping operator instead of the random processes in GA. Fard et al. (2009)

149Application Mapping on Network-on-Chip

presented a different one-dimensional chaotic mapping technique onto NoC.
GBMAP, an evolutionary approach for mapping cores onto the NoC architec-
ture, was proposed by Tavanpour et al. (2010), which reduces energy consump-
tion and the total bandwidth requirement of NoC. Fekr et al. (2010) proposed
a PSO-based application mapping technique for NoC in which merit of the
scheme is not clear, as no comparison was made with the existing approaches.
A mapping technique based on discrete PSO was presented by Lei and Xiang
(2010). However, it only considers improvement over a GA-based method and
reports relative improvements only. Benyamina et al. (2010) proposed a hybrid
multiobjective algorithm, where Dijkstra’s shortest path algorithm is used to
find the shortest path among the communicating cores to satisfy the band-
width constraints and then a multiobjective pareto-based PSO technique is
applied upon that to improve performance. GMAR, a GA-based mapping and
routing approach proposed by Fen and Ning (2010), addresses a two-phase
mapping of IP cores onto the NoC architecture and generates a deterministic
deadlock-free minimal routing path for each communication to minimize the
total communication energy and maximize the link bandwidth utilization of
the NoC architecture. In the first phase, GMAR maps IP cores onto different
resource nodes of the mesh-based NoC architecture. In the second phase, it
generates deterministic deadlock-free minimal routing path for each commu-
nication trace. Jang and Pan (2010) proposed an architecture-aware analytic
mapping algorithm (A3MAP) for NoC with homogeneous and heterogeneous
cores on regular and irregular mesh or custom architecture. The task mapping
problem is solved by two effective heuristics: a successive relaxation algorithm
as a fast algorithm and a GA to find better mapping solutions. Choudhary et al.
(2010) proposed a GA-based mapping technique for a customized NoC archi-
tecture to reduce the communication energy. Choudhary et al. (2011) proposed
a GA-based congestion-aware mapping technique for an irregular customized
NoC architecture to reduce the communication energy. A multiobjective adap-
tive immune algorithm (MAIA), based on an evolutionary approach, was pro-
posed by Sepulveda et al. (2009), which maps the application tasks onto NoC
to reduce the power consumption and overall network latency. The adaptive
immune algorithms integrate a wide set of features that improve local search
while preventing the premature convergence by preserving the diversity of
solutions in the population. Sepulveda et al. (2011) proposed an improved ver-
sion of MAIA to solve the multiapplication NoC problem. It produces a set
of mapping alternatives by exploring the mapping space. Wang et al. (2011)
proposed an ACO-based algorithm for application task mapping onto NoC
to minimize the bandwidth requirement. The results were compared with
 random mapping techniques. Sahu et al. (2011c), proposed PSMAP, a meta-
heuristic strategy using PSO technique, to reduce both static and dynamic
costs of NoC for 2D mesh-based application mapping.

150 Network-on-Chip

5.7 Summary

Application mapping refers to the problem of determining the router posi-
tions to which individual cores of an application be mapped. The major goal
of the operation is to minimize the communication cost. Communication
cost controls the latency of communication between the cores and the over-
all power consumption. The mapping problem is NP-hard. In this chapter,
various strategies for application mapping have been discussed. While ILP-
based approaches produce the best results, the overall computation time is
high, restricting its usage to only a few cores in the application graph. The
constructive heuristic approaches attempt to construct a solution, which may
be followed by an iterative improvement phase. The evolutionary algorithms
perform particularly well. Such algorithms work well even for reasonably
large number of cores (e.g., 128 cores). The mapping problem can be extended
to the power- and thermal-aware strategies.

References

Ascia, G., Catania, V., and Palesi, M. 2004. Multi-objective mapping for Mesh-based
NoC architectures. International Conference on Hardware/Software Codesign and
System Synthesis, ACM, pp. 182–187.

Ascia, G., Catania, V., and Palesi, M. 2006. Multi-objective genetic approach to map-
ping problem on network-on-chip. Journal of Universal Computer Science, vol. 12,
no. 4, pp. 370–394.

Bender, A. 1996. MILP based task mapping for heterogeneous multiprocessor sys-
tems. Proceedings of International Conference on Design and Automation, IEEE
Computer Society Press, pp. 190–197.

Benyamina, A. H. and Boulet, P. 2007. Multi-objective mapping for NoC architecture.
Journal of Digital Information Management, vol. 5, pp. 378–384.

Benyamina, A. H., Boulet, P., Aroul, A., Eltar, S., and Dellal, K. 2010. Mapping real
time applications on NoC architecture with hybrid multi-objective algorithm.
International Conference on Metaheuristics and Nature Inspired Computing, pp. 1–10.

Bhardwaj, K. and Jena, R. K. 2009. Energy and bandwidth aware mapping of IPs onto
regular NoC architectures using multi-objective genetic algorithms. International
Symposium on System-on-Chip, IEEE Press, pp. 27–31.

Chang, Z., Xiong, G., and Sang, N. 2008. Energy-aware mapping for tree-based NoC
architecture by recursive bipartitioning. International Conference on Embedded
Software and Systems, IEEE Press, pp. 105–109.

Chen, Y., Xie, L., and Li, J. 2009. An energy-aware heuristic constructive mapping algo-
rithm for network on chip. International Conference on ASIC, IEEE Press, pp. 101–104.

Chou, C. L. and Marculescu, R. 2008. Contention-aware application mapping for
network-on-chip communication architectures. IEEE International Conference on
Computer Design, IEEE Press, pp. 164–169.

151Application Mapping on Network-on-Chip

Choudhary, N., Gaur, M. S., Laxmi, V., and Singh, V. 2010. Energy aware design methedol-
ogies for application specific NoC. Proceedings of NORCHIP, IEEE Press, pp. 1–4.

Choudhary, N., Gaur, M. S., Laxmi, V., and Singh, V. 2011. GA based congestion aware
topology generation for application specific NoC. IEEE International Symposium
on Electronics Design, Test, and Application, IEEE Press, pp. 93–98.

Darbari, F. M., Khademzadeh, A., and Fard, G. G. 2009a. Evaluating the performance
of a chaos genetic algorithm for solving the network on chip mapping problem.
International Conference on Computational Science and Engineering, IEEE Press,
pp. 366–373.

Darbari, F. M., Khademzadeh, A., and Fard, G. G. 2009b. CGMAP: A new approach
to network-on-chip mapping problem. IEICE Electronics Express, vol. 6, no. 1,
pp. 27–34.

Elmiligi, H., Morgan, A. A., Kharashi, M. W. E., and Gebali, F. 2008a. Power-aware
topology optimization for network-on-chips. IEEE International Symposium on
Circuits and Systems, IEEE Press, pp. 360–363.

Elmiligi, H., Morgan, A. A., Kharashi, M. W. E., and Gebali, F. 2008b. Application-
specific networks-on-chip topology customization using network partitioning.
1st International Forum on Next-generation Multicore/manycore Technologies. ACM.

Elmiligi, H., Morgan, A. A., Kharashi, M. W. E., and Gebali, F. 2009. Power optimi-
zation for application-specific networks-on-chips: A topology-based approach.
Journal of Microprocessor and Microsystems, vol. 33, pp. 343–355.

Fard, G. G., Khademzadeh, A., and Darbari, F. M. 2009. Evaluating the performance
of one-dimensional chaotic maps in network-on-chip mapping problem. IEICE
Electronics Express, vol. 6, no. 12, pp. 811–817.

Fekr, A. R., Khademzadeh, A., Janidarmian, M., and Bokharaei, V. S. 2010. Bandwidth/
fault/contention aware application-specific NoC using PSO as a mapping gener-
ator. Proceedings of the World Congress on Engineering, IAENG, vol. 1, pp. 247–252.

Fen, G. and Ning, W. 2010. Genetic algorithm based mapping and routing approach for
network on chip architectures. Chinese Journal of Electronics, vol. 19, no. 1, pp. 91–96.

Ghosh, P., Sen, A. Sen, and Hall, A. 2009. Energy efficient application mapping to NoC
processing elements operating at multiple voltage levels. IEEE International
Symposiun on Network-on-Chip, IEEE Press, pp. 80–85.

Guilan, L., Hai, Z., and Chunhe, S. 2008. Convergence analysis of a dynamic discrete
PSO algorithm. International Conference on Intelligent Networks and Intelligent
Systems, IEEE Press, pp. 89–92.

Hansson, A., Goossens, K., and Radulescu, A. 2005. A unified approach to con-
strained mapping and routing on network-on-chip architectures. IEEE/ACM
International Conference on Hardware/Software Codesign and System Synthesis, IEEE
Press, pp. 75–80.

Harmanani, H. M. and Farah, R. 2008. A method for efficient mapping and reliable rout-
ing for NoC architectures with minimum bandwidth and area. IEEE International
Workshop on Circuits and Systems and TAISA Conference, IEEE Press, pp. 29–32.

Hu, J. and Marculescu, R. 2005. Energy- and performance-aware mapping for regu-
lar NoC architectures. IEEE Transactions on Computer Aided Design of Integrated
Circuits and Systems, vol. 24, no. 4, pp. 551–562.

Huang, J., Buckl, C., Raabe, A., and Knool, A. 2011. Energy-aware task allocation
for network-on-chip based heterogeneous multiprocessor systems. Euromicro
International Conference on Parallel, Distributed and Network based Processing, IEEE
Press, pp. 447–454.

152 Network-on-Chip

Jang, W. and Pan, D. Z. 2010. A3MAP: Architecture-aware analytic mapping for
 network-on-chip. Asia and South Pacific Design Automation Conference, IEEE
Press, pp. 523–528.

Janidarmian, M., Khademzadeh, A., Fekr, A. R., and Bokharaei, V. S. 2010. Citrine:
A methedology for application-specific network-on-chips design. Proceedings of
World Congress on Engineering and Computer Science, vol. 1, Springer, pp. 196–202.

Janidarmian, M., Khademzadeh, A., and Tavanpour, M. 2009. Onyx: A new heu-
ristic bandwidth-constrained mapping of cores onto network on chip. IEICE
Electronics Express, vol. 6, no. 1, pp. 1–7.

Jena, R. K. and Sharma, G. K. 2007. A multi-objective evolutionary algorithm based
optimization model for network-on-chip. IEEE International Conference on
Information Technology, IEEE Press, pp. 977–982.

Kennedy, I. and Eberhart, R. C. 1995. Particle swarm optimization. Proceedings of IEEE
International Conference on Neural Networks, New Jersey, IEEE Press, pp. 1942–1948.

Koziris, N., Romesis, M., Tsanakas, P., and Papakonstantinou, G. 2000. An efficient
algorithm for the physical mapping of clustered task graphs onto multiproces-
sor architectures. Proceedings of 8th Euro PDP, IEEE Press, pp. 406–413.

Lei, T. and Kumar, S. 2003. A two-step genetic algorithm for mapping task graphs to
a network on chip architecture. Proceedings of the Euromicro Symposium on Digital
System Design (DSD), IEEE Press, pp. 180–187.

Lei, W. and Xiang, L. 2010. Energy- and latency-aware NoC mapping based on dis-
crete particle swarm optimization. Proceedings of IEEE International Conference on
Communications and Mobile Computing, IEEE Press, pp. 263–268.

Lu, Z., Xia, L., and Jantsch, A. 2008. Cluster-based simulated annealing for mapping
cores onto 2D mesh networks on chip. Proceedings of Design and Diagnostics of
Electronic Circuits and Systems, IEEE Press, pp. 1–6.

Majeti, D., Pasalapudi, A., and Yalamanchili, K. 2009. Low energy tree based network
on chip architectures using homogeneous routers for bandwidth and latency
constrained multimedia applications. International Conference on Emerging Trends
in Engineering and Technology, IEEE Press, pp. 358–363.

Marcon, C., Borin, A., Susin, A., Carro, L., and Wagner, F. 2005a. Time and energy effi-
cient mapping of embeded applications onto NoCs. Proceedings of Asia and South
Pacific Design Automation Conference, IEEE Press, vol. 1, pp. 33–38.

Marcon, C., Calazans, N., Moraes, F., Susin, A., Reis, I., and Hessel, F. 2005b. Exploring
NoC mapping strategies: An energy and timing aware technique. Proceedings of
Design, Automation and Test in Europe Conference and Exhibition, IEEE Press, vol. 1,
pp. 502–507.

Marcon, C., Moreno, E. I., Calazans, N. L. V., and Moraes, F. G. 2008. Comparison of
network-on-chip mapping algorithms targeting low energy consumption. IET
Computer & Digital Technique, vol. 2, no. 6, pp. 471–482.

Mehran, R., Saeidi, S., Khademzadeh, A., and Kusha, A. A. 2007. Spiral: A heuristic
mapping algorithm for network on chip. IEICE Electronics Express, vol. 4, no. 15,
pp. 478–484.

Murali, S., Benini, L., and Micheli, G. De. 2005. Mapping and physical planning of
networks-on-chip architectures with quality-of-service guarantees. Asia and
South Pacific Design Automation Conference, IEEE Press, pp. 27–32.

Murali, S. and Micheli, G. De. 2004a. Bandwidth constrained mapping of cores onto
NoC architectures. Proceedings of Design, Automation and Test in Europe Conference
and Exhibition, IEEE Press, vol. 2, pp. 896–901.

153Application Mapping on Network-on-Chip

Murali, S. and Micheli, G. De. 2004b. SUNMAP: A tool for automatic topology selec-
tion and generation for NoCs. Proceedings of 41st Design Automation Conference,
IEEE Press, pp. 914–919.

Ostler, C. and Chatha, K. S. 2007. An ILP formulation for system-level application
mapping on network processor architecture. Proceedings of Design, Automation
and Test in Europe, IEEE Press, pp. 1–6.

Ozturk, O., Kandemir, M., and Son, S. W. 2007. An ILP based approach to reducing
energy consumption in NoC based CMPs. IEEE International Symposiun on Low
Power Electronics and Design, IEEE Press, pp. 411–414.

Patooghy, A., Tabkhi, A., and Miremadi, S. G. 2010. RMAP: A reliability-aware appli-
cation mapping for network-on-chips. International Conference on Dependability,
IEEE Press, pp. 112–117.

Pop, R. and Kumar, S. 2004. A survey of techniques for mapping and scheduling
applications to network on chip systems. ISSN 1404–0018, Research Report 04:4,
School of Engineering, Jönköping University, Sweden.

Reshadi, M., Khademzadeh, A., and Reza, A. 2010. Elixir: A new bandwidth-constrained
mapping for networks-on-chip. IEICE Electronics Express, vol. 7, no. 2, pp. 73–79.

Rhee, C., Jeong, H., and Ha, S. 2004. Many-to-many core-switch mapping in 2-D mesh
NoC architectures. IEEE International Conference on Computer Design: VLSI in
Computers and Processors, IEEE Press, pp. 438–443.

Saeidi, S., Khademzadeh, A., and Mehran, A. 2007. SMAP: An intelligent mapping
tool for network on chip. International Symposium on Signals, Circuits and Systems,
IEEE Press, pp. 1–4.

Saeidi, S., Khademzadeh, A., and Vardi, F. 2009. Crinkle: A heuristic mapping algo-
rithm for network on chip. IEICE Electronics Express, vol. 6, no. 24, pp. 1737–1744.

Sahu, P. K., Shah, N., Manna, K., and Chattopadhyay, S. 2010. A new application
mapping algorithm for mesh based network-on-chip design. IEEE International
Conference, IEEE Press, pp. 1–4.

Sahu, P. K., Shah, N., Manna, K., and Chattopadhyay, S. 2011a. An application mapping
technique for butterfly-fat-tree network-on-chip. IEEE International Conference on
Emerging Applications and Information Technology, IEEE Press, pp. 383–386.

Sahu, P. K., Shah, N., Manna, K., and Chattopadhyay, S. 2011b. A new application map-
ping strategy for mesh-of-tree based network-on-chip. IEEE International Conference
on Emerging Trends in Electrical and Computer Technology, IEEE Press, pp. 518–523.

Sahu, P. K., Shah, T., and Chattopadhyay, S. 2012. Application mapping onto mesh
based network-on-chip using discrete particle swarm optimization. IEEE
Transactions on VLSI vol. 22, no. 2, pp. 300–312.

Sahu, P. K., Venkatesh, P., Gollapalli, S., and Chattopadhyay, S. 2011c. Application
mapping onto mesh structured network-on-chip using particle swarm optimi-
zation. IEEE International Symposium on VLSI, IEEE Press, pp. 335–336.

Sepulveda, M. J., Strum, M., and Chau, W. J. 2009. A multi-objective adaptive
immune algorithm for NoC mapping. International Conference on Very Large Scale
Integration, IEEE Press, pp. 193–196.

Sepulveda, M. J., Strum, M., Chau, W. J., and Gogniat, G. 2011. A multi-objective
approach for multi-application NoC mapping. IEEE Latin American Symposium
on Circuits and Systems, IEEE Press, pp. 1–4.

Shen, T., Chao, C. H., Lien, Y. K., and Wu, A. Y. 2007. A new binomial mapping and
optimization algorithm for reduced-complexity mesh-based on-chip network.
Proceedings of NOCS’07, IEEE Press, pp. 317–322.

154 Network-on-Chip

Srinivasan, K., and Chatha, K. S. 2005. A technique for low energy mapping and
 routing in network-on-chip architecture. IEEE International Symposiun on Low
Power Electronics and Design, IEEE Press, pp. 387–392.

Srinivasan, K., Chatha, K. S., and Konjevod, G. 2006. Linear-programming-based
techniques for synthesis of network-on-chip architectures. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 14, no. 4, pp. 407–420.

Tavanpour, M., Khademzadeh, A., and Janidarmian, M. 2009. Chain-mapping for
mesh based network-on-chip architecture. IEICE Electronics Express, vol. 6,
no. 22, pp. 1535–1541.

Tavanpour, M., Khademzadeh, A., Pourkiani, S., and Yaghobi, M. 2010. GBMAP: An
evolutionary approach to mapping cores onto a mesh-based NoC architecture.
Journal of Communication and Computer, vol. 7, no. 3, pp. 1–7.

Tornero, R., Sterrantino, V., Palesi, M., and Orduna, J. 2009. A multi-objective strat-
egy for concurrent mapping and routing in networks on chip. IEEE International
Symposium on Parallel and Distributed Processing, IEEE Press, pp. 1–8.

Tosun, S. 2011a. Clustered-based application mapping method for network-on-chip.
Journal of Advances in Engineering Software vol. 42, no. 10, pp. 868–874.

Tosun, S. 2011b. New heuristic algorithm for energy aware application mapping and
routing on mesh-based NoCs. Journal of System Architecture, vol. 57, pp. 69–78.

Tosun, S., Ozturk, O., and Ozen, M. 2009. An ILP formulation for application map-
ping onto network-on-chips. International Conference on Application of Information
and Communication Technologies, IEEE Press, pp. 1–5.

Wang, J., Li, Y., Chai, S., and Peng, Q. 2011. Bandwidth-aware application mapping
for NoC-based MPSoCs. Journal of Computational Information Systems, vol. 7,
no. 1, pp. 152–159.

Wang, K., Huang, L., Zhou, C., and Pang, W. 2003. Particle swarm optimization for
traveling salesman problem. Proceedings of the Second International Conference on
Machine Learning and Cybernetics, IEEE Press, pp. 1583–1585.

Wang, X., Yang, M., Jiang, Y., and Liu, P. 2009. Power-aware mapping for network-
on-chip architectures under bandwidth and latency constraints. International
Conference on Embedded and Multimedia Computing, IEEE Press, pp. 1–6.

Wang, X., Yang, M., Jiang, Y., and Liu, P. 2010. Power-aware mapping approach to map
IP cores onto NoCs under bandwidth and latency constraints. ACM Transactions
on Architecture and Code Optimization, vol. 7, no. 1, pp. 1–30.

Yang, B., Guang, L., Xu, T. C., Santti, T., and Plosila, J. 2010a. Multi-application map-
ping algorithm for network-on-chip platforms. IEEE 26th Convention of Electrical
and Electronics Engineers in Israel, IEEE Press, pp. 540–544.

Yang, B., Xu, T. C., Santti, T., and Plosila, J. 2010b. Tree-model based mapping for
energy-efficient and low-latency network-on-chip. International Symposium on
Design and Diagnostics of Electronics Circuits and Systems, IEEE Press, pp. 189–192.

Yu, M. Y., Li, M., Song, J. J., Fu, F. F., and Bai, Y. X. 2009. Pipelining-based high through-
put low energy mapping on network-on-chip. Euromicro International Conference
on Digital System Design/Architectures, Methods and Tools, IEEE Press, pp. 427–432.

Zhou, W., Zhang, Y., and Mao, Z. 2006. An application specific NoC mapping for opti-
mized delay. IEEE International Conference on Design and Test of Integrated Systems
in Nanoscale, IEEE Press, pp. 184–188.

Zhou, W., Zhang, Y., and Mao, Z. 2007. Link-load balance aware mapping and routing
for NoC. WSEAS Transactions on Circuits and Systems, vol. 6, no. 11, pp. 583–591.

155

6
Low-Power Techniques
for Network-on-Chip

6.1 Introduction

As the number of processing elements keeps on increasing in network-on-
chip (NoC), power consumption is one of the major concerns in design-
ing such systems since it affects their battery life and packaging costs for
heat dissipation. The increasing power density not only raises packaging
and cooling challenges, but also enhances reliability problems as the mean
time between failures (MTBF) decreases exponentially with temperature. In
addition, timing requirement degrades and leakage current increases with
temperature. Since last decade power consumption has not been a primary
concern in chip design, while the cost, area, and timing issues were mostly
being addressed by the designers. Today, in ultra-deep submicron (UDSM)
technology, the power budget is one of the important goals for most system-
on-chip (SoC) designs. Exceeding the power budget will increase the pack-
aging cost, thermal design, and regulator design, and will also affect the
timing, reliability, and battery life.

As power minimization is one of the major design challenges, this chapter
addresses different low-power techniques that have been adopted in the NoC
paradigm. The rest of the chapter has been organized as follows: this section
briefly discusses about the different power components. Sections 6.2 and 6.3
discuss about the standard low-power methods for NoC routers and links,
respectively. Section 6.4 describes the different system-level power reduction
techniques such as dynamic voltage scaling (DVS), dynamic frequency scal-
ing (DFS), voltage–frequency island (VFI) partitioning, and runtime power
gating. Finally, Section 6.5 summarizes the chapter.

Total chip power consumption can be split into dynamic power, leakage
power, interconnect power, and IO power. The two components that consti-
tute dynamic power consumption are switching power and internal power.
The switching power consumption can be described as

 P C V V fsw L swing DD clock= × × × ×α (6.1)

156 Network-on-Chip

where:
α is the switching activity factor
CL is the load capacitance
Vswing is the voltage swing on the output node
VDD is the supply voltage of the gate
fclock is the clock frequency

 Switching activity factor (α) is the probability that a clock event results in a
0 → 1 event at the output of the gate and its maximum value is 1 (for clock
 buffer). Load capacitance (CL) is the summation of the output capacitance of the
driver, the wiring capacitance, and the input capacitance of the loading gate.

Internal power, however, consists of a short-circuit power that occurs when
both n-type metal oxide semiconductor and p-type metal oxide semiconduc-
tor transistors are ON, and an internal node switching power that is required
to charge the internal capacitance of the cell. The internal power consump-
tion can be described as

 P t V I fint sc DD peak clock = × × × (6.2)

where:
tsc is the time duration of the short-circuit current
Ipeak is the total internal switching current (the short-circuit current + the

current required to charge the internal capacitance)

Leakage power of a chip is consumed when the device is powered ON but no
signals are changing value. There are four main sources of leakage current in
a complementary metal oxide semiconductor (CMOS) gate as follows:

 1. Subthreshold leakage current (Isub) flows from drain to source of a tran-
sistor operating in the weak inversion region where the gate is not
completely turned off. Isub increases exponentially with increasing
temperature and decreasing threshold voltage (Vt) of the transistor.
The expression for Isub can be written as follows:

I C V

W
L

V V nVt
sub ox th e GS th= × × ×

 × −()µ 2 (6.3)

where:
W and L are the channel width and length of a transistor, respectively
Vth is the thermal voltage given by kT/q (25.9 mV at room temperature)
The parameter n is a function of the device fabrication process and

ranges from 1.0 to 2.5
The parameter μ represents the career mobility
Cox denotes the gate oxide capacitance per unit area
k denotes Boltzman constant = 1.3806 × 10–23 J/K

157Low-Power Techniques for Network-on-Chip

T is absolute temperature in Kelvin
q is electrical charge of electron = 1.6 × 10–19 Coulomb

 2. Gate-induced drain leakage current flows from drain to substrate
induced by high field effect in the drain caused by a high VDG. Gate-
induced drain leakage current increases exponentially with increas-
ing temperature and decreasing oxide thickness.

 3. Gate leakage current flows directly from the gate through the oxide to
the substrate due to gate oxide tunneling and hot carrier injection.
It increases exponentially with decreasing oxide thickness. In previ-
ous technology nodes (130 nm and above), gate leakage current was
negligible, but starting from the 90-nm technology node, gate leak-
age can be comparable with subthreshold leakage current. In future
technology nodes (28 nm and below), high-k dielectric materials will
be needed to keep gate leakage under control.

 4. Reverse-bias junction leakage current flows due to drift of minority car-
riers and generation of electron–hole pairs in the depletion regions.

Leakage power is greatly influenced by process, voltage, and temperature.
One of the well-known facts about the leakage current is its significantly
large variability due to manufacturing conditions and environmental varia-
tions. For the above reasons, leakage power can vary by orders of magnitude
for different chips manufactured with same design, and hence, a statistical
leakage model is necessary in the UDSM technology (Lu and Agarwal 2007).

In Chapter 4, we have shown that interconnect power consumes a very
significant portion of the total chip power. The interconnect power mostly
depends on the voltage swing, the driver size, the parasitic capacitance of the
wire per unit length, and the length of the wire, whereas IO power is mostly
considered as analog power.

The most effective way to reduce the dynamic power is to reduce VDD, but
the trouble is that it tends to reduce the drain-to-source current (IDS) and hence
slower the speed. If we ignore velocity saturation and other subtle effects that
are observed in below 90-nm technology, IDS can be expressed as follows:

I C

W
L

V V
DS ox

GS t= × ×

× −()µ

2

2
 (6.4)

From the above equation, it is clear that to maintain the IDS to achieve perfor-
mance target, Vt has to be reduced as we reduce VDD (and hence VGS). But low-
ering Vt will cause exponential increase of Isub as mentioned above. Hence
there is a conflict between dynamic and leakage power, which needs to be
addressed in any low-power design in DSM technology.

In the subsequent sections, we will focus the above issues of low-power
design. First, in Section 6.2, we will address the standard low-power techniques
that have been adopted to reduce the power consumption of NoC routers.

158 Network-on-Chip

6.2 Standard Low-Power Methods for NoC Routers

There are a number of power reduction techniques that have been widely used
in Very Large Scale Integration (VLSI) design and also adopted in NoC router.
This section gives an overview of the following methods: (1) clock gating, (2)
gate-level power optimization, (3) multi-VDD, (4) multi-VT, and (5) power gating.

6.2.1 Clock gating

The internal node switching power is dominated by the transition of clock
in any sequential design. With every clock transition, the capacitances inter-
nal to the cell are either charging or discharging, and hence consume very
high internal power. It can be observed from Figure 4.14 that the change in
the total router energy consumption is not significant with variation in the
offered load. The routers consume a significant amount of energy even at
very low traffic, though switching of input data is low. This appears as the
internal power consumption due to free-running clock dominates over the
switching and leakage power. Therefore, to reduce the internal power, it is
essential to stop the free-running clock, when the network is idle.

As the write clock (wr-clk) of first-in first-out (FIFO) is connected to all the
write registers in a stack, gating wr-clk will reduce a significant amount of
internal power. The clock gating in register for power minimization was
well described in the work of Benini et al. (1994). Figure 6.1 shows the clock
gating applied to gate the wr_clk in each write register of a FIFO. A falling

D
ec

od
er

D
FF

D
FF

D
FF

D
FF

gclk

data_in

wr_en

w
r_

ad
dr

rd_addrwr_clk

rd_clk

rd_reg
data_out

wr_rwg _3

wr_reg _4 M
U

X

wr_reg _5

wr_reg _6

wr_rwg _1

wr_rwg _2

D
FF

D
FF

D
FF

Figure 6.1
Gating the write clock of FIFO.

159Low-Power Techniques for Network-on-Chip

edge-triggered D flip-flop is used for this purpose. The input data to FIFO
(data_in) and write enable (wr_en) signals are synchronous with the rising
edge of wr_clk. When the network is idle, the data_in signal becomes invalid
and the wr_en signal is at logic 0. Hence, the gated write clock (gclk) becomes
active low. This gclk signal is again gated with the individual write enable
signals (selected by the decoder) of the registers to perform register-level
clock gating inside the FIFO. It is obvious that the clock gating in the write
registers does not introduce any additional cycle latency in the FIFO.

Mullins (2006) proposed a router-level clock gating solution when the routers
are idle by inserting a clock gating cell toward the root of the clock tree. The
clock enable signal is constrained in a time of Tclk – Tinsertion, where Tclk is the
clock period and Tinsertion is the clock tree insertion delay. To address this prob-
lem, he generated an early-valid signal in each router for each of its outputs as
shown in Figure 6.2. These signals are generated quickly and simply determine
if it is possible that a particular output port will be used. These signals are then
communicated to the router at the end of each output channel, serving as an
indication of whether new data will be sent in the current clock cycle or not.
In contrast to the actual network data, these signals arrive early enough in the
clock cycle to be used in the generation of a router’s clock enable signal.

6.2.2 gate Level Power Optimization

Gate-level power optimization can be of different types and explained briefly
as follows:

 1. Reordering of inputs: The high-activity inputs should always be nearer
to the output of the gate.

early_valid signals from
other neighbouring routers

Router clock input
Clock gating cell

Router busy bit
Router B

Link

valid

early_valid
output

Output requests

Router
datapath

Router A

Figure 6.2
Router-level clock gating approach.

160 Network-on-Chip

 2. Buffer insertion: If any driver drives a long net, it is good to break the
net by inserting buffer. This will improve both link delay and link
power consumption.

 3. Cell sizing: Proper adjustment of cell size will reduce the delay and
also help to reduce dynamic power consumption.

 4. Logic restructuring: It is explained here with an example. In Figure 6.3a,
if the output of the AND gate is a high active net, it can be rede-
signed as Figure 6.3b such that the high active net is now inside the
cell and hence less capacitance will cause less power consumption.

In any VLSI design, this gate-level optimization is taken care by the Computer
Aided Design (CAD) tools. Mullins (2006) showed that using gate-level optimi-
zation the dynamic power of a NoC router can be reduced by 28% approximately.

6.2.3 Multivoltage Design

Multiple supply voltage (MSV) is the most frequently used in low-power
design. This scheme has the advantage that the gates that are in noncritical
paths operate at the low supply voltage, VDDL, whereas the gates that are in
critical paths operate at the high supply voltage, VDDH. A multivoltage design
can be categorized as follows:

 1. Static voltage scaling (SVS): Different blocks or subsystems are given
different but fixed supply voltage.

 2. Multilevel voltage scaling (MVS): This is an extension of SVS where
a block or a subsystem is switched between two or more voltage
levels. Only a few, fixed, discrete levels are supported for different
operating modes.

 3. Dynamic voltage and frequency scaling (DVFS): In this category, a large
number of voltage levels are dynamically switched based on chang-
ing workloads.

 4. Adaptive voltage scaling (AVS): This is an extension of DVFS where a
control loop is used to adjust the voltage.

(a) (b)

Figure 6.3
Logic restructuring. (a) Original logic with high active net at the output of AND gate;
(b) Restructured logic where high active net is inside the AND–OR cell.

161Low-Power Techniques for Network-on-Chip

6.2.3.1 Challenges in Multivoltage Design

When a signal traverses from a low-voltage domain (VDDL) to a high-voltage
domain (VDDH) or vice versa, the circuit designers face several challenges as
follows:

6.2.3.1.1 Short-Circuit Current Flow

Figure 6.4 shows a CMOS logic circuit consisting of first and second CMOS
inverters that are directly connected to each other. The first CMOS inverter
operates on a lower supply voltage VDDL and the second CMOS inverter on a
higher supply voltage VDDH. If VDDL < VDDH – |Vthp|, the MP2 (is the PMOS
transistor of second inverter in Figure 6.4) is incompletely turned off and the
short-circuit current flows from a power supply of the higher supply voltage
VDDH toward a ground through the second inverter. However, while travers-
ing from a high-voltage domain to a low-voltage domain, the transistor will
be overstressed and will cause potential unreliability due to high-voltage
input. If VGS or VGD of a transistor exceeds a certain voltage value, the transis-
tor will be overstressed.

To address these issues, inserting a level shifter in the voltage domain crossing
is utmost necessary. Here we will describe both types of level shifters briefly.

6.2.3.1.1.1 High-to-Low Voltage Level Shifter High-to-low voltage level shifter
design has essentially two inverters in series, so it introduces only a single buffer
delay. Therefore, the impact of timing is small. Figure 6.5 depicts this scenario.

6.2.3.1.1.2 Low-to-High Voltage Level Shifter Figure 6.6 shows a conventional
level shifter, named dual cascode voltage switch (DCVS), inserted between gates
operating at low- and high-voltage domain. Assume that nodes A and B are
 initialized at low and high voltages, respectively. When there is a high-to-low
transition in input signal X, both MP3 and MN2 are turned on, whereas MP2

VDDL VDDH

MP2

MN2MN1

MP1

X
X Y

Figure 6.4
Low-to-high voltage crossing.

162 Network-on-Chip

and MN3 are turned off. Thus, there is no direct path from VDDH to VSS, and
hence it prevents the short-circuit current and reduces power consumption.
Although the level shifter reduces the short-circuit current, it consumes
relatively large dynamic power when it carries out a switching operation.
Furthermore, this level shifter has relatively higher delay because it relies on
contention between different transistors on the level conversion path.

Yuan and Cheng (2005) proposed an improved circuit as shown in Figure 6.7
to reduce the contention problem so as to achieve high-speed and low-power
consumption. In this circuit, the level shifter circuit converts a signal X on
the lower supply voltage side into a signal Y on the higher supply voltage
side. The signal X is transmitted to the gates of transistors MN3 (MN3 is
the NMOS transistor of inverter as shown in Figures 6.6 and 6.7), MN6, and
MP6. A signal x for the inverted phase, which is generated by an inverter
constituted by transistors MP1 and MN1, is transmitted to the gates of transis-
tors MN2, MN5, and MP5. The respective gates of transistors MP2 and MP3

VDDL

VDDL

VDDH VDDH VDDH

X A Y
BX

MP1 MP2 MP3 MP4

MN4MN3MN1 MN2

MP5

MN5

Figure 6.6
Conventional low-to-high voltage level shifter.

VDDL

OUTL

VSS

INH

Figure 6.5
High-to-low voltage level shifter. INH, input at high voltage; OUTL, output at low voltage.

163Low-Power Techniques for Network-on-Chip

are cross-connected to the drains of transistors MP3 and MP2, whereas the
sources of both transistors are connected to the higher supply voltage VDDH.
A node B is connected to an output buffer circuit, constituted by transistors
MP4 and MN4, which is connected to the higher supply voltage VDDH.

The operation of the new level converter circuit is explained here. When the
voltage level of the input signal swings high to low, the output voltage level of the
input inverter becomes the lower supply voltage VDDL. Therefore, MN2, MN5,
and MP6 are turned on. As a result, node A is then discharged to a reference volt-
age VSS. Thus, MP3 becomes on, and then the voltage level of node B becomes a
higher supply voltage VDDH. In this case, MP2, MN3, MN6, and MP5 are turned
off, and therefore, it is possible to prevent a short-circuit current from flowing
between the higher power supply voltage VDDH and the reference voltage VSS.
However, when the voltage level of the input signal is switched to logic high,
the output voltage level of the input inverter becomes a reference voltage VSS.
Therefore, MN3, MN6, and MP5 are turned on. As a result, node B is then dis-
charged to a reference voltage VSS. In this case, MP2 is turned on, and therefore,
MP3 becomes off. Moreover, MN2, MN5, and MP6 are also turned off, and thus,
it is possible to prevent a short-circuit current from flowing between the higher
power supply voltage VDDH and the reference voltage VSS. It is clear that there are
three paths to speed up the output level transition in each input signal condition.
These results provide faster output transitions as well as an efficient voltage level
conversion. As such, it can reduce the contention problem on nodes A and B. As a
result, the propagation delay time of the circuit itself becomes short. Moreover, no
short-circuit current flows; therefore, it is possible to reduce power consumption.

VDDL

MP1

MN1

X

VDDH VDDH VDDH

MP2 MP3 MP4

MN4MN2 MN5 MN6

MN3

B
Y

MP6

MP5

X
A

Figure 6.7
New low-to-high voltage level shifter.

164 Network-on-Chip

6.2.3.1.2 Placement of Level Shifter

Multivoltage designs present significant challenges in placement. Figure 6.8
depicts such scenario where two voltage domains are embedded in a third
voltage domain. For example, when a signal traversing from a 0.9 V domain
to a 1.2 V domain through a 1.1 V domain, power routing will be a challenge,
no matter where the level shifter is placed. As the low-to-high voltage level
shifter requires both rails, at least one of the rails will have to be routed
from another domain. Since the output driver requires more current than the
input stage, it is better to place the level shifter in the 1.2 V domain.

If the distance between 0.9 and 1.2 V domains is adequate and an additional
buffer is needed to be placed in the 1.1 V domain, it uses the power rail of 0.9 V
domain. In this case, 0.9 V rail must be routed in the 1.1 V domain as a signal
wire as shown in Figure 6.8. This type of complex power routing is one of the
key challenges in automating the implementation of multivoltage design.

For high-to-low voltage level shifter, it is recommended to place the level
shifter in the lower voltage domain. If an additional buffer is needed to place
in the third voltage domain, 1.2 V rail has to be routed in the 1.1 V domain as
a signal wire, which becomes a power routing challenge as mentioned above.

6.2.4 Multi-VT Design

With the shrinking technology, leakage power is one of the major design
challenges. Multi-VT design is very useful to reduce the leakage power. Many
libraries today offer multiple versions of their cells: ultra-low VT, low VT, stan-
dard VT, high VT, and so on. The cell delay increases and the leakage power
decreases with the rising VT. Moreover, for each VT type, there exist two to
three types of channel length. The leakage power increases and the cell delay
decreases with decreasing channel length. For a design where performance
is the foremost criterion and power reduction is a secondary issue, the CAD
tools choose lower VT cells with lesser channel length during synthesis. Once

1.1 V Domain

0.9 V Domain

D Q

VDDL VDDH

OUTH
LS

VSS

CLK

1.2 V Domain

Figure 6.8
Placement of low-to-high voltage level shifter.

165Low-Power Techniques for Network-on-Chip

timing is met, if some positive slack exists in the critical path, optimization
tools try to replace some of the lower VT cells with higher VT cells and/or with
cells having longer channel length. In case of noncritical path, optimization
tools also replace the same until they become the critical one.

6.2.5 Power gating

The principle of power gating is to selectively powering down certain blocks
in the chips while keeping other blocks powered up. The goal of power gating
is to minimize leakage current by temporarily switching some blocks to the
power-down mode that are not required to be in the active mode while mini-
mizing the impact on performance. Power gating is more persistent than clock
gating that it affects interblock interface communication and adds significant
time delays to safely enter and exit the power-down mode. Power gating to
some portions of the design can be controlled by software as a part of device
drivers or initiated in hardware by timers or system-level power management
controllers. Architectural trade-offs in any power-gated design are as follows:

 1. The amount of possible leakage power savings
 2. The energy dissipated during entering and leaving such leakage

saving modes
 3. Frequency of entering into the power gating and active modes
 4. Performance penalty during entry and exit times

Figure 6.9 shows a typical example of leakage power saving in a clock gated
design due to power gating. During the active state, the circuit consumes both
dynamic and leakage power, whereas during the idle state, it consumes only
leakage power. During the sleep mode, the transition to a power-down state
is not instantaneous. It takes several cycles to enter into that state. Similarly,

Sleep

Dynamic
power

Leakage
power

Leakage
power

Leakage
power

Leakage
(power gated)

Dynamic
power

Dynamic
power

Po
w

er

Wake Sleep Wake Sleep

Leakage
(power gated)

Time

Figure 6.9
Leakage power-saving profile using power gating.

166 Network-on-Chip

after wake time, it needs some cycles to go to the active state, which causes
performance penalty. Power gating can be applied to circuit blocks with
various granularities. Depending on the granularity of target circuit blocks
 (i.e., power domains), the power gating is classified into coarse-grained and
fine-grained approaches.

In fine-grain power gating, the switch is placed locally inside each standard
cell. Since the switch must supply the worst-case current required by the cell,
it has to be quite large in order not to impact performance. This approach has
received a lot of attention in recent years because of its flexibility and short
wake-up latency. In coarse-grain power gating, a block of gates has its power
switched by a collection of switch cells. The sizing of a coarse-grain switch
network is more difficult than that of a fine-grain switch network as the exact
switching activity of the logic it supplies is not known and can only be esti-
mated. But coarse-grain gating designs have significantly less area penalty
than fine-grain gating designs. Each target circuit block is surrounded by a
power/ground ring. Power switches are inserted between the core ring and the
power/ground IO cells. The power supply to the circuit block can be controlled
by the power switches. Since the power supply to all cells inside the core ring
is controlled at one time, this approach is well suited to the IP- or module-level
power management. The coarse-grained approach has been popularly used,
since its IP- or module-level power management is straightforward and easy to
control. However, it typically imposes a microsecond order wake-up latency.

The implementation of power gating presents certain challenges to the
designer. which include the following:

 1. Design of power switching fabric
 2. Design of power gating controller
 3. Selection and use of retention registers and isolation cells
 4. Minimization of the impact of power gating on timing and area
 5. The functional control of clocks and resets
 6. Interface isolation
 7. Constraint development for implementation and analysis

6.3 Standard Low-Power Methods for NoC Links

There are a number of power reduction techniques for interconnects that
have been widely used in VLSI design and also adopted in NoC. This section
gives an overview of the following methods: (1) low-power coding (LPC),
(2) on-chip serialization, and (3) low-power signaling. First, we will start
with bus energy model as described in Section 6.3.1.

167Low-Power Techniques for Network-on-Chip

6.3.1 Bus energy Model

In on-chip interconnect, lines are assumed to be distributed, lossy, and
capacitively and inductively coupled. The energy model of such interconnect
is described in the work of Sotiriadis and Chandrakasan (2002). The effect of
inductance (L) can be neglected if f << R/(2πL) (where f is the frequency and R
denotes the bus resistance), which is true in most NoC interconnects. Thus,
NoC interconnect in DSM era can be modeled as resistance-capacitance
 network (Benini and Micheli 2006). The model of an n-wire interconnect in
parallel is shown in Figure 6.10. In the figure, Cs and Cc are the substrate and
coupling capacitances, respectively; Ri represents the on–off resistance of the
ith driver; Vj

i and Vj
f denote the initial and final voltages, respectively, in the

jth interconnect. The ratio of coupling capacitance to substrate capacitance
is denoted as λ (λ = C Cc s/). It is a technology parameter and increases with
shrinking technology feature size.

Sotiriadis and Chandrakasan (2000) proposed a three-wire bus energy
model. The proposed bus energy model is presented below. Using Kirchoff’s
current law, the current (I) equation of each line is

C

V
t

V
t

V
R

V
R

s

f id
d

d
d

× + × − ×

= −()1 1 2 1

1

1

1
λ λ

C
V

t
V
t

V
t

V
R

V
R

k k k

k

k

k

k

s

f i

d
d

d
d

d
d

× − × + + × − ×

= −

− +λ λ λ1 11 2()

,, , , , ,where ()k n= … −2 3 4 1

V 1
f

V 1
i V 2

i

R1 R2 R3

CC CC CC CC

CSCSCSCS

Rn

V 2
f V 3

f V n
f

V 3
i V n

i

Figure 6.10
DSM model of n interconnects.

168 Network-on-Chip

 C
V

t
V
t

V
R

V
R

n n n

k

n

k
s

f id
d

d
d

× − × + + ×

=−λ λ1 1() − (6.5)

The energy consumed (or deposited) by each line considering the substrate
capacitance and the effect of coupling capacitance of adjacent lines only is
given below. Both substrate and coupling capacitances depend on the length
of the interconnect wire. Thus, energy will also depend on the length of the
wire (Sotiriadis and Chandrakasan 2002).

E C V V V V V1 1 1 2 2 11= × + × −() − × −()

 ×s

f i f i f()λ λ

E C V V V V V Vk k k k k k k= × − × −() + + × −() − × −()− − + +()s
f i f i f iλ λ λ1 1 1 11 2

 ×

= … −

V

k n

k
f

where ()

,

, , ,2 3 1

E C V V V V Vn n n n n n= × − × −() + + × −()

 ×− −s

f i f i fλ λ1 1 1() (6.6)

6.3.2 Low-Power Coding

Dynamic power dissipation in the bus depends on the number of transitions
per time slot. Codes that reduce the average transition activity are referred to
as low-power codes (LPCs). In general, transitions in data and address buses
are different. For example, transitions on a typical data bus are random in
nature. A simple but effective LPC for a data bus is bus-invert (BI) code (Stan
and Burleson 1995) in which the data are inverted and an invert bit is sent to
the decoder if the current data word differs from the previous data word in
more than half the number of bits. BI coding is not efficient for buses of higher
width. For wide buses, the bus is partitioned into several sub-buses each with
its own invert bit (Yoo and Choi 1999). The BI method generates a code to reduce
the maximum number of transitions per time slot from n to n/2; thus, the aver-
age and peak power dissipation of the bus can be reduced by half. Figure 6.11
describes the hardware of BI coding. The overall methodology is shown in
Table 6.1 with an example. The coding methodology is explained as follows:

 1. Compute the Hamming distance between the previous data value
and the present one.

 2. If the Hamming distance is larger than n/2, set invert = 1 and make
the present bus value equal to the invert of the present data value.

 3. Otherwise, set invert = 0 and make the present bus value equal to the
present data value.

 4. At the receiver side, depending on the status of the invert line, the
contents of the bus is conditionally inverted.

169Low-Power Techniques for Network-on-Chip

BI coding can minimize only self-transition of individual wires and it is non-
linear. Sotiriadis (2002) showed that linear codes do not minimize the transi-
tion activity. BI has no impact on coupling between two adjacent wires. In
DSM buses, both self-transitions and coupling transitions contribute to the
power dissipation. In Chapter 7, we have shown a joint coding scheme to
reduce both self-transitions and coupling transitions. Ghoneima and Ismail
(2004), Kim et al. (2000), and Zhang et al. (2002) proposed another LPC scheme
that reduces both self-transitions and coupling transitions by conditionally
inverting the bus based on a metric that accounts for both the transitions at
the price of increased complexity. While the above-mentioned works describe
the methods of eliminating cross talk and/or reducing dynamic power,

TABLe 6.1

BI Coding Scheme with an Example of 8-bit Data Bus

Time→ Time→

D0 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 D0 1 0 0 0 0 0 0 1 0 0 1 1 0 1 0
D1 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 D1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
D2 0 1 1 0 0 1 0 1 0 0 0 1 0 0 1 D2 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1
D3 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 D3 1 1 1 1 0 1 0 1 0 0 1 0 1 1 1
D4 0 0 0 1 1 0 0 0 0 1 1 1 0 0 1 D4 0 0 0 1 1 1 0 1 1 0 0 1 1 1 1
D5 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 D5 0 1 0 1 0 0 0 0 0 1 1 1 0 1 0
D6 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0 D6 1 1 0 0 1 0 1 1 1 1 0 0 0 1 0
D7 1 1 0 0 0 1 0 1 1 0 0 1 0 0 1 D7 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1

inv 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0

(Input) (Output)

i1

i0

invert

Output

Hamming

Input
D

ClrClk

Q

reset

Figure 6.11
Hardware of BI coding.

170 Network-on-Chip

Deogun et al. (2004) proposed an encoding scheme that also tackles the ris-
ing runtime leakage power levels in such buses along with cross talk and
dynamic power. They introduced a new buffer design approach with selec-
tive use of high-threshold voltage transistors and coupled this buffer design
with a novel bus encoding scheme. For any LPC scheme, a trade-off analysis
has to be performed between bus energy reduction and the amount of extra
energy consumed by the codec. For technologies such as 90 nm or above,
Sridhara and Shanbhag (2005) showed that codec overhead is more in BI
scheme than in bus energy saving, but this trade-off will be increasingly
favorable in future technologies.

Generally, an address bus will tend to have a sequential behavior; hence, a
gray coding scheme is perfect for an address bus where only one transition
is occurred per time slot. In actual design, it is always advisable to imple-
ment the gray counter from its finite state machine. Table 6.2 presents both
binary and gray sequences for an address bus. Although a sequential value
on the address bus is generally too simplistic, for a real system only some
percentage of bus addresses are typically sequential with the others being
essentially random. In such case, a mixed coding, gray and BI coding, will
give the best results for both peak and average power dissipation in the bus.

6.3.3 On-Chip Serialization

Bus encoding techniques enlarge the physical transfer unit in NoC. Large
physical transfer unit increases the network area and energy consumption,
especially for switching circuit and buffering units in switch fabrics. On-chip
serializer and deserializer can be used to reduce the physical transfer unit size
and further reduce the area and energy consumption of the switch fabric. It
reduces the overall network area and optimizes power consumption, which
is well explained in the work of Lee et al. (2004, 2005). The power consump-
tion decreases with the increasing ratio of serializer under low frequency.
Unfortunately, with the increasing ratio of serialization under higher frequency,
the power consumption increases because of large driver to provide high driv-
ing ability. Huang et al. (2008) observed that a 4:1 serializer is an optimized
ratio to achieve energy saving. Chuang et al. (2008) implemented the serializer

TABLe 6.2

Binary and Gray Coding Scheme for 4-bit Address Bus

Time→ Time→

D0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 D0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

D1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 D1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
D2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 D2 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
D3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 D3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

(Binary Sequence) (Gray Sequence)

171Low-Power Techniques for Network-on-Chip

and deserializer with a digital self-calibrated multiphase delay-locked loop.
Lee et al. (2006) proposed another implementation scheme for high-speed and
low-overhead 4:1 serializer/deserializer for practical NoCs. The fundamental
idea of the implementation scheme is like parallel-to-serial converter (serial-
izer) and serial-to-parallel converter (deserializer) using a shift register. Instead
of using D flip-flop in a shift register, the authors used constant delay elements
(DEs) such that TDE < Tclk. The overall scheme is shown in Figure 6.12.

When EN is low, D<3:0> waits at QS<3:0>. The VDD input of MUXP, which
is called a pilot signal, is loaded to QP. The GND input of MUXO discharges
the serial output (SOUT), while the serializer is disabled. If EN is asserted,
QS<3:0> and the pilot signal start to propagate through the serial link wire.
Each signal forms a wave front of the SOUT signal, and the timing distance
between the wave fronts is the DE and MUX delay which we call a unit delay.
The series of wave fronts propagate to the deserializer like a train. When the
SOUT signal arrives at the deserializer, it propagates through the deserial-
izer until the pilot signal arrives at the end of the deserializer, or STOP node.
As long as the unit delay times of the sender and the receiver are the same,
D<3:0> arrives at its exact position when the pilot signal arrives at the STOP
node. When the STOP signal is asserted, the MUXs feed back its output to its
input, so that the output value is latched.

6.3.4 Low-Swing Signaling

Lowering the swing and driving voltages is the most effective way to reduce
the power dissipation on interconnections. Figure 6.13 depicts such scheme

SOUT

MUXO

BUF

1 1 111

00000 DEDEDEDE

BUF

D
E/

2

STOP

EN

0

11

MUXPD0

00

11

0

1

0

1

D1D2D3

Se
ria

liz
er

D
es

er
ia

liz
er

Q3Q2Q1Q0

QS3 QS2 QS1 QP0

DE DEDEDEDE

(pilot)

QS0

Figure 6.12
4:1 Serializer and deserializer.

172 Network-on-Chip

where SVS is used to supply the lower voltage (VDDL) to the driver. Hence,
a high-to-low voltage level shifter is needed in the transmitting router as
shown in Section 6.2.3.1. Similarly, in the receiving router side, a low-to-high
voltage level shifter is an utmost requirement. The amount of energy saving
due to low-swing signaling is shown as follows:

E E E Esaving uncoded_link codec coded_link= +− () (6.7)

6.4 System-Level Power Reduction

The total power consumption in a SoC is the combination of dynamic and
leakage power. For dynamic power reduction at system level, DVS/DFS is
very well known in VLSI community and also adopted in NoC design.

6.4.1 Dynamic Voltage Scaling

This section highlights the work cited by Shang et al. (2003) on DVS. Dynamic
power consumption can be reduced by lowering the supply voltage. This
requires reducing the clock frequency accordingly to compensate for the
additional gate delay due to the lower voltage. The basic idea is that because
of high variance in network traffic, when a link is underutilized, the link can
be slowed down without affecting performance.

A variable frequency link consists of the components of a typical high-speed
link: a transmitter to convert digital binary signals into electrical signals, a sig-
naling channel, a receiver to convert electrical signals back to digital data, and
a clock recovery block to compensate for delay through the signaling channel.
In addition, it needs an adaptive power supply regulator that tracks the link
frequency, regulates the voltage to the minimum level required, and feeds the
regulated supply voltage to multiple links of a network channel, amortizing

Power supply

VDD

VDDL
LinkSVS

Encoder Decoder RouterRouter

VDD

Power supply

Figure 6.13
Low-swing signaling in NoC interconnect.

173Low-Power Techniques for Network-on-Chip

its area and power costs. To extend variable frequency links to DVS links, an
additional frequency synthesizer is needed that supplies the user-controlled
frequency to the power supply regulator, as shown in Figure 6.14.

The important characteristics of a DVS link are (1) transition time—how
long it takes a link to change from voltage level V1 to V2, (2) transition energy—
the overhead energy consumed for a transition from V1 to V2, (3) transition
status—whether the link functions during a transition, and (4) transition
step—whether the link supports a continuous range of voltages, or if it only
supports a fixed number of voltage levels.

Shang et al. (2003) constructed a multilevel DVS link model that supports
10 discrete frequency levels and their corresponding voltage levels. At each
frequency level, the link circuitry can function within a range of voltages. The
voltage and frequency transitions between adjacent levels occur separately.
When increasing the link speed, the voltage increases first, followed by the fre-
quency. Conversely, when decreasing the link speed, the frequency decreases
first, followed by the voltage. The link functions during voltage transition but
not during frequency transition. The latency of voltage (frequency) transition
between adjacent levels has been assumed to be 10 µs (100 link clock cycles).

Transition energy is derived based on Stratakos’s analysis (Stratakos 1998),
where the energy overhead when voltage transitions from V1 to V2 is calcu-
lated with the following first-order estimation equations:

 Energyoverhead = − × × −()1 2
2

1
2η C V V

where:
C is the filter capacitance of the power supply regulator
η is the power efficiency

Noise is another issue in the design of link circuitry. Different noise sources,
power supply noise, cross talk, clock jitter, deviation of parameters, device mis-
matches, and so on could result in voltage and timing uncertainty. For DVS links,

Adaptive power
supply regulator

Data out
...010011

Tx Rx

Clock recovery

Data in
010011...

Frequency synthesizer

Figure 6.14
Components of a DVS link. Rx, receiver; Tx, transmitter.

174 Network-on-Chip

supply voltage reduction magnifies the noise sensitivity of link circuitry. Since
a lower link frequency decreases the ratio of timing uncertainty to bit time, fre-
quency reduction improves communication reliability. Bit error rate (BER) is a
measure of performance in link circuitry design. Link designs can achieve 10 15−
BER over a wide range of voltages (0.9–2.5 V) and frequencies (200–700 MHz). In
this work, it is assumed that within the range of multiple voltage and frequency
levels, link circuitry can always function above the noise margin and achieve
low BER. Due to the timing uncertainty, during frequency transition, when the
receiver is trying to lock in the input clock, link circuitry is disabled.

6.4.1.1 History-Based DVS

The policy controlling DVS links has to judiciously trade off power and perfor-
mance, minimizing the power consumption of the network while maintain-
ing high performance. We proposed a distributed history-based DVS policy,
where each router port predicts future communication workload based on the
analysis of prior traffic, and then dynamically adjusts the frequencies (and cor-
responding voltages) of its communication links to track network load.

6.4.1.1.1 Communication Traffic Characterization

Communication traffic characteristics can be captured with several potential
network measures. An obvious measure for DVS links is link utilization,
which is defined as follows:

Link utilization

LU

A t

N
= ≤ ≤ =t

N

1 0 1∑ ()
, LU (6.8)

where:

A t

i t

i
() =

1 If trafficpasses link incycle

0 If notrafficpasses link inncyclet

N is the number of link clock cycles, which is sampled within a history
window size H defined in router clock cycles

Link utilization is a direct measure of traffic workload. A higher link utiliza-
tion reflects that more data are sent to the next router. Assuming that his-
tory is predictive, a higher link frequency is needed to meet the performance
requirement. Conversely, lower link utilization implies the existence of more
idle cycles. Here, decreasing the link frequency can lead to power savings
without significantly hurting performance.

175Low-Power Techniques for Network-on-Chip

To investigate how predictive link utilization is of network load, the
 utilization of a link within a two-dimensional (2D) 8 × 8 mesh network is
traced. At low traffic workloads, contention for buffers and links is rare. In
this case, link utilization is bounded by flit arrival rate that is slow at low
traffic workloads. As network traffic increases, more flits are relayed between
adjacent routers and the utilization of each corresponding link also increases.
When the network traffic approaches to the congestion point, resource con-
tention results in flits being stalled in input buffers, since they can be relayed
to the next router only if free buffers are available. Limited available buffer
space in the succeeding router begins to be a tighter constraint, causing link
utilization to decrease. When the network is highly congested, inter-router
flit transmission is totally constrained by the availability of free buffers. Link
utilization thus starts to dip.

At low network loads, since the flit will not be stalled in the succeeding
router, any increase in link delay directly contributes to the overall packet
latency. At high network loads, flits will be stalled in the next router for a
long time anyway. Getting there faster will not help. In this case, link fre-
quency can be decreased more aggressively with minimal delay overhead.
Hence, link utilization alone will not be sufficient for guiding the history-
based DVS policy. The other two parameters—input buffer utilization and
input buffer age—need to be investigated.

Input buffer utilization

BU

[]

0 BU = ≤ ≤=
∑ F t B

H

()/
t

H

1 1, (6.9)

where:
F(t) is the number of input buffers that are occupied at time t
B is the input buffer size

Input buffer age

BA
d a

=
−

==

=

∑∑
∑

()

()

()
t t

D t

i i
i

D t

t

H

t

H
11

1

 (6.10)

where:
D(t) is the number of flits that leave the input buffer at cycle t of a history

interval H
td is the departure time of flit i from this buffer
ta is the arrival time of flit i at the input buffer

176 Network-on-Chip

Input buffer utilization tracks how many buffers in the succeeding router
of the link are occupied. Input buffer age determines how long flits stay in
these input buffers before leaving. These measures reflect resource conten-
tion in the succeeding router. The input buffers downstream from the same
link are tracked. Under low network traffic, resource contention is low and
only few buffers are occupied. Flits also do not stay in the input buffers for
long. Hence, both input buffer utilization and input buffer age are low. As
input traffic increases, more flits are relayed between adjacent routers and
resource contention increases, being reflected in higher input buffer utiliza-
tion and input buffer age. When the network is highly congested, most of the
buffers are filled, and flits are stalled within a router for a long time. Both
buffer utilization and age thus rise dramatically.

Both input buffer utilization and input buffer age track the network con-
gestion point well. They behave like an indicator function that rises sharply
at high network loads. However, compared with link utilization, input buffer
utilization and input buffer age are much less sensitive to changes in traf-
fic. Simulation results show that from lightly loaded traffic to high network
loads, the average buffer utilization only increases by about 0.1. The average
link utilization, however, changes by more than 0.8. Hence, link utilization is
much better at tracking nuances in network traffic.

Link utilization and input buffer utilization are selected as the relevant
measures for guiding the history-based DVS policy, as input buffer age
has similar characteristics as input buffer utilization and is harder to
capture. The link utilization is used as the primary indicator, whereas
the input buffer utilization is used as a litmus test for detecting network
congestion.

6.4.1.1.2 History-Based DVS Policy

Network traffic exhibits two dynamic trends: transient fluctuations and
long-term transitions. History-based DVS policy filters out short-term traf-
fic fluctuations and adapts link frequencies and voltages judiciously to
long-term traffic transitions. It does this by first sampling link (input buffer)
 utilization within a predefined history window, and then using exponential
weighted average utilization to combine the current and the past utilization
history:

Par

Weight Par Par
Weight

predict
current past=

× +
+ 1

 (6.11)

where:
Parpredicted is the predicted communication link (input buffer) utilization
Parcurrent is the link (input buffer) utilization in the current history period
Parpast is the predicted link (input buffer) utilization in the previous history

period

177Low-Power Techniques for Network-on-Chip

Given the predicted communication link utilization, and input buffer uti-
lization, BUpredicted, the DVS policy dynamically adapts its voltage scaling to
achieve power savings with minimal impact on performance. It prescribes
whether to increase the link voltage and frequency to next higher level,
decrease the link voltage and frequency to next lower level, or do nothing.
Intuitively, when a link is highly utilized, voltage scaling is enabled so that
link frequency can be increased to handle the load. Similarly, if a link is
mostly idle, voltage scaling is carried out so that the link frequency can drop
to save power. Otherwise, voltage scaling is conservatively carried out to
minimize the impact on performance. The prescribed action depends on
four thresholds, two of which are used when the network is lightly loaded
(THhigh, THlow) and the other two are used when the network is highly con-
gested (THhigh, THlow). In the latter case, since link delay can be hidden, the
thresholds prescribe more aggressive power savings. The pseudocode of the
proposed DVS policy is shown in Algorithm 1.

Algorithm 1

Dynamic voltage scaling

while (DVS enable) do
 LU W LU LU Wpredicted current past= + +(*)/()1

 LUpast = LUpredicted

 BU W BU BU Wpredicted current past= + +(*)/()1

 BUpast = BUpredicted

 if (BUpredicted < BUcongested) then

 T TLlow low= , T TLhigh high=

 else

 T THlow low= , T THhigh high=

 end if

 if (LUpredicted < Tlow) then

 NewVol Voltage table CurLevellink link_ [= + 1]

 NewFreq Frequency table CurLevellink link= _ [+ 1]

 else if (LUpredicted > Thigh) then

 NewVol Voltage table CurLevellink link= _ [– 1]

 NewFreq Frequency table CurLevellink link= _ [– 1]

178 Network-on-Chip

 else

 NewVol Voltage table CurLevellink link_ []=

 NewFreq Frequency table CurLevellink link= _ []

 end if
end while

6.4.1.2 Hardware Implementation

The above DVS policy relies only on local link and buffer information. This
avoids communication overhead in relaying global information and permits
a simple hardware implementation. Figure 6.15 shows the hardware realiza-
tion of the history-based DVS policy. To measure link utilization, a counter
at each output port gathers the total number of cycles that are used to relay
flits in each history interval. Another counter captures the ratio between the
router and link clocks. A simple Booth multiplier combines these two counters
to calculate link utilization. For calculating the exponential weighted aver-
age, W is set to 3 so that the division can be implemented as a shift and the
numerator as a shift-and-add operation. Two registers store LUpast and BUpast,
which feed the circuit module calculating the exponential weighted average.
Finally, some combinational logic performs the threshold comparisons and
outputs signals that control the DVS link.

Link usage

ref clk/
link clk ratio

Link utilization

Input buffer utilization

Weight × x + y
Weight + 1

Weight × x + y
Weight + 1

x

x

y

y

shift

NewFreqlink

Comparator

MUX

T
H

threshold

threshold
T

L

NewVollink

shift

+

Figure 6.15
Hardware implementation of the history-based DVS policy. This circuitry sits at each output
port of a router, tracking and controlling the multiple links of that port.

179Low-Power Techniques for Network-on-Chip

6.4.1.3 Results and Discussions

It has been observed in simulation that history-based DVS increases zero-
load latency by 10.8% and average latency before congestion by 15.2%, while
decreasing throughput by less than 2.5%. This moderate impact on perfor-
mance is accompanied by a large power saving of up to 6.3 × (4.6 × average).
When the network is saturated, flits are stalled for a long time in input buf-
fers. Such congested routers show high input buffer utilization and low
communication link utilization. In such a scenario, the history-based DVS
policy will try to dynamically reduce the frequencies of affected links to
decrease power consumption. It can be observed that the power consump-
tion of the network increases initially as network throughput increases
and dips thereafter as network throughput decreases. This interesting phe-
nomenon is largely due to the very bursty nature of communication work-
load that results in routers in different parts of the network experiencing
widely varying loads over time. When some of the routers are congested,
traffic through other routers may still be relatively light. Therefore, as the
packet injection rate increases, the overall network throughput may still
increase. Link utilization is strongly correlated with network throughput.
A higher throughput implies higher average link utilization in the network.
The history-based DVS policy only decreases the frequencies and voltages
of links that are lightly utilized—those connected to the congested routers.
It increases the frequencies and voltages of the heavily used links to meet
performance requirements. Hence, only when the entire network becomes
highly congested, the overall network throughput starts to decrease, which
cause an overall reduction in network power.

By dynamically adjusting the DVS policy to maximize power savings when
the network is lightly loaded and minimizing the impact on performance
when the network is congested, the policy is able to realize substantial power
savings without a significant impact on performance. It should be noted that
part of the impact on performance is due to the assumptions for DVS links.
First, the link is down during frequency scaling. Second, when increasing
voltage and frequency, the voltage increases first, which takes a long time.
The frequency is kept at the original low level during voltage transition.

6.4.2 Dynamic Frequency Scaling

As discussed in Section 6.4.1, DVS requires hundreds of clock cycles dur-
ing transition between voltage levels and additional hardware overhead for
each link. The other way to manage power consumption is DFS. DFS only
adapts the system clock frequency by setting all links in the network to the
same voltage, but it does not always reduce the total energy consumption.
For instance, the power consumed by a network can be reduced by reducing
the operating clock frequency, but it takes long time to forward the same
amount of data and the total energy consumed will be similar. DFS is valid

180 Network-on-Chip

when the target system does not support DVS or the goal is to reduce average
power dissipation, indirectly reducing the chip’s temperature.

This section highlights the work cited by Lee and Bagherzadeh (2009)
based on clock boosting mechanism. The key idea of clock boosting mecha-
nism is the use of different clocks in a head flit and body flits because body
flits can continue advancing along the reserved path that is already estab-
lished by the head flit, while the head flit requires the support of complex
logic, increasing critical path. Thus, it reduces the latency and increases the
throughput of a router by applying faster clock frequency to a boosting clock
in order to forward body flits.

In NoC paradigm, DFS only adapts the system clock frequency by setting
all links in the network to the same voltage. In addition, the operating fre-
quency of a system is not limited by the critical path because it only changes
clock frequency for the body flit transmission. Thus, this method not only
provides variable frequency link but also increases interconnection network
performance. Also, fast response time of the clock domain variations makes
it possible to use narrow control period for DFS, where clock frequency is
adjusted more frequently. Figure 6.16a shows an example of a variable fre-
quency link (Lee and Bagherzadeh 2009). The system has multiple clock
frequencies represented by Fi. The link controller selects the clock frequency
for the router among the supported clock frequencies by using link utiliza-
tion level. Figure 6.16b shows the time–space diagram for variable frequency
links. In this example, the link supports three different frequencies (F1, F2,
and F3). The original clock frequency (F1 in this example) is still used for the
head flit transmission as well as for idle cycles. Selecting higher frequencies

F1
DFS control unit

Incoming packet

Clock
boosting

router

Outgoing packet

select

(a)

(b)

Boosting
frequency = F1

H H H H HHB B B B BBI I

Boosting
frequency = F2

Boosting
frequency = F3

Link
controller

Link
utilization

Fn

F2

Figure 6.16
(a) Architecture of a DFS link; (b) time–space diagram showing the clock domain transition in
DFS link. B, body flit; H, head flit; I, idle flit.

181Low-Power Techniques for Network-on-Chip

(F2 and F3) for the body flits ensures the duration of staying in idle condition.
Although dynamic power with higher frequency operations is expected to
be more than the power with original clock frequency operation, the overall
network power may be less because idle operation and head flit transmission
have different switching activities even though they operate with the same
frequency. Increasing boosting clock frequency results in more idle cycles
since the body flits are transmitted with higher frequency.

6.4.2.1 History-Based DFS

Network workload exhibits transient fluctuation and long-term transitions.
In order to filter out transient fluctuations from link utilization and to pre-
dict future communication workload, a history-based algorithm is used for
DFS scheme and is described below. In applying DFS to a system, how to
predict future workload with reasonable accuracy is a critical problem. This
requires knowing how many packets will traverse a link at any given time.
Two issues complicate this problem. First, it is not always possible to accu-
rately predict future traffic activities. Second, a subsystem can be preempted
at arbitrary times due to user and I/O device requests, varying traffic beyond
what was originally predicted. In order to estimate future workload, link
utilization is adopted as an indicator, which is a direct measure of traffic
through a link in each unit time. Lower link utilization reflects more idle
cycles in a link caused by network congestion with heavy traffic or sparse
workload in the incoming port. Conversely, higher link utilization implies
that more active cycles in a link pass flits to the destination router. The link
utilization is measured by sampling a link at a given time during a pre-
defined control period (Tc). The direct link utilization is defined, where k
denotes the number of samples in Tc time period:

U n

u t

k
L

t

k

() = =
∑ ()

1 (6.12)

where:

u t

t
() =

1 If there is link trafficincycle

0 If there isnolink trafficinncyclet

The direct estimator only measures the link utilization whether a link is
occupied or not. It does not consider the number of flits traversing through a
link during the given time. For instance, even though the link utilizations are
the same in time durations Δt1 and Δt2, the number of flits passing through
the link can be different according to the clock frequency of the router at
those times.

182 Network-on-Chip

Direct estimation can be realized with a counter, reducing the complexity
of the estimator and additional hardware overhead caused by the DFS link
controller. A counter at each output port gathers the total number of cycles that
are used to pass a flit in each control period by counting u(t) with 4 times of
the clock frequency for accurate measurement (Figure 6.17a). Function u(t) is
assigned to the write enable signal of the router, and the counter value is sam-
pled in each control period to complete the measurement of the link utilization.

History-based link estimator uses exponential weighted average utiliza-
tion to combine the current []()LU n and the past [()]ΨL n − 1 link utilization
history, smoothing and predicting future link utilization ΨL()n as follows:

Ψ

Ψ
L

L LWeight
Weight

()
() ()

n
U n n

=
× + −

+
1

1
 (6.13)

where:

 ΨL() ,0 0= ∈ψ i N

Weight is the contribution factor of current link utilization level to the his-
tory-based link estimator

The hardware overhead is an important factor for the design of the estimator.
Soteriou and Peh (2004) realized the history-based estimator with two shift-
ers and an adder by setting weight equal to 3 and reducing additional hard-
ware overhead caused by the prediction mechanism. Figure 6.17b shows the
hardware circuit for the exponential weighted average. The result of direct
estimator is fed to the exponential weighted average calculator to predict the
link utilization. The history-based estimator is a cascade of direct link utili-
zation estimators and an exponential average calculator.

(a)

(b)

Counter
u(t)

UL(n)

clock4×

clockTc

Register
current

add (+)

Left shift

Right shift

D

Register
previous

SU
B UL(n)

ψL(n)

ψL(n − 1)

Figure 6.17
History-based link utilization estimator: (a) direct link utilization estimator; (b) exponential
weighted average calculator.

183Low-Power Techniques for Network-on-Chip

6.4.2.2 DFS Algorithm

Given the link utilization, the DFS algorithm dynamically adapts its fre-
quency to achieve power savings with minimal impact on performance.
It prescribes whether to increase clock frequency to higher level, decrease
clock frequency to lower level, or do nothing. Even though the link utili-
zation estimator predicts correctly the workload, determining how fast to
run the network is nontrivial. The algorithm controlling DFS link trades off
power and performance. Intuitively, if a link utilization is high (),ΨL u≥ π
the clock frequency will be increased. On the contrary, when link utili-
zation falls below the threshold value ()ΨL l< π , the clock frequency will
be reduced. The threshold values (πu and πl are the threshold values to
increase and decrease the frequency, respectively) can be set to a single
value for πu and πl for the simplest method. Also, multiple thresholds can
be set corresponding to each state (three sets of thresholds from πl1× to πl4×
and πu1× to πu4×). In addition, threshold values can be predefined in design
time or optimized in runtime. A pseudocode of DFS policy is shown in
Algorithm 2.

Algorithm 2

Dynamic frequency scaling

 while (DFS enable) do
 Ψ ΨL L Ln W U n n W() ()(())/()= × + − +1 1
 if ΨL n() ≥ Πu then
 Increase clock frequency (↑)
 else if ΨL n() < Πl then
 Decrease clock frequency (↓)
 else
 Maintain current clock frequency (–)
 end if

 end while

6.4.2.3 Link Controller

The link controller is implemented with a Moore machine. Each state repre-
sents the clock frequency such as f1×, f2×, and f4× with a two-bit value, and the
machine output, equal to the state value, is passed on to the clock domain
multiplexer. In the link controller, there is no change between f1× and f4×.
Clock domain transition occurs only between adjacent clock frequencies.
The state values are assigned such that the Hamming distance between state
transitions is 1. Clock is the most important and sensitive signal in a system
and glitches between clock domain transitions make the system unstable,
resulting in erroneous signals. To ensure that constancy of the clock phase
during clock domain changes, control period can be set to multiples of the

184 Network-on-Chip

clock period of the original clock frequency, and the link control function is
performed in each control period.

6.4.2.4 Results and Discussions

The DFS link characteristics for each boosting clock frequency are obtained
by simulation under the given workload (see Table 6.3). The 1× boosting
router finishes the entire packet transmission in 24.34 µs, spending more
time than 2× and 4× boosting routers. It also has the highest average and
peak latency. The 2× boosting router reduces the average latency by about
81% at the expense of 16% more dynamic power in contrast to the 1× boosting
router. Similarly, the 4× boosting router is much better compared to the 1×
boosting router in terms of latency; however, it consumes 21% more dynamic
power, reducing the average latency to 87%. It also reduces the average
latency around 32% at the expense of only 5.1% more dynamic power in com-
parison with the 2× boosting router. These experimental results demonstrate
the feasibility of clock boosting router for the DFS link for a power-aware
on-chip interconnection network in a NoC platform.

Table 6.4 summarizes the experimental results of the history-based DFS
policy varying the control period from 8 to 128 cycles of the 1× clock. DFS
policy enables the use of an intermediate value for power consumption
between 1× and 2× clock boosting routers. For instance, power consumption
of DFS with eight control periods consumes 2.09 mW, whereas 1× and 2×

TABLe 6.3

Characteristic of the DFS Link with the Workload

Boost Clock
(MHz)

Peak Latency
(ns/flit)

Average
Latency
(ns/flit)

End Time
(μs)

Dynamic
Power (mW)

Leakage
Power (mW)

Total Power
(mW)

100 (1×) 367 81.2 24.34 1.69 0.16 1.85
200 (2×) 97 15.3 24.06 1.96 0.16 2.12
400 (4×) 61 10.4 24.05 2.06 0.16 2.22

TABLe 6.4

Experimental Results of the History-Based DFS Varying Control Period

Control
Period
(cycle)

Peak
Latency
(ns/flit)

Average
Latency
(ns/flit)

End Time
(µs)

Dynamic
Power (mW)

Leakage
Power (mW)

Total Power
(mW)

8 116 24.30 24.05 1.93 0.16 2.09
16 146 25.20 24.05 1.91 0.16 2.07
32 187 27.60 24.23 1.90 0.16 2.06
64 242 33.20 24.34 1.88 0.16 2.04
128 265 48.21 24.05 1.91 0.16 2.07

185Low-Power Techniques for Network-on-Chip

clock boosting routers consume 1.85 and 2.12 mW, respectively, demonstrat-
ing the possibility of runtime power management for the given workload.
Choosing a wider control period further slows down the adaptation of link
frequency for the given traffic, exacerbating latency. While there is a trade-
off in power and performance for the control period from 8 to 64 cycles,
the history-based DFS with 128 control periods consumes more power. It
also increases the latency due to selection of very long control period for
the given workload. For on-chip interconnection network, the latency can
be a suitable indicator to measure the performance of a network. Trade-off
between power consumption and latency depends on the length of control
period for the DFS policy. Even though a longer control period saves more
power, it suffers from excessive latency. For the given workload, choosing
the control period of eight cycles is preferable for the DFS when an applica-
tion requires tight timing requirements. However, a longer control period
might be enough to cope with system requirements, saving more power dis-
sipation. In general, each application has its own power and performance
demand to complete an assigned task within the desired time budget. A
designer should keep in mind the system requirements in applying DFS for
the on-chip interconnection network.

6.4.3 VFi Partitioning

For achieving fine-grain system-level power management, the use of VFIs
in the NoC context is likely to provide better power–performance trade-offs
than its single-voltage, single-clock frequency counterpart, while taking
advantage of the natural partitioning and mapping of applications onto the
NoC platform. This section presents the design and optimization of novel
NoC architectures partitioned into multiple VFIs that rely on a globally
asynchronous locally synchronous communication paradigm. In such a
system, each voltage island can work at its own speed, while the commu-
nication across different voltage islands is achieved through mixed-clock/
mixed-voltage FIFOs as shown in Figure 6.18. This provides the flexibility to

VFI1
(V1, f1,Vt1)

Mixed-clock/mixed-
voltage FIFO

VFI3 (V3, f3,Vt3)

VFI2
(V2, f2,Vt2)

Figure 6.18
A sample 2D mesh network with three VFIs. Communication across different islands is
achieved through mixed-clock/mixed-voltage FIFOs.

186 Network-on-Chip

scale the frequency and voltage of various VFIs in order to minimize energy
consumption. As a result, the advantages of both NoC and VFI design styles
can be exploited simultaneously. This section focuses on the work cited by
Ogras et al. (2007) on power management using VFIs.

The design of NoCs with multiple VFIs involves a number of critical steps.
First, the granularity (i.e., the number of different VFIs) and chip partitioning
into VFIs need to be determined. While a NoC architecture where each pro-
cessing/storage element constitutes a separate VFI exhibits the largest poten-
tial savings for energy consumption, this solution is very costly. Indeed, the
associated design complexity increases due to the overhead in implement-
ing the mixed-clock/mixed-voltage FIFOs and voltage converters required
for communication across different VFIs, as well as the power distribution
network needed to cover multiple VFIs. Additionally, the VFI partitioning
needs to be performed together with assigning the supply and threshold
voltages and the corresponding clock speeds to each VFI. The energy over-
head of adding one additional voltage–frequency island to an already exist-
ing design can be written as follows:

 E E E EVFI ClkGen Vconv MixClkFifo= + + (6.14)

where:
EClkGen is the energy overhead of generating additional clock signals
EVconv denotes the energy consumption of the voltage level converters
EMixClkFifo is the overhead due to the mixed-clock/mixed-voltage FIFOs used

in interfaces

Besides energy, additional VFIs exhibit area and implementation overheads,
such as routing multiple power distribution networks. The maximum num-
ber of VFIs is assumed to be a constraint. To connect a node in a VFI with
another node residing in a different VFI, all data and control signals need to
be converted from one frequency/voltage domain to another. For this pur-
pose, a mixed-clock/mixed-voltage interfaces using FIFOs are implemented,
which are natural candidates for converting the signals from one VFI to
another, as shown in Figure 6.19.

To find the optimum number of VFIs, Ogras et al. (2007) started their
experiment with 16 VFIs in a 4 × 4 mesh-based NoC structure. Then, it pro-
ceeds by merging the islands until a single island is obtained; as such, it
evaluates all possible levels of VFI granularity. Finally, based on different
applications, they concluded that two to three VFIs in NoC context provide
better power–performance trade-offs than its single-voltage, single-clock fre-
quency counterpart.

6.4.4 runtime Power gating

The power consumption is classified into dynamic switching power and
static leakage power. The switching power is consumed only when packets

187Low-Power Techniques for Network-on-Chip

are transferred on a NoC, whereas the leakage power (or static power) is
consumed without any packet transfers as long as the NoC is powered on.
Since the NoC is the communication infrastructure of chip multiprocessing,
it must be always ready for the packet transfers at any workload so as not
to increase the communication latency; thus, a runtime power management
that dynamically stops the leakage current whenever possible is highly
required. This section highlights the work cited by Matustani et al. (2010) on
ultra-fine-grained runtime power gating of on-chip router. They partitioned
the mesh-based router architecture into several power domains such as vir-
tual channel (VC) buffer for each flit, output latch for each flit, crossbar mul-
tiplexer, and VC multiplexer. Isolation cells are inserted to all output ports
of the synthesized netlist in order to hold the output values of the domain
when the power supply is stopped. The netlist of isolation cells is placed by
Synopsys Astro tool. They formed the virtual ground (VGND) lines and the
power switches are inserted between the VGND and ground (GND) lines by
Synopsys Design Cool Power tool as shown in Figure 6.20.

In this design, the authors used customized standard cells that have a
VGND port in 65-nm technology and modified that according to the cell
height. They showed that the area overhead for inserting isolation cells and
power switch in the overall design is 4.3%. There is another area overhead of
the customized standard cells against the original ones. The total area over-
head increases to 15.9%. The authors also assumed that the wake-up latency
of each power domain is two, three, and four cycles when the target NoC is
operated at 667 MHz, 1 GHz, and 1.33 GHz, respectively. This assumption is a
little bit conservative, since the actual wake-up latencies have been observed
to be less than 3 ns. Experimental results show a reduction of average router
leakage power by 64.6% when applying the runtime power gating technique

VFI1

PE PE

O
C

O
C FIFO

FIFO

FIFO

FIFO

FIFO

FIFO
OCOC

OCOC

O
C

O
CFI
FO

FI
FO

Clock domain 1 Clock domain 2

FIFO

FIFO

VFI2

Figure 6.19
Illustration of the interface between two different voltage–frequency domains VFI1 and VFI2.

188 Network-on-Chip

only in VC buffers, assuming that temperature and core voltage are set to 25°C
and 1.20 V, respectively. It is also shown that the leakage power reduction can
be extended to 78.9% when runtime power gating is applied to VC buffers, VC
multiplexers, crossbar multiplexers, and output latches at the expense of 4%
performance penalty, assuming that the routers are working at 1 GHz.

6.5 Summary

This chapter provides a clear insight into standard low-power techniques in
NoC. Different system-level dynamic and leakage power reduction techniques
including power–performance trade-off in NoC platform have also been dis-
cussed. In spite of power–performance trade-off, system reliability is another
metric to address while lowering the supply voltage. With the decrease in sup-
ply voltage, the signal-to-noise ratio reduces, thereby creating an adverse effect
on BER. Chapter 7 will focus on the signal integrity and reliability challenges
in NoC routers and interconnection links at nanometer regime.

References

Benini, L. and Micheli, G. D. 2006. Networks on Chips: Technology and Tools. Morgan
Kaufmann Publishers, San Francisco, CA.

Benini, L., Siegel, P., and Micheli, G. D. 1994. Automated synthesis of gated clocks
for power reduction in sequential circuits. IEEE Design and Test of Computers,
pp. 32–41, IEEE.

Micropower domain 3

Std.
cell

Std.
cell

Std.
cell

Std.
cell

Std.
cell

Std.
cell

Std.
cell

Std.
cell

Std.
cell

Std.
cell

Std.
cell

Std.
cell

ISO
cell

ISO
cell

Std.
cell

PS PS

PS

VDD

GND

GND

VDD

Micropower domain 2 Micropower domain 1

VGND 1VGND 2VGND 3

Figure 6.20
Fine-grained power gating. ISO, isolation cell; PS, power switch; VGND, virtual ground.

189Low-Power Techniques for Network-on-Chip

Chuang, L. P., Chang, M. H., Huang, P. T., Kan, C. H., and Hwang, W. 2008. A
5.2mW all-digital fast-lock self-calibrated multiphase DLL. Proceedings of
International Symposium on Circuits and Systems, May 18-21, Seattle, WA, IEEE,
pp. 3342–3345.

Deogun, H. S., Rao, R. R., Sylvester, D., and Blaauw, D. 2004. Leakage- and crosstalk-
aware bus encoding for total power reduction. Proceedings of Design Automation
Conference, July 7-11, San Diego, CA, pp. 779–782.

Ghoneima, M. and Ismail, Y. 2004. Low power coupling-based encoding for on-chip
buses. Proceedings of IEEE International Symposium on Circuits and Systems,
May 23-26, Vancouver, BC, Canada, IEEE, pp. 325–328.

Huang, P. T., Fang, W. L., Wang, Y. L., and Hwang, W. 2008. Low power and reliable
interconnection with self- corrected green coding scheme for network-on-chip.
ACM/IEEE International Symposium on Networks-on-Chip, April 7-10, Newcastle
upon Tyne, IEEE, pp. 77–83.

Kim, K., Baek, K., Shanbhag, N., Liu, C., and Kang, S. 2000. Coupling-driven signal
encoding scheme for low-power interface design. Proceedings of ICCAD, November
5-9, San Jose, CA, IEEE, pp. 318–321.

Lee, K., Lee. S. J., Kim, S. E., Choi, H. M., Kim, D., Kim, S., Lee, M. W., and Yoo,
H. J. 2004. A 51mW 1.6GHz on-chip network for low power heterogeneous
SoC platform. Proceedings of IEEE International Solid-State Circuits Conference,
February 15-19, San Francisco, CA, IEEE.

Lee, S. E. and Bagherzadeh, N. 2009. A variable frequency link for a power-aware
network-on-chip. Integration, the VLSI Journal, vol. 42, no. 4, pp. 479–485.

Lee, S. J., Kim, K., Kim, H., Cho, N., and Yoo, H. J. 2006. A network-on-chip with
3Gbps/wire serialized on-chip interconnect using adaptive control schemes.
Proceedings of Design Automation and Test in Europe, pp. 79–80.

Lee, S. J., Lee, K., and Yoo, H. J. 2005. Analysis and implementation of practical,
cost-effective networks on chips. IEEE Design & Test Computers, vol. 22, no. 5,
pp. 422–433.

Lu, Y. and Agarwal, V. D. 2007. Statistical leakage and timing optimization for submi-
cron process variation. Proceedings of 20th VLSI Design and 6th Embedded Systems,
January 6-10, Bangalore, India, IEEE, pp. 439–444.

Matustani, H., Koibuchi, M., Ikebuchi, D., Usami, K., Nakamura, H., and Amano, H.
2010. Ultra fine-grained run-time power gating of on-chip routers for CMPs.
Proceedings of ACM/IEEE International Symposium on Networks-on-Chip, May 3-6,
Grenoble, France, IEEE, pp. 61–68.

Mullins, R. 2006. Minimising dynamic power consumption in on-chip networks.
Proceedings of International Symposium on System-on-Chip, November 14–16,
Tampere, Finland, IEEE, pp. 1–4.

Ogras, U. Y., Marculescu, R., Choudhary, P., and Marculescu, D. 2007. Voltage-
frequency island partitioning for GALS-based networks-on-chip. Proceedings of
Design and Automation Conference, June 4-8, San Diego, CA, IEEE, pp. 110–115.

Shang, L., Peh, L. S., and Jha, N. K. 2003. Dynamic voltage scaling with links for power
optimization of interconnection networks. Proceedings of IEEE International
Conference on High-Performance Computer Architecture, February 8-12, Anaheim,
CA, IEEE, pp. 91–102.

Soteriou, V. and Peh, L.-S. 2004. Design-space exploration of power-aware on/off
interconnection networks. Proceedings of the IEEE International Conference on
Computer Design, October 11-13, San Jose, CA, IEEE, pp. 510–517.

190 Network-on-Chip

Sotiriadis, P. P. 2002. Interconnect modeling and optimization in deep submicron
 technologies. Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge.

Sotiriadis, P. P. and Chandrakasan, A. 2000. Low power bus coding techniques consid-
ering inter-wire capacitances. Proceedings of the IEEE Custom Integrated Circuits
Conference, May 21-24, Orlando, FL, IEEE, pp. 507–510.

Sotiriadis, P. P. and Chandrakasan, A. 2002. A bus energy model for deep submicron
technology. IEEE Transaction on Very Large Scale Integration Systems, vol. 10, no. 3,
pp. 341–350.

Sridhara, S. R. and Shanbhag, N. R. 2005. Coding for system-on-chip networks: A uni-
fied framework. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 13, no. 6, pp. 655–667.

Stan, M. R. and Burleson, W. P. 1995. Bus-invert coding for low-power I/O. IEEE
Transactions on Very Large Scale Integration (VLSI) System, vol. 3, no. 1, pp. 49–58.

Stratakos, A. 1998. High-efficiency low-voltage DC-DC conversion for portable appli-
cations. Ph D Thesis, University of California, Berkeley, CA.

Yoo, S. and Choi, K. 1999. Interleaving partial bus-invert Coding for low power recon-
figuration of FPGAs. Proceedings of International Conference on VLSI and CAD,
October 26-27, Seoul, Republic of Korea, IEEE, pp. 549–552.

Yuan, C. P. and Cheng, Y. C. 2005. A voltage level converter circuit design with low
power consumption. Proceedings of International Conference on ASIC, October
24-27, Shanghai, People’s Republic of China, IEEE, pp. 358–359.

Zhang, Y., Lach, J., Skadron, K., and Stan, M. R. 2002. Odd/even bus invert with two-
phase transfer for buses with coupling. Proceedings of International Symposium on
Low Power Electronics and Design, Monterey, CA, IEEE, pp. 80–83.

191

7
Signal Integrity and Reliability
of Network-on-Chip

7.1 Introduction

In deep submicron (DSM) technology, the importance of on-chip wiring
(interconnect) becomes significant as it impacts the system performance and
cost to a big extent. With the technology shrinking, on-chip interconnect suf-
fers from increased resistance due to decrease in metal cross-sectional area
and also suffers from increased capacitance if the metal height is not reduced
proportionally with metal spacing. Therefore, resistance-capacitance (RC)
parameter in interconnects plays an increasing role in system-on-chip (SoC)
performance as feature size scales. In integrated circuit (IC) packaging, usage
of multiple interconnection layers is a common trend in order to provide bet-
ter connectivity. The metal layers are normally divided into three categories:
local, semi-global, and global interconnects. In SoC design, several cores [intel-
lectual property (IP), memory, processor, etc.] are integrated on a single sili-
con die. Local wires are used for connecting intra-core modules. These wires
have minimum dimensions and pitch, hence highly resistive. Semi-global
wires are used for inter-core communication. These wires are usually lon-
ger than local interconnects and have lesser resistance. Global interconnects,
however, are used as supply and clock lines. The signals passing through
these wires traverse long distance. These wires have higher cross-sectional
area and hence lesser resistance. For a typical eight-layerd 90-nm UMC pro-
cess, layers 1–3 are used for local interconnect, layers 4 and 5 for semi-global
interconnect, and the top layers are reserved for global interconnect.

Copper is the mostly used material for on-chip interconnects in very-large-
scale integration (VLSI) design. It has lesser resistivity compared to alumi-
num. An on-chip interconnect can be modeled as a distributed RC network
or a transmission line with the parasitic resistance, capacitance, and induc-
tance. The resistance of a wire is proportional to its length L and inversely
proportional to its cross section A with width (W) and thickness (T). Self-
capacitance of a wire is defined as the summation of line-to-substrate capaci-
tance, inter- and intra-layer coupling capacitance, and fringing capacitance

192 Network-on-Chip

from the side walls. The dielectric material used in most ICs is SiO2. Self- and
mutual inductances become prominent for some global signal wires routed
in top metal layers due to its lower resistance and faster signal transition
time with increasing frequencies. Ismail et al. (1998) proposed a two-sided
inequality (Equation 7.1) that determines the range of length of interconnect
(L) in which inductance effects are significant and the line can be modeled as
a transmission line.

t

L C
L

R
L
C

r

s s

s

s2
2

⋅
< < (7.1)

In the above relation, the range of interconnect length (L) depends on the para-
sitic resistance (R), self-inductance (Ls), and self-capacitance (Cs) of the wire per
unit length as well as the transition time (tr) of the signal at the output of its
driver. Ismail et al. (1998) also proposed that if the above inequality is nonex-
istent and Equation 7.2 holds true, the effect of inductance is not important for
any length of interconnect and the wire can be modeled as a distributed RC line.

 t
L
R

r
s>

4 (7.2)

Example 7.1

Consider the following parasitic values for a wire segment: Resistance
(R) = 0.4926 MΩ/m, self-inductance (Ls) = 0.3743 μH/m, self-capacitance
(Cs) = 70.7918 pF/m, transition time (tr) = 100 ps, and length (L) = 1 mm.
Determine the interconnect model whether it is a transmission line or a
distributed RC.

* * *

By putting the values of parasitic components, length, and transition
time, Equation 7.1 is nonexistent. Hence the wire cannot model as a
transmission line. Putting the values of R and Ls, it shows that the wire
can be modeled as a distributed RC if tr > 3.04 ps which is true in this
case. Hence, the wire can be modeled as a distributed RC.

The details of on-chip interconnect in the DSM era are covered in literature.
The scope of this chapter is narrowed to on-chip interconnect in network-
on-chip (NoC) design and related issues. It has been reported in the work
of Benini and Micheli (2006) that the impact of inductance in most on-chip
interconnects is negligible and can be modeled as a distributed RC wire as
shown in Figure 7.1.

The rest of this chapter is organized as follows: Section 7.2 describes the
sources of different types of faults such as permanent faults, faults due to
aging effect, and transient faults in DSM technology. Section 7.3 discusses
the techniques to handle the permanent faults. Section 7.4 describes the

193Signal Integrity and Reliability of Network-on-Chip

intra- and inter-router transient faults in detail. It also discusses different
crosstalk avoidance techniques, soft error protection techniques, and error
controlling techniques. Section 7.5 highlights a unified coding framework
to address crosstalk avoidance, power minimization in bus, and error cor-
rection jointly. It also discusses different joint coding schemes. Section 7.6
presents the energy–reliability trade-off. Finally, Section 7.7 summarizes the
whole chapter.

7.2 Sources of Faults in NoC Fabric

There are three types of failures that affect the system: permanent faults,
faults due to aging effect, and transient faults. The permanent faults are
mainly stuck-at faults (hard failures) and they remain in the system until
repaired. Aging effect will cause transistor parameter degradation, typi-
cally as switching frequency degradation rather than a hard functional
failure. Transient faults, however, generally occur in the run time. Soft
errors, crosstalk noise, and timing faults are the major classifications
of transient faults. Failures are usually described in terms of mean time
between failures (MTBF) or failures in time (FIT). FIT is defined as one error
per billion hours of device operation. MTBF is usually given in years of
device operation. To put in perspective, the relation between MTBF and
FIT is given as follows:

 1
10

24 365 25
114 077

9

Year MTBF

FIT=
×

≈
.

,

R

VA
CC1 CCnCC2

CG12 CG1n

CG2nCG21 CG22

CG11

VB

R

R R R

R

Figure 7.1
Parasitic components of a wire.

194 Network-on-Chip

7.2.1 Permanent Faults

Permanent faults, as the name suggests, originate from permanent damages
in the circuit. These damages result in physical changes in the circuit whose
behavior does not change with time. Broken wires, time-dependent dielectric
breakdowns, and electromagnetic interference (EMI) are the examples of per-
manent failures on chip. Long on-chip interconnects, typical in customized,
domain-specific irregular NoC topologies, are increasingly susceptible to EMI.
Short switch-to-switch links in regular networks are more immune to such noise
sources. Another cause of permanent fault is electromigration. Aluminum inter-
connects are highly affected from the electromigration effect, whereas modern
copper interconnect-based ICs rarely fail due to electromigration effects. The
permanent fault handling in NoC is described more detail in Section 7.3.

7.2.2 Faults due to Aging effects

Device reliability issues such as negative-bias temperature instability (NBTI)
and hot carrier injection (HCI) make circuit performance degrade as it ages
and have more severe effects with shrinking device sizes and voltage mar-
gins. In Sections 7.2.2.1 and 7.2.2.2, each of them is described briefly.

7.2.2.1 Negative-Bias Temperature Instability

The instability of p-type metal oxide semiconductor (PMOS) transistor param-
eters (e.g., threshold voltage, transconductance, saturation current, etc.) under
negative (inversion) bias and relatively high temperature has been well known
since the 1970s and has become a significant reliability concern in present-day
digital design.

When a PMOS transistor is biased in inversion (Vgs = –Vdd), the dissociation
of Si—H bonds along the silicon–oxide interface causes the generation of inter-
face traps. The rate of generation of these traps is accelerated by the tempera-
ture and the time of applied stress (PMOS is turn ON). These traps cause an
increase in the threshold voltage (Vth) of the PMOS transistors. An increase in
Vth causes the circuit delay to degrade, and when this degradation exceeds a
certain limit, the circuit may fail to meet its timing specifications. This effect,
known as negative-bias temperature instability, has become a reliability issue
in high-performance digital IC design, especially in sub-130-nm technologies.
Since a digital circuit consists of millions of nodes with various signal probabili-
ties and activity factors, the degradation of timing paths is not uniform. Logic
blocks in a circuit are currently designed by assuming a certain safety margin
in the timing specifications to account for NBTI-induced performance degrada-
tion. Kumar et al. (2006) proposed an analytical model for measuring the impact
of NBTI. Their simulation results on International Symposium on Circuits and
Systems benchmarks under a 70-nm technology show that NBTI causes a delay
degradation of about 8% in combinational logic-based circuits after 10 years.

195Signal Integrity and Reliability of Network-on-Chip

7.2.2.2 Hot Carrier Injection

HCI describes the phenomena by which carriers gain sufficient energy due
to increase in electric field and causes increase in velocity, which can leave
the silicon and are injected into the gate oxide. This occurs as carriers move
along the channel of metal oxide semiconductor field effect transistor and
experience impact ionization near the drain end of the device. Electrons are
trapped in the oxide and hence change the threshold voltage (increases for
n-type metal oxide semiconductor [NMOS] and decreases for PMOS). The
hot electron phenomenon can lead to a reliability problem, where the circuit
might fail to meet the timing requirement after being in use for some time.

7.2.3 Transient Faults

As the technology is approaching toward DSM with shrinking feature sizes,
scaling of supply voltages, increasing wire density, and faster clock rates, NoC
suffers from following transient faults: (1) slowdown or speedup in delay due
to crosstalk, (2) crosstalk noise, (3) single- or multi-event upset due to soft error,
 (4) delay due to process–voltage–temperature (PVT) variation, (5) synchroniza-
tion failure, (6) delay due to power supply noise, (7) IR drop, and so on.

7.2.3.1 Capacitive Crosstalk

In modern DSM technologies with shrinking feature sizes and decreasing
spacing between adjacent interconnects, the value of coupling capacitance
becomes dominant, which causes capacitive crosstalk. There are two major
deteriorating effects due to capacitive crosstalk—crosstalk noise and cross-
talk delay. Cuviello et al. (1999) proposed a novel fault model, called maxi-
mum aggressor fault (MAF) model, which considers the effect of crosstalk
between a set of aggressor lines and a victim line. For a link consisting of
N wires, MAF model assumes the worst-case situation with one victim line
and (N – 1) aggressor lines where all the aggressor lines are switching in a
same direction. According to the MAF model, Figure 7.2 shows the possible
errors on the victim wire in a three-wire model.

A crosstalk effect causing a positive (negative) glitch in the victim line (Y2),
which should ideally have a logic 0 (logic 1), due to a rising (falling) transi-
tion at the aggressor lines Y1 and Y3 as shown in Figure 7.2a. This glitch will
consider as crosstalk noise when the peak value of the glitch is high enough
to cross the switching threshold of the receiver. Moreover, the width of the
glitch is also an important factor. Wider glitch may drive the load capacitance
to a potential that can be interpreted as a different logic value. An analyti-
cal model of crosstalk positive glitch is shown in Figure 7.3. When a falling
transition is applied to input Ain, the PMOS of the inverter driven by Ain can
be modeled by its channel resistance, Rp, connecting A to VDD; the corre-
sponding NMOS device is off. The inverter driven by Vin can be modeled by

196 Network-on-Chip

Y1

Y2

Cc

Positive glitch in the victim node(a)

Cc

1 0

Y3

Negative glitch in the victim node

Cc

Cc

0 1

Y1

Y2

Y3

Cc

Cc

(b) Delayed fall in the victim wire

Y1

Y2

Y3

Cc

Cc

Delayed rise in the victim wire

Y1

Y2

Y3

(c) Speedy rise in victim wire

Cc

Cc

Y1

Y2

Y3

Cc

Cc

Speedy fall in victim wire

Y1

Y2

Y3

Crosstalk-affected signal Crosstalk-free signal

Figure 7.2
Effect of crosstalk according to MAF model: (a) crosstalk noise; (b) crosstalk delay; (c) crosstalk
speedup.

(b)

Cc
Ca

Cv

VDD

GND

GND

GND

A

V

Rp

Rp

Ain A

1
V

(a)

Cc

Vin

Figure 7.3
(a) Circuit model for crosstalk positive glitch analysis; (b) equivalent circuit.

197Signal Integrity and Reliability of Network-on-Chip

the channel resistance of its NMOS device connecting V to GND. Figure 7.3a
shows the circuit model for the situation just described. Figure 7.3b shows
the equivalent circuit of Figure 7.3a.

From Figure 7.3b, the transfer function can be written as

V s
A s

s C
Rn s C C

()
() ()

= ×
() + +

c

c v1

Hence, the voltage induced at victim node V is a function of Cc and voltage
of aggressor node A.

Crosstalk delay is categorized into crosstalk slowdown and crosstalk
speedup as shown in Figure 7.2b and c, respectively. Crosstalk speedup occurs
due to same transitions in the aggressor and victim wires, whereas crosstalk
slowdown occurs due to opposite transitions in those wires. The amount
of slowdown and speedup depends on two factors: (1) input transition and
(2) skew between aggressor and victim wires. Chen et al. (1997) and Nazarian
et al. (2005) described the effect of both the parameters on crosstalk speedup
and slowdown.

At first, the effect of input transition is discussed, assuming that both sig-
nals switch simultaneously (skew = 0):

•	 When the slope of the input signal to the victim line is kept constant,
faster the aggressor line changes, larger the speedup of the victim line.

•	 Similarly, faster aggressor causes larger worst-case slowdown.
•	 The maximum speedup and slowdown occur when the victim has

the largest transition time, whereas the aggressor has the smallest
transition time.

•	 If the transition time of both aggressor and victim wires is identical,
slow transition has lesser effect than fast transition signals.

The effect of skew between the aggressor and victim wires on crosstalk
speedup and slowdown is discussed next, assuming that both the signals
have identical transition time:

•	 If the input skew is negative (aggressor switches first), the amount
of speedup and slowdown increases as the skew increases from a
negative value toward zero.

•	 The maximum crosstalk slowdown does not necessarily occur
for zero input skew condition even for completely symmetric
interconnects.

•	 If the input skew increases from zero to positive direction, the
speedup and slowdown decrease. The speedup and slowdown will
become zero after some fixed positive value.

198 Network-on-Chip

Depending on the transition time (rise or fall) of the victim and aggressor
nets, another ill effect of capacitive crosstalk is crosstalk double switching.
Double-switching noise is the scenario that arises when a large bump occurs
on a switching victim, which causes the output of the victim receiver to switch
twice. The effect of a strong aggressor transition can be so large such that it
can cause the victim net to cross the voltage threshold high enough to cause
an incorrect capture of data at the receiver. These types of errors are called
double-switching errors and are most often seen when very large bumps act
on victim nets that are transitioning very slowly. This is shown in Figure 7.4.

In Figure 7.4, a rising transition on net n1 is propagated through buffers
u1 and u2 to nets n3 and n4, respectively. Because of the low drive of buffer
u1 and the capacitive load of net n3, the transition on n3 is relatively slow.
In the presence of crosstalk (indicated by the dashed lines in the figure), an
aggressor transition causes a voltage bump in the sensitive voltage region at
the input of buffer u2. This causes the output of the buffer to switch twice.

There are two possible side effects, depending on whether the victim net
goes to a clock pin or a data pin. When the victim net feeds a data pin, false
data (glitch) can be clocked. If the victim net goes to the clock pin of a regis-
ter, the register can be suffered either by false clocking on the inactive edge
of a clock signal or by double-clocking on the active edge of a clock signal as
shown in Figure 7.5.

The amount of crosstalk slowdown has been formulated by Sridhara and
Shanbhag (2005). It is based on a different transition pattern in a three-wire
model. The formula is given below:

Tl l l l l

l

=

+ − =

+ − +− +

τ

τ

λ λ

λ λ

0 1
2

1 2

0
2

1 1

1 1

1 2

[]

[()]

() ,

() ,

∆ ∆ ∆

∆ ∆ ∆ ∆ 11

10
2

1

< <

+ − =

 −

l n

l nn n nτ λ λ[()],∆ ∆ ∆

n2 (aggressor)

n3 (victim)n1

n1

n2 (aggressor) Aggressor transition

Voltage bump
at input of u2

Double switch at
output of u2

n3 (victim)

n4

n4
u1 u2

Figure 7.4
Double switching error.

199Signal Integrity and Reliability of Network-on-Chip

where:
λ is the ratio of coupling capacitance to bulk capacitance
τ0 is the delay of a crosstalk-free wire
Δl is the transition on wire l and its value is 1 for rising transition, –1 for

falling transition, and 0 for no transition

In simplified form, if there is a transition in wire l, the propagation delay of
lth wire is Tl = (1 + pλ)τ0, where the value of p lies between 0 and 4. Table 7.1
shows how the delay of victim wire (middle wire) varies with respect to signal
transition in other two aggressor wires in a three-wire model. In the table, ↑, ↓,
and – denote rising, falling, and no transition, respectively. There are a num-
ber of crosstalk avoidance techniques proposed in the literature that achieve
different degrees of delay reduction, which will be discussed in Section 7.4.2.1.

7.2.3.2 Soft Errors

Soft errors are radiation-induced transient faults that are caused by ther-
mal neutrons, high-energy neutrons generated from cosmic rays, and
alpha particles generated by packaging materials. Both alpha particles

CLK

False clocking on
in active edge of clock

Double clocking on
active edge of clock

CLK

Figure 7.5
False clocking and double clocking due to double switching.

TABLe 7.1

Different Types of Crosstalk Delay

P
Relative Delay
on Victim Wire Transition Patterns in a Three-Wire Model

– 0 ↑ – –, – – ↓, – – –, – – ↑, ↓ – –, ↑ – ↑, ↑ – ↓, ↓ – ↑, ↓ – ↓
0 τ0 ↑ ↑ ↑, ↓ ↓ ↓
1 τ0 (1 + λ) ↑ ↑ –, ↓ ↓ –, – ↑ ↑, – ↓ ↓
2 τ0 (1 + 2λ) ↑ ↑ ↓, ↓ ↓ ↑, ↑ ↓ ↓, ↓ ↑ ↑, – ↑ –, – ↓ –
3 τ0 (1 + 3λ) ↓ ↑ –, ↑ ↓ –, – ↑ ↓, – ↓ ↑
4 τ0 (1 + 4λ) ↑ ↓ ↑, ↓ ↑ ↓

200 Network-on-Chip

and neutrons generate electron–hole pairs along their path of traversal
while hitting the transistor’s diffusion. Neutrons are particularly trouble-
some as they tend to generate more charge than alpha particles and can
penetrate most man-made construction (a neutron can easily pass through
five feet of concrete). This effect varies with both latitude and altitude. In
London, the effect is 2 times worse than that on the equator. In Denver,
with its high altitude, the effect is 3 times worse than that at sea-level
San Francisco.

Traditionally, soft errors are considered as a major problem for dynamic
RAM (DRAM). As the technology goes toward ultra-DSM level and the
supply voltage also goes down, a significantly lower charge deposed by a
particle strike suffices to flip the logic value of a node, thus creating a tran-
sient pulse. The same phenomenon starts to affect the static RAMs (SRAMs).
Unlike capacitor-based DRAMs, SRAMs are cross-coupled devices that have
far less capacitance in each cell. The lower the capacitance, the greater the
likelihood that an alpha particle or neutron will cause a single-event upset
(SEU). Figure 7.6 shows how a soft error affects a back-to-back inverter-based
memory. Initially, node A is at logic 1 and node B is at logic 0. Due to injection
of the soft error, the logic value of node A flips which drives node B to invert
the logic. This inverted bit will remain in the memory even after a soft error
disappears.

Soft errors in latches and flip-flops are the major contributors of logic soft
errors. Figure 7.7 focuses on the soft error in D-type latch. The same dis-
cussion can also be extended to flip-flops. During positive cycle of a clock
(clk = 1), the Q output of a D-type latch is strongly driven by the D input. Soft
error during this period (clk = 1) can be treated as a glitch at the Q output but
does not cause any SEU. In the negative cycle (clk = 0) when the Q output is

A
B

VDD VDD

A1
1

B
0

0

Figure 7.6
Soft error in a back-to-back inverter.

201Signal Integrity and Reliability of Network-on-Chip

latched, soft error can invert the logic stored in the latch and causes a SEU as
shown in Figure 7.7.

In combinational logic, a particle strike suffices to flip the logic value of a
node, creating a single-event transient (SET) pulse. The transient pulse, after
propagation through the logic, can be captured by a latch or flip-flop. With
each technology generation, the transient pulses become wider with respect
to logic transition time of the logic gates. In addition, as the clock frequency
increases, the probability of latching a transient pulse increases as well. Due
to these trends, the error rates in logic parts become as high as the error
rates in memories. The details of logic soft error correction in NoC router are
described in Section 7.4.1.1.

Depending on the soft error protection technique in a system, an effect
of soft error can be classified into three types: (1) detected/corrected,
(2) detected/uncorrected, and (3) undetected. The detected/corrected
errors are typically associated with error correction logic. The detected/
uncorrected errors often originate from parity protection since parity in
most cases can detect but cannot correct the error. This type of error can
result in a system reset or an application termination, depending on the
severity of the error. The undetected errors can result in nonrecoverable
errors causing system hangs or in silent data corruption (SDC) causing data
 integrity problems. Error detection and correction techniques can be used
to cope with most of the logic soft errors, but at the same time, in a large
system it is difficult to directly apply these techniques because of asso-
ciated performance degradation and cost (power and area) overhead.
Therefore, from a system point of view, it is very important to find out the
regions that are highly susceptible to soft errors and apply the protection
circuitry to meet the targeted MTBF (or FIT) at optimized performance
and cost degradation.

Estimation of soft error rate (SER) in sequential circuit is very challenging
since computation of the probability of erroneous system requires dynamic
analysis of transients. SER estimation of each element in a system mainly
depends on three factors: (1) nominal FIT, (2) logic derating (LD), and (3) timing
derating (TD) (Nguyen and Yagil 2003). Full-chip FIT rate is the summation
of individual elements’ FIT rate on die. Particle strike must cause a glitch at

0
1

0

0
0

0

0

0

0

1

Q

Q

clk clk

1
D

1
D

Q

Q

Figure 7.7
Soft error in D-type latch.

202 Network-on-Chip

the output of the gate (nominal FIT); this glitch has to propagate through the
combinational logic to the flip-flop inputs (LD); and finally this erroneous
glitch must be captured in a flip-flop, that is, the erroneous transient must
have a sufficient overlap with the latching window of the flip-flop (TD). The
SER of each element is given by the following relation:

 Individual elements FIT = Nominal FIT TD LD’ × ×

In general, TD and LD are not independent, and hence accurate analysis
requires the concept of TD–LD (Asadi and Tahoori 2006). A combinational
logic (static CMOS based), by itself, cannot cause a SEU. The gate can suffer a
glitch that might propagate downstream and be captured by a flop as shown
in Example 7.2.

Example 7.2

Figure 7.8 shows the output of gate A (OR gate) is affected to soft error.
The width of the soft error-induced glitch at this node is W. The propa-
gation probability of the glitch at the output of gate D (AND gate) is
the product of the probability at the output of gate B being 1 (SPB = 0.2;
the probability of the output of gate B being 1) and the propagation
probability of the glitch (here, 1 × 0.2 = 0.2). Similarly, the propaga-
tion probability at the output of the gate E (OR gate) is calculated as
0.2 × (1 – SPC) = 0.2 × 0.6 = 0.12 (the probability of the output of gate
C being 1). Hence, the LD factor is 0.12. The underlying assumption
in this example is the value of all signals other than on-path signals
(which propagated the erroneous glitch) is stable.

* * *

The TD is the probability that an erroneous value is captured in the
flop. It can be calculated based on the setup (S) and hold (H) times of the
flop, the glitch width (W1), and the clock period (T). Glitch width at flop
input (W1) can be different from that at its origin (node A in Figure 7.8)
due to various rise and fall transition delays for the gates along the path.
The TD factor is defined as TD = (S + H + W1)/T. The error propagation

B

A

W

W1

C

E FFD

SPB = 0.2 SPC = 0.4

Figure 7.8
Propagation of glitch through logic gates to flip-flop (FF).

203Signal Integrity and Reliability of Network-on-Chip

probability is calculated as the product of the LD and the TD. If there are
multiple paths from the error site to the flip-flop, the overall error propa-
gation probability is the product of individual paths’ error propagation
probability.

7.2.3.3 Some Other Sources of Transient Faults

7.2.3.3.1 PVT Variation

Process, supply voltage, and temperature variations are other important
sources of timing fault for any VLSI circuit. The delay of a transistor in a slow
process will be more than that in a fast process. With increasing temperature,
both the transistor and interconnect delays will increase in 65-nm and above
technologies. Of course, in 40-nm and lower geometries, temperature inver-
sion can be observed. The delay of the transistor in 40-nm geometry will be
more in cold condition than that in hot condition. But interconnect delay will
keep on increasing with increasing temperature in those technologies. Thus,
it is mandatory to do proper timing analysis for meeting the timing require-
ments in all possible sign-off corners.

7.2.3.3.2 Synchronization Failure

Any multicore design has several clock domains and the cores communicate
with each other through globally asynchronous and locally synchronous
(GALS) style. The communication can suffer due to synchronization errors,
and hence synchronizers are required between the clock domains. Several
types of synchronizers including dual-clock FIFO synchronizers, delay-line
synchronizers, and simple pipeline synchronizers have been proposed by
Dally and Poulton (1998). To avoid synchronization failure, synchronizers
should be properly designed and well tested.

7.2.3.3.3 Power Supply Noise

Power supply noise is an important source of a transient error in any VLSI cir-
cuit. Noise in ground and power lines is known as ground bounce and power
bounce, respectively. With fluctuating supply and ground voltages, the delay
of the data path is affected, which may cause timing violation. Decoupling
capacitance (on-chip or on-package) reduces power supply voltage noise.

7.2.3.3.4 IR Drop

Another major cause of signal integrity is the IR drop effect caused by wire
resistance and current drawn from the power and ground grids. If the wire
resistance is too large or the cell current is higher than predicted, an undesir-
able voltage drop may happen. The voltage drop causes the voltage supplied
to the affected cells to be lower than required, which leads to larger gate
and signal delays, which in turn can cause timing fault in the signal paths
as well as clock skew. Voltage drop on power and ground grids can also

204 Network-on-Chip

affect the noise margins and compromises the signal integrity of the design.
Therefore, special attention should be taken to resolve the IR drop effects
during post-layout phase.

7.3 Permanent Fault Controlling Techniques

Permanent faults, at one level, are modeled as stuck-at faults, or as fail-stop
faults. In the stuck-at fault, a node is stuck at either logic 0 or logic 1. In the fail-
stop model, a complete module (router or link) malfunctions and informs its
neighbors about its out-of-order status (Dally and Towles 2004). Triple modu-
lar redundancy (TMR) is a well-known technique to handle stuck-at faults at
links in which the faulty link, its two duplicate copies, and a voter are used
to ensure protection against such errors.

In NoC, FIFOs are designed as either register based or SRAM based.
For SRAM-based FIFOs, if any cell or row is permanently faulty, it can be
repaired by a built-in self-repair (BISR) mechanism using redundant rows
and columns (Wang et al. 2006). The detailed architecture of a BISR-based
SRAM is beyond the scope of this book. Although physical faults are not as
common and frequent as transient faults on-chip, in case a component fails,
it is not always possible to repair or replace it on chip. In such a case, it is
important to reroute the packets on alternate paths so that the communica-
tion infrastructure remains intact. Hence, to overcome the permanent faults,
NoC must have to support adaptive (or dynamic) routing to avoid the faulty
regions of the network and choose alternative paths dynamically. The main
idea is to keep the chip in functioning state with graceful degradation of
performance in the presence of faults.

Valinataj et al. (2009) proposed a deterministic, low-cost, deadlock-free,
faulty-link-tolerant routing algorithm through dynamic reconfiguration to
use new unique paths instead of the broken paths. For router permanent
faults, Linder and Harden (1991) used a virtual channel (VC)-based fault-
tolerant routing in two-dimensional (2D) mesh. Since the use of VC leads
to more area and power consumption, several literatures have addressed
fault-tolerant routing algorithms without using VCs. The packets are routed
through alternate paths either by using a turn model (Chen and Chiu 1998;
Fukushima et al. 2009; Glass and Ni 1996; Wu 2003) or by updating the
routing table (Ali et al. 2007a; Fick et al. 2009), so that the communication
infrastructure remains intact. Patooghy and Miremadi (2009) proposed a
deadlock-free XYX routing for handling permanent faults in NoC. It makes a
redundant copy of each packet at the source node and exploits two different
routing algorithms, XY and YX, to route the original and redundant packets,
respectively. Since two copies of each packet are received by the destination
router, the erroneous packet is detected and replaced with the correct one.

205Signal Integrity and Reliability of Network-on-Chip

7.4 Transient Fault Controlling Techniques

Primarily two types of transient faults can upset the on-chip network infra-
structure: (1) intra-router errors occur within individual router components
and (2) inter-router link errors occur during flit traversal.

7.4.1 intra-router error Control

In NoC, VC-based routers are widely used. The details of a VC-based router
architecture have been described in Chapter 3. It consists of a routing control
unit, a switch arbiter (SA), a crossbar, an input buffer (FIFO), a VC allocator
(VCA), a control logic, and handshaking signals. Park et al. (2006) focused on
the possible errors in different modules of a NoC router and their controlling
strategies as summarized below.

 1. Routing control unit error: The routing control unit looks into the
packet header to select the next router. The routing operation may be
table based or algorithm based. A transient fault in the routing unit
logic may cause a packet to be misdirected.

 2. SA error: Depending on the packet header, the routing unit sends a
request to the SA block. There may be a possibility that more than
one requester can send their requests to access the same output
channel. Thus, the SA block performs arbitration to select one of
them and sends a grant signal to it. A transient fault in SA may give
rise to the following conditions:

 a. A soft error in the control signals of the switch allocator can
prevent flits from traversing the crossbar. This case is the least
problematic, since the flits will keep on requesting access to the
crossbar until they succeed.

 b. If a payload flit is mistakenly sent to a direction different from
the header flit, it would cause flit/packet loss as it would deviate
from the wormhole created by its header flit.

 c. An error can cause the arbiter to send a flit to multiple outputs
(multicasting). If the flit is a payload flit, the same error will occur
as in case (b). If the flit is a header flit, multiple VCs will mistak-
enly be reserved in all the receiving routers. The VCs will stay
permanently reserved, thus reducing the effective buffer space
in those routers.

 3. Crossbar error: A transient fault in the crossbar may produce glitch in
data transmission.

 4. FIFO error: FIFO can be implemented as register banks or dedicated
SRAM arrays. Due to the unidirectional nature of communication

206 Network-on-Chip

in NoC, FIFOs are two-port memory—one write-only port and one
read-only port. A transient fault can affect different parts of a FIFO,
for example, the memory cells, the addressing mechanism, full and
empty signal generation logic, and read/write enable signals. A sin-
gle soft error within the FIFO will produce a SEU. A double (or more)
error, however, would require more protection technique.

 5. VCA error: The VCA, like the routing unit, operates only on header
flits. All new packets request access to any one of the valid output
VCs. The VCA arbitrates between all those packets requesting the
same output VC. The VCA maintains the states of all successful allo-
cations through a pairing between input VCs and allocated output
VCs. Soft errors within the VCA may give rise to following scenarios:

 a. A soft error may assign one input VC to an invalid output VC.
Such an assignment will block further traversal of the packet
through the network.

 b. An unreserved output VC may be assigned to two different
input VCs due to soft error. This will lead to packet mixing, and
eventually packet/flit loss.

 c. Transient error may cause a reserved output VC to be assigned to
a requesting input VC. This case is very similar to case (b) above.

 6. Error in control logic and handshaking signals: Every router has several
control logic inside it. These control logic blocks consist of combina-
tional and sequential elements. The routers communicate with other
neighboring routers by the handshaking signal lines to facilitate proper
functionality and synchronization. Transient faults in the control logic
and handshaking lines would disrupt the operation of the network.

As most of the transient faults inside the NoC router are caused by soft error,
Section 7.4.1.1 describes the soft error correction techniques in latch, flip-flop,
SRAM, and combinational logic.

7.4.1.1 Soft Error Correction

This section focuses on logic soft error protection—soft errors in latches, flip-
flops, and combinational logic. Soft errors in SRAMs are protected using
parity or error-correcting codes with interleaving. For a latch, as discussed
in Section 7.2.3.2, the Q output is strongly driven by the D input during the
active cycle of the clock and the latch is not susceptible to soft errors. In the
inactive cycle when the output is latched to its previous state, soft error can
cause a SEU. Mitra et al. (2006a) proposed a built-in soft error resilience (BISER)
technique to protect the latches in the design using C-element. C-element is
a special type of hardware where two PMOS and two NMOS transistors are
connected in series. A two-input C-element and its truth table are shown in
Figure 7.9. From the truth table, it is clear that if both the inputs of C-element

207Signal Integrity and Reliability of Network-on-Chip

are same, the output (C-OUT) will follow the inputs; otherwise, the output
will latch at its previous value. Mitra et al. (2006a) presented the soft error
correction in latches using C-element and a redundant latch as shown in
Figure 7.10. If soft error affects any of the latches at a time, the output of the
latches will differ and the C-OUT will retain to its previous value, and hence
error will not propagate to the next stage. The correct logic value will be held
at C-OUT by the keeper. Soft error in the keeper does not have a major effect
because the C-element output will be strongly driven by the latch contents.
The cost associated with the redundant latch is minimized by reusing on-
chip resources such as scan for multiple functions at various stages of manu-
facturing and field use (Mitra et al. 2005).

As discussed in Section 7.2.3.2, soft error in combinational logic will cause a
SET pulse. The transient pulse, after propagation through the logic, can be cap-
tured by a latch or a flip-flop. Hence, it is desirable to address soft error protec-
tion in flip-flops, latches, and combinational logic jointly. Otherwise, separate
protection techniques for flip-flops, latches, and combinational logic introduce
additional penalties and design complexity. Soft errors in combinational logic
can be corrected using two techniques: (1) error correction using duplication and

Vcc

A B

C-OUT

C-OUT

0 0 0

0 1 Previous value retained
1 0 Previous value retained

1 1 1

GND(a) (b)

A
B

Figure 7.9
Structure of C-element (a) and the truth table (b).

Combination
logic

Clock

OUT
Latch

1D

C1

Q

1D

C1
Q

B

A
Weak keeper

C
C-OUT

C-element

Redundant latch
(scan reuse)

IN

Figure 7.10
Soft error correction in latches.

208 Network-on-Chip

(2) error correction using time-shifted outputs (Mitra et al. 2006b). Figure 7.11
shows the combined soft error correction in combinational logic and latches
using duplication, assuming that soft error can affect any one of the two copies.
Duplication technique improves the system-level soft error rate by 10 times over
an unprotected design with negligible performance penalty (Zhang et al. 2006).
However, the power and area costs of duplicating combinational logic can be
significant. Usage of existing on-chip scan-out resources (for functional testing
and design for debug) further reduces the area and power penalty.

Soft error correction using time-shifted output technique, however, does not
require combinational logic duplication. The scheme is shown in Figure 7.12.
Instead of duplicating the combinational logic, the output (OUT3) and its
delayed version (delayed by τ), called OUT4, is used. If this path lies in the
critical path of the design, the clock period must be increased by τ units to
meet the timing requirement. The latch outputs are connected to a C-element
as discussed above. Note that τ is a design parameter that can be tuned based
on the reliability requirement.

The following scenario shows how time-shifted output technique can cor-
rect soft errors in combinational logic. Suppose that OUT3 and OUT4 settle

Combination
logic

(copy 1)

Combination
logic

(copy 2)

IN

OUT1

OUT2

Latch Weak keeper

C-element

Redundant latch
(scan reuse)

Clock

1D

C1

Q

1D

C1
Q

C
C-OUT

Figure 7.11
Soft error correction in combinational logic and latches using duplication.

IN

Delay
element

OUT3
Latch Weak keeper

Redundant latch
(scan reuse)

C-element

C

1D

C1

Q

1D

Clock

C1
QOUT4

OUT
τ

Combinational
logic

Figure 7.12
Soft error correction in combinational logic and latches using time-shifted output.

209Signal Integrity and Reliability of Network-on-Chip

down to the correct value (because a path shorter than the timing critical
path has been exercised here) and the C-element output is charged to a cor-
rect value, a hazard appears at OUT3 (and at OUT4 after time τ) due to a soft
error inside the combinational logic. Suppose that the hazard settles down to
the correct value within τ time units. In this case, correct logic value will be
preserved on C-OUT since the hazards at OUT3 and OUT4 will not overlap.
Figure 7.13 describes this scenario.

Figure 7.14 shows a flip-flop design for implementing soft error correction
using time-shifted outputs. C-elements and keepers are added at the outputs

Hazard
due to

soft error

Hazard blocked
by C-element

OUT settles to
correct value

OUT3

C-OUT

< τ

<τ
τ

τ

OUT4

Clock edge

Figure 7.13
Soft error correction using time-shifted output.

IN1
Latch Latch

Latch

Weak
keeper

Weak
keeper

Latch

Clock

1D

C1
C C

C-element C-element

Q 1D

C1

Q

1D

OUT

C1
Q

1D

C1
Q

τ

Figure 7.14
Soft error correction in combinational logic and flip-flop using time-shifted output.

210 Network-on-Chip

of both master and slave stages to correct soft errors in combinational logic,
as well as soft errors in master and slave latches.

7.4.2 inter-router Link error Control

As discussed earlier in Section 7.2.3.1, capacitive crosstalk is one of the major
sources of a transient fault in NoC links. It introduces crosstalk noise (glitch),
crosstalk delay (both speedup and slowdown) that can violate the setup and
hold requirements of any design, and double switching error. Several tech-
niques have been proposed in literature to mitigate the ill effect of capacitive
crosstalk and will be covered in Section 7.4.2.1.

7.4.2.1 Capacitive Crosstalk Avoidance Techniques

The capacitive crosstalk avoidance techniques can be categorized as follows:

 1. Usage of shielding and duplicating wire
 2. Increase of inter-wire spacing
 3. Increase (decrease) of the driver strength of the victim (aggressor)

nets
 4. Usage of on-chip serialized link
 5. Crosstalk avoidance code (CAC)

Each of the above techniques is described as follows:

 1. Usage of shielding and duplicating wire is one of the most common
approaches to mitigate capacitive crosstalk. In the shielding tech-
nique, a ground or supply wire is inserted after every signal wire.
In the duplicating method, each signal wire is duplicated. Hence,
shielding and duplicating techniques will cause double the bus
width. Another shielding technique is half shielding, in which a
ground wire is inserted after every two signal wires. Shielding and
duplicating can be combined together to form a duplicate-and-shield
technique. Though simple, this method has the disadvantage of
requiring a significant number of extra wires. Applying the above
methods in a three-wire model, there is no opposite transitions (↑ ↓ ↑
or ↓ ↑ ↓) in all three wires, and hence can achieve different degrees of
delay reduction. The glitch width and height are also lesser than the
worst-case pattern. Table 7.2 depicts different shielding and dupli-
cating methods described above for an 8-bit data word and also
shows the length of the code word (n) along with the delay in the
victim line, assuming that the impact of nonadjacent aggressors has
negligible impact on the victim wire.

211Signal Integrity and Reliability of Network-on-Chip

 2. Increase inter-wire spacing is another common approach to reduce the
value of coupling capacitance and hence capacitive crosstalk. Unlike
shielding or duplicating, no extra wire has to be routed, and hence it
is easier to implement. Increasing the inter-wire spacing will increase
the wire pitch (pitch = width + space), and hence the wiring area.
The crosstalk delay of a three-wire model, as discussed in Section
7.2.3.1, is τ0 (1 + pλ), where λ is the ratio of coupling capacitance to
bulk capacitance, and the value of p in worst case is 4. Shielding or
duplicating will reduce the value of p from 4 to 3, 2, or 1 as shown
in Table 7.2 without changing the value of λ. However, increasing
inter-wire spacing will reduce the coupling capacitance and hence
the value of λ, without reducing p.

 3. Driver strength has a significant impact on signal transition time. When
there is no transition in victim wire and sharp transition in aggres-
sor wire, crosstalk noise will appear in the victim net. Reducing the
strength of aggressor’s driver will slow down its transition, which
helps to reduce the crosstalk noise, but at the same time, the aggressor
may violate its timing budget. Hence, driver strength should be prop-
erly adjusted. The similar explanation is also true for double switch-
ing error reduction. Increasing the driver strength of victim wire or
reducing the driver strength of aggressor wire will solve the problem
of double switching error. To address the crosstalk slowdown, increas-
ing the driver strength of victim or using lower threshold transistor
for victim’s driver will reduce delay. Similarly, weaker driver or driver
with high-threshold transistor for a victim wire will increase the data
path delay and hence can address the crosstalk speedup.

 4. On-chip serialization (OCS) technique (Lee et al. 2005) has already been
discussed elaborately in Chapter 6. Using OCS, the number of inter-
connects reduces drastically. For example, 4:1 serializer converts 32-bit

TABLe 7.2

Different Types of Shielding and Duplicating Techniques

Worst-Case
Pattern in k-bit
Data Word

Crosstalk
Avoidance
Techniques

Pattern Applied
(Code Word = n)

Delay on
Victim
Wire

↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
(k = 8)

Half-shielding ↑ ↓ G ↑ ↓ G ↑ ↓ G ↑ ↓
(n = 11)

τ0 (1 + 3λ)

Shielding ↑ G ↓ G ↑ G ↓ G ↑ G ↓ G ↑ G ↓
(n = 15)

τ0 (1 + 2λ)

Delay on
victim wire =
τ0 (1 + 4λ)

Duplicating ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓
(n = 16)

τ0 (1 + 2λ)

Duplicating
and shielding

↑ ↑ G ↓ ↓ G ↑ ↑ G ↓ ↓ G ↑ ↑ G ↓ ↓ G ↑ ↑ G ↓ ↓
(n = 23)

τ0 (1 + λ)

G, grounded shielding wire.

212 Network-on-Chip

data to 8-bit. Hence, the inter-wire spacing can be increased such that
after serialization also the serialized link can occupy the same wiring
area as earlier (unserialized link), thus reducing coupling capacitance.

 5. CAC is another approach to mitigate the effect of capacitive cross-
talk. It provides an elegant alternative to the above-mentioned
approaches and a common framework to address signal integrity
due to crosstalk. There are a number of CACs proposed in the lit-
erature that achieve different degrees of delay reduction. The fun-
damental idea of the CAC technique is to encode the data in such a
way that restricts the worst-case transition (↑ ↓ ↑ or ↓ ↑ ↓) in the adja-
cent wires. Different CAC techniques have been studied for han-
dling the above issue of interconnection links in the NoC paradigm
considering the trade-off between the power efficiency, the wiring
complexity, and the silicon area overhead. Coding maps k data bits
to n code bits resulting in an (n, k) code, where (n ≥ k). The overall
scheme is shown in Figure 7.15. All CACs are nonlinear. A binary
code is linear if and only if the modulo-2 sum of the two code words
is also a code word. The details of different CAC techniques are
discussed in Sections 7.4.2.1.1 through 7.4.2.1.4.

7.4.2.1.1 Forbidden Overlap Coding

If the worst-case transitions (↑ ↓ ↑ or ↓ ↑ ↓) are avoided, the maximum cou-
pling can be reduced to p = 3. This condition can be satisfied if and only
if a code word having the bit pattern 010 does not make a transition to a
code word having the pattern 101 at the same bit positions (Sridhara and
Shanbhag 2007). The codes that satisfy the above condition are referred to
as forbidden overlap codes (FOCs). The simplest method of satisfying the
forbidden overlap condition is half-shielding, in which a ground wire is
inserted after every two signal wires. Though simple, this method has the
disadvantage of requiring a significant number of extra wires. Another solu-
tion is to encode the data links such that the code words satisfy the forbidden
overlap condition. However, encoding all the bits at once is not feasible for
wide links due to the prohibitive size and complexity of the codec (encoder
and decoder) hardware. In practice, partial coding is adopted, in which the
links are divided into subchannels that are encoded using CACs. The sub-
channels are then combined in such a way as to avoid crosstalk occurrence
at their boundaries. Considering a 4-bit subchannel, the coding scheme is
expressed in Table 7.3 (Pande et al. 2006a).

Router RouterEncoder Decoder
k kn

Figure 7.15
Bus encoding scheme for NoC interconnect.

213Signal Integrity and Reliability of Network-on-Chip

For coding 32 bits with a 4-bit subchannel-based FOC (FOC4–5), eight such
blocks are needed. As a result of this, a 32-bit uncoded link will be converted
to a 40-bit coded link. By contrast, half-shielding requires a 47-bit link. In
the above FOC, two subchannels can be placed next to each other without
any shielding as shown in Figure 7.16. This scheme does not violate the FO
condition.

7.4.2.1.2 Forbidden Transition Coding

The maximum capacitive coupling, and hence the maximum delay, can be
reduced even further by extending the list of nonpermissible transitions.
By ensuring that the transitions between two successive codes do not cause
adjacent wires to switch in opposite directions (i.e., if a code word has a 01 bit
pattern, the subsequent code word cannot have a 10 bit pattern at the same
bit position, and vice versa), the coupling factor can be reduced to p = 2.

This condition is referred to as forbidden transition condition, and the
CACs satisfying it are known as forbidden transition codes (FTCs) (Sridhara
and Shanbhag 2007). Inserting a shielding wire after each signal line can
employ the simplest FTC. For wider links, a hierarchical encoding is more
suitable, where the inter-switch links are divided into subchannels that are
encoded individually. Considering a 3-bit subchannel, the coding scheme
is expressed in Table 7.4 (Pande et al. 2006a). In this case also, the subchan-
nels are combined in such a way that there is no forbidden transition at the

TABLe 7.3

Truth Table of FOC4–5

Data Bits Code Bits

D3 D2 D1 D0 C4 C3 C2 C1 C0

0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 0 0 1
0 0 1 1 0 0 1 0 1
0 1 0 0 0 0 0 1 1
0 1 0 1 0 0 1 1 1
0 1 1 0 1 0 0 1 1
0 1 1 1 1 0 1 1 1
1 0 0 0 1 0 0 0 0
1 0 0 1 1 0 1 0 0
1 0 1 0 1 0 0 0 1
1 0 1 1 1 0 1 0 1
1 1 0 0 1 1 0 0 0
1 1 0 1 1 1 1 0 0
1 1 1 0 1 1 0 0 1
1 1 1 1 1 1 1 0 1

214 Network-on-Chip

boundaries between them. Consequently, a 32-bit uncoded link will be con-
verted to a 53-bit coded link as shown in Figure 7.17. By contrast, shielding
requires a 63-bit link.

7.4.2.1.3 Forbidden Pattern Coding

The same reduction of the coupling factor as for FTCs (p = 2) can be achieved
by avoiding 010 and 101 bit patterns for each of the code words. This condi-
tion is referred to as forbidden pattern condition, and the corresponding CAC
is known as a forbidden pattern code (FPC) (Sridhara and Shanbhag 2007).
The simplest FPC code is realized by duplication, where each data bit is trans-
mitted using two adjacent wires. Considering a 4-bit subchannel, the coding

TABLe 7.4

Truth Table of FTC3–4

Data Bits Code Bits

D2 D1 D0 C3 C2 C1 C0

0 0 0 0 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 0 1
0 1 1 0 1 0 1
1 0 0 0 1 1 1
1 0 1 1 1 0 0
1 1 0 1 1 0 1
1 1 1 1 1 1 1

FOC_1
(4–5 coding)

FOC_2
(4–5 coding)

FOC_8
(4–5 coding)

32 bits 40 bits

Figure 7.16
Combining adjacent subchannels in FOC encoding.

215Signal Integrity and Reliability of Network-on-Chip

scheme is expressed in Table 7.5 (Pande et al. 2006a). While combining the sub-
channels, it is ensured that there is no forbidden pattern at the boundaries. As
a result of this, similar to the above two CACs, FPC also adds redundant bits to
the uncoded link and a 32-bit uncoded link is converted to a 54-bit coded link
as shown in Figure 7.18. By contrast, duplication requires a 64-bit link.

FTC_2
(3–4 coding)

FTC_11
(2–3 coding)

FTC_1
(3–4 coding)

32 bits 53 bits

GND

GND

Figure 7.17
Combining adjacent subchannels in FTC encoding.

TABLe 7.5

Truth Table of FPC4–5

Data Bits Code Bits

D3 D2 D1 D0 C4 C3 C2 C1 C0

0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 1 1 0
0 0 1 1 0 0 0 1 1
0 1 0 0 0 1 1 0 0
0 1 0 1 0 0 1 1 1
0 1 1 0 0 1 1 1 0
0 1 1 1 0 1 1 1 1
1 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 1
1 0 1 0 1 1 0 0 0
1 0 1 1 1 0 0 1 1
1 1 0 0 1 1 1 0 0
1 1 0 1 1 1 0 0 1
1 1 1 0 1 1 1 1 0
1 1 1 1 1 1 1 1 1

216 Network-on-Chip

7.4.2.1.4 One Lambda Coding

A minimum value of p = 1 can be achieved using one lambda coding (OLC).
This can be achieved if the transitions in victim wire and its two adjacent
wires show (1) a forbidden transition condition, (b) a forbidden pattern con-
dition, and (c) an additional constraint that two adjacent bit boundaries in
the codebook cannot both be 01 type or 10 type (forbidden adjacent bound-
ary pattern condition) (Sridhara and Shanbhag 2007). The simplest OLC is
duplication and shielding, where every bit is duplicated and shield wires are
inserted between adjacent pairs of duplicated bits. However, OLC results in
excessively large number of output wires; hence, no analysis has been per-
formed on it in literature.

In NoC, message passing communication is followed by wormhole
switching approach where packets are decomposed into flits (flow control
units) over which flow control is performed. Transient faults, except cross-
talk-induced faults, in NoC links can be handled in two ways: (1) error
 detection–retransmission and (2) error correction. Both the schemes are dis-
cussed in Sections 7.4.2.2 and 7.4.2.3, respectively.

7.4.2.2 Error Detection and Retransmission

Link errors have been studied extensively by the researchers, since they have
so far been considered the dominant source of errors in on-chip network
fabrics. They have been tackled within the context of two central themes:

FPC_1
(4–5 coding)

FPC_2
(4–5 coding)

FPC_8
(4–5 coding)

32 bits 54 bits

Figure 7.18
Combining adjacent sub-channels in FPC encoding.

217Signal Integrity and Reliability of Network-on-Chip

detection and retransmission. Error detection and retransmission can be
either end to end or switch to switch (Murali et al. 2005).

In the end-to-end error detection scheme, a parity bit or cyclic redundancy
check (CRC) bit is added to the packet. The parity or CRC encoder is added
to the sender network interface (NI) and the decoder is added to the receiver
NI. The error detection mechanism is performed only at the receiver NI. The
receiver NI sends a nonacknowledgment (NACK) or acknowledgment (ACK)
signal (labeled as credit signal in Figure 7.19a) back to the sender, depending
on whether the data contained an error or not. The sender will retransmit the
packet if an error is detected at the receiver NI. But if the error corrupts the
header flit, which contains the information of destination address, the packet
will perhaps not reach the destination. Therefore, the header flit is protected by
parity or CRC codes, which the switch checks at each hop traversal. If a switch
detects an error on a packet’s header flit, it drops the packet. To account for
errors on the ACK or NACK signals, a time-out mechanism is incorporated
for retransmission at the sender. The overall scheme is shown in Figure 7.19a.

Core

Core

Core

Core

Encoder

Encoder
Decoder Decoder

Decoder

Sender
NI

Receiver
NI

Sender
NI

Receiver
NI

Switch A

Switch A

Switch B

Switch B

Queuing buffers

Packet buffers

Credit signal

(a)

Credit signal

Data
ack

TMR
TMR

TMR

Packet buffers Valid
Circular

(queuing and retransmission buffers)
(b)

TMR
No data

Figure 7.19
Retransmission scheme: (a) End to end; (b) switch to switch.

218 Network-on-Chip

However, in the switch-to-switch error detection scheme, error detection is
performed at each switch input port and data retransmission occurs between
adjacent switches. There can be two types of switch-to-switch flow control
schemes: parity or CRC at flit level (ssf) and at packet level (ssp). In the ssp error
detection scheme, the transmitting switch adds parity or CRC bits to the pack-
et’s tail flit, whereas in ssf, the transmitting switch adds parity or CRC bits to
each flit. To handle the fault in ACK/NACK signal (credit signal), a triple modu-
lar redundancy (TMR) technique is used as shown in Figure 7.19b. Murali et al.
(2005) showed that the average packet latency is higher in end-to-end rather
than in switch-to-switch flow control. In switch-to-switch flow control, ssp has
more latency than ssf. In NoC, ssf flow control technique is widely used.

The error detection and retransmission methodology is discussed in
Sections 7.4.2.2.1 and 7.4.2.2.2.

7.4.2.2.1 Error Detection Methodology

For error detection, appending a parity bit (odd or even) to the data is the most
common example. But using a parity bit, all burst errors cannot be detected.
However, cyclic redundancy codes (CRCs) take advantage of the consider-
able burst error detection capability provided by cyclic codes. Common CRC
polynomials can detect the following types of errors: (1) all single-bit errors,
(2) all double-bit errors, (3) all odd number of errors, and (4) any burst error
for which the burst length is less than or equal to the polynomial length.

Linear feedback shift register (LFSR) with serial data feed has been used
since the 1960s to implement the CRC algorithm in hardware. For parallel
data transfer, parallelism has been introduced in CRC-generating hardware
(Albertengo and Sisto 1990; Campobello et al. 2003; Joshi et al. 2000; Pei and
Zukowski 1992; Shieh et al. 2001; Sprachmann et al. 2001). To present the par-
allel CRC architecture, the LFSR is considered as a synchronous finite-state
machine. State S holds the checksum bits. The message is fed to the input I
and the combinatorial network calculates the next state Snext from the cur-
rent state and the new input. The state machine calculates a new checksum
every clock cycle. For example, the LFSR-based hardware of the generator
polynomial g(x) = x3 + x2 + 1 is shown in Figure 7.20a and its parallel imple-
mentation is shown in Figure 7.20b. A parallel architecture for the LFSR is
able to include more than one bit of the message in a single clock cycle. For
example, a 4-bit input data word (i i i i3 2 1 0) with the same generator polynomial
is shown in Figure 7.21.

Therefore, for a 32-bit input, 32 XOR networks will be cascaded to form a
combinational network. The problem of this circuit is that it has large critical
path delay. Thus, the operating clock frequency will degrade. To improve the
performance of this circuit, a byte-wise CRC technique is used (Perez 1983).
In the byte-wise CRC technique, 32-bit data are broken into four bytes, and
for each byte, CRC operation is performed. Thus, four ACK signals will be
generated from the receiver. The ANDing of all the ACK signals is the final
ACK and this signal will come back to the sender.

219Signal Integrity and Reliability of Network-on-Chip

7.4.2.2.2 Retransmission Methodology

As the transmitter transmits each flit, it retains a copy in a retransmit flit
buffer until a correct receipt is acknowledged. As each flit is received, the
receiver checks the flit for errors. If the flit is received correctly, an acknowl-
edgment is sent to the transmitter. Upon receiving this acknowledgment,
the transmitter discards its copy of the flit. If a flit is received in error, the
sender will retransmit the faulty flit. There may be a possibility that the flits
are not reaching to the destination in order. For example, first payload flit
might be received before the retransmitted header flit of its packet. To avoid
such complication, it is easier to roll back transmission to the faulty flit and
retransmit all flits from the retransmit flit buffer starting at that point. This
policy is called go-back-N retransmission. In hop-by-hop (HBH) error control
(Park et al. 2006), go-back-N retransmission mechanism is used.

Another retransmission strategy is the selective repeat. When it is used,
any corrupted flit received at the receiver is discarded, but unaffected flits
are buffered. When the sender times out, only the unacknowledged flits are

S0 S1 + +S2

u(x)(a)

u(x)

Combinatorial network

State register

S0

S1

S3

(b)

+

+

Figure 7.20
Hardware implementation of g(x) = x3 + x2 + 1: (a) LFSR based; (b) finite-state machine based.

Combinatorial network

+

+

+

+

+

+

+

+

i3 i2

S2

i1

S1

i0

S0

State register

Figure 7.21
Parallel state machine of g(x) = x3 + x2 + 1 with 4-bit input.

220 Network-on-Chip

retransmitted. If such a flit arrives correctly, the receiver can deliver to the
network layer, in sequence, all the flits it has buffered. This retransmission
scheme needs a larger buffer space. In NoC, go-back-N retransmission is
widely used (Ali et al. 2007b; Bertozzi and Benini 2004; Pullini et al. 2005).

7.4.2.3 Error Correction

The error detection and retransmission scheme mentioned above suffers
from higher area requirement as it requires retransmission buffers.
Retransmission will give rise to multiple communications over the same
link, and hence ultimately it will not be energy efficient. Moreover, the per-
formance of the system is degraded due to retransmission. In the DSM era,
area and power are the major issues from the design perspective. A forward
error correction (FEC) technique, however, does not have this type of prob-
lem. Single error correction (SEC), for example, Hamming code (Lin and Costello
1983), is widely used as FEC in any VLSI design. The TMR method for error
correction in NoC links was proposed by Huang et al. (2008). Error correc-
tion is possible if the Hamming distance between any two code words in the
codebook is greater than one. In general, if the minimum Hamming distance
between any two code words is H, then all the (H – 1) errors appearing on
the bus can be detected and (H – 1)/2 errors can be corrected. Error-correcting
code (ECC) is a linear code (Sridhara and Shanbhag 2005).

With increasing complexity, decreasing power supply voltage, and higher
switching speeds, single-error-correcting capabilities will not sufficiently
increase the error resilience of the system implemented in the current and
forthcoming ultra-DSM (UDSM) technologies. Hence, multiple error-correcting
(MEC) codes are necessary to address this issue. MEC schemes add more
redundancy than the SEC ones. The major challenge in applying the exist-
ing MEC schemes in high-speed NoCs are the delay of the codec (encoder
and decoder) module. Bose–Chaudhuri–Hocquenghem (BCH) code, Reed–
Solomon (RS) code, Viterbi code, and Turbo code are widely used for MEC in
off-chip communication. The codec delay of these codes is quite large, and
the summation of wire and codec delay will fail to meet the targeted clock
cycle budget in high-speed NoCs. Hybrid techniques (Murali et al. 2005)
provide both error correction and retransmission and allow for more robust
protection of data. Hybrid solutions compensate for the limitations of ECCs.
For example, SEC and double error detection (DED) codes can correct at most
one error, but can detect double-bit errors. Therefore, upon detection of a
double-bit error, the SEC/DED unit may invoke a retransmission mechanism.

In the current and forthcoming UDSM technologies, the burst error is
likely to better capture the nature of many on-chip errors (Benini and
Micheli 2006). In the work of Zimmer and Jantsch (2003), a conventional fault
model for on-chip buses (Hedge and Shanbhag 2000) has been replaced by a
new fault model to support the burst error. It also proposes a burst error cor-
rection technique for NoC links. The overall scheme is shown in Figure 7.22.

221Signal Integrity and Reliability of Network-on-Chip

In Figure 7.22, a 32-bit output data from a transmitting router is split into
eight groups. Each group is encoded separately by using Hamming(7,4)
encoder. Thus, eight bits (one from each group) can be corrected by this
scheme. To support burst error correction, the output of the Hamming encoder
is fed to an interleaver having an interleaving degree of 8. The deinterleaver
module rearranges its input to get back the 56-bit encoded output. This 56-bit
data is again split into eight groups. Each group is decoded separately by
using the Hamming decoder. If the burst error affects any eight contiguous
wires in the communicating channel, this scheme corrects it properly.

7.5 Unified Coding Framework

With shrinking feature sizes, scaling of supply voltages, increasing intercon-
nect density, and faster clock rates, the NoC suffers from three major prob-
lems: (1) power consumption due to transition, (2) capacitive crosstalk, and
(3) reliability. Sridhara and Shanbhag (2005) proposed a unified framework
from which codes are derived that jointly optimizes power, delay, and reli-
ability. The overall scheme is shown in Figure 7.23.

Low-power code (LPC), CAC, and ECC can be combined into a system if
the following conditions are satisfied.

 1. CAC needs to be the outermost code as, in general, it involves non-
linear and disruptive mapping from data to code word.

 2. LPC can follow CAC as long as it does not destroy the peak coupling
transition constraint of CAC. The additional information bits gener-
ated by LPC need to be encoded through a linear CAC to ensure that
they do not suffer from crosstalk delay.

Ro
ut

er

In
te

rle
av

er

D
ei

nt
er

le
av

er

Ro
ut

er32 56 32

4

4

4

7

7

7

7

7

7

4

4

4

HC 1
(7,4)

HC 1
(4,7)

HC 2
(4,7)

HC 2
(7,4)

HC 8
(7,4)

HC 8
(4,7)

Figure 7.22
Burst error correction in link. HC, Hamming code.

222 Network-on-Chip

 3. ECC needs to be systematic to ensure that the reduction in transition
activity and the peak coupling transition constraint are maintained.

 4. The additional parity bits generated by ECC need to be encoded
through a linear CAC to ensure that they do not suffer from cross-
talk delay.

A framework satisfying the above conditions is shown in Figure 7.23. LXC1
and LXC2 are linear CACs based on either shielding or duplication. Nonlinear
CACs cannot be used because error correction has to be done prior to any
other decoding at the receiver. In Figure 7.23, a k-bit input is coded using
CAC to get an n-bit code word. The n-bit code word is further encoded to
reduce the average transitions through LPC, resulting in p additional low-
power information bits. ECC generates m parity bits for the (n + p) code bits.
The m parity bits and p low-power bits are further encoded for crosstalk
avoidance to obtain mc and pc bits, respectively, that are sent over the bus
along with n code bits. The total number of wires required to encode a k-bit
bus is thus (n + pc + mc). A variety of codes based on the unified framework
that allow for a trade-off between delay, power, area, and reliability are pre-
sented in Sections 7.5.1 through 7.5.4.

7.5.1 Joint CAC and LPC Scheme (CAC + LPC)

Combining LPC and CAC codes (Sridhara and Shanbhag 2005) is a hard
problem as both are nonlinear codes and, even when such a combination
is possible, the resulting code is complex. For example, it is not possible to
 combine a bus-invert (BI) coding with FTC or FOC as inverting an FTC or FOC
code word destroys its crosstalk avoidance property. However, FTC reduces
the average coupling power dissipation as it avoids the high-power-consuming
opposing transitions on adjacent wires. Thus, FTC can independently be
used for crosstalk avoidance and low power. While comparing with shield-
ing and duplicating techniques, CAC will introduce an extra codec overhead
in terms of both area and energy consumption. To address this issue, Pande
et al. (2006a) incorporated the above-mentioned CAC techniques in a 64-IP

k n

p pc

mc

n

m

Nonlinear
CAC LPC

ECC

LXC1

LXC2

Figure 7.23
A unified framework.

223Signal Integrity and Reliability of Network-on-Chip

mesh-based NoC at 130-nm technology. A thorough cost evaluation has been
carried out with varying λ, where λ is the ratio of coupling capacitance to
bulk capacitance. Any coding scheme is energy efficient if (Euncoded – Ecoded)/
Ecodec > 1, where Euncoded, Ecoded, and Ecodec denote the energy consumptions
of uncoded link, coded link, and codec module, respectively. They observed
that for FOC to be energy efficient at 130-nm technology, the value of λ has
to be greater than 4. At λ = 4, FOC is not energy efficient, whereas both FPC
and FTC are energy efficient. Energy savings in FTC scheme is the highest
and FPC occupies the second position among the three. However, FPC can
be combined with BI-based LPC schemes. This is because inverting an FPC
code word maintains the FP condition. In a joint code with FPC and BI-based
LPC, the invert bits are encoded using duplication code to avoid crosstalk
delay in the invert bits, as shown in Figure 7.24. The joint code is a concatena-
tion of the two component codes and no further optimization is possible.
The codec overhead of the joint code is the sum of codec overheads of the
component codes, and hence, the joint code is complex.

7.5.2 Joint LPC and eCC Scheme (LPC + eCC)

The joint LPC and ECC scheme is shown in Figure 7.25a. Here, BI and
Hamming SEC codes are combined. The scheme is called BI Hamming
(BIH) code (Sridhara and Shanbhag 2005). These codes are suitable for long
DSM buses where reduction of power consumption is important but volt-
age scaling is not possible due to the presence of DSM noise. A property
of XOR operation is that if an odd (even) number of inputs of an XOR gate
are inverted, then the output is inverted (unchanged). Therefore, after com-
puting the invert bit from the BI code, the output odd parity bit is condi-
tionally inverted using the invert bit. Thus, parity generation and invert bit

k m

m

nInvert
lines

p q FPC

LPC
(1)

inv

inv

LPC
(4)

(1)

FPC
(2)

FPC
(7)

FPC
(8)

CAC
(FPC)

CAC
(FPC)LPC

(BI)

32 bits

4–5

4–5

4–5

4–5

62
 b

its

Figure 7.24
Joint CAC and LPC scheme.

224 Network-on-Chip

 computation can occur in parallel, reducing the total delay to the maximum
of the two and the delay of an inverter.

7.5.3 Joint CAC and eCC Scheme (CAC + eCC)

To make the system tolerant against transient errors other than crosstalk, in
addition to CAC, there is a need to incorporate the FEC codes into the NoC data
stream. There are a few joint CAC and SEC codes, among which the duplicate-
add-parity (DAP) code (Sridhara and Shanbhag 2005), FTC + Hamming code
(Sridhara and Shanbhag 2005), boundary shift code (BSC) (Patel and Markov
2003), and modified dual-rail (MDR) code (Rossi et al. 2005) reduce the maxi-
mum coupling to p = 2. In FTC + Hamming code, FTC(4,3) and hamming
codes with shielding are used. However, the coding overhead of this joint
coding scheme is large as the joint code is a concatenation of the two individ-
ual codes. A significantly lower overhead joint coding scheme is DAP where
the incoming bits are duplicated to reduce crosstalk delay (FPC). The duplica-
tion scheme has a Hamming distance of 2 as any two distinct code words dif-
fer in at least two bits. By appending the parity bit, the Hamming distance can
be increased to 3, and thus, a single error can be corrected. Figure 7.25b shows
the encoder and decoder implementation of the overall scheme.

The MDR code is very similar to the DAP (Pande et al. 2006b). In the dual-
rail code, considering a link of k information bits, m = k + 1 check bits are
added, leading to a code word length of n = k + m = 2k + 1. The k + 1 check
bits are defined with the following equations:

 c d i ki i= = − for to, ()0 1

 c d d d dk k= ⊕ ⊕ ⊕ ⊕ −0 1 2 1

In MDR, two copies of parity bits ck are placed adjacent to the other code
word bits to reduce crosstalk.

Parity
b0 b0

b1b1

bk−1 bk−1

BI

(a) (b)

Metric
computation

Encoder
Duplication

Parity

Odd

Parity

2:1
MUX

2:1
MUX

2:1
MUX

Decoder

Figure 7.25
(a) Joint LPC and ECC: BIH; (b) joint CAC and ECC: DAP.

225Signal Integrity and Reliability of Network-on-Chip

The BSC is very similar to DAP in that it uses duplication and one parity
bit to achieve crosstalk avoidance and SEC. However, the fundamental dif-
ference is that at each clock cycle, the parity bit is placed on the opposite side
of the encoded flit. Table 7.6 shows examples of different CAC + ECC code
words. The parity bits are indicated in bold. Pande et al. (2006b) observed
that the energy saving in DAP and MDR is almost the same for mesh and
folded torus topologies at 130-nm technology. The BSC scheme has less
energy saving compared to DAP and MDR.

Another joint CAC and ECC code, triplication error correction coding, was
proposed by Huang et al. (2008). The coding scheme shown in Figure 7.26
is a SEC code by triplication of each bit. For the triplication error correction
coding, the Hamming distance of each bit is equal to 3. Therefore, each bit
can be corrected by itself if there are no more than one error bits in the three
triplicate bits. The error bit can be corrected by a majority gate. The function
of the majority gate is shown in Figure 7.26.

TABLe 7.6

Coded Flit Structure for a Different CAC + ECC Scheme

Clock Cycle Flit BSC DAP MDR

1 0010 1 00001100 1 00001100 11 00001100
2 0010 00001100 1 1 00001100 11 00001100
3 1100 0 11110000 0 11110000 00 11110000
4 0100 00110000 1 1 00110000 11 00110000
5 0011 0 00001111 0 00001111 00 00001111

Note: The parity bits are indicated in bold.

X0 TMR

TMR

TMR

TMR FM

FM = ab + bc + ca

Triplication

Channels

Decoder

a
b
cX1

Xk−1

X0

X1

Xk−1

Majority gate:

Figure 7.26
Triplication error correction coding.

226 Network-on-Chip

To address MEC codes along with crosstalk avoidance capabilities (CAC/
MEC), Ganguly et al. (2007) proposed crosstalk avoidance and double
error correction (CADEC) codes. The encoding scheme is a combination of
Hamming encoding followed by DAP or BSC. The 32-bit word is first encoded
by a standard (38,32) shortened single-error-correcting Hamming code and
then encoded by either DAP or BSC scheme, and also adds a parity bit calcu-
lated from one Hamming copy. The CADEC encoder is shown in Figure 7.27a.
A standard Hamming code has a Hamming distance of 3 between adjacent
code words. On duplication, the Hamming distance becomes 6 and after
adding the extra parity bit, this distance becomes 7. Thus, it has the ability
of triple error correction. But the authors restricted themselves up to double
error correction due to higher complexity involved in triple error correction.
The CADEC decoding scheme consists of the following steps:

 1. The parity bits of the individual Hamming copies are calculated
(p1 and p2) and compared.

 2. If these two parities obtained in step 1 differ, then the copy whose
parity matches with the transmitted parity (p0) is selected as the
output copy of the first stage.

 3. If the two parity bits are equal, then any one copy is sent forward
for syndrome detection; if the syndrome obtained for this copy is
zero, then it is selected as the output of the first stage. Otherwise, the
alternate copy is selected.

77-bit input

38

38

38

38

38

38

38

Syndrome
detection

38

38

381

1

0 (38,32)
Hamming
decoder0

0

1

Duplicating set
of 38 bits

One set of 38 bits
Parity from

first copy, p1

Parity from
second copy, p2

32-bit
output

(38,32)
Hamming
encoding

32-bit input

77-bit output

32 38

38 Parity, bit 76

Duplicating each bit

Hamming
encoding DAP duplication

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

bit 74
bit 75

(a)

Sent
parity, p0

Stage I

(b)
Stage II

Figure 7.27
CADEC: (a) encoder; (b) decoder.

227Signal Integrity and Reliability of Network-on-Chip

 4. The output of the first stage is sent for (38,32) Hamming decoder,
finally producing the decoded output of the CADEC scheme.

The circuit-level implementation of the decoding scheme for CADEC
is shown in Figure 7.27b. It can be observed that the channel width after
CADEC encoder increases to almost 2.5 times of original uncoded data, and
hence, it may introduce congestion in signal routing.

7.5.4 Joint CAC, LPC, and eCC Scheme (CAC + LPC + eCC)

Figure 7.28 shows a scheme for joint CAC, LPC, and ECC code to achieve
low-power, crosstalk avoidance, and error correction properties. Here
joint LPC and ECC (BIH) are combined with joint CAC and ECC (DAP).
The joint code is referred as a DAP bus-invert (DAPBI) code. The invert
bit is duplicated to ensure error correction and crosstalk avoidance for
the bit.

7.6 Energy and Reliability Trade-Off in Coding Technique

It may be noted that an accurate characterization of error phenomena due
to DSM noise (such as power grid fluctuations, EMI, crosstalk, or particle
hits) is difficult as it requires the knowledge of various noise sources and
their dependence on physical and electrical parameters. Reducing supply
voltage will increase the bit error probability. Every time a transfer occurs

BIHBI

Metric
computation

Encoder Decoder

DAP DAP

0 2:1
Mux

2:1
Mux

1

0

1

BIH

Figure 7.28
Joint CAC, LPC, and ECC.

228 Network-on-Chip

across a wire, it can make an error with a certain probability ε. The following
assumptions can be made to simplify the modeling problem:

 1. A Gaussian distributed noise voltage VN with variance σN
2 and zero

mean is added to the signal waveform to represent the cumulative
effect of all noise sources.

 2. The variance σN
2 of the noise voltage VN is independent of VDD.

 3. Errors occurring on different link lines are supposed to be
independent.

The probability of bit error (ε) is given by (Hedge and Shanbhag 2000)

 ε
σ

= Q
Vsw

2 N

where Vsw is the voltage swing and Q(x) is the Gaussian pulse:

 Q x yy() (/)=
∞

∞

−∫1
2

2 2

π
e d

This model accounts for the decrease of noise margins and hence an increase
in the bit error rate ε (BER) as shown in Figure 7.29.

Figure 7.29 indicates that as VDD reduces, the two curves approach each other,
thereby increasing the overlap area, and hence they increase the probability of bit
error (ε). By incorporating the error correction technique, the supply voltage can
be reduced to save power without compromising the reliability of the system.

0 VDD/2

σN σN

VDD

1.25

1.00

0.75

N
oi

se
 v

ol
ta

ge
 (V

N
)

0.50

0.25

0.00

Supply voltage (VDD)

Figure 7.29
Dependency between bit error probability and supply voltage.

229Signal Integrity and Reliability of Network-on-Chip

As error correction techniques enhance the reliability of on-chip interconnects
to some degree, these will allow the designers to go for power consumption and
reliability trade-off. For a given σN

2 , the bit error probability increases by decreas-
ing the voltage swing of signals. The error correction techniques allow decreasing
the voltage swing of signal and guaranteeing the reliability at the same time if and
only if Equation 7.3 satisfies where Puncoded (ε) is the probability of word errors in
the uncoded case with full swing voltage and Pecc(ε) is the residual word error
probability with ECC at lower swing voltage VDD() :

 Puncoded ecc() P ()ε ε≥ (7.3)

In order to obtain the lowest supply voltage for a specific error correction
technique under the same level reliability of uncoded data, the supply volt-
age can be written as

 V V
Q
Q

PDD DD ecc uncodedsuch that= × =
−

−
()
()

() P ()
1

1

ε
ε

ε ε (7.4)

In the above equation, VDD is the nominal supply voltage in the absence of any
coding technique such that P Pecc uncoded(())ε ε= . Therefore, to compute the
VDD or a specific coding scheme, the residual word error probability needs
to be computed. For example, for a k-bit link, the residual word error prob-
abilities for a small bit error rate (ε) of uncoded, hamming, DAP, CADEC, and
Self-corrected green coding schemes are k k k k k kε ε ε ε, () / , (),2 2 2 2 33 1 2 4+ − ,
and ()3 22 3k kε ε− , respectively.

Ganguly et al. (2007) showed that as CADEC has higher error correction
capability compared to DAP, it allows maximum voltage swing reduction.

Although an individual bit error probability in the random bit error rate
model is independent of each other, in a burst error scenario this consider-
ation is no longer valid and demands for a burst word error rate model. The
burst word error probability of the above error correction scheme has been
formulated below.

Assuming an individual bit error rate to be є, the probability that a burst
error has affected i consecutive lines in an n-bit link (i ≤ n) is ∈ −∈ −i n i()1 .
Thus, the total burst error probability of any of the i consecutive lines get-
ting affected can be computed by varying the set of lines under consid-
eration. Thus, for a specific value of i (i < n), the word error probability is
n i n i×∈ −∈× −()()1 , whereas, for i = n, there is only one combination. Figure 7.22
shows a burst error correction scheme with an interleaving degree of 8,
which can correct errors in at most eight adjacent wires whose link width n
is 56. If the burst length is more than 8, the above scheme will fail. Therefore,
the burst word error probability can be written as

 P
i

i i
burst word error = × ∈ −∈

+∈
=

−∑ ()56 1
9

55
56 56 (7.5)

230 Network-on-Chip

For smaller values of є, the above expression converges to Pburst word error ≈ ∈56 9 .
At this point, the metric of interest is the energy reduction due to coding
techniques compared to the uncoded case. Different coding schemes have
different number of bits after encoding. Hence, a fair comparison in terms
of energy-saving demands to consider the redundant bits. The energy con-
sumption due to uncoded link (Euncoded) forms a reference to evaluate differ-
ent coding techniques.

 Energy reduction uncoded coded codec

uncoded
(%)

()= − +

E E E
E

× 100% (7.6)

Reducing the supply voltage of the router without knowing the workload
will slow down the router, which in turn affects the overall performance of
the network. Thus, for a fair comparison of network energy consumption,
nominal supply voltage has to be applied to the router and codec module,
whereas the driver of the interconnection link has to be driven by the low-
ered voltage using static voltage scaling to save power consumption in the
links. Moreover, when the signal crosses from a low-voltage domain to a
high-voltage domain, a level shifter has to be inserted at the receiving router.
Due to reduction of supply voltage in the driver and repeater, the link delay
will increase. Moreover, the codec will also introduce an extra delay. Thus, it
has to be ensured that after applying this technique, timing requirement of
that path is still meeting.

To address the energy consumption of the joint codes compared to the
uncoded link, Ganguly et al. (2007) evaluated the energy consumption of
uncoded, DAP, BSC, MDR, and CADEC techniques on 64-IP mesh-based and
folded torus-based NoCs at 130-nm technology keeping the word error prob-
ability of 10–20. The voltage swing reduction is computed for each type of
coding scheme and the reduce voltage is applied to the drivers and repeat-
ers of the links. It has been observed that energy consumption is lesser in
all the coding techniques compared to the uncoded link. CADEC achieves
more energy saving compared to other two joint codes. The energy savings
of DAP, BSC, and MDR are almost similar.

7.7 Summary

Signal integrity and reliability issues in NoC need to be addressed efficiently
to solve the problems of transmission errors and power consumption. A con-
siderable amount of work has been performed by various research groups
across the globe to solve these problems. This chapter has presented a com-
prehensive review of the same. It has introduced the sources of different types
of faults that affect the DSM technology and their controlling techniques in

231Signal Integrity and Reliability of Network-on-Chip

NoC platform. Among the signal integrity issues, it has presented a detailed
study of capacitive crosstalk effects on the NoC link and avoidance tech-
niques. This chapter also focused on the effects of soft error and correction
techniques in latches, flip-flops, combinational logic, and SRAM. It has dis-
cussed about the error detection and correction approaches due to transient
faults. To address crosstalk avoidance, power minimization in the links, and
reliability in communication jointly, it highlights a unified coding frame-
work. A number of joint coding schemes have been discussed to address the
signal integrity issues. As error correction techniques enhance the reliabil-
ity of on-chip interconnects to some degree, these will allow the designers
to go for power consumption and reliability trade-off. The error correction
techniques allow decreasing the voltage swing of signal, and at the same
time guaranteeing the reliability of the encoded data under the same reli-
ability level of uncoded data. The energy reliability trade-off of different
coding techniques has also been discussed. Thus, this chapter surveys the
full gamut of research carried out to address signal integrity and reliability
issues in NoC design of DSM technology.

Chapter 8 will focus on the challenges of NoC testing in achieving a suf-
ficient fault coverage under a set of fault models relevant to NoC characteris-
tics, under constraints such as test time, test power dissipation, less area over
head, and test resources.

References

Albertengo, G. and Sisto, R. 1990. Parallel CRC generation. IEEE Micro, vol. 10, no. 5,
pp. 63–71.

Ali, M., Welzl, M., and Hessler, S. 2007a. A fault tolerant mechanism for handling
permanent and transient failures in a network on chip. Proceedings of IEEE
International Conference on Information Technology, April 2–4, Las Vegas, NV,
IEEE, pp. 1027–1032.

Ali, M., Welzl, M., Hessler, S., and Hellebrand, S. 2007b. An efficient fault tolerant
mechanism to deal with permanent and transient failures in a network on chip.
International Journal of High Performance Systems Architecture, vol. 1, no. 2, pp.
113–123.

Asadi, H. and Tahoori, M. 2006. Soft error derating computation in sequential cir-
cuits. Proceedings of IEEE/ACM International Conference on Computer Aided Design,
November 5–9, San Jose, CA, IEEE, pp. 497–501.

Benini, L. and Micheli, G. D. 2006. Networks on Chips: Technology and Tools. Morgan
Kaufmann Publishers, San Francisco, CA.

Bertozzi, D. and Benini, L. 2004. Xpipes: A network-on-chip architecture for gigascale
system-on-chip. IEEE Circuits and Systems Magazine, vol. 4, no. 2, pp. 18–21.

Campobello, G., Patane, G., and Russo, M. 2003. Parallel CRC realization. IEEE
Transactions on Computers, vol. 52, no. 10, pp. 1312–1319.

232 Network-on-Chip

Chen, K. H. and Chiu, G. M. 1998. Fault-tolerant routing algorithm for meshes with-
out using virtual channels. Journal of Information Science and Engineering, vol. 14,
pp. 765–783.

Chen, W., Gupta, S. K., and Breuer, M. A. 1997. Analytic models for crosstalk delay
and pulse analysis under non-ideal inputs. Proceedings of International Test
Conference, November 1–6, Washington, DC, IEEE, pp. 809–818.

Cuviello, M., Dey, S., Bai, X., and Zhao, Y. 1999. Fault modeling and simulation for crosstalk
in system-on-chip interconnects. Proceedings of IEEE/ACM International Conference on
Computer Aided Design, November 7–11, San Jose, CA, IEEE, pp. 297–303.

Dally, W. J. and Poulton, J. H. 1998. Digital Systems Engineering. Cambridge University
Press, Cambridge, UK.

Dally, W. J. and Towles, B. 2004. Principles and Practices of Interconnection Networks.
Morgan Kaufmann Publishers, San Francisco, CA.

Fick, D., Orio, A. D., Chen, G., Bertacco, V., Sylvester, D., and Blaauw, D. 2009.
A highly resilient routing algorithm for fault-tolerant NoCs. Proceedings of
Design, Automation and Test in Europe Conference, April 20–24, Nice, France, IEEE,
pp. 21–26.

Fukushima, Y., Fukushi, M., and Horiguchi, S. 2009. Fault-tolerant routing algorithm
for network on chip without virtual channels. Proceedings of IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, October 7–9, Chicago,
IL, IEEE, pp. 313–321.

Ganguly, A., Pande, P. P., Belzer, B. and Grecu, C. 2007. Addressing signal integrity in
networks on chip interconnects through crosstalk-aware double error correction
coding. Proceedings of IEEE Computer Society Annual Symposium on VLSI, March
9–11, Porto Alegre, Brazil, IEEE, pp. 317–324.

Glass, C. J. and Ni, L. 1996. Fault-tolerant wormhole routing in meshes without vir-
tual channels. IEEE Transaction on Parallel and Distributed Systems, vol. 7, no. 6,
pp. 620–635.

Hedge, R. and Shanbhag, N. R. 2000. Toward achieving energy efficiency in presence
of deep submicron noise. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 8, no. 4, pp. 379–391.

Huang, P. T., Fang, W. L., Wang, Y. L. and Hwang, W. 2008. Low power and reliable
interconnection with self-corrected green coding scheme for network-on-chip.
Proceedings of ACM/IEEE International Symposium on Networks-on-Chip, April
7–10, Newcastle upon Tyne, IEEE, pp. 77–83.

Ismail, Y. I., Friedman, E. G., and Neves, J. L. 1998. Figures of merit to characterize the
importance of on-chip inductance. Proceedings of Design Automation Conference,
June 15–19, San Francisco, CA, IEEE, pp. 560–565.

Joshi, S. M., Dubey, P. K., and Kaplan, M. A. 2000. A new parallel algorithm for
CRC generation. IEEE International Conference on Communication, June 18–22,
New Orleans, LA, IEEE, pp. 1764–1768.

Kumar, S. V., Kim, C. H., and Sapatnekar, S. S. 2006. An analytical model for negative
bias temperature instability. Proceedings of IEEE/ACM International Conference on
Computer Aided Design, pp. 493–496.

Lee, S. J., Lee, K., and Yoo, H. J. 2005. Analysis and implementation of practical,
cost-effective networks on chips. IEEE Design & Test Computers, vol. 22, no. 5,
pp. 422–433.

Lin, S. and Costello, D. J. 1983. Error Control Coding: Fundamentals and Applications.
Prentice Hall, New Jersey.

233Signal Integrity and Reliability of Network-on-Chip

Linder, D. H. and Harden, J. C. 1991. An adaptive and fault-tolerant wormhole routing
strategies for k-ary n-cubes. IEEE Transactions on Computer, vol. 40, no. 1, pp. 2–12.

Mitra, S., Zhang, M., Mak, T. M., Seifert, N., Zia, V., and Kim, K. S. 2005. Logic soft
errors: A major barrier to robust platform design. Proceedings of International Test
Conference, November 8, Austin, TX, IEEE, pp. 687–696.

Mitra, S., Zhang, M., Seifert, N., Mak, T. M., and Kim, K. S. 2006a. Soft error resilient
system design through error correction. IFIP International Conference on VLSI,
October 16–18, Nice, France, IEEE, pp. 332–337.

Mitra, S., Zhang, M., Waqas, S., Seifert, N., Gill, B., and Kim, K. S. 2006b. Combinational
logic soft error correction. Proceedings of IEEE International Test Conference,
pp. 29.2.1–29.2.9, October, Santa Clara, CA, IEEE.

Murali, S., Theocharides, T., Vijaykrishnan, N., Irwin, M. J., Benini, L., and Micheli, G. D.
2005. Analysis of error recovery schemes for Networks on Chips. Proceedings of
IEEE Design and Test of Computers, pp. 434–442, September–October, IEEE.

Nazarian, S., Pedram, M., and Tuncer, E. 2005. An empirical study of crosstalk in
VDSM technologies. Proceedings of ACM Great Lakes symposium on VLSI, April
17–19, New York, NY, ACM, pp. 317–322.

Nguyen, H. T. and Yagil, Y. 2003. A systematic approach to SER estimation and
 solutions. Proceedings of IEEE International Reliability Physics Symposium,
pp. 60–70.

Pande, P. P., Ganguly, A., Feero, B., Belzer, B., and Grecu, C. 2006a. Design of low
power & reliable networks on chip through joint crosstalk avoidance and forward
error correction coding. Proceedings of IEEE International Symposium on Defect and
Fault-Tolerance in VLSI Systems, October 2006, Arlington, VA, IEEE, pp. 466–476.

Pande, P. P., Zhu, H., Ganguly, A., and Grecu, C. 2006b. Energy reduction through
crosstalk avoidance coding in NoC paradigm. Proceedings of EUROMICRO
Conference on Digital System Design, August 30–September 1, Dubrovnik, IEEE,
pp. 689–695.

Park, D., Nicopoulos, C. A., Kim, J., Vijaykrishnan, N., and Das, C. R. 2006. Exploring
fault-tolerant network-on-chip architectures. Proceedings of International Conference
on Dependable Systems and Networks, June 25–28, Philadelphia, PA, IEEE, pp. 93–102.

Patel, K. N. and Markov, I. L. 2003. Error-correction and crosstalk avoidance in DSM
busses. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Special
Issue for System Level Interconnect Prediction, vol. 12, no. 10, pp. 1–5.

Patooghy, A. and Miremadi, S. G. 2009. XYX: A power & performance efficient fault-
tolerant routing algorithm for network on chip. Proceedings of Parallel, Distributed,
and Network-based Processing, February 18–20, Weimer, IEEE, pp. 245–251.

Pei, T. B. and Zukowski, C. 1992. High-speed parallel CRC circuits in VLSI. IEEE
Transactions on Communications, vol. 40, no. 4, pp. 653–657.

Perez, A. 1983. Byte-wise CRC Calculation. IEEE Micro, vol. 3, no. 3, pp. 40–50.
Pullini, A., Angiolini, F., Bertozzi, D., and Benini, L. 2005. Fault tolerance overhead

in network-on-chip flow control schemes. Proceedings of Integrated Circuits and
Systems Design, September 4–7, Florianópolis, Brazil, IEEE, pp. 224–229.

Rossi, D., Metra, C., Nieuwland, A. K., and Katoch, A. 2005. New ECC for cross-
talk impact minimization. IEEE Design and Test of Computers, vol. 22, no. 4,
pp. 340–348.

Shieh, M. D., Sheu, M. H., Chen, C. H., and Lo, H. F. 2001. A systematic approach
for parallel CRC computations. Journal of Information Science and Engineering,
vol. 17, pp. 445–461.

234 Network-on-Chip

Sprachmann, M. 2001. Automatic generation of parallel CRC circuits. IEEE Design and
Test of Computers, vol. 18, no. 3, pp. 108–114.

Sridhara, S. R. and Shanbhag, N. R. 2005. Coding for system-on-chip networks:
A unified framework. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 13, no. 6, pp. 655–667.

Sridhara, S. R. and Shanbhag, N. R. 2007. Coding for reliable on-chip buses: A class of
fundamental bounds and practical codes. IEEE Transactions on CAD of Integrated
Circuits and Systems, vol. 26, no. 5, pp. 977–982.

Valinataj, M., Mohammadi, S., Safari, S., and Plosila, J. 2009. A link failure aware rout-
ing algorithm for networks-on-chip in nano technologies. Proceedings of IEEE
Conference on Nanotechnology, July 26–30, Genoa, Italy, IEEE, pp. 687–690.

Wang, L. T., Wu, C. W., and Wen, X. 2006. VLSI Test Principles and Architectures. Morgan
Kaufmann Publisher. San Francisco, CA.

Wu, J. 2003. A fault-tolerant and deadlock-free routing protocol in 2D meshes
based on odd-even turn model. IEEE Transactions on Computers, vol. 52, no. 9,
pp. 1154–1169.

Zhang, M., Mitra, S., Mak, T. M., Seifert, N., Wang, N. J., Shi, Q., Kim, K. S., Shanbhag,
N. R., and Patel, S. J. 2006. Sequential element design with built-in soft error
resilience. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 14, no. 12, pp. 1368–1378.

Zimmer, H. and Jantsch, A. 2003. A fault model notation and error-control scheme
for switch-to-switch buses in a network-on-chip. Proceedings of the International
Conference on Hardware/Software Codesign and System Synthesis, October 1–3,
Newport Beach, CA, IEEE, pp. 188–193.

235

8
Testing of Network-on-Chip Architectures

8.1 Introduction

Testing network-on-chip (NoC) architectures is very challenging. In fact, the
problem is difficult for any system-on-chip (SoC) design paradigm. In SoC,
the intellectual property (IP) cores are integrated into a system design. A SoC
integrator does not possess the detailed knowledge about the implementa-
tion of individual cores in the system. The netlist-level description, required
for running a test generation tool, is generally not provided by the core ven-
dors due to IP rights. The layout-level description of the cores provided by
the vendors cannot act as input for the test generation process. Hence, the
system integrator has to depend upon the test sets provided by the core
vendors. However, core vendors, in the absence of knowledge about the
final integrated SoC platform, cannot generate a very compact test set for
their core. The core vendors do provide a test set that can ensure the cor-
rectness of only the core, not the whole integrated system. The test set pro-
vided by the core vendor needs to be applied to the input of the core and
the responses are to be observed. This poses a challenge as the input–output
lines of the cores, deeply embedded inside the chip, are not directly acces-
sible from the system pins. In SoC platforms, the problem is often resolved
by having dedicated test access mechanism (TAM) for the chip. The TAM is
accessible from the input/output pins of the chip. The individual cores can
be accessed via this access mechanism. Several different access mechanisms
have been proposed; however, the most elegant solution is to have one or
more dedicated bus(es) for the test access. In test mode, the test signals car-
ried by the TAM lines are applied to the core, instead of functional inputs.
Similarly, the responses from the core, instead of being applied on other
cores, are transferred to the chip output through the TAM for observation.
This solves the access problem. However, in the absence of system-level test
patterns for the entire chip, the core-level testing has to be done exhaus-
tively. This requires application of all the test patterns for individual cores.
This leads to a huge test time for a moderate to complex SoC. Hence, test
time reduction is another important challenge. The reduction in test time is
often achieved via test parallelism—having multiple parallel test sessions.

236 Network-on-Chip

The overall TAM structure is divided into a number of buses to carry out the
test in parallel.

However, in a NoC environment, usage of extra TAM is not advisable. The
chip itself contains a full network for transport of test packets through it to
the individual cores. Hence, it is imperative to use the existing communica-
tion backbone for carrying the test patterns from the test equipment con-
nected to some pins of the chip to the individual cores and to transfer the
responses from the cores to the test equipment for analysis. The two main
issues in NoC testing are as follows:

 1. Efficient testing of NoC communication fabric: In a NoC, a significant
portion of the chip is occupied by the routers and links constitut-
ing the NoC fabric. In the absence of direct signal communication
between the cores, the success of message-based communication
between them is fully dependent on the correct functioning of the
network resources. The fabric, in turn, consists of two different types
of components—the routers and the links. The routers, apart from
having the logic circuitry, also possess the first-in first-out (FIFO)
buffers. Hence, testing the communication fabric is a difficult task
as it necessitates different fault models for the components, such as
memory fault models for the FIFO, logic fault models for the router
circuitry, and link fault models for the links.

 2. Testing of functional cores: In this case, the test patterns are provided by
the core vendors. The challenge is to apply these patterns to the cores.
Once the network infrastructure is tested to be okay, it is utilized to
transport the test patterns and responses through the network.

8.2 Testing Communication Fabric

Correctness of communication fabric is the first thing to be ensured to
guarantee the correct operation of the NoC. Test strategies for the fabric
must perform the following two operations (Pande et al. 2005): testing of
switch blocks and testing of interswitch wire segments. Grecu et al. (2007)
suggested a comprehensive framework to test both these components
using suitable fault models and testing mechanisms. The scheme has two
interesting features. First, the two tests are integrated together so that the
portion of the NoC determined to be correct can be utilized to test succes-
sive portions and establish their correctness. This recursive formulation
helps in arriving at an elegant solution to the test transportation problem.
Second, the NoC infrastructure is exploited successfully to introduce par-
allelism in the test session. This reduces the overall test time of the NoC
significantly.

237Testing of Network-on-Chip Architectures

8.2.1 Testing NoC Links

Cuivello et al. (1999) suggested a novel fault model for links in the deep
 submicron (DSM) technology. The model, known as maximum aggressor fault
(MAF) model, corresponds to the crosstalk effects between a set of parallel
lines in DSM SoCs. This model has been discussed in detail in Chapter 7
(Figure 7.2). In this model, a signal transition in one single line (known as
victim line) is affected through crosstalk by transitions in the neighboring
lines (known as aggressors). For a link with N wires, in the worst case, a
victim line can get affected by transitions in the (N – 1) aggressors. As it
can be observed from Figure 7.2, each line can be affected in six different
ways. Thus, testing a single line needs six two-pattern tests. For example, if
we assume a three-wire model (in which the middle wire is the victim and
the other two are aggressors), to test a delayed rise case, we need to apply the
pattern 101 followed by 010. For a link with large number of wires (which
is common for NoC) and sufficiently wide neighborhood, this requires a
prohibitive amount of test effort to ensure good test coverage (Bushnell and
Agrawal 2005).

The test sequence for link testing using the MAF model exhibits some
important properties that can be utilized in compact and efficient design of
test packets:

 1. In each test vector, the logic value in the victim line is the comple-
ment of that in the aggressor lines. All aggressor lines are assigned
the same logic value. This is required to have the maximum aggres-
sion effect on the victim.

 2. After applying an exhaustive set of test sequences for a victim, the
sequence for testing the next line can be obtained easily by shift-
ing or rotating the test patterns in the previous sequence by exactly
one bit.

 3. Transition from one test vector to another can often be concatenated
such that the total number of test vectors needed to test the MAF
faults gets reduced. For example, the “Fast-to-fall” needs the test vec-
tor 111 followed by 000, whereas the “Fast-to-rise” needs the test vec-
tor 000 followed by 111. Thus, the three-vector sequence 111–000–111
can test both the faults, reducing the required number of test vectors
from four to three. As shown in Table 8.1, instead of requiring 12 vec-
tors per wire, application of only 8 vectors per wire suffices to check
all six MAF faults.

The MAF tests can be carried out in eight distinct states, s1–s8, as shown in
Figure 8.1. The finite-state machine shown in the figure generates eight dif-
ferent patterns in a cyclical fashion. Thus, in one cycle, one line can be tested
as a victim, whereas the others act as aggressors. The selection of the victim
wire can be achieved through the victim-line counter field that controls the

238 Network-on-Chip

test hardware. In the first cycle, the first wire of the link is selected as the vic-
tim, whereas the others act as aggressors. The eight test patterns are applied
in the eight states s1 through s8. This tests all MAF faults on line 1. Next, in
the second cycle of eight states, the second wire is the victim. The test pat-
terns are generated in such a fashion that they are 1-bit-shifted version of
those generated in the first cycle. The procedure is repeated until all the lines
of the link have been tested.

8.2.2 Testing NoC Switches

A NoC switch consists of the following components:

•	 Combinational logic for the arbitration, routing, error control, and
so on

•	 FIFO buffers, implemented as register banks or dedicated static
 random access memory arrays

TABLe 8.1

Test Sequence for Wire i

Lines

State in Figure 8.1i – 1 i i + 1

1 1 1 s1
0 0 0 s2
1 1 1 s3
0 1 0 s4
1 0 1 s5
0 1 0 s6
0 0 0 s7
1 0 1 s8

Note: Link faults: s1→s2: Fast-to-fall, s2→s3: Fast-to-rise,
s3→s4: Negative glitch, s4→s5: Slow-to-fall, s5→s6:
Slow-to-rise, s7→s8: Positive glitch.

S0 S1

S8 S7 S6

S2 S3 S4 S5Start

count = n − 1

Figure 8.1
State machine for MAF pattern generation.

239Testing of Network-on-Chip Architectures

Test patterns can be generated for the combinational part using any automated
test pattern generation (ATPG) tool. Normally, scan-based testing strategies
are adopted for testing these blocks. For the FIFO part, a FIFO falls under the
category of restricted two-port memories. Since the data flow through the
NoC links is unidirectional in nature, each FIFO possesses one write-only
port and one read-only port. The functionality of the FIFO can then be con-
sidered to be divided into three ways: the memory cell array, the addressing
mechanism, and the FIFO-specific functions (such as empty/full conditions).
The memory array fault models can include stuck-at faults, transition faults,
bridging faults, and so on (Bushnell and Agrawal 2005).

Assuming that a FIFO is b-bit wide and has n locations, individual test pat-
terns are of b bits each. For example, to detect a bridging fault between bits
bi and bj (i ≠ j), four specific test patterns are needed: 0101…, 1010…, 0000…,
and 1111 To test for dual-port coupling faults, the following sequence is
used: w wr rn{ ()}⇑ −

1
1 , for each of the four test patterns. The first write opera-

tion (w) sets the read and write pointers to FIFO cells 0 and 1, respectively. The
next (n – 1) simultaneous read and write operations (wr) sensitize coupling
between adjacent cells. The last read operation clears the FIFO and prepares
it for testing with the next pattern.

8.2.3 Test Data Transport

The test data for testing the NoC switches and links are to be transported
through the NoC itself. Hence, it is essential that the communication infra-
structure available in the NoC be used for this purpose as well. As a result,
it is necessary to test the switches and links of the infrastructure in phases.
The switches and links found to be okay up to a certain stage of testing are
to be reused to transport test patterns to test the next set of switches and
links. The transport is therefore dependent on the routing scheme and algo-
rithm followed by the routers in the NoC. It is expected that the same routing
policy, used in normal functioning of the NoC, be utilized in the test mode
as well. The test mode cannot demand for a new routing policy, not required
otherwise in the functional mode of operation of the NoC. The addressing
scheme supported by the basic router can be of the following types:

 1. Unicast mode: This is the commonly available mode of packet trans-
fer in NoC. Packets arriving at an input port of a switch are decoded
and forwarded to one of its output ports, based upon the routing
algorithm and the destination address noted in the packet header.

 2. Multicast mode: In this mode, the packets have multiple destinations.
Packets with multicast address are decoded and forwarded to the
switch outputs depicted by the multicast decoder. Multicast packets can
reach their destinations in a more efficient and faster manner than the
scheme based on unicast transmission, in which several unicast mes-
sages are sent to different destinations. This is illustrated in Figure 8.2.

240 Network-on-Chip

If the underlying NoC routers support multicast mode of transmission, it can
be utilized for testing as well. Otherwise, it is suggested that a multicast wrapper
unit (MWU) be designed. It is transparent to the packets in normal operation
mode. In the test mode, the routing logic block (RLB) of the switch is completely
bypassed. This is achieved by a set of multiplexers and demultiplexers that aid
in bypassing the RLB. As test scheduling is done offline, for each NoC switch,
the subset of input and output ports participating in multicast test data trans-
fer is known beforehand. The MWU design for the switch can be restricted
accordingly. For example, in Figure 8.2, only a few of the switches need mul-
ticast facility. However, a proper scheduling of testing the components (i.e.,
switches and links) is necessary. In order to search for this optimal schedule,
it is required to consider the following test times for individual components.

•	 Tl,L: The latency of interswitch link L (generally equal to one clock
cycle if the link is reasonably short)

•	 Tt,L: The time to test the link L
•	 Tl,S: The switch latency (the number of clock cycles required for a flit

to traverse a NoC switch from input to output)
•	 Tt,S: The time required to perform the actual testing of the switch

[Time needed to test the RLB (TRLB) + Time to test FIFO (TFIFO)]

For example, in a unicast mode of transmission, the total test time Tu
2 3, to test

both the switches S2 and S3, as shown in Figure 8.3, is given by

 T T T Tu
l L l S t S2 3 2 2, , , ,()= + +

For a multicast environment, the test time Tm
2 3, to test the switches S2 and S3

is given by

 T T T Tm
l L l S t S2 3, , , ,()= + +

The time to test a switch Tt,S, or a link Tt,L , is determined by the fault model and the
design of these components. However, the test transport time can be controlled

Destination

Unicast transfer mode
Source

Destination

Source
(a) (b)

Multicast
transfer
mode

Unicast
transfer
mode

Figure 8.2
(a) Unicast data transfer; (b) multicast data transfer.

241Testing of Network-on-Chip Architectures

by proper scheduling of tests. In the following, the problem of test transport
time minimization is taken up for both unicast and multicast environments.

8.2.4 Test Transport Time Minimization—A graph
Theoretic Formulation

The minimization of test delivery times to the NoC elements can be formu-
lated as a graph theoretic problem in which the NoC infrastructure is rep-
resented as a graph. A NoC can be visualized as a graph G = (S,L) in which
each vertex si ∈ S is a NoC switch and each edge li ∈ L is an interswitch link.
Each switch is associated with a pair of values (Tl,S, Tt,S) corresponding to
the switch latency and switch test time, respectively. Each link is similarly
labeled with a pair (Tl,L, Tt,L) corresponding to the link latency and link test
time. Now, for each NoC component, the shortest path from an arbitrary
node to the element, traversing only the previously tested fault-free compo-
nents, is determined. By repeating the process for all possible nodes in the
network and choosing the solution that requires the shortest test time, the
minimum test transport time problem can be solved.

To frame the search operation, a symbolic toggle t is defined for each of the
edges and vertices of the graph. The variable t can take up only two values: N
or T. When t = N, the cost of the associated edge/vertex is its latency term. For
t = T, the cost is the test time term. A modified version of Dijkstra’s shortest
path algorithm can be used to determine the shortest paths.

Initially, the toggle t for all edges and vertices are set to T. The algorithm
starts with an arbitrarily chosen start node of the graph. In the execution
of the search algorithm, every time an element is encountered with toggle
t = T, the cost function is updated with the test time term of the component,
and t is switched to N. However, if an element with t = N is encountered, its
latency term is used to update the cost function, and t remains unchanged.
Compared to the classic Dijkstra’s algorithm, the following differences are
incorporated into the search procedure.

 1. The vertices also possess weights.
 2. Weights of vertices and edges change dynamically during the graph

traversal.

S1

S2 S3

Test packets

Test
(a)

S1

S2 S3

Test packets

Test
(b)

S1

S2 S3

Test packets

Test Test
(c)

Figure 8.3
(a,b) Unicast transport; (c) multicast transport.

242 Network-on-Chip

 3. After a directed edge is traversed, the edge in the opposite direction
is traversed as soon as possible.

 4. All toggles t must be set to N by the end of the algorithm. This
ensures that all the edges and switches are tested by the end of the
algorithm.

Depending upon whether unicast or multicast transport is employed, the
test cost function has to be computed differently. In the following, the two
strategies are presented for minimum cost test scheduling—one for unicast
and the other one for multicast.

8.2.4.1 Unicast Test Scheduling

The problem of unicast test scheduling can be stated as follows:
Given the graph G(S,L) and the pairs (Tl,S, Tt,S) and (Tl,L, Tt,L) and assuming

that only one vertex or edge with toggle t = T can be visited at a time, deter-
mine a graph traversal sequence that covers all vertices and edges and has a
minimum associated test cost function FTC,u.

The restriction that only one toggle can be switched at a time ensures
unicast transport. The unicast cost function FTC,u can be defined recursively
as follows: If FTC u,

old be the cost before the current NoC element is tested and
FTC u,

new be the cost after including the test cost of the current NoC element, then

F F T TTC u TC u l L l S T
T

t S, , , , ,

new old
if current element is a switch= + + + tt L

SL

, if current element is a link

Swiches in the pathLinks in th

{
∈∈

∑
ee path

∑

In the following, the unicast test scheduling algorithm is presented. As in
Dijkstra’s algorithm, d[u] denotes the distance of the current test source to the
switch u under test. It represents the test injection time corresponding to u.
At the end of the algorithm, the switch smin corresponding to the minimum
value of FTC,u is selected as the final source.

Algorithm Unicast

Input: G(S,L) and the pairs (Tl,S, Tt,S) and (Tl,L, Tt,S).
Output: smin corresponding to the minimum test time FTC,u.
Begin
 For each s ∊ S do Unicast_min(S, L, s, weight)
 /* weight contains the test pairs (Tl,S, Tt,S) and (Tl,L, Tt,S) */
 Find smin corresponding to minimum FTC,u

End
Procedure Unicast_min(S, L, start, w)
Begin

243Testing of Network-on-Chip Architectures

 For each vertex s ∊ S do
 Begin
 s.toggle = T;
 s.weight = Tt,S;
 d[s] = ∞;
 s.parent = UNDEFINED;
 End
 d[start] = 0;
 For each edge e = (u,v) ∊ L do
 Begin
 e.toggle = T;
 e.weight = Tt,L ;
 End
 FTC,u = 0;
 Put all vertices of S in minpriority queue Q based on d values;
 While Q is not empty do
 Begin
 u = Extract_Min(Q);
 For each edge e = (u,v) outgoing from u do
 Begin
 If (d[u] + e.weight < d[v]) then
 Begin
 d[v] = d[u] + e.weight;/* This affects the queue Q */
 Update FTC,u;
 v.toggle = N;
 e.toggle = N;
 u.weight = Tl,S;
 e.weight = Tl,L;
 v.parent = u;
 End;
 End;
 End;
 Return FTC,u;
End.

Figure 8.4 shows a four node NoC along with the links. Starting with node S1,
unicast testing of components proceeds in the following sequence: S1, I1, I2, S2,
I1
′ , S3, I2

′ , I5, I5
′ , I3, S4, I3

′ , I4, and finally I4
′ . Accordingly, the test time requirement

increments in the following sequence: Tt,S, Tt,S + Tl,S + Tt,L, Tt,S + 2Tl,S + 2Tt,L,
2Tt,S + 3Tl,S + 2Tt,L + Tl,L, 2Tt,S + 5Tl,S + 3Tt,L + 2Tl,L, 3Tt,S + 6Tl,S + 3Tt,L + 3Tl,L,
3Tt,S + 8Tl,S + 4Tt,L + 4Tl,L, 3Tt,S + 10Tl,S + 5Tt,L + 5Tl,L, 3Tt,S + 12Tl,S + 6Tt,L + 6Tl,L,
3Tt,S + 14Tl,S + 7Tt,L + 7Tl,L, 4Tt,S + 16Tl,S + 6Tt,L + 9Tl,L, 4Tt,S + 19Tl,S + 8Tt,L +
11Tl,L, 4Tt,S + 21Tl,S + 9Tt,L + 12Tl,L, and 4Tt,S + 24Tl,S + 10Tt,L + 14Tl,L. The same is

244 Network-on-Chip

repeated for the cases starting with S2, S3, and S4. The minimum of all these
cases is taken as the final solution.

8.2.4.2 Multicast Test Scheduling

 The multicast test scheduling problem can be stated as follows:
Given the graph G(S,L) and the pairs (Tl,S, Tt,S) and (Tl,L, Tt,S) and assuming

that all vertices or edges with toggle t = T and are adjacent to edges/vertices
whose toggle equals N can be visited at a time, determine a graph traversal
sequence that covers all vertices and edges and has a minimum associated
test cost function FTC,m.

The flexibility that more toggles can be switched at a time provides the
multicast transport mechanism, assuming that the NoC supports multicast.
The multicast test cost can be defined recursively as follows:

F F T TTC m TC m l L l S

S

, , , ,
new old

all adjacent elements
Swiches

Max= + +
∈ iin the pathLinks in the path

all adjacent element
Max

∑∑
∈

+

L

ss

if current element isalink

if current element isaswitch

T

T

t L

t S

,

,

The multicast transport algorithm is similar to the unicast one, differing
essentially in the cost function and toggle update. The details can be found
in the work of Grecu et al. (2007). For the graph in Figure 8.4, starting at
node S1, the components are tested in groups as follows: {S1}, {I1, I2}, {S2, S3},
{I1

′ , I2
′ , I3, I4, I5, I5

′ }, and {S4}. The corresponding multicast test costs after each
group of component testing are Tt,S, Tt,S + Tl,S + Tt,L, 2Tt,S + 2Tl,S + Tt,L + Tl,L,
2Tt,S + 4Tl,S + 2Tt,L + 2Tl,L, and 3Tt,S + 6Tl,S + 2Tt,L + 4Tl,L.

I2

Test packets

I2′

I1′
I5′

I3′

I3

I5 I4 I4′I1

S2

S1 S3

S4

Figure 8.4
A four-switch network with unidirectional links.

245Testing of Network-on-Chip Architectures

8.3 Testing Cores

Once the NoC fabric has been tested and found okay, the cores of the NoC are
tested. The network resources (switches and links) are used to transport the
test patterns. The cores embedded deep inside the chip are difficult to access,
whereas the cores near the periphery of the chip may be direct accessibility
from the chip input/output pins. As a result, the input/output channels of the
automated test equipment (ATE) can be connected to the cores in the periph-
ery. These cores are conveniently called I/O ports for testing. For a core deep
inside the NoC, its test patterns can be transported to a core acting as input
port. From this core, the patterns are transferred over the network to the
core under test. Similarly, the responses from the core under test are trans-
ferred to the output core for subsequent delivery to the ATE for analysis.
Figure 8.5 shows a NoC with two input cores and two output cores. A pair of
input/output cores can be connected to an ATE channel for testing purpose.
Since in Figure 8.5 there are two I/O ports, two cores can be tested in parallel,
 provided that the resources (switches and links) needed are not conflicting.

Router

Core
5

Core
3

Core
6

Core
4

Core
7

Core
8

Core
9

Core
10

Core
2

Core
1

Router Router

Router Router Router

Router Router Router

Router Router Router

32

Input

Input

Output

Output

Figure 8.5
NoC with input/output cores for testing and two routing paths.

246 Network-on-Chip

A proper scheduling of cores for testing is necessary to perform their testing
in an efficient manner.

Apart from this scheduling problem, it is also necessary to have a proper
interface between the cores and the network links. The cores may have differ-
ent numbers of input–output lines, compared to the link width. This is taken
care of by putting the cores inside test wrappers discussed in Section 8.3.1.

8.3.1 Core Wrapper Design

In a SoC test environment, individual cores need to be encapsulated within
a wrapper. A wrapper is an integral part of IEEE 1500 working group pro-
posal. It is a layer of design-for-testability (DfT) logic that connects the TAM
to a core under test. The 1500 wrapper has four main functions: Normal oper-
ation, Intest (testing of core itself), Extest (core external test, such as testing of
interconnects originating from or ending at the core), and Bypass. The typical
structure of 1500 wrapper (Marinissen et al. 2002) is shown in Figure 8.6.

The core designers, at the time of designing the core, also incorporate
some DfT features in it in the form of scan chains. The number of scan
chains created is often dependent on the core designer. Apart from these
scan inputs, a test pattern contains bits for the primary inputs as well.
Hence, application of a test pattern necessarily means filling up the scan
flip-flops and primary inputs of the core. The total time needed for this
depends upon the NoC channel width (flit size), the maximum length of
scan chain, the total number of scan chains, and the number of primary
inputs and outputs. A wrapper for a core combines the core internal scan
chains, primary inputs, and primary outputs into wrapper scan chains.
Ideally, all the wrapper chains should be of equal length. Moreover, the
total number of wrapper chains should be equal to the flit size, such that
each flit can fill up exactly one bit of a scan chain. If the length of the lon-
gest wrapper chain is n, after n flits, one full test pattern will get loaded
into the scan chains. The pattern is then applied to the core. Responses
are collected into the wrapper scan chains and are shifted out as flits to
the test sink. Figure 8.7 shows two wrapper chains. Both the figures create
two wrapper chains. The first one is unbalanced, in which one chain is of
length 6, whereas the other one is of length 18. The second design is more
balanced—both the chains are of length 12.

The number of flits for a test pattern is dependent upon the maximum
length of scan chains. Partitioning of core scan chains, primary inputs, and
outputs into wrapper chains constitute a major role in determining this max-
imum wrapper scan chain length. Given a flit size, determining the scan par-
titioning to optimize the overall test time is NP-hard (Marinissen et al. 2000).
The wrapper design problem has been addressed in the work of Iyengar and
Chakrabarty (2002). The overall problem can be stated as follows:

Given a core with n functional inputs, m functional outputs, and sc inter-
nal scan chain of lengths l1, l2,…, lsc, respectively, and NoC channel width k,

247Testing of Network-on-Chip Architectures

assign n + m + sc wrapper scan chain elements to k′ ≤ k, such that max{si, so}
is minimized, where si and so are the lengths of the longest wrapper scan-in
and scan-out chains, respectively. Also, try to minimize k′.

The wrapper design algorithm proposed in the work of Iyengar and
Chakrabarty (2002) uses an approximation algorithm based on the best fit
decreasing (BFD) heuristics (Garey and Johnson 1979). The algorithm has
three main parts: (1) partition the internal scan chains among a minimal
number of wrapper scan chains to minimize the longest wrapper scan chain
length, (2) assign the functional inputs to the wrapper chains created in
part (1), and (3) assign the functional outputs to the wrapper scan chains
 created so far. To solve the problem, first the internal scan chains are sorted in
descending order of their length. Each internal scan chain is then attached to
a wrapper scan chain, whose length after this assignment is closest to, but not
exceeding, the current maximum wrapper scan chain length. In other words,

WSO

Scan chain

Scan chain

d[0]

d[1]
d[2]

d[3]
d[4]

q[2] q[2]

q[1]

q[0]

WPO[0:2]

q[1]

q[0]

Core

CLK SC

WBY

WIR

WSC

Wrapper

WSI

SC
CLK

d[4]
d[3]

d[2]

d[1]

d[0]

WPI[0:2]

Figure 8.6
1500 Wrapper. CLK, functional clock; d, functional inputs; q, Functional outputs; SC, Scan
Enable Control; WIR, Wrapper Instruction Register; WBY, Wrapper Wide Bypass; WPI,
Wrapper Parallel Input; WPO, Wrapper Parallel Output; WSI, Wrapper Serial Input; WSC,
Wrapper Scan Control; WSO, Wrapper Serial Output.

248 Network-on-Chip

at any point of time, the next scan chain gets attached to wrapper chain in
which it fits the best. If no such wrapper chain is available, the internal scan
chain is attached to the current shortest wrapper scan chain. The process is
repeated for the functional input and outputs. The procedure Design_wrapper
(Iyengar and Chakrabarty 2002) is noted as follows:

Procedure Design_wrapper

Input: Number of functional inputs (n)
 Number of functional outputs (m)
 Scan chain lengths l1, l2, …, lsc

Output: Wrapper scan chains
Begin
Step 1: Sort the internal scan chains in descending order of length
Step 2: For each internal scan chain l picked up in order do
 Step 2.1: Find wrapper scan chain Smax with current maximum length
 Step 2.2: Find wrapper scan chain Smin with current minimum length
 Step 2.3: Assign l to the wrapper scan chain S, such that,

 (length(Smax) – length(S) + length(l)) is minimum
 Step 2.4: If there is no such S, assign l to Smin

Step 3: Repeat Step 2 for the functional inputs
Step 4: Repeat Step 2 for functional outputs
End

For example, suppose Core A has 8 functional inputs a[0:7], 11 functional
outputs z[0:10], 9 internal scan chains of lengths 12, 12, 8, 8, 8, 6, 6, 6,
6 flip-flops, and a scan enable control sc. Assume the flit size to be 4.
Hence, in a single clock, 4 bits of data can reach the core from the NoC
channel. The scan elements in the core are partitioned among four wrap-
per scan chains using the algorithm, as shown in Table 8.2. This partition
yields a longest scan-in chain of length 20 and a longest scan-out chain
of length 21, both of which are optimal values for a 4-bit NoC chan-
nel width. The worst-case complexity of the Design_wrapper algorithm is
O(sc log sc + sc·k).

Core

4 FF

Wrapper chain 1

Wrapper chain 1

Wrapper chain 2

Wrapper chain 1

Wrapper chain 2
Wrapper chain 2

Wrapper chain 1

Wrapper chain 2

6 FF

Core

4 FF

6 FF

8 FF

(a) (b)

8 FF

Figure 8.7
Two wrappers: (a) balanced; (b) unbalanced. FF, flip-flop.

249Testing of Network-on-Chip Architectures

Next, the time needed to test a core is computed. For this, it is assumed that
the core has p test patterns, the maximum length of scan chain (correspond-
ing to the number of flits per packet) is l, and the numbers of hops from
source to core and core to sink are hsrc→core and hcore→sink, respectively. It is
further assumed that the cores are scheduled for testing using a nonpreemp-
tive scheduling strategy. The scheduler assigns each and every core a fixed
path during the scheduled test time. All resources of this path are reserved
throughout the test time of the core. Test data are moved along the reserved
path in a pipelined fashion. Since each flit is unpacked in one cycle, the time
required for a test vector to be sent to the core plus the test response to be
received at the sink is be given by

 h l h lsrc core core sink→ →+ − + + + −() ()1 1 1

That is, first the l flits corresponding to a test pattern are sent in a pipelined
fashion from the source to the core. In the next cycle, the pattern is applied
to the core. Next, the response bits are transferred to the test sink in a pipe-
lined fashion. During testing, test stimulus and responses move in a pipelined
fashion with an overlap in the shifting-in of the current test pattern and shift-
ing-out of the previous response. For a set of p patterns, the test time needed
consists of the following:

 1. Time to shift in the first pattern, hsrc→core + (l − 1)
 2. Time to apply the first pattern, 1
 3. Time for overlapped transmission of the test bits of the current pat-

tern and the response bits of the previous pattern plus the test appli-
cation time for the current pattern, for next (p – 1) packets, which is
given by

 [{ () ()}] (),1 1 1 1+ + − + − × −→ →Max src core core sinkh l h l p

 4. Time required to shift out the response of pattern p, hcore→sink +
(l − 1).

TABLe 8.2

Example of Design_wrapper Algorithm

Wrapper Scan Chains

1 2 3 4

Internal scan chains 12 + 6 12 + 6 8 + 6 + 6 8 + 8
Wrapper input cells 2 2 0 4
Wrapper output cells 3 3 0 5
Scan-in length 20 20 20 20
Scan-out length 21 21 20 21

250 Network-on-Chip

Thus, the total time required for testing is given by

h l h l h lsrc core src core core sinkMax→ → →+ − + + + + − + −() (), ()[{ }1 1 1 1 1]]

[{ }

()

) , (

× −

+ + − = + + −→ → →

p

h l h h l

1

1 1core sink src core core sink(Max 11)]

 × + + −→ →p h h l[, (){ }]Min src core core sink 1

Test scheduling problem can be formulated as follows:

Given a NoC with n cores having their test parameters (number of test
patterns, scan chain length, etc.) and k number of I/O pairs, determine an
assignment of cores to I/O pairs and the time schedule to minimize the
overall test time of all the cores present in the NoC.

There are a few variants of the problem reported in the literature. A multi-
frequency test scheduling assumes that in test mode, individual cores can
be made to operate at different frequencies, thus requiring proportional test
times. Some formulations put a limit on the total peak power that can be
sustained by the chip, whereas some other formulations are concerned about
minimizing the peak temperature of the NoC or making the temperature
uniform in the chip. The solution strategies proposed can broadly be divided
into the following categories:

 1. Exact solution via mathematical tools, such as integer linear pro-
gramming (ILP)

 2. Heuristic algorithms
 3. Evolutionary algorithms, such as particle swarm optimization (PSO)

8.3.2 iLP Formulation

ILP formulation of an optimization problem can provide its exact solution
at the cost of execution time of the solver. For the problem of core testing in
NoC, Salamy and Harmanani (2011) reported an ILP formulation. The over-
all problem addressed is as follows:

Given a system of Nc cores, Np input/output ports, and a set of clock rates
Fc (at which individual cores may operate during testing), map the cores
to the input/output ports and obtain a test schedule so that the overall
test time is minimized.

To start with, a few definitions are noted. Tiuc = Test time of core i on input/
output pair u under clock frequency c, 1 ≤ i ≤ Nc,

1 ≤ p ≤ Np and c ∈ Fc

Si = Start time of core i
Iix = Input/output pair of core i, 1 ≤ x ≤ Np

251Testing of Network-on-Chip Architectures

The constraints formulated are as follows:

 1. Each core in the system must be assigned to one and only one input/
output pair in the system.

I

i x
ix =

1

0

,

,

if core is assigned to pair

otherwise
 (8.1)

I iix

x

Np

=
∑ = ∀

1

1, (8.2)

 2. Each core must be assigned a clock rate.

F

c i
ic =

1

0

,

,

if clock is assigned to core

otherwise
 (8.3)

F iic

c
∑ = ∀1, (8.4)

 The test time of core i on input/output port x is given by

T Fixc ic

c

⋅∑ .

 3. Two cores cannot be tested in parallel if they share some common
resources. Two cores i and j assigned to input/output pairs x and
y can be tested in parallel if and only if either of the following two
conditions is valid:

S S T Fix jy jyc jc

c

≥ + ⋅∑
or

S S T Fjy ix ixc ic

c

≥ + ⋅∑ ’ ’

’

Let the binary variable Zixjy represent the conflict of cores i and j assigned to
input/output ports x and y, respectively. Test between two cores conflict if
they need some common NoC resource (e.g., router, link). Zixjy = 1 if the tests
conflict; it is 0 otherwise. To prevent the conflicting cores getting scheduled
simultaneously, either of the following two conditions needs to be valid:

Z S S T Fixjy ix jy jyc jc

c

− − ⋅

 ≥∑ 0 (8.5)

252 Network-on-Chip

or

Z S S T Fixjy jy ix ixc ic

c

− − ⋅

 ≥∑ ’ ’

’

0 (8.6)

where:
1 ≤ i,j ≤ Nc

1 ≤ x,y ≤ Np

c,c′ ∊ Fc

The constraints (8.5) and (8.6) are not linear. To linearize them, two new
binary variables Kixjy1 and Kixjy2 are introduced with the constraint that
Kixjy1 + Kixjy2 = 1. This leads to a new constraint combining the two constraints
(8.5) and (8.6).

Z K S S T F Z K S Sixjy ixjy ix jy jyc jc
c

ixjy ixjy jy ix⋅ − − ⋅

 + ⋅ −∑1 2 −− ⋅

 ≥∑T Fixc ic

c
’ ’ 0 (8.7)

The above constraint is still nonlinear as it contains multiplication of two
variables K and S. To transform it into a linear one, the product Kixjy1 ⋅ Six is
replaced by a new variable Mixjy1 that takes up a value of 1 if Kixjy1 = 1 and
Six = 1. This can be enforced by adding three additional constraints noted as
follows:

 M Kixjy ixjy1 1≤

 M Sixjy ix1 ≤

 M K Sixjy ixjy ix1 1 1≥ + −

Similar transformations are to be introduced to replace the products Kixjy1 ⋅ Sjy
by Mixjy2, Kixjy2 ⋅ Sjy by Mixjy3, and Kixjy2 ⋅ Six by Mixjy4.

The objective function is to minimize the overall test time of the NoC. The
overall test time is equal to the maximum of finish times for all cores. Thus,
the objective function can be written as

Minimize Maximum for allC i x cS T Fix ixc ic

c

= + ⋅

∑ , , ,

Again, the objective function is not linear. To linearize, it is required to mini-
mize C along with a set of constraints noted as follows:

C I S T F i Nix ix ixc ic

cx

N

c

p

≥ + ⋅

 ≤ ≤∑∑

=1

1, for all (8.8)

253Testing of Network-on-Chip Architectures

The above constraint is still not linear. To linearize this, it is necessary to
replace the product Iix⋅Six by an additional binary variable Rix with the fol-
lowing constraints:

 R Iix ix≤

 R Six ix≤

 R I Six ix ix≥ + − 1

This completes the ILP formulation for the core test scheduling problem. All
constraints and objective function are now linear in nature. However, the
solution takes a considerably large amount of CPU time prohibiting its usage
only to small NoCs having a few cores.

8.3.3 Heuristic Algorithms

Ahn and Kang (2006) has proposed a NoC test scheduling strategy using
multiple test clocks. Cota et al. (2004) is one of the first works to suggest
the usage of on-chip networks to transport test data for cores. Cota and
Liu (2006) proposed a set of heuristic algorithms for different versions of
the core test scheduling problem. The first one is a technique that uses a
dedicated routing path for the test packets to move through the NoC. All
tests are applied with full pipeline in a nonpreemptive fashion. The heu-
ristic starts by creating an ordered list of cores and I/O pairs. The cores are
sorted in decreasing order of test time. I/O pairs are permuted and every
permutation is tried out. Different permutations of I/O pairs represent dif-
ferent priorities of their allocation to a core. That is, if core Ci is the next one
to be scheduled, the I/O pairs I1 and I2 are free, and I1 appears earlier than
I2 in the current permutation, Ci will be tested via interface I1. For each per-
mutation, attempt is made to assign the next core to the first available I/O
pair. If no I/O pair is free, current time is updated to the next most recent
time tag, at which some already scheduled core finishes its testing. At that
time, the resources allocated to the core will become free, and thus may
make the testing of new core possible. If an I/O pair is available, a routing
path is created and the algorithm checks if it conflicts with any other path
for the cores currently being tested. In case of a conflict, the next core in the
sequence is considered. If all cores are tried out and none of them could
be scheduled, the current time will be updated. All the remaining cores
are again tried out for scheduling. The process continues till all cores are
scheduled.

If the system has Nc number of cores and M number of I/O pairs, the com-
plexity of the algorithm is O(M!Nc). To explore larger search space, it is sug-
gested that some other core orders be tried out. The proposed algorithm tries
out a user-defined number of core permutations. The overall algorithm is
detailed as follows:

254 Network-on-Chip

Algorithm NoC_Schedule

 1. Start with sorted cores in decreasing order of test time;
 2. Permute all possible order of I/O pairs;
 3. For specified number of permutations of I/O pairs do
 4. While there are unscheduled cores do
 5. For each unscheduled core do
 6. Find a free I/O pair;
 7. If no free I/O pair then
 8. Update current time; Repeat from 4;
 9. Else
 10. Check the corresponding routing path;
 11. If path is blocked
 12. If all cores have been attempted
 13. Update current time; Repeat from 4;
 14. Else
 15. Try next core in the list;
 16. Else
 17. Assign core to the path; Update time

labels;
 18. Repeat from 3 for a user-defined number of core permutations;

The nonpreemptive test scheduling algorithm discussed so far lacks flexibility,
in the sense that the minimum manageable unit in test scheduling is the full test
application time of a core. For example, the power consumption of a core during
test is generally much higher than that during normal mode of operation. This
happens as the successive functional inputs are generally correlated, while in
order to maximize fault coverage, the successive test patterns in a test sequence
are highly uncorrelated. This excessive power dissipation and lack of heat trans-
fer can create hot spots within the chip. Applying the entire test suite continu-
ally can increase the temperature significantly. Hence, it may be necessary to
split the test into multiple sessions and put idle times in between for cooling.
In a nonpreemptive test, the test resources are held by the core currently being
tested, this causes wastage of test time and resource utilization. A preemptive
test can overcome this situation by performing tests in a preemptive fashion.

Many a times, for testing complex cores, multiple test sets are used. For
example, a core may be tested by both built-in self-test (BIST) and external test
sessions. The tests may also need to be partially ordered. The BIST being on-
chip may be applied at a much higher frequency than the external testing.
The BIST is applied first, as it can detect the random-detectable faults (the
faults that can be detected by random patterns) easily. For the remaining ran-
dom pattern-resistant faults, the test patterns generated by dedicated algo-
rithms are applied through the external tester. Testing of memory cores may
be carried out earlier than the logic cores. Once tested, the memory cores can
be used to test the logic cores. Larger cores occupying more amount of chip

255Testing of Network-on-Chip Architectures

area are likely to possess more defects than smaller cores. Hence, it may be
more desirable to test the larger cores first. Thus, the core order part needs to
be reconsidered while formulating the NoC test scheduling algorithm.

Another important constraint is that of peak power consumption during
test. The chip will have a predefined safety level of power dissipation. The
scheduling algorithm must ensure that this power limit is not violated at any
time during test. The total power consumed during testing of a core has two
main components: the power consumed by the core and the power consumed
by the network in transporting the test packets for the core. The power con-
sumed by the core depends on various factors, such as the core design, the test
vectors, and the order of test vectors, which are mostly determined by the core
vendor providing the test patterns. For the purpose of scheduling, the power
consumed by individual cores can be assumed to be available. The power con-
sumed by the wrapper can also be taken along with the core, since the wrapper
is active only when the core is being tested. However, the power consumed by
the network to transport each test packet (Ppacket) can be expressed as follows:

 P nb P nb Ppacket routers router channels channel= × + ×

where:
nbrouters is the number of routers in the path established in the network for

the packet
nbchannels is the number of channels in the path
Prouter is the power consumed by a single router per cycle
Pchannel is the power consumed by a single channel per cycle

The router power consumption depends on the supply voltage (Vdd), the load
capacitance (CL), the frequency of operation (f), the number of flip-flops (nbff),
the number of logic gates (nbgt), and their corresponding expected switching
activities (σff) and (σgt), respectively.

 P C V f nb nbL frouter dd ff f gt gt= × × × + × + ×2 1[()]σ σ

The channel power consumption is given by the following expression. Here,
the load capacitance of the channel is given by the product of number of
wires in the channel (chw), the length of the channel (chl), and the width of the
wire (wirew). σw is the switching factor of the wire.

 P V f ch wire chchannel dd w l w w= × × × × ×2 σ ()

Since power consumption is calculated per cycle, packet length is not that
significant.

Based on the above constraints and power consumption metric, Cota and
Liu (2006) proposed an improved test scheduling algorithm for cores in NoC.
The cores may be BISTed and have multiple test sessions with individual

256 Network-on-Chip

 sessions being preemptive or nonpreemptive. To start with, a few definitions
are presented that are used in the algorithm:

 1. A set C = {i, 1 ≤ i ≤ Nc} of cores in the NoC.
 2. A set T T j N i Nj t ci i{ , , }= ≤ ≤ ≤ ≤1 1 of test sessions for the cores in C.

Each core i can have Nti test sessions, each of which can be BISTed,
external, preemptive, or nonpreemptive.

 3. For each test session k, a six-tuple I = {(wc, cl, p, pwr, preemp, payload)k,
1 ≤ k ≤ |T|} is defined, where wc is the number of wrapper scan
chains, cl is the maximum length of scan chains, p is the number
of test patterns, pwr is the power consumption during test, preemp
 indicates whether the test is preemptive or not, and payload is the
size of the test packet.

 4. A set Prec = {(p1,…, pn)k, 1 ≤ n, k ≤ |T|} of precedence constraints for
each test session k. For any test to be scheduled, all test sessions in its
precedence list must have been finished.

 5. A graph G = (V,E) corresponding to the topology of the NoC. Each
vertex corresponds to a router to which a number of cores may
be connected. An edge corresponds to a communication channel
between the two routers for the vertices.

 6. A list of I/O ports corresponding to some vertices in G, indicating
that these cores can be used as I/O ports during testing.

The scheduling process first creates an ordered list of test sessions and a list of
I/O pairs. For each core, a list of possible access paths is created, sorted by the
number of routers on each path. While allocating a path to a core for test, the
availability of shorter paths is checked earlier than longer ones. Once a test
packet p is picked up for scheduling, one of the following situations can occur.

 1. p belongs to a nonpreemptive test: The first available I/O pair that can
be used by this packet is chosen. If no such I/O pair is available, the
next ready packet is picked up for scheduling. The delivery time of
packet p is set to the time when the first I/O pair in the list becomes
available. If an I/O pair is available, the entire test session to which
p belongs to gets scheduled (since the test is nonpreemptive). Power
consumption of the packet is calculated. It is checked that no power
violation occurs in the duration for which the test session runs. The
network channels identified by the I/O pair are marked unavail-
able during the transmission time of the packet. The corresponding
response packet is then automatically scheduled.

 2. p belongs to a preemptive test: The shortest available path for this packet
is selected and the duration for its transmission is calculated. If no
path is available for p, the next ready packet is picked up for possible

257Testing of Network-on-Chip Architectures

scheduling and the delivery time of p is set to the time at which the first
path from the list of possible paths for the packet becomes available.
If resources are available, the power consumption is calculated. It is
checked that no power violation occurs during the transmission of the
packet. In such a case, the network channels for transmission of this
packet are marked unavailable for the duration of transmission. The
response packet is set to be ready at appropriate time after the trans-
mission of the test packet is over and the pattern is applied to the core.
The next test packet of the core is set to be ready at a time, ensuring that
the new vector will not arrive before the previous vector is processed.

 3. p refers to an autonomous BIST session: A single flit containing the
BIST enable signal and other BIST information (such as LFSR [Linear
Feedback Shift Register] seed values) must be sent to the core. Two
cases are possible: In the first case, each BISTed core possesses its
own BIST controller. The transmission of packet p is similar to that
of a preemptive test. The chosen path is occupied for transmission of
a single flit. The corresponding response packet is set to be ready at
a time equal to the time to transfer this flit and the total number of
cycles for which the BIST is set to run. In the second case, a number
of BISTed cores may share a single BIST engine. The BIST sessions
are now to be scheduled as nonpreemptive tests with precedence
constraints. Once a BIST session is started for a core, it cannot be
preempted and the BIST engine is devoted to test some other core.

The overall algorithm for the combined preemptive, nonpreemptive, and
BISTed cores is presented in the following. It tries out a number (N1) of per-
mutations of BIST test packets, a number (N2) of permutations of external test
packets, and all permutations of I/O pairs to explore the search space.

Algorithm NoC_Schedule_Preemp_Non-Preemp

 1. UBP = Create ordered list of unscheduled BIST test packets.
 2. UEP = Create ordered list of unscheduled external test packets.
 3. IOP = Create list of I/O pairs.
 4. For each core i in C do
 5. Create ordered list of all possible access paths;
 6. For N1 permutations of UBP list do
 7. For N2 permutations of UEP list do
 8. For every permutation of IOP list do
 9. While there are unscheduled packets in UBP ∪

UEP do
 10. Lt = Selected packets ready for schedule

in UBP ∪ UEP satisfying precedence con-
straints and delivery times;

 11. Select test packet p for core i in Lt;

258 Network-on-Chip

 12. If p is non-preemptive then
 13. Find a free I/O pair;
 14. If no such I/O pair is available then
 15. Update delivery time of p; Repeat

from 11;
 16. else if p is preemptive or p is BIST then
 17. Find a free access path to/from core i;
 18. If no such path is available then
 19. Update delivery time for p; Repeat

from 11;
 20. Calculate duration of packet transmission;
 21. Calculate power consumption for packet

transmission;
 22. If power constraint is met then
 23. Assign packet to the chosen path;
 24. Update schedule and time tags;
 25. If p is non-preemptive then
 26. Assign response packet to chosen I/O

pair;
 27. Update schedule and time tags;
 28. else if p is preemptive or p is BIST then
 29. Define delivery time of next packet of

core i;
 30. Update Lt;
 31. else
 32. Update packet delivery time; Repeat from 11;
 33. If all packets have been attempted then
 34. Update current time; Repeat from 9;
 35. End.

8.3.4 PSO-Based Strategy

Apart from the ILP and heuristic approaches, discussed so far for testing
cores, the meta-search techniques can also be employed to determine a test
schedule. Farah and Harmanani (2010) has suggested a simulated annealing
based strategy to generate a schedule for testing the cores in the NoC. In the
following, a discrete PSO (DPSO)-based formulation will be discussed for
the NoC core test scheduling problem to minimize the test application time.
A similar DPSO formulation was discussed in Section 5.6. Hence, only the
particle structure and evolution mechanism is discussed in Section 8.3.4.1.

8.3.4.1 Particle Structure and Fitness

A particle corresponds to possible test scheduling order of the cores. It has
two components—the core order part (core part) and the I/O assignment

259Testing of Network-on-Chip Architectures

part (IO part). An example of a particle structure is shown in Figure 8.8. The
core part is a permutation of core numbers C1 through Cn. It corresponds to
the order in which the scheduling procedure (noted next) attempts to assign
time slots to the cores. The next part is an array of size equal to the number
of cores. If there are m I/O pairs, an individual entry in I/O pair is an integer
in the range of 1 to m. To evaluate the fitness of a particle, start with the first
core in the core part. It is scheduled from time zero. Appropriate resources
of the NoC (links) are reserved for the purpose. At a certain point, suppose
that up to core i in the core order part has been scheduled. The scheduling
time of the core i + 1 is determined by consulting the I/O pair part. If the
corresponding I/O pair is k, the next available time slot for k is determined,
so that the resources are available to schedule the test of core i + 1. When
all cores are scheduled, the highest time for any of the I/O pairs constitutes
the overall test time for the NoC. The overall testing time forms the fitness
function.

8.3.4.2 Evolution of Generations

The particles evolve through generations to create new particles that are
expected to result in overall test scheduling time closer to the optimum. In
the first generation, the initial population is created randomly and the fitness
of individual particles is evaluated. The local best (lbestk) of each particle is
set to be the same as the initial particle. The global best (gbesti) of a genera-
tion is the particle giving the minimum test time. Successive generations are
evolved through a series of operations called swap operation. The local best
of each particle and the global best of the generation are modified if the cor-
responding values in the current generation are less than in the previous
generation.

Swap operator: For a particle P, core as well as I/O pair part are indexed
by 0 to N − 1 (N being the number cores). Let the swap operator SOj,k

(0 ≤ j, k ≤ N − 1) swap the jth and kth positions of particle P to cre-
ate a new particle PNew. For example, consider the particle P = {0, 4,
3, 6, 1, 5, 7}, where a number represents the core number. The swap
operator SO5,6 swaps the cores at positions 5 and 6, creating a new
particle PNew = {0, 4, 3, 6, 5, 1, 7}. Similar swaps can also be applied to
the I/O pair part.

Core part

C1 C2 Cn.I1 I2 Im

IO part

Figure 8.8
Particle structure.

260 Network-on-Chip

Swap sequence: A swap sequence SS is made up of one or more swap
operators. Swap operation in the swap sequence is applied to a par-
ticle for creating new particle. For example, let the swap sequence
SS = {SO5,6, SO2,4} be applied upon the particle P = {0, 4, 3, 6, 2, 1, 5, 7}.
It creates new particle PNew = {0, 4, 3, 6, 2, 5, 1, 7}. To align a particle Pk
with its local best, the swap sequence is identified. Let this be SSk

lbest.
Then another swap sequence is identified to align the particle with
the global best. Let this be SSi

gbest. Now the swap sequence SSk
lbest is

applied on particle Pk with probability α. Let the modified particle
be Pk

lbest. Then the swap sequence SSi
gbest is applied on Pk

lbest with prob-
ability β. This creates new particle PNew. Its fitness is evaluated and
the local best is updated for kth particle, if it is the better than the
previous local best for the particle. If the best fitness in a generation
is better than the global best of the previous generation, the global
best is also updated.

8.4 Summary

Testing NoC is one of the most important and intricate problems to be
solved in NoC-based SoC design. Since the entire chip is being integrated,
it is not possible to assume the correctness of individual components (as
in a board-based design). Both the communication infrastructure and the
cores need to be tested. The infrastructure test includes testing the routers
and links of the NoC. The problem involves having different fault mod-
els and test mechanisms for these components. The problem is NP-hard.
However, testing of cores require proper scheduling of the test sessions.
Different variants of the problem have been solved—preemptive versus
nonpreemptive, BIST versus external test, power aware (Liu et al. 2005a),
thermal aware (Liu et al. 2005b, 2006), and so on. A number of test sched-
uling mechanisms have been reported, such as ILP, heuristics, and meta-
search techniques. Overall, a number of dedicated approaches may need
to be combined to get reasonably good reduction in test time and cost.

References

Ahn, J. H. and Kang, S. 2006. Test scheduling of NoC based SoCs using multiple test
clocks. ETRI Journal, vol. 28, no. 4, pp. 475–485.

Bushnell, M. L. and Agrawal, V. D. 2005. Essentials of Electronic Testing for Digital,
Memory and Mixed-Signal VLSI Circuits. Springer-Verlag, Boston, MA.

261Testing of Network-on-Chip Architectures

Cota, E., Carro, L., and Lubaszewski, M. 2004. Reusing an on-chip network for the
test of core-based systems. ACM Transactions on Design Automation of Electronic
Systems, vol. 9, no. 4, pp. 471–499.

Cota, E. and Liu, C. 2006. Constraint driven test scheduling for NoC based systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 25, no. 11, pp. 2465–2478.

Cuivello, M., Dey, S., Bai, X., and Zhao, Y. 1999. Fault modeling and simulation for
crosstalk in system-on-chip inerconnects. IEEE/ACM International Conference on
Computer Aided Design, IEEE, pp. 297–303.

Farah, R. and Harmanani, H. 2010. A method for efficient NoC test scheduling using
deterministic routing. IEEE International SOC Conference, IEEE, pp. 363–366.

Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Co., San Francisco, CA.

Grecu, C., Ivanov, A., Saleh, R., and Pande, P. 2007. Testing network-on-chip commu-
nication fabrics. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 26, no. 12, pp. 2201–2214.

Iyengar, V. and Chakrabarty, K., 2002. Test wrapper and test access mechanism
co-optimization for system-on-chip. Journal of Electronic Testing: Theory and
Applications, vol. 18, pp. 213–230.

Liu, C., Iyengar, V., and Pradhan, D. K. 2006. Thermal-aware testing of network-on-
chip using multiple frequency clocking. 24th IEEE VLSI Test Symposium. IEEE.

Liu, C., Iyengar, V., Shi, J., and Cota, E. 2005a. Power aware test scheduling in network-
on-chip using variable rate on-chip clocking. IEEE VLSI Test Symposium. IEEE.

Liu, C., Veeraraghavan, K., and Iyengar, V. 2005b. Thermal-aware test scheduling
and hot spot temperature minimization for core based systems. 20th IEEE
International Symposium on Defect and Fault Tolerance in VLSI Systems. IEEE.

Marinissen, E. J., Goel, S. K., and Lousberg, M. 2000. Wrapper design for embedded
core test. International Test Conference, IEEE, pp. 911–920.

Marinissen, E. J., Kapur, R., Lousberg, M., McLaurin, T., Ricchetti, M., and Zorian, Y.
2002. On IEEE P1500’s standard for embedded core test. Journal of Electronic
Testing: Theory and Applications, vol. 18, pp. 365–383.

Pande, P., Grecu, C., Ivanov, A., Saleh, R., and Micheli, G De. 2005. Design, synthesis,
and test of networks on chip. IEEE Design and Test of Computers, vol. 22, no. 5,
pp. 404–413.

Salamy, H. and Harmanani, H. M. 2011. An optimal formulation for test schedul-
ing network-on-chip using multiple clock rates. IEEE Canadian Conference on
Electrical and Computer Engineering. IEEE.

263

9
Application-Specific
Network- on-Chip Synthesis

9.1 Introduction

The network-on-chip architectures, discussed so far in the book, are developed
around regular topologies, with the inherent assumption that the cores are
all of equal size. The main advantage of such a regular NoC architecture is
topology reuse and reduced design time. The assumptions of equal core size
and communication bandwidth requirement hold for homogeneous cores.
However, application-specific system-on-chip (SoC) architectures, in gen-
eral, contain heterogeneous cores and memory elements with widely varying
sizes. Hence, even though the system-level NoC architecture is regular, after
floorplanning the final topology becomes irregular. Maintaining a regular
structure at this level of layout necessitates large area overhead. The links
also become longer, resulting in increase in delay and power consumption
in them. This necessitates looking for alternative NoC topologies, specific for
the application. Such NoCs are known as application-specific NoC (ASNoC).
ASNoC provides the facility to incorporate custom NoC architectures, opti-
mized for the target problem domain. It is not necessary to conform to any
regular topology. As a result, ASNoCs often provide architectures superior
to the regular ones, in terms of power and area consumption under identical
performance requirements. The routers can also be parameterized (such as
the number of ports, the physical link length and width, and the number of
virtual channels), and thus can be reused in the design.

In ASNoC synthesis, the application is specified as a set of tasks with dif-
ferent communication requirements between them. The tasks are mapped
onto a computation architecture. The computation architecture consists of a
set of processing and memory cores. The tasks are distributed among the
processing cores. As a result, the cores now need to communicate between
themselves.

264 Network-on-Chip

9.2 ASNoC Synthesis Problem

The overall ASNoC synthesis problem can be stated as follows:
Given the following:

•	 A directed communication graph G(V,E), where each vi ∊ V denotes
an intellectual property (IP) core of the design, and each directed
edge ek = (vi, vj) ∊ E denotes a communication trace from vi to vj. For
every vi ∊ V, the height and width of the core are denoted by Hi and
Wi, respectively

•	 For every ek ∊ E, ω(ek) denotes the bandwidth requirement and σ(ek)
denotes the latency constraint in hops for the edge

•	 A router architecture with η number of I/O ports per router, peak
bandwidth Ω per port, two quantities Ψi and Ψo denoting the power
consumed per megabytes per second of traffic flowing through the
router in input and output directions, respectively

•	 A physical link power model denoted by Ψl per megabytes per sec-
ond per millimeter

•	 Two constants H and W denoting the height and width constraints
on the overall system-level floorplan dimension

•	 Two ratios γmin and γmax denoting the lower and upper bounds on the
aspect ratio of the layout, respectively

Let R denote the set of routers in the synthesized architecture, Er is the set of
links between two routers, and Ev be the set of local links connecting cores
to the routers. The objective of the NoC synthesis problem is to generate a
system-level floorplan and a network topology T(R, V, Er, Ev) such that

•	 For every ek ∊ E, there exists a route p in T that satisfies ω(ek) and
σ(ek).

•	 The bandwidth constraints on the ports and routers are satisfied.
•	 The bounding box of the floorplan satisfies H and W.
•	 The aspect ratio of the floorplan lies between γmin and γmax.
•	 The total system-level communication cost/power for communica-

tion is minimized.

The floorplanning subproblem is a variant of quadratic assignment prob-
lem (Garey and Johnson 1979), while the interconnection network generation
problem is an instance of Steiner forest problem (Ravi et al. 2001). Both these
problems are NP-hard. As a result, many exact and heuristic methods have
been developed to solve the problem. The overall problem may be solved
as an integrated problem in which the floorplan and router network are

265Application-Specific Network- on-Chip Synthesis

designed simultaneously. The other option is to start with a given floorplan
of the IP cores and then insert routers at appropriate positions within the
floorplan so that the interconnect network gets synthesized.

9.3 Literature Survey

A survey of ASNoC design techniques was presented by Ascia et al. (2004).
It enumerates the advantages of custom topologies over standard ones for
ASNoC. While some of the design techniques attempt to modify a regular
topology to take into consideration the variation in core sizes and commu-
nication pattern, others try to synthesize the most suited topology. A perfor-
mance-aware design methodology of inserting long-range interconnects on
top of a regular mesh-based network for synthesis of application-specific
architectures was presented by Ogras and Marculescu (2005a). Challenges in
application specific NoC design have been surveyed in Benini (2006). In the
following, the major ASNoC synthesis works will be reviewed.

First, we will look into the strategies that do not consider the floorplan of
the NoC. A holistic approach for application-specific NoC synthesis has been
presented in Leary and Chatha (2010). It results in solution with minimum
dynamic power, at most twice the number of routers and leakage, compared
to the optimal solution. Average communication latency and jitter are also
low. A multiobjective NoC synthesis approach has been presented in Li
and Harmanani (2010). A heuristic was proposed by Pinto et al. (2003) for
a constraint-driven communication synthesis of on-chip networks. A qua-
dratic programming-based approach along with a clustering algorithm was
proposed for this purpose. However, no floorplan information is utilized
during the topology generation process. A method to reduce hardware cost
of NoC via link aggregation was presented by Korotkyi et al. (2012). It creates
ASNoC with nonuniform distribution of physical links in logical connec-
tions, depending on the amount of network traffic that is passed through
them. A network partitioning technique based on Fiduccia–Mattheyses (FM)
partitioning algorithm was proposed in the work of Morgan et al. (2009) to
reduce the area cost. A linear programming based technique was proposed
in the work of M’zah and Hammami (2011) to generate an area-optimized
NoC architecture constrained to propagation delay time and bandwidth
requirements. Different topology generation techniques were analyzed and
compared in the work of Morgan et al. (2008) with respect to area and aver-
age delay. This work analyzed network partitioning techniques and long-
range generation techniques, thus determining the best scheme to be used
for NoC topology generation. A tool, Q8WARE, was presented by Sami and
Mohammad (2006), which is a small-scale version of Application Specific
Integrated Circuit assembly line. It deals with synthesis of ASNoC with

266 Network-on-Chip

hardware reusability constraints. A genetic algorithm (GA)-based technique
was presented by Srinivasan and Chatha (2005) for synthesis of custom NoC
architectures that support guaranteed throughput traffic. The energy con-
sumption of NoC is optimized by minimizing the cumulative traffic flowing
through the ports of all routers. The total area consumption is minimized
by reducing the total number of routers used. A methodology for generat-
ing energy-efficient application-specific architectures was presented by
Filippopoulos et al. (2010). It uses application partitioning to reduce process-
ing element dependencies. Topology exploration and buffer sizing techniques
are utilized to generate custom topology with reduced power consumption.
A NoC topology generation and analysis method was presented by Dumitriu
and Khan (2009) that addresses throughput requirements by considering
the latency present in the system. An irregular application-specific topol-
ogy generation algorithm was presented by Ar et al. (2009) to reduce power
consumption. It clusters the given application, based on the communication
characteristics, and then constructs the topology by connecting clusters to
each other, one by one. A partitioning approach based on trees has been
presented in Binijie et al. (2011) for NoC synthesis. Genetic algorithm-based
techniques have been proposed in Choudhary et al. (2010, 2011) for applica-
tion specific NoC design.

Next, we look into the floorplan-aware methodologies. Alabei (2010)
has proposed a custom NoC synthesis procedure that uses B*-tree for
floorplan representation. A multiobjective mathematical model for NoC
synthesis has been suggested in Abderazek et al. (2007). A custom NoC
instantiation tool Xpipes Compiler was presented by Jalabert et al. (2004),
which is based on the inputs as specified by the designer. A floorplan-
aware tool was presented by Reza et al. (2009) for NoC design and syn-
thesis, integrated with a graphical user interface for interacting among
abstract traffic flow specification, topology synthesis, and floorplanning.
A GA-based technique was presented by Leary et al. (2009) for ASNoC
design with an objective of minimizing the power consumption. This
work assumes the routers to be at the corners of the cores. A branch-
and-bound algorithm was proposed by Ogras and Marculescu (2005b)
for customized communication architecture synthesis. It uses the core
co ordinates from the floorplan. A GA-based topology synthesis method
was proposed by Lai et al. (2010) to minimize power consumption by tak-
ing floorplan information. This work also assumes the routers to be at
the corners of the cores. A multiobjective approach to topology design
based on Tabu search technique was presented by Tino and Khan (2011) to
meet power and performance requirements of an application. A synthesis-
oriented design flow, xpipes lite, was presented by Stergiou et al. (2005)
for the generation of synthesizable simultaneous models for ASNoCs. In
the work of Ahoen et al. (2004), a physical floorplan is used during topol-
ogy design to reduce power consumption on wires. However, the area
and power consumption of the switches are not taken into consideration.

267Application-Specific Network- on-Chip Synthesis

In the work of Srinivasan et al. (2005), a slicing tree-based floorplanner
is used during the topology design process. This work assumes that the
switches to be located at a corner of the cores and the network components
are not considered in the floorplanning process. NoC topology genera-
tion algorithms were presented by Srinivasan et al. (2006) based on slicing
structures where switch locations are restricted to the corners of the cores.
A two-step topology generation procedure was proposed by Murali et al.
(2006) using a min-cut partitioner to cluster highly communicating cores
on the same switch and a path allocation algorithm to connect clusters
together to minimize power consumption. An iterative refinement strat-
egy to generate an optimized NoC topology that supports both packet-
switched network and point-to-point communications was presented by
Chan et al. (2008). This assumes the network interfaces for the processing
cores to be located on the corners, whereas the router nodes are in the
center. A partition-driven floorplanning algorithm that uses a heuristic to
insert switches and an algorithm for inserting NIs, limited to mosaic type
of floorplans was proposed by Bei et al. (2010). Two heuristic algorithms
were proposed by Shan and Lin (2008) to examine different set partitions.
Partitioning is carried out based on the communication flow and a physi-
cal network topology has to be generated for each partition. A three-stage
synthesis approach was presented by Zhong et al. (2011) that integrates
communication requirements, physical information among cores, and
partitioning into the floorplanning phase to explore the optimal switch
number for clustering of cores with minimized link and switch power
consumption. A complete synthesis flow was illustrated by Bertozzi et al.
(2005) for customized NoC architectures. It partitions the flow into three
major steps: topology mapping, selection, and generation. Tools, such as
SUNMAP and Xpipes Compiler, are provided for their automatic execu-
tion. Thermal- and nonthermal-aware ASNoC synthesis frameworks that
combine multiple algorithms and heuristics to efficiently explore the solu-
tion space were presented by Kwon et al. (2011). This work describes both
thermal- and nonthermal-aware approaches for router placement. Both the
techniques assume that switches can only be placed at the interconnection
of cores in the floorplan. A topology generation method was presented
by Khan and Tino (2012) by employing analytical models and simula-
tion tools to design low-power, high-performance custom NoCs. Hu et al.
(2005) has presented a work on energy-efficient NoC synthesis through
topology exploration and wire optimization. The above works generate
floorplan as part of the synthesis process.

In the following section, we will look into a few strategies to solve the
ASNoC synthesis problem. The first one addresses system-level floorplan-
ning to minimize NoC power consumption subject to layout constraints.
This will be followed by discussion on custom topology and route genera-
tion. We will also discuss on a scheme to intelligently put routers in a given
NoC floorplan to optimize communication cost and energy consumed.

268 Network-on-Chip

9.4 System-Level Floorplanning

This section discusses a mixed integer linear programming (MILP)-based
approach to solve the NoC-centric floorplanning problem (Srinivasan et al.
2006). Since the interconnection architecture is not known at this stage,
the interconnect power can be approximated in terms of communication
via point-to-point links between communicating cores. Another impor-
tant factor is to satisfy the latency constraints for communication between
cores. It may be difficult to satisfy the latency constraints for cores placed
far away. Apart from power and latency, we can also minimize the over-
all layout area. Hence, the minimization goal is a linear combination of
power–latency function and the area of the layout, as shown in the follow-
ing equation:

 α ω
σ

β× × ×

+ × +[]
∀ ∈
∑ dist(,)

()
()

(,)

max maxu v
e
e

X Yl

e u v E

Ψ 2 (9.1)

where:
dist(u,v) is the distance between cores u and v
α and β are constants
Xmax and Ymax represent the boundaries in X and Y directions respectively
Rest of the variables are as defined in Section 9.2

The objective function puts more emphasis on latency constraint compared
to the bandwidth. The values of α and β determine the relative weight given
to power minimization compared to area minimization.

9.4.1 Variables

9.4.1.1 Independent Variables

For each core vi ∊ V, let (Xi,min, Yi,min) denote the lower left coordinate of the
placed core.

9.4.1.2 Dependent Variables

•	 For each core vi ∊ V, let (Xi,max, Yi,max) denote the upper right coordinate
of the placed core. Hence,

 X X W Y Y Hi i i i i, , ,;max i,min max min= + = +

•	 For each pair of cores vi, vj ∊ V, let DXi,j and DYi,j represent the differ-
ences between the X and Y coordinates of the top right corner of the
placed cores. Thus,

269Application-Specific Network- on-Chip Synthesis

 DX X X DY Y Yi j i j i j i j, , , , , ,;= =max max max max − −

•	 For each pair of cores vi, vj ∊ V, let Xi,j and X′i,j be the binary variables
given by

 X
X X

i j
i j

,
,min ,max,

,
=

≥

1
0

if
otherwise

 ′ =
>

X
X X

i j
j i

,
,max ,min,

,
1
0

if
otherwise

•	 Xi,j and X′i,j can be obtained as follows, taking MAXVAL as a large
integer:

X X X

X X X

X

i j i j

j i i j

i

,min ,max ,

,max ,min ,
’

,

− − ⋅ <

− − ⋅ ≤

MAXVAL

MAXVAL

0

0

jj i jX+ =,
’ 1

•	 Let Yi,j and Y′i,j denote similar quantities along the Y coordinates.

9.4.2 Objective Function

The objective function for floorplanning is to minimize the following:

 α ω
σ

β× +()× ×

+ × +
∀ ∈
∑ | | | |

()
()

, ,

(,)

maxDX DY
e
e

Xi j i j l

e u v E

Ψ 2 YYmax[]

| |,DXi j is modeled by introducing two new variables DXi j,
+ and DXi j,

− .

 DX DX DXi j i j i j, , ,
+ −− =

and

 DX DX DXi j i j i j, , ,| |+ −+ =

9.4.3 Constraints

•	 No two cores vi and vj should overlap when they are placed on the
layout. This can be stated through the following constraints. At least
one of them must hold true.

 X Xi j,min ,max≥

 X Xj i,min ,max≥

270 Network-on-Chip

Y Yi j,min ,max≥

 Y Yj i,min ,max≥

Therefore,

 DX DX DY DYi j j i i j j i, , , ,+ + + ≥ 1

•	 The layout should satisfy the aspect ratio constraints. Thus,

 Y Xmax min max≥ ×γ

 Y Xmax max max≤ ×γ

•	 The layout should not violate X and Y boundaries. Thus, for each
node vi ∊ V,

 X Xi ,max max≤

 and

 Y Yi ,max max≤

9.4.4 Constraints for Mesh Topology

The cores in a mesh topology are aligned along a grid. The height and width
of a grid are determined by the largest core in that particular row or column,
respectively. Hence, we need additional constraints to restrict the start posi-
tions of cores at some valid grid points only. Figure 9.1a shows a valid mesh
floorplan, whereas 9.1b is an invalid one.

(b)

j

i

(a)

Figure 9.1
(a) Valid mesh-based floorplan; (b) illegal layout of mesh-based topology. (Redrawn from
Srinivasan, K., et al., IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(4),
407–420, 2006.)

271Application-Specific Network- on-Chip Synthesis

For every pair of cores vi and vj ∊ V, the binary variables GXi,j and GYi,j are
defined as follows:

 GX
X X

i j
i j

,
,max ,max,

,
=

>

1
0

if
otherwise

 GY
Y Y

i j
i j

,
,max ,max,

,
=

>

1
0

if
otherwise

The following two inequalities need to be satisfied for the cores to get aligned
to grid positions:

 GX Xi j i j, ,+ ′ ≤ 1

 GY Yi j i j, ,+ ′ ≤ 1

9.5 Custom Interconnection Topology and Route Generation

The floorplan information generated so far does not include the routers in it.
The next stage of the formulation will select router locations in the floorplan
with an objective of minimizing the power consumption. Since there can be
a large number of potential locations for placement of routers, it is desirable
to reduce the number of candidate locations via some means, so that the
MILP formulation for router location identification can run faster. To start
with, bounding boxes are created for each core placed as a rectangle in the
floorplan. A bounding box is a rectangular enclosure of the core rectangle
(called a node in subsequent discussion) such that the bounding boxes of two
neighboring nodes are touching each other. Figure 9.2 shows such a situa-
tion. The bounding box of node 4 extends to the top boundary of node 3 and
so on. Once the bounding boxes are designed, a channel intersection graph (Sait
and Youssef 1994) will be constructed. The graph has vertices corresponding
to two perpendicular boundaries of the floorplan. The edges of the graph
correspond to the bounding boxes of the floorplan. Routers can be placed
at each vertex of the channel intersection graph. Figure 9.2b shows the pos-
sible placement of routers, represented as filled circles in the diagram. Many
of the routers are redundant, in the sense that they are placed very close to
each other. Hence, in the final layout, it is very much unlikely that both the
closely placed routers will be utilized to connect cores. The routers may be
removed when:

 1. Routers are placed along the perimeter of the layout.
 2. Routers are placed less than a specified distance apart.

272 Network-on-Chip

Figure 9.2c shows the situation when routers along the perimeter and those
placed less than a specified distance apart have been removed.

We will next look into an ILP formulation for the minimization of the com-
munication power consumption of the NoC. This power is given by the sum
of the power consumed by the routers and the physical links. Power con-
sumed by a router is given by the product of the bandwidth of data flowing
through its ports and the characterization function specifying the power con-
sumption per unit bandwidth. Power consumption of a physical link is equal
to the product of the bandwidth of data flowing through the link, the length
of the link, and the characterization function specifying power consumption
per unit bandwidth per unit length.

9.5.1 Variables

9.5.1.1 Independent Variables

•	 Number of routers: Let ri ∊ R, 0 ≤ i < Rmax, be a router. Each router is
assumed to be similar, having η number of ports and peak band-
width Ω per port, all ports being bidirectional.

•	 Ports of a router: Let pi,j, 0 ≤ i < η, represent the jth port of the ith
router.

•	 Node-to-port mapping variables: Let NRk,i,j be a {0,1} variable that is 1, if
node vk is mapped to port pi,j of router ri; otherwise it is 0.

•	 Port-to-port mapping variables: Let RRi,j,k,l be a {0,1} variable that is 1, if
port pi,j of router ri is linked to port pk,l of router rk; otherwise it is 0.

(a) (b) (c)

6
4 2

1
6 6

4

3

10

12

11

2

1

0

9

7

8

5

13

4

3

10

12

11

7

8

2

1

0

95

13

0

9

7

8

3

10

12

11

5

13

Figure 9.2
Router allocation for custom topology. (Redrawn from Srinivasan, K., et al., IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 14(4), 407–420, 2006.)

273Application-Specific Network- on-Chip Synthesis

•	 Variable for flow of traffic out of a port: For each edge (vi,vj) ∊ E, let Oi,j,k,l
be a {0,1} variable that is 1, if traffic from node vi to node vj flows out
of port pk,l; otherwise it is 0.

•	 Variable for flow of traffic into a port: For each edge (vi,vj) ∊ E, let Ii,j,k,l be
a {0,1} variable that is 1, if traffic from node vi to node vj flows into
port pk,l; otherwise it is 0.

9.5.1.2 Derived Variables

•	 Variable for total traffic flowing out of a port: Let BOk,l represent the total
traffic flowing out of port pk,l. It can be written as

BO e Ok l m i j k l

e v v Em i j

, , , ,

{ , }

()= ×
∀ = ∈

∑ ω

•	 Variable for total traffic flowing into a port: Let BIk,l represent the total
traffic flowing into port pk,l. It can be written as

BI e Ik l m i j k l

e v v Em i j

, , , ,

{ , }

()= ×
∀ = ∈

∑ ω

•	 Variable for flow of traffic on a link: Let Zi,j,k,l,m,n be a {0,1} variable that
is 1, if traffic (vi, vj) leaves port l of router k and that port is connected
to port n of router m. It can be represented as

 Z O RRi j k l m n i j k l k l m n, , , , , , , , , , ,= ×

•	 The equation can be linearized using the following two rules:

 O RR Zi j k l k l m n i j k l m n, , , , , , , , , , ,+ ≥ ×2

 O RR Zi j k l k l m n i j k l m n, , , , , , , , , , ,+ ≤ + 1

9.5.2 Objective Function

The objective is to minimize the power consumption of the NoC due to
cumulative traffic flowing through all routers. The overall function is as
follows:

Minimize (PR + PL), PR being the router power and PL being the link power,
is given by

 P BI BOR i j

pr R

i j

pr Ri ji i ji

= × + ×
∀∀ ∈ ∀∀ ∈
∑∑ ∑∑Ψ Ψi o, ,

, ,

274 Network-on-Chip

P

i j RD Z

ND i j NRL L

k m

i j k l m n

i j k l m n

i k=

× ×

+ × ×

∑
Ψ

ω

ω

(,)

(,)

,

, , , , ,

, , , , ,

, ii k l

i j k l

j k j k l

i j k l

ND i j NR

, ,

, , ,

, , ,

, , ,

(,)

∑

∑+ × ×

ω

where:
Ψi and Ψo are the weights that denote power consumed per megabytes per

second of traffic flowing through a router port in input and output
directions, respectively

ΨL is the link power per unit length per megabytes per second
RDk,m is the distance between routers rk and rm

NDi,k denotes the distance between core node i and router rk

9.5.3 Constraints

•	 Port capacity: The bandwidth usage of an input/output port should
not exceed its capacity.

 ∀ ∈ ∀ ≤ ≤i R p BI BOi j i j i j, , ,, , ,Ω Ω

•	 Port-to-port mapping: A port can be mapped to a core node or to any
one port of a different router.

 ∀ + ≤
∀ ∈∀∀ ∈ ≠
∑∑∑p RR NRi j k l i j m i j

v Vpr R k i mk lk

, , , , , ,

,

,
,

1

 ∀ ∀ ∈ ≠ =p r R k i RR RRi j k k l i j i j k l, , , , , , ,, , ,

•	 The first inequality captures the situation that a port may not be
mapped to any other port or core node. The second equation models
the symmetry of the variable RR.

•	 Node-to-port mapping: A core node should be mapped to exactly one
port.

 ∀ ∈ =
∀∀ ∈
∑∑v V NRi i k l

pr R k lk i

, , ,

,

1

•	 Traffic routing: For every ek = (vi, vj) ∊ E, there exists a path p = {(vi, ri),
(ri,rj), . . . , (rk, vj)} in T. The condition can be captured by the following
set of constraints:

275Application-Specific Network- on-Chip Synthesis

•	 If a core node is mapped to a port of a router, all traffic emanating
from that node must enter into that port. The same is the case for
a destination node. Hence, for each router rk, for all pk,l and for all
(vi, vj) in E, I NRi j k l i k l, , , , ,≥ and O NRi j k l j k l, , , , ,≥

•	 If a core node is mapped to a port of a router, no traffic from any
other port can enter or leave that port.

 ∀ ∈ ∀ ∈ ≠ ≠ ∀(,) , , , , ,v v E v V m i m j pi j m k l

 NR Im k l i j k l, , , , ,+ ≤ 1 and NR Om k l i j k l, , , , ,+ ≤ 1

•	 If a traffic enters a port of a router, it should not enter from any
other port of that router. The same is true for a traffic leaving a
port of a router. The constraint ensures that the traffic does not get
split across multiple ports. For each router rk and for all (vi, vj) ∊ E,

Ii j k l

pk l

, , ,

,

≤
∀
∑ 1

and

Oi j k l

pk l

, , ,

,∀
∑ ≤ 1

•	 If a traffic enters a port of a router, it has to leave exactly one of
the other ports of that router. Similarly, if a traffic leaves a port
of a router, it must have entered from exactly one of the other
ports of the router. The constraint conserves the flow of traffic.
For each router rk, for all pk,l and for all (vi, vj) ∊ E,

 O Ii j k m

p

i j k l

k m m l

, , , , , ,

, ,∀ ≠

∑ ≥ and I Oi j k m

p

i j k l

k m m l

, , , , , ,

, ,∀ ≠

∑ ≥

•	 If two ports of different routers are connected, a traffic leaving
from one port should enter the other and vice versa (assuming
bidirectional links). For each pair of routers {rk, rm}, k ≠ m, for all
pk,l, for all pm,n, and for all (vi, vj) ∊ E,

 RR I Ok l m n i j k l i j m n, , , , , , , , ,+ − ≤ 1 and RR I Ok l m n i j k l i j m n, , , , , , , , ,− + ≤ 1

•	 If two different ports are connected, a traffic can leave exactly
one of the two ports. Similarly, a traffic can enter only one of the
two ports. For each pair of routers {rk, rm}, k ≠ m, for all pk,l, for all
pm,n, and for all (vi, vj) ∊ E,

 RR I Ik l m n i j k l i j m n, , , , , , , , ,+ + ≤ 2 and RR O Ok l m n i j k l i j m n, , , , , , , , ,+ + ≤ 2

•	 If a traffic enters a port of a router, the port must be mapped to a
core node or to a port of a different router. That is, if Ii,j,k,l is 1 for some
(vi, vj) ∊ E, some NRi,k,l should be 1, or some RRm,n,k,l should be 1, where

276 Network-on-Chip

pm,n exists. Similarly, if a traffic leaves a port of a router, the port must
be mapped to a node or a port of a different router. That is,

NR RR Ij k l k l m n

pr R

j i k l

m nm

, , , , , , , ,

,

+ ≥
∀∀ ∈
∑∑

and

NR RR Oi k l k l m n

pr R

j i k l

m nm

, , , , , , , ,

,

+ ≥
∀∀ ∈
∑∑

•	 Latency: It can be stated as

 ∀ = ∈ ≤
∀∀ ∈
∑∑e v v E O ek i j i j k l

pr R

k

k lk

(,) , (), , ,

,

σ

The MILP formulation discussed above can produce optimum solution, how-
ever, takes exponential time for large communication trace graphs. A cluster-
ing heuristic was proposed by Roy (1978) to reduce the time requirement by
partitioning the trace graph into clusters of nodes. Cluster size is constrained
by the maximum number of nodes in a cluster, as specified by the designer. For
each edge e ∊ E, the clustering algorithm first assigns a distance metric, given by,
DFe e e/=σ ω2 . The clustering procedure, as proposed by Srinivasan et al. (2006),
attempts to put nodes with low latency and high bandwidth close to each other,
that is, in the same cluster. Once the clusters are formed, for every edge that
cuts across a cluster boundary, one dummy node will be inserted in each of the
corresponding clusters. If two or more such cut edges share a node in a cluster,
a single dummy node is inserted in the cluster for all of them. Figure 9.3 shows

Clustering

Cluster solution generation Full topology generation

A

B

A

B B

A

R1 R3

R4R2

R1 R3

R4R2

B

A

Dummy mode creation

Figure 9.3
Clustering-based approach. (Redrawn from Srinivasan, K., et al., IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 14(4), 407–420, 2006.)

277Application-Specific Network- on-Chip Synthesis

such a situation. The latency constraint of the original communication trace is
split into half across the edges attached to the dummy node pair for a cut edge.
The bandwidth constraint is duplicated. The MILP formulation is now run for
each of the clusters to generate the topologies for the subgraphs. The topologies
are then combined by establishing physical links between the dummy nodes,
thus generating the complete ASNoC.

9.6 ASNoC Synthesis with Flexible Router Placement

The ASNoC synthesis procedure discussed in Section 9.5 generates a floor-
plan in which routers are placed only at the corners of the tiles containing a
core and its associated routers. This may often lead to multihop connection
due to the link length constraints. In the work of Soumya and Chattopadhyay
(2013), the problem is addressed to generate a flexible placement of routers in
a given floorplan of the NoC containing only the cores.

The advantage of having flexibility in choosing router locations com-
pared to placing them at the corners can be understood by the example
noted in Figure 9.4. It corresponds to the benchmark application. Picture
in Picture, having eight cores C0–C7. Figure 9.4a shows the communication
trace graph of the application, in which the edges are annotated with band-
width requirements between the corresponding tasks in megabytes per

C4

C7

(a) (b) (c)

C6 C3

C0

C5 C2

C1

C0

C1 C5

C4

C7

C6 C6

C3

C0

C1

C4

C5

C3

C7

C2C2

64

64 64

64

64 64

64

128

Figure 9.4
(a) Communication trace graph; (b) routers at corners; (c) flexible router placement. (Redrawn
from Soumya, J. and Chattopadhyay, S., Journal of Systems Architecture, 59, 361–371, 2013.)

278 Network-on-Chip

second. Figure 9.4b shows a floorplan for the cores. It also includes the rout-
ers (shown as circles) at the corners corresponding to the cores. Figure 9.4c
shows the floorplan with router locations found by the approach proposed
by Soumya and Chattopadhyay (2013). (It may be noted that the floorplan
is an input to the router location problem solved in this section, rather than
evolving the floorplan itself.) When the routers are located at the corners of
each core, it may require longer interconnects between the routers, or mul-
tiple hops for a communication between cores. For example, let us consider
the communication between C3 and C6. For Figure 9.4b, placing routers only
at the corners, it requires either a longer interconnect or needs to travel in
three hops (using routers attached with C3, C5, C4, and C6). However, in the
router placement approach discussed in this section (Figure 9.4c), the rout-
ers are placed on the floorplan such that smaller interconnects are needed
between the routers and the core-to-core communications also need less
number of hops. The same communication from C3 to C6 requires only a
single hop in this case. This becomes possible due to the intelligent place-
ment of routers that also considers the link length constraint put into the
synthesis process. In this case, it could obtain a 35.71% decrease in the over-
all communication cost.

It is assumed that the cores corresponding to the tasks of the application
are already laid out on a two-dimensional grid, corresponding to the floor-
plan of the chip. Now, the routers will be inserted into this grid floorplan
of the application. Individual routers are assumed to be of size equal to the
smallest square in the grid. This essentially makes all routers to be of same
size, though the constraint can be relaxed easily by considering routers with
varying complexities, thus requiring different amount of area. The maxi-
mum allowed link length (LMAX) is taken as another constraint. If a router is
located at grid point (i,j) and the second one at (k,m), a link can exist between
them only if the distance () ()i k j m− + −2 2 is less than LMAX.

9.6.1 iLP for Flexible router Placement

This section presents an ILP formulation for the problem of finding suitable
router locations in a given NoC floorplan.

9.6.1.1 Variables

•	 R is the set of probable router locations on the grid floorplan.
•	 For each pair of probable router locations ri and rj, let rdistr ri j, be the

distance between them.
•	 For each core ci and a probable router location rs, let cdistc ri s be the

distance from the center of the floorplan of ci to the router rs.
•	 LMAX is the maximum link length permitted between two routers or

between a core and the router associated with it.

279Application-Specific Network- on-Chip Synthesis

•	 BWij is the bandwidth requirement between cores ci and cj.
•	 srs is a binary variable, which is 1 if location rs is selected to hold a

router and 0 otherwise.

•	 mc
r
i
s, a binary variable, which is 1 if core ci is connected to router at rs

and 0 otherwise.

•	 clc
r
i
s, is a binary variable, which is 1 if link exists between core ci and

router at location rs and 0 otherwise.

•	 rlr ri j
 is a binary variable, which is 1 if link exists between locations ri

and rj and 0 otherwise.

•	 Pc c
r r
i j
s t is a binary variable, which is 1 if path exists between routers rs

and rt, to which cores ci and cj have been attached, and 0 otherwise.

•	 ni
r rs t is a binary variable, which is 1 if router ri is a part of the path

from router rs to rt and 0 otherwise.
•	 lr r

r r
i j
s t is a binary variable, which is 1 if the link between routers ri and rj

is part of the path from rs to rt and 0 otherwise.

•	 Dr rs t is an integer variable identifying the distance between router
locations rs and rt, in terms of the number of hops. It can take up
values from 0 to the number of routers in the network.

9.6.1.2 Objective Function

The objective is to minimize the communication cost by selecting suitable
router locations. The objective function can be formulated as follows: If cores
ci and cj are mapped to router locations rs and rt and a path exists between
them in the network, Pc c

r r
i j
s t is equal to 1. This multiplied by Dr rs t gives the number

of hops of the communication from ci to cj . The number of hops multiplied
by bandwidth gives the communication cost, which has to be minimized over
all the edges in the core graph. Thus, the overall objective function is

Minimize BW D Pij r r c c

r r

r r Re E

s t i j
s t

s tij

×

∈∈
∑∑
,

9.6.1.3 Constraints

The following is the set of constraints framed to solve the router location
selection problem:

•	 Mapping constraints

•	 Each core has to be mapped onto only one router.

∀ ∈ =

∈
∑c C mi c

r

r R
i
s

s

, 1

280 Network-on-Chip

•	 Each router, selected for synthesis, should have one core mapped
onto it.

 ∀ ∈ =
∈

∑r R ms c
r

c C
i
s

i

, 1

•	 A core can be mapped to a router only when that router location
is selected for synthesis.

 ∀ ∈ − ≥r R sr ms s c
r
i
s, 0

•	 Router–core association constraints

•	 A core ci can be associated with the router at location rs (i.e., clc
r
i
s

can be set to 1) if the physical distance (cdistc ri s) is less than LMAX.

 ∀ ∈ ∀ ∈ × ≤c C r R cdist cl Li s c r c
r

i s i
s, , MAX

•	 Now, mapping of a core onto a router is possible if there is a link
between them.

 ∀ ∈ ∀ ∈ − ≥c C r R cl mi s c
r

c
r

i
s

i
s, , 0

•	 Inter-router link constraints

•	 Link can exist between routers, if the distance between them is
less than the maximum link length LMAX.

 ∀ ∈ ∀ ∈ ≠ × ≤r R r R i j rdist rl Li j r r r ri j i j, , , MAX

•	 Constraints for core graph edges

•	 Each edge present in the core graph has to be mapped onto a
path in the evolved topology.

 ∀ ∈ ∀ ∈ + − ≤e E r r R m m Pi j s t c
r

c
r

c
r

c
r

i
s

j
t

i
s

j

t, , , 1

and

 2× ≤ +P m mc
r

c
r

c
r

c
r

i
s

j
t

i
s

j
t

•	 Path constraints

•	 To find the path between two router locations rs and rt, it is
required to identify the links and routers forming part of the
path. The following conditions are imposed for this purpose.

 − Starting and ending routers must be part of the path.

 ∀ ∈ ∀ ∈ − =e E r r R P ni j s t c
r

c
r

i
r r

i
s

j
t s t, , , 0

281Application-Specific Network- on-Chip Synthesis

 − To get starting link of the path, the following constraint is
imposed. Starting router may have more than one outgoing
link, out of which one has to be selected.

 ∀ ∈ ∀ ∈ − =
∈

∑e E r r R P li j s t c
r

c
r

r
r

r
r

r r R
i
s

j
t

i
s

j
t

i j

, , ,
,

0

 − If a link is part of the path, starting and ending routers of that
link must also be part of the path.

 ∀ ∈ ∀ ∈ × − − ≤r r R r r R l n ns t i j r
r

r
r

i
r r

j
r r

i
s

j
t s t s t, , , , 2 0

 − Each router (except starting and ending ones) should have
equal in and out degrees.

 ∀ ∈ ∀ ∈ ≠ ≠ ≠ × − =
∀

r r R r R r r r r r r n ls t i i s i t i j i
r r

r
r

r
r

r

s t
i
s

j
t

i
, , , , , ,

(,
2 0

rr Rj)∈∑
 − A link can be part of the path if it would have satisfied the

link length constraint.

 ∀ ∈ ∀ ∈ − ≥r r R r r R rl ls t i j r r r
r

r
r

i j i
s

j
t, , , , 0

 − The distance between routers can be calculated by using
 following equation:

 ∀ ∈ − =
∀ ∈∑r r R D ls t r r r

r
r
r

r r R
s t i

s
j
t

i j
, ,

(,)
0

This completes the formulation. The objective function along with the con-
straint set can be fed to any ILP solver to get the router positions minimiz-
ing the communication cost for the synthesized NoC. However, excepting
for very small NoCs, it takes huge amount of CPU time to arrive at the
solution. In Section 9.6.2, a particle swarm optimization (PSO)-based tech-
nique has been discussed to explore the search space for synthesizing
larger NoCs.

9.6.2 PSO for Flexible router Placement

Particle Swarm Optimization (PSO) is an optimization technique developed
around the idea of birds flocking. Originally proposed by Kennedy and
Eberhart (1995), the technique has been applied in numerous optimization
problem. In the following a PSO formulation has been presented as the flex-
ible router placement problem.

282 Network-on-Chip

9.6.2.1 Particle Structure and Fitness Function

Let l be the number of available router positions in the floorplan. For all these
l available router positions, a particle is a permutation of numbers from 0 to
l – 1. It is assumed that the router positions are numbered as 0 to l – 1. A par-
ticle identifies a set of router positions. The total communication cost forms
the fitness function. While calculating the communication cost, we consider
the locations from 0 to n (n < l) in the particle, where n represents the number
of cores in the application. Thus, only those first n router positions are used
for the mapping of cores.

Fitness of a particle P is the total communication cost due to the router
positions specified by the particle. For every particle, its fitness is calculated
as follows:

 1. The distance between each pair of core and router is calculated.
 2. A core is mapped to its nearest router. If the distance is more than

LMAX , the fitness of the particle is set to infinity.
 3. Links are established between the routers, taking LMAX constraint

into account. No link can be of length larger than this.
 4. For each edge in the core graph, the shortest path is found between

the cores in the router graph.
 5. Communication cost (fitness) is calculated using the formula:

Communication cost =

Number of hops

 Bandwidth between ea

×

cch pair

of cores in core graph

∑

It may be noted that while identifying the shortest paths between the cores,
the capacities of constituent links and all the communications passing
through the link are to be taken into consideration. The issues such as dead-
lock can be taken care of later either by adding virtual channels or via com-
munication scheduling.

9.6.2.2 Local and Global Bests

Every particle has a local best (pbest), which is one set of router positions giv-
ing minimum communication cost, among all sets of router positions that
the particle has seen so far in the evolution process. This local best partially
guides the evolution of the particle. For a particular generation, the global
best (gbest) is the particle resulting in the minimum communication cost for
that generation. It also controls the evolution of particles. The local best of
each particle and the global best are modified if the corresponding values
in the current iteration are less than the values till the previous iteration.

283Application-Specific Network- on-Chip Synthesis

9.6.2.3 Evolution of Generation

Evolution of the particles is done over generations to create new particles that
are expected to give results closer to the optimum. To start with, the initial pop-
ulation is created randomly and the fitness of individual particles is evaluated.
The local best (pbest) of each particle is initialized to be the same as that of the
initial particle. The global best of the generation is initialized with the particle
giving the least communication cost (smallest fitness function) in the genera-
tion. The second generation results through random exchange of router posi-
tions within the particles. The local best and global best values are updated
if they give better fitness values. Further generations are created through a
series of swap operations. The local best of each particle and the global best are
modified if the corresponding values in the current generation are less than the
values in the previous generation. The local best and the global best evolution
thus center on the basic operator, swap, explained in Section 9.6.3.4.

9.6.2.4 Swap Operator

Each particle is a sequence of l probable router positions. Out of these, first n
corresponds to the selected router positions. To effect a change in the particle,
the swap operator is used. The operator takes two indices (say i and j) of par-
ticle P as inputs and creates a new particle P1. The particle P1 is the same as
P, except that the positions i and j of P are interchanged in it.

Let the particle P be

r1 r3 r5 r7 r4 r2 r6 r8

where rx represents the router at position x. The indices of r1, r3, and r5 are
0, 1, and 2, respectively. The swap operator SO(3, 5) swaps positions 3 and 5
in P to generate a new particle as shown in the following:

r1 r3 r5 r2 r4 r7 r6 r8

9.6.2.5 Swap Sequence

A swap sequence is a sequence of swap operators. For example, a swap
sequence SS = {SO(1, 7), SO(3, 4)} creates particle Pnew working on particle P
in two steps as follows:

Let the particle P be

r3 r6 r8 r4 r1 r5 r2 r7

SO(1, 7) on particle P creates intermediate particle Pint.
Let the particle Pint be

284 Network-on-Chip

r3 r7 r8 r4 r1 r5 r2 r6

SO(3, 4) on Pint results in new particle Pnew.

Let the particle Pnew be

r3 r7 r8 r1 r4 r5 r2 r6

In PSO, each particle tries to move toward the local best and the global best
with some inertia of movement. After all particles have undergone the evolu-
tion, a new generation gets created. The best fitness of this generation gives
the global best for the population. The PSO terminates if there is no improve-
ment in the gbest value for a predefined number of generations, or the PSO
has already iterated for a preset maximum number of generation. The best
particle of this generation is taken as the solution to the flexible router place-
ment problem.

9.7 Summary

In this chapter, we have seen a few techniques to synthesize ASNoC. The
floorplan of the NoC along with router locations is evolved. The topologies
generated are irregular and custom-made. Hence, they are expected to opti-
mize system performance further. In Chapter 10, we will look into the recon-
figurable NoC design that can run different applications at different time
instants.

References

Ababei, C. 2010. Efficient congestion-oriented custom network-on-chip topology syn-
thesis. Proceedings of the International Conference on Reconfigurable Computing and
FPGAs, IEEE, pp. 352–357.

Abderazek, B. A., Akanda, M., Yoshinaga, T., and Sowa, M. 2007. Mathematical model
for multiobjective synthesis of NOC architectures. Proceedings of the Parallel
Processing Workshops, IEEE, p. 36.

Ahoen, T., David, A., Bin, H., and Nurmi, J. 2004. Topology optimization for applica-
tion specific networks on chip. Proceedings of the International Workshop on System
level Interconnect Prediction, IEEE, pp. 53–60.

Ar, Y., Tosun, S., and Kaplan, H. 2009. TopGen: A new algorithm for automatic topol-
ogy generation for network on chip architectures to reduce power consump-
tion. Proceedings of the International Conference on Application of Information and
Communication Technologies, IEEE, pp. 1–5.

285Application-Specific Network- on-Chip Synthesis

Ascia, G., Catania, V., and Palesi, M. 2004. Multi-objective mapping for mesh-based
noc architectures. Proceedings of the International Conference on Hardware/Software
Codesign and System Synthesis, IEEE, pp. 182–187.

Bei, Y., Dong, S., Chen, S., and Goto, S. 2010. Floorplanning and topology generation
for application-specific network-on-chip. Proceedings of the Asia and South Pacific
Design Automation Conference, IEEE, pp. 535–540.

Benini, L. 2006. Application specific NoC design. Proceedings of Design, Automation and
Test in Europe Conference and Exhibition, IEEE, pp. 1–5.

Bertozzi, D., Jalabert, A., Murali, S., Tamhankar, R., Stergiou, S., Benini, L., and
Micheli, G. D. 2005. NoC synthesis flow for customized domain specific multi-
processor systems-on-chip, IEEE Transactions on Parallel and Distributed Systems,
vol. 16, no. 2, pp. 113–129.

Binjie, S., Shan, Z., Ma, Y., Xu, N., and Wang, Y. 2011. Tree-based partitioning approach
for network-on-chip synthesis. Proceedings of the International Conference on
Computer-Aided Design and Computer Graphics, IEEE, pp. 465–470.

Chan, J. and Parameswaran, S. 2008. NoCOUT: NoC topology generation with mixed
packet-switched and point-to-point networks. Proceedings of the Asia and South Pacific
Design Automation Conference Design Automation Conference, IEEE, pp. 265–270.

Choudhary, N., Gaur, M. S., Laxmi, V., and Singh, V. 2010. Energy aware design meth-
odologies for application specific NoC, Proceedings of the NORCHIP, IEEE, pp. 1–4.

Choudhary, N., Gaur, M. S., Laxmi, V., and Singh, V. 2011. GA based congestion
aware topology generation for application specific NoC, Proceedings of the IEEE
International Symposium on Electronic Design, Test and Application, IEEE, pp. 93–98.

Dumitriu, V. and Khan, G. N. 2009. Throughput-oriented NoC topology generation
and analysis for high performance SoCs. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 17, no. 10, pp. 1433–1446.

Filippopoulos, I., Anagnostopoulos, I., Bartzas, A., Soudris, D., and Economakos, G.
2010. Systematic exploration of energy-efficient application-specific network-
on-chip architectures, Proceedings of the IEEE Computer Society Annual Symposium
on VLSI, IEEE, pp. 133–138.

Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Sanfrancisco, CA: Freeman.

Ho, R., Mai, K. W., and Horowitz, M. A. 2001. The future of wires. Proceedings of the
IEEE, vol. 89, no. 4, pp. 490–504.

Hu, Y., Chen, H., Zhu, Y., Chien, A. A., and Cheng, C. K. 2005. Physical synthesis of
energy-efficient networks-on-chip through topology exploration and wire style
optimization. Proceedings of the IEEE International Conference on Computer Design:
VLSI in Computers and Processors, IEEE, pp. 111–118.

Jalabert, A., Murali, S., Benini, L., and Micheli, G. D. 2004. ×pipesCompiler: A tool
for instantiating application specific networks on chip. Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition, IEEE, pp. 884–889.

Kennedy, J. and Eberhart, R. 1995. Particle swarm optimization. Proceedings of the IEEE
International Conference on Neural Networks, vol. 4, IEEE, pp. 1942–1948.

Khan, G. N. and Tino, A. 2012. Synthesis of NoC interconnects for custom MPSoC
architectures. Proceedings of the IEEE/ACM International Symposium on Networks
on Chip, IEEE, pp. 75–82.

Kwon, S., Pasricha, S., and Cho, J. 2011. POSEIDON: A framework for application-specific
network-on-chip synthesis for heterogeneous chip multiprocessors. Proceedings of
the International Symposium on Quality Electronic Design, IEEE, pp. 1–7.

286 Network-on-Chip

Korotkyi, I. and Lysenko, O. 2012. Application-specific network-on-chip with link
aggregation, Proceedings of the Mediterranean Conference on Embedded Computing,
IEEE, pp. 9–12.

Lai, G., Lin, X., and Lai, S. 2010. GA-based floorplan-aware topology synthesis of
application-specific network-on-chip. Proceedings of the IEEE International
Conference on Intelligent Computing and Intelligent Systems, IEEE, pp. 554–558.

Leary, G. and Chatha, K. S. 2010. A holistic approach to network-on-chip synthesis,
Proceedings of the IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, IEEE, pp. 213–222.

Leary, G., Srinivasan, K., Mehta, K., and Chatha, K. S. 2009. Design of network-on-
chip architectures with a genetic algorithm-based technique. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol.17, no.5, pp. 674–687.

Li, X. and Hammami, O. 2010. Multi-objective network-on-chip synthesis with
transaction level simulation. Proceedings of the International Conference on
Microelectronics, IEEE, pp. 487–490.

Lin, S., Su, L., Haibo, S., Depeng J., and Zeng, L. 2008. Hierarchical cluster-based irreg-
ular topology customization for networks-on-chip. Proceedings of the IEEE/IFIP
International Conference on Embedded and Ubiquitous Computing, IEEE, pp. 373–377.

M’zah, A. and Hammami, O. 2011. Area/delay driven NoC synthesis. Proceedings of
the International Conference on Microelectronics (ICM), IEEE, pp. 1–6.

Morgan, A. A., Elmiligi, H., El-Kharashi, M. W., and Gebali, F. 2009. Area-aware
topology generation for application-specific networks-on-chip using network
partitioning. Proceedings of the IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing, IEEE, pp. 979–984.

Morgan, A. A., Elmiligi, H., Watheq, E. M., and Gebali, F. 2008. Networks-on-Chip
topology generation techniques: Area and delay evaluation. Proceedings of the
Design and Test Workshop, IEEE, pp. 33–38.

Murali, S., Meloni, P., Angiolini, F., Atienza, D., Carta, S., Benini, L., Micheli, G. D., and
Raffo, L. 2006. Designing application-specific networks on chips with floorplan
information. Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design Computer-Aided Design, IEEE, pp. 355–362.

Murali, S. and Micheli, G. D. 2004. Bandwidth constrained mapping of cores onto
NoC architectures. Proceedings of Design, Automation and Test in Europe Conference
and Exhibition, pp. 896–901.

Ogras, U. Y. and Marculescu, R. 2005a. Application-specific network-on-chip archi-
tecture customization via long-range link insertion. Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, IEEE, pp. 246–253.

Ogras, U. Y. and Marculescu, R. 2005b. Energy- and performance-driven NoC com-
munication architecture synthesis using a decomposition approach. Proceedings
of the Design, Automation and Test in Europe, IEEE, pp. 352–357.

Pinto, A., Carloni, L. P., and Sangiovanni-Vincentelli, A. L. 2003. Efficient synthesis of
networks on chip, Proceedings of the International Conference on Computer Design,
IEEE, pp. 146–150.

Ravi, R., Marathe, M. V., Ravi, S. S., Ronenkarntz, D. J., and Hunt, H. B. 2001.
Approximation algorithms for degree-constrained minimum-cost network
design problems. Algorithmica, vol. 31, no. 1, pp. 58–78.

Reza K. M., Angiolin, F., Murali, S., Pullini, A., Seiculescu, C., and Benini, L. 2009.
A floorplan-aware interactive tool flow for NoC design and synthesis.
Proceedings of the IEEE International SOC Conference, IEEE, pp. 379–382.

287Application-Specific Network- on-Chip Synthesis

Roy, G. D. 1978. U-statistic hierarchical clustering, Psychometrica, vol. 4, no. 1,
pp. 58–67.

Salminen, E., Kulmala, A., and Hmlinen, T. D. 2008. Survey of network-on-chip pro-
posals, Technical Report, http://www.ocpip.org/socket/whitepapers.

Sait, S. M. and Youssef, H. 1994. VLSI Physical Design Automation: Theory and Practice.
McGraw-Hill, New York.

Sami, J. H. and Mohammad, G. M. 2006. Q8WARE: Synthesis tool for network-on-
chip applications. Innovations in Information Technology, pp. 1–5.

Shan, Y. and Lin, B. 2008. Application-specific network-on-chip architecture synthesis
based on set partitions and steiner trees. Proceedings of the Asia and South Pacific
Design Automation Conference, IEEE, pp. 277–282.

Soumya, J. and Chattopadhyay, S. 2013. Application-specific network-on-chip syn-
thesis with flexible router placement, Journal of Systems Architecture, vol. 59,
pp. 361–371.

Srinivasan, K. and Chatha, K. S. 2005. SAGA: Synthesis technique for guaranteed
throughput NoC architectures. Proceedings of the Asia and South Pacific Design
Automation Conference, IEEE, pp. 489–494.

Srinivasan, K., Chatha, K. S., and Konjevod, G. 2005. An automated technique for
topology and route generation of application specific on-chip interconnection
networks. Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design, IEEE, pp. 231–237.

Srinivasan, K., Chatha, K. S., and Konjevod, G. 2006. Linear-programming-based
techniques for synthesis of network-on-chip architectures. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 14, no. 4, pp. 407–420.

Stergiou, S., Angiolini, F., Carta, S., Raffo, L., Bertozzi, D., and Micheli, G. D.
2005. xpipes Lite: A synthesis oriented design library for networks on chips.
Proceedings of the Design, Automation and Test in Europe, IEEE, pp. 1188–1193.

Tino, A. and Khan, G. N. 2011. Multi-objective tabu search based topology generation
technique for application-specific network-on-chip architectures. Proceedings of
the Design, Automation & Test in Europe Conference & Exhibition, IEEE, pp. 1–6.

Wang, K. P., Huang, L., Zhou, C. G., and Wei, P. 2003. Particle swarm optimization
for traveling salesman problem. Proceedings of the International Conference on
Machine Learning and Cybernetics, IEEE, pp. 1583–1585.

Zhong, W., Yu, B., Song, C., Yoshimura, T., Dong, S., and Goto, S. 2011. Application-
specific network-on-chip synthesis: Cluster generation and network component
insertion. Proceedings of the International Symposium on Quality Electronic Design,
IEEE, pp. 1–6.

289

10
Reconfigurable Network-on-Chip Design

10.1 Introduction

Designing system containing multiple applications having almost common
set of cores leads to reconfigurable computation. In such a system, the same
hardware platform is utilized to implement the applications. In a network-
on-chip (NoC) (Dally and Towles 2001; Atienza et al. 2008) environment,
the intellectual property (IP) cores communicate with each other using an
underlying router network. The routers are often connected in a predefined
fabric. Commonly used network topologies include mesh, tree, and star.
Out of these, mesh is the most widely used topology due to its regular
structure and short interconnections. A reconfigurable computation in any
such topology essentially means designing the NoC so that the perfor-
mances of all applications become acceptable. The set of cores considering
all applications is mapped to the routers in such a fashion that the stated
objective is met.

A key point in optimizing the NoC power/performance is to place the cores
that are communicating more frequently, close to each other. This is typically
known as the application mapping problem, discussed in detail in Chapter
5. Application mapping has been a very well-researched domain. Many NoC
mapping strategies are available in the literature. Most of the existing NoC
mapping methods try to find an optimal mapping for the communication
pattern of a single application. For a set of applications, the NoC architec-
ture for the design should closely match the traffic characteristics and perfor-
mance requirements of different applications. As different applications have
different functionalities, the inter-IP communication characteristics can be
very different across the applications. In general, a NoC that is designed to
run exactly one application does not necessarily meet the design constraints
of other applications.

NoC reconfiguration problem can be addressed at various levels. First of
all, standard reprogrammable devices, such a field-programmable gate array
(FPGA) can be used to change the entire NoC logic—cores, routers, and
their interconnections can get modified per application. However, this is

290 Network-on-Chip

not feasible in Application Specific Integrated Circuit (ASIC) design envi-
ronment. For ASIC-based NoCs, the suggested reconfigurations are as
follows:

 1. Local reconfiguration of core attachments to neighboring routers
(Soumya et al. 2013). Multiplexers are introduced to change the
attachments of cores to different routers for different applications.

 2. Topology reconfiguration (Modarressi et al. 2011) via topology
switches to evolve application-specific topologies for individual
applications.

 3. Router wrapper design (Stensgaard et al. 2008) to effect
reconfiguration.

 4. Link reconfiguration (Lan et al. 2011) to change directions of links
connecting any two routers, based on traffic load in each direction.

In this chapter, these strategies will be discussed. However, to start with,
Section 10.2 performs a brief review of the literature in the domain of recon-
figurable NoC design.

10.2 Literature Review

A ReNoC architecture has been presented in Stensgaard et al. (2008) which
enables the network topology to be configured by the application running
on the SoC by using topology switches. Core mapping mechanisms for
ReNoC architectures have been presented by Modarressi and Sarbazi-
Azad (2007) and Modarressi et al. (2010, 2011), where reconfiguration is
achieved via programmable switches in the network. The reconfigurabil-
ity allows NoC to dynamically tailor its topology to the traffic pattern of
different applications. Reconfigurable hybrid bus–network architecture
has been proposed by Avakian et al. (2010), where the number of proces-
sor cores attached to each bus is reconfigurable and is dependent on the
needs of the active processes and applications. Wu et al. (2011) proposed a
dynamic bypass circuit and north-last-weave routing algorithm to realize
dynamically reconfigurable ReNoCs. The network reconfigures itself for
different applications at runtime. OperaNP, a ReNoC-based platform, has
been proposed by Elmiligi et al. (2007) in which cores can be embedded
on an array of programmable logic blocks while the data routing is done
using another array of configurable routers. A topology allocation algo-
rithm has been presented in Kunert et al. (2007) considering the demands
of different applications. It selects topology depending on the application
running on NoC. A hybrid-communication ReNoC (HCR-NoC) has been

291Reconfigurable Network-on-Chip Design

presented in Zheng et al. (2010) which dynamically reconfigures Multi-
Processor System-on-Chip (MPSoC) architecture based on bus traffic.
They have used a designable framework that enables topology reconfigu-
ration upon some regular physical network topologies. It provides a cus-
tomized domain-specific framework for on-chip interconnection, which
applies both NoC-based and bus-based systems to fulfil specific applica-
tion requirements. A runtime ReNoC framework has been presented in
Rana et al. (2009) based on the partial dynamic reconfiguration capabilities
of FPGAs. This framework dynamically creates or deletes express lines
between SoC components (implementing dynamically circuit-switching
channels) and performs runtime NoC topology and routing table recon-
figurations to handle interconnection congestion. A flexible network
design has been presented in Bartic et al. (2003, 2005) which is scalable
and can be changed to accommodate various needs of applications. This
design is realized as part of the platform for reconfigurable systems. It
is suitable for building networks with irregular topologies. An architec-
ture of dynamically reconfigurable NoC has been proposed by Ahmad
et al. (2006) for MPSoC. It dynamically configures itself with respect to
routing, switching, and data packet size with the change in communica-
tion requirements of the system at runtime. This work generates specific
topology for the application running on NoC, which is a time-consuming
and complex approach, as this consists of generating floorplan, network
component placement, and deadlock free routing. Ding et al. (2012) has
proposed a configuration algorithm based on a ReNoC by clustering the
cores. Many cores are connected per router that may lead to increase in
the complexity and power consumption of the routers. Only one applica-
tion is taken at a time for mapping onto the reconfigured NoC. Dumitriu
and Khan (2009) has presented an approach for throughput oriented NoC
generation technique.

10.3 Local Reconfiguration Approach

In this section, a locally reconfigurable NoC architecture is presented
(Soumya et al. 2013). The architecture is built around the one reported in the
work of Ding et al. (2012) (shown in Figure 10.1).

Compared to many other reconfiguration topologies (Stensgaard et al.
2008; Modarressi et al. 2011) that attempt to reduce distances between com-
municating cores via the introduction of configurable switches, this architec-
ture uses multiplexers. The cores have limited choice to get attached to the
routers; however, the overall architecture remains a mesh with small regu-
lar interconnects, bounded delay, and the applicability of standard mesh
routing algorithms for the resulting application’s message communication.

292 Network-on-Chip

However, the work of Ding et al. (2012) allows a cluster of cores to be attached
with individual routers, increasing the router complexities and their associ-
ated power consumptions. The work presented in the work of Soumya et al.
(2013) and discussed in this section restricts the number of cores attached
to any router to at most two. This brings more regularity in the resulting
NoC. Connecting two cores to one router also enjoys the advantage that two
highly communicating cores, if attached to the same router, will encounter
very little delay in their communication. The modified architecture is shown
in Figure 10.2 for a 4 × 4 network. The network architecture consists of rout-
ers, multiplexers, and selection logic. In the following sections, each of them
will be elaborated.

10.3.1 routers

Similar to the standard mesh topology, each router has at most four global
ports connecting to the four neighbors. The boundary routers possess less
number of neighbors, resulting in reduced number of global ports in them.
Apart from that, each router has two local ports. A core can be attached to a

R1
M

U
X

M
U

X
M

U
X

M
U

X
M

U
X

M
U

X

M
U

X
M

U
X

M
U

X

M
U

X
M

U
X

M
U

X

M
U

X

M
U

X

M
U

X

R5

R2 R3 R4

R8R7R6

R9 R12

: Core cluster

R11R10

R13 R16R16R14

Figure 10.1
Locally reconfigurable architecture.

293Reconfigurable Network-on-Chip Design

local port. Thus, each router can have up to two cores connected to it. For an
M × N mesh, the router requirements are as follows:

Six-port routers (four global, two local ports) = (M − 2)(N − 2)
Five-port routers (three global, two local ports) = 2(M + N − 4)
Four-port routers (two global, two local ports) = 4

10.3.2 Multiplexers

To bring the flexibility of local reconfiguration of cores, multiplexers are intro-
duced. As a result, a core can get attached to any of its neighboring routers.
The cores in the leftmost column and the bottommost row can get attached
to only two routers. The cores at the bottom-left corner can get attached to a
single router; hence, no multiplexers are necessary for them. The remaining
cores are connected to neighboring routers via multiplexers. Each 4:1 MUX
block in Figure 10.2 consists of two 4:1 multiplexers, whereas a 2:1 MUX
block contains two 2:1 multiplexers in it.

R1

M
U

X
M

U
X

M
U

X

M
U

X
M

U
X

M
U

X

M
U

X
M

U
X

M
U

X

M
U

X M
U

X
M

U
X

M
U

X
M

U
X

M
U

X

M
U

X

M
U

X

R5

R2 R3 R4

R8

To R3
To R4

To R15

To R16

To R7
To R8

: Core

R7R6

R9 R12R11R10

R13 R16R15R14

M
U

X
M

U
X

Figure 10.2
Another locally reconfigurable architecture.

294 Network-on-Chip

For an M × N network, the number of different types of multiplexers
needed are as follows:

4:1 multiplexers = (M − 1)(N − 1)
2:1 multiplexers = M + N − 2

10.3.3 Selection Logic

Selection logic blocks are incorporated in each router to associate cores,
 connected to the router, to the individual local ports. We have kept full flex-
ibility to connect a core to either of the local ports of a router. Figure 10.3
shows the position of a selection logic block for a router. Each nonboundary
router has eight cores surrounding it, any two of which may be connected to
its two local ports. Thus, the selection logic block has eight inputs (one for
each core) and two outputs (one for each local port). For boundary routers,
the structure is a bit simple, as each router has only four candidate cores
to which it may be connected. Thus, four-input, two-output selection logic
blocks will suffice for them.

For an M × N mesh network, the number of such selection logic blocks are
as follows:

Four-input, two-output blocks: M + N − 2
Eight-input, two-output blocks: (M − 1) (N − 1)

10.3.4 Area Overhead

We next estimate the area overhead of the proposed architecture. For this,
we have first computed the area of different types of routers used in the
topology using the tool Orion 2.0. The corresponding parameters are noted

LP1
LP2

Router

Selection
logic

To top

To rightTo left

To bottom

LP1
LP2

Router

Selection
logic

To top

To rightTo left

To bottom
(a) (b)

Figure 10.3
Selection logic in nonboundary routers (a) and boundary routers (b).

295Reconfigurable Network-on-Chip Design

in Table 10.1. The router area values are noted in Table 10.2. Different types
of multiplexers (4:1 and 2:1) and selection logic modules (eight-input two-
output and four-input two-output) have been synthesized using Synopsys
Design Vision tool with 90-nm library. The corresponding area values are
noted in Table 10.3.

For an M × N NoC assuming two cores per router (i.e., a total of 2MN cores)
and each core being of area x μm2, the overhead of the proposed approach
is given by the ratio of the total network area to the total core area. The total
network area overhead is given by:

TABLe 10.2

Router Areas

Router Type Area (μm2)

Four-port 80,305.5
Five-port 190,930
Six-port 259,761

TABLe 10.3

Area for Other Module Types

Module Type Area (μm2)

4:1 Multiplexer 3237
2:1 Multiplexer 1618.5
Eight-input two-output selection logic 809.25
Four-input two-output selection logic 404.62

TABLe 10.1

Parameters for Orion

Parameter Value

Technology 90 nm
Operating condition (transistor type) NVT (normal)
Supply voltage 1.0 V
Frequency 1.5 GHz
Virtual channels 4
Input buffer 1 (present)
Input buffer depth 6
Buffer type Register

NVT, nominal threshold voltage (Vt)

296 Network-on-Chip

Number of four-port routers Area of four-port routers() ()×

+ NNumber of five-port routers Area of five-port routers() ()×

++ ×

+

Number of six-port routers Area of six-port routers() ()
NNumber of 4:1 multiplexers Area of 4:1 multiplexers

N

() ()×

+ uumber of 2:1 multiplexers Area of 2:1 multiplexers
Nu

() ()
+

×
mmber of four-input two-output selection logic blocks

Ar
()

× eea of four-input two-output selection logic blocks

Numb
()

+ eer of eight-input two-outputselectionlogic blocks

Area of
()

× eight-input two-output selection logic blocks()

Total core area

=

259761 2 2 2 190930 4 4 80305 5

3237 1 1

× − − + × × + − + ×

+ × − −

()() ()

()

M N M N

M N

.

(() ()

()() ()

+ × + − +

× − − + × + −

1618 5 2 809 25

1 1 404 62 2

. .

.

M N

M N M N

2MNx

=

259761 2 2 381860 4 4046 25

1 1 2023 1

× − − + × + − +

× − − +

()() ()

()()

M N M N

M N

.

. 22 2
2

× + −()M N
MNx

The area overheads of different architectures are shown in Table 10.4. It
can be seen that the area overhead of the proposed reconfigurable scheme
is 0.1% more than a simple mesh without reconfiguration. Thus, the pro-
posed architecture is a feasible one and supports reconfiguration. The
reconfiguration procedure has to identify the select lines of multiplex-
ers (implemented by the configuration manager at the application layer)
which will decide the connection between cores and routers for each
application.

10.3.5 Design Flow

The strategy to design a reconfigurable NoC for a set of given applications,
using the architecture proposed, has been discussed in this section. It is
assumed that the applications have a number of tasks common between
themselves; however, the communication pattern may change across the

297Reconfigurable Network-on-Chip Design

applications. This is justified as the applications constitute a full system.
Further, the reconfiguration is assumed to be static in nature. Thus, for a
task, the core accomplishing it is known at the system design time itself. Each
task is bound to a fixed core. Cores may be multifunctional; thus, a number
of tasks may be bound to a single core. It may be noted that dynamic task
allocation to cores in NoC can also be performed for the proposed topol-
ogy; however, this chapter does not address this issue. We rather restrict our
attention to show the promise of the proposed architecture for a multiappli-
cation environment with core sharing among applications.

Once the core for each application task has been discussed, the applications
can be viewed as a set of core graphs defined next. Each core performs one
or more tasks of one or more applications. The communication requirement
of a pair of cores for each application is computed from the communication
requirements of the corresponding communicating tasks in the application
bound to these cores. All such task communications are added to get com-
munication between the pair of cores. For application Ai, its core graph Gi
consists of a number of nodes equal to the number of cores needed for Ai.
There is an edge between the nodes cij and cik if there are communications
between cores j and k in application Ai. The edge has a weight equal to the
corresponding bandwidth requirement.

The design flow of the proposed reconfigurable NoC synthesis procedure
(shown in Figure 10.4) can be divided into following three stages:

•	 Construction of combined core graph (CCG)
•	 Mapping of cores in CCG to the mesh network
•	 Configuration generation for each application

Each stage is described in Sections 10.3.5.1 through 10.3.5.3.

TABLe 10.4

Area Overheads of Different Architectures

Number of Cores (M × N)

Simple Two-Core per Router
Mesh (without

Reconfiguration)
Reconfigurable

Architecture

16 (2 × 4) 0.129 0.131
32 (4 × 4) 0.130 0.131
64 (4 × 8) 0.130 0.131
128 (8 × 8) 0.130 0.131
256 (8 × 16) 0.130 0.131
512 (16 × 16) 0.130 0.131

298 Network-on-Chip

10.3.5.1 Construction of CCG

Let { , , ..., }A A An1 2 be the set of applications to be implemented in the NoC.
Application Ai is represented by the core graph G C Ei i i= (,) where Ci is the
set of cores participating in the application and Ei is the set of edges repre-
senting the communication pattern of Ai. Each edge in Ei has a weight cor-
responding to the bandwidth requirement of the communication. The CCG
G = (C,E) is defined as follows:

The node set C C C Cn= ∪ ∪1 2 . . . is the set of cores required for the entire
set of applications. An edge e is included in E if and only if e Ei∈ for at least a
single application Ai. The weight of the edge e is set to be the sum of weights
of all such edges in the entire application set. That is,

 Weight Weight of in ()
{ .. }

e Ee i

i n

= ()
∈
∑

1

Core graph 1 Core graph 1

Construct CCG

CCG

Mapping of CCG

Initial mesh
mapping of CCG

Application-specific
Reconfiguration

Configuration of
core graph 1

Configuration of
core graph 2

Configuration of
core graph n

Core graph n

Figure 10.4
Design flow of ReNoC synthesis process.

299Reconfigurable Network-on-Chip Design

10.3.5.2 Mapping of CCG

The CCG is now mapped onto the mesh topology. The cost of a mapping
solution is computed by determining the total communication cost of the
CCG. The communication cost corresponding to a pair of cores in CCG is
computed as the product of the bandwidth requirement between the cores
and the number of hops between the corresponding routers. Each router can
have at most two cores connected to it. The communication cost between two
such cores connected to the same router is taken as zero, as no router cycle is
spent in the process.

For achieving this mapping, first an integer linear programming (ILP) for-
mulation of the problem has been done. This produces optimal results, but
could give solutions for small graphs only. Next, a particle swarm optimiza-
tion (PSO) has been performed for obtaining mapping of larger CCGs.

10.3.5.3 Configuration Generation

The mapping stage attaches cores to routers taking a global view of the set of
applications. The next task is to fine-tune the mapping for each application
separately, and thus generate the corresponding configuration program for
the application. As it can be noted in Figure 10.2, excepting the boundary
routers, each core can be attached to any of the four routers surrounding it,
by applying suitable controls to the multiplexers. Thus, it leads to a restricted
version of the mapping problem that can be solved in the global mapping
stage considering the CCG. The problem can be solved using the following
three different strategies:

•	 ILP
•	 PSO
•	 An iterative improvement algorithm

The ILP and PSO formulations are similar to that in the previous phase,
whereas the iterative approach is a new one. In Section 10.3.6, the ILP for-
mulation to solve the mapping problem is presented. This can be used to
get solution to both the CCG mapping and local configuration generation.
Section 10.3.7 presents the PSO-based approach that may also be used to
solve both global and local mapping. Section 10.3.8 presents the iterative
approach for local mapping.

10.3.6 iLP-Based Approach

This section presents an ILP formulation for the problem of mapping and
reconfiguration onto the proposed reconfigurable NoC architecture. First,
formulation has been given for mapping problem, which has next been
extended for reconfiguration.

300 Network-on-Chip

10.3.6.1 Parameters and Variables

The parameters and variables used in the ILP formulation are noted in
Table 10.5.

10.3.6.2 Objective Function

The objective is to minimize the communication cost by selecting suitable
routers in the ReNoC for mapping and reconfiguration. The objective func-
tion can be formulated as follows: If cores ci and cj are mapped to routers
rs and rt and a path exists between them in the network, Pc

r
c
r

i
s

j
t is equal to 1. This

multiplied by Dr rs t gives the number of hops of the communication from ci
to cj. The number of hops multiplied by bandwidth gives the communication
cost, which has to be minimized over all the edges in the core graph.

min

,
BW D Pi j r r c

r
c
r

r r Re E
s t i

s
j

t

s ti j
×()

∈∈ ∑∑

10.3.6.3 Constraints

The following is the set of constraints framed to solve the mapping and
reconfiguration problem:

 1. Mapping constraints
 a. Each core has to be mapped onto only one router.

∀ ∈ =
∈

∑c C mi c
r

r R
i
s

s

, 1

 b. Each router can have at most two cores mapped onto it.

∀ ∈ ≤
∈

∑r R ms c
r

c C
i
s

i

, 2

TABLe 10.5

Parameters and Variables of ILP Formulation

Parameters and
Variables Definitions

Dr rs t The precalculated Manhattan distance between the routers rs and rt

BWi j The bandwidth requirement from core ci to core cj

mc
r
i
s Binary variable. mc

r
i
s = 1 if core ci is mapped to the router rs; otherwise,

mci
rs = 0.

Pc
r

c
r

i
s

j
t Binary variable. Pc

r
c
r

i
s

j
t = 1 if a path exists between routers rs and rt to which

cores ci and cj have been mapped, respectively; otherwise, Pc
r

c
r

i
s

j
t = 0.

301Reconfigurable Network-on-Chip Design

 2. Constraints for core graph edges
 a. Each edge present in the core graph has to be mapped onto a

path in the NoC considered.

∀ ∈ ∀ ∈ + − ≤e E r r R m m Pi j s t c

r
c
r

c
r

c
r

i
s

j
t

i
s

j
t, , , 1

2× ≤ +P m mc

r
c
r

c
r

c
r

i
s

j
t

i
s

j
t

This completes the formulation. The objective function along with the con-
straint set can be fed to any ILP solver to get mapping and reconfiguration
for minimizing the communication cost of NoC.

For mapping of CCG onto the reconfigurable NoC, the equations noted so
far used. The cores in the combined graph can be mapped onto any router in
the network. Therefore, the router variables rs and rt in the equations can take
any value from 1 to the number of routers present in the architecture. For the
reconfiguration phase, each core cannot have the flexibility to move from its
initial mapped position to any arbitrary router position in the network. As the
output from the mapping approach is taken as input in the Mapping phase
output is taken as input for the reconfiguration phase. Thus, the flexibility of
the attachment of a core to a router in the reconfiguration phase depends heav-
ily on the initial core-to-router attachment and the flexibility provided by the
reconfiguration architecture (Figure 10.2). For example, if a core of combined
graph is mapped onto router R1, through the multiplexer between R1 and R5,
the mapped core can have the flexibility of moving to R5 or remain at R1 only.
If a core is mapped onto router R1, through the multiplexer present between
R1, R2, R5, and R6, the mapped core can move to any of these routers, and so
on. Therefore, the flexibility of the core moving from its initial mapped posi-
tion (output of mapping phase) depends upon onto which router it has been
mapped in the initial phase of mapping. In ILP formulation, the routers in equa-
tions cannot take all the possible values in reconfiguration phase. The router
position values that are allowed for each core can only be taken in ILP for the
reconfiguration purpose. However, except for very small NoCs, it takes huge
amount of CPU time to arrive at the solution. Hence, Soumya et al. (2013) has
also proposed a PSO-based optimizer to find mapping for larger core graphs.

10.3.7 PSO Formulation

As noted in Chapter 5, PSO is a population-based stochastic technique devel-
oped by Eberhart and Kennedy in 1995, inspired by social behavior of bird
flocking or fish schooling. In a PSO system, multiple candidate solutions
coexist and collaborate simultaneously. Each solution, called a particle, flies in
the problem space according to its own experience as well as the experience
of neighboring particles. It has been successfully applied in many problem
areas. In PSO, each single solution is a particle in the search space, having a
fitness value. The quality of a particle is evaluated by its fitness. A discrete

302 Network-on-Chip

PSO (DPSO) formulation has been developed in Soumya et al. (2013) for map-
ping the cores onto the NoC architecture and then reconfiguring them with
the application considered.

10.3.7.1 Particle Formulation and Fitness Function

10.3.7.1.1 For Mapping Problem

A particle corresponds to a possible mapping of cores to the routers. An
example of a particle structure is shown in Figure 10.5. The numbers shown
in the boxes are the core numbers present in the CCG. The numbers outside
the box are the router numbers of the NoC architecture. It is assumed that
the routers are numbered in ascending order from the top-left to the bottom-
right position as shown in Figure 10.2. If the number of the nodes (routers)
present in the architecture is greater than half the number of cores present
in the CCG, dummy nodes are added to the CCG to make the two numbers
same. These nodes are connected to all core nodes and between themselves.
The edges connecting a core node to dummy nodes and the edges between
dummy nodes are assigned cost zero. Let N be the number of cores present in
the CCG for mapping of cores onto the ReNoC architecture, after connecting
the dummy nodes, if required. For these N cores, there are N/2 positions in the
architecture. A particle is a permutation of numbers from 1 to N, which shows
the placement of the cores to the node positions of the architecture. The over-
all communication cost is influenced by the position of the cores in a particle.
In this formulation, the overall communication cost forms the fitness function.
The fitness of a particle is equal to the overall communication cost after the
placement of cores of the CCG to different routers as specified by the particle.

10.3.7.1.2 For Reconfiguration Problem

For the reconfiguration problem, a particle corresponds to a possible move-
ment of cores from their initial mapped position to the available router posi-
tions in the reconfigurable architecture. The particle structure is similar to
that of mapping problem, shown in Figure 10.5. The main difference between
the particle structure in the mapping phase and this phase is in the possible
router positions for mapping. In the mapping phase, each entry in the par-
ticle (core number) can choose any router position for mapping, whereas in
the reconfiguration phase, it can choose from a limited number of router
positions, which depends on the initial mapped position of the core (output
of mapping phase).

1 5 6 8 9 3 7 10 4 2

1 1 2 2 3 3 4 4 5 5

Figure 10.5
A sample particle.

303Reconfigurable Network-on-Chip Design

10.3.8 iterative reconfiguration

In this section, a heuristic algorithm is presented to perform reconfiguration.
For each application, it attempts to finalize the positions of cores, so that the
communication cost for the application can be reduced further. It may be noted
that in the proposed architecture, a core can get attached to any of the four rout-
ers surrounding it. It is assumed that the global mapping phase has attached the
core to the router at the upper right position. The local reconfiguration phase
will evaluate other three positions and shift the core to the most suitable router.

The algorithm Heuristic_Configure performs this job. It picks up each applica-
tion by turn and generates its reconfiguration information. For an application
Ai represented by the core graph G C Ei i i= (,), it first computes the communi-
cation cost of each of its edges. The edges are sorted in a descending order of
the communication cost. The first edge [(,)]e c ci

j
i
k= is taken. Since it is having

the highest communication cost, reducing distance between the correspond-
ing cores is expected to have good impact on communication cost improve-
ment of the application. It then attempts to find the best location for ci

j . It can
move to any of the four neighboring router positions. The core gets attached
to the router resulting in the minimum cost of edge e. The core position gets
locked, and in the corresponding router, only one more core position is avail-
able. The same operation is carried out with core ci

k. The process continues till
all cores get locked to some router positions.

Algorithm Heuristic_Reconfigure

Input: Mapping of core graphs G G Gn1 2, , ... corresponding to applications
A A An1 2, , ...
Output: Reconfigured mappings
Begin
 For each application core graph G C Ei i i= (,) of Ai do
 Begin
 Mark all cores of Ci as unlocked
For each edge e c c Ei

j
i
k

i= ∈(,) do
 Begin
 Communication cost of e = bandwidth (e) * hop-

distance between routers to which cores ci
j and ci

k
are mapped

 End For
 Sort all edges in Ei on decreasing communication cost
 For each edge e c c Ei

j
i
k

i= ∈(,) picked up in order do
 Begin
 If ci

j and ci
k are both locked then continue with

 next edge
 If ci

j and ci
k are both mapped to same router then

 Mark both cores as locked

304 Network-on-Chip

 Else
 Begin
 If ci

j is unlocked then
 Begin
 Find candidate positions with

minimum cost of ci
j

 Min_pos = Candidate position
with minimum cost of e

 Map ci
j to Min_pos

 Lock core ci
j

 End
 If ci

k is unlocked then
 Begin
 Find candidate positions with

minimum cost of ci
k

 Min_pos = Candidate position
with minimum cost of e

 Map ci
k to Min_pos

 Lock core ci
k

 End
 End
 End
 End
End

Section 10.4 looks into another reconfiguration strategy, commonly known as
topology reconfiguration. Unlike the strategy discussed in this section, the
reconfiguration can result in long interconnects. Thus, if communication can
take place over these longer links within the router clock period, the strate-
gies can be adopted without introducing further delays into the network.

10.4 Topology Reconfiguration

Standard topologies for NoC, such as mesh and tree, and their variants pro-
vide the flexibilities to the designers, as physical design issues can be resolved
once and reused for several designs. However, ASNoCs are designed for
some particular application(s). Topology reconfiguration-based strategies
are intermediary between these two. These techniques essentially put some
switches in the network, so that the topology can be dynamically changed to
suit the requirements of a particular application. For the next application, the
switch configurations can be changed, thus leading to a different topology
altogether. In the following, two such techniques will be discussed that pro-
vide the facility of topology reconfiguration. The first approach (Stensgaard

305Reconfigurable Network-on-Chip Design

et al. 2008) adds some topology switches around the individual routers.
The second one (Modarressi et al. 2011) introduces similar switches into the
topology, though not exclusively earmarked for a particular router.

10.4.1 Modification around routers

The strategy ReNoC (Stensgaard et al. 2008) combines the flexibilities of packet
switching and circuit switching into NoC. Figure 10.6 shows a physical architec-
ture of the process, on top of which logical architectures can be developed. The
network nodes are connected by links in a two-dimensional mesh fashion. Each net-
work node consists of a conventional router wrapped with a topology switch. The
physical architecture (shown in Figure 10.7a) can produce, for example, two differ-
ent configurations shown in Figure 10.7b and c. Long logical links can be formed
connecting directly two IP blocks, two routers, or between a router and a core.

A multiplexer-based implementation of such a topology switch is shown in
Figure 10.8. It connects four links, an IP block, and a five-port router. It is also
capable of connecting links directly to each other or to a port of the router.
The following alternating connections are possible.

•	 Incoming links can be connected directly to an outgoing link,
bypassing the router.

•	 Incoming link may be connected to a router port.
•	 Ports of the router can be connected to outgoing links.

Next, a reconfiguration architecture that puts explicit configuration switches
between routers will be explored.

C7

C1 C2 C3 C4

C5 C6 C8

C9

C13

C10

C14

C11

C15

C12

R

C16

Figure 10.6
A physical architecture with routers wrapped by topology switches.

306 Network-on-Chip

10.4.2 reconfiguration Architecture

Figure 10.9 shows an m × n (4 × 4, in the example) network with nodes
arranged in a two-dimensional mesh fashion (Modarressi et al. 2010). Similar
to normal mesh, the square boxes correspond to routers to which individual
cores can be attached. The horizontal and vertical lines are the links between
routers. However, unlike a general mesh, routers are not connected directly;
rather the links have configuration switches in between. These switches can
be configured to create different types of topologies in which the routers get
connected. For example, Figure 10.9 shows the architecture configured as a
mesh. Figure 10.10 configures it as a binary tree. The configuration consists
of simple pass transistor switches to establish connection between incoming
and outgoing links. Though only a single connection is shown between two
ports of a switch, each link is bidirectional and can be controlled separately
to connect to two different ports. For example, the incoming north link may
be connected to the outgoing south link of a switch, whereas the outgoing
north link may get connected by the incoming east link. It should be noted
that long links may get created via the reconfiguration process. It degrades

C1 C2 C3 C4

C5 C6 C7 C8

C9 C10 C11 C12

C13 C14 C15 C16

(a)

C1 C2

R R

R R

RRR

R

R

C3 C4

C5 C6 C7 C8

C9 C10 C11 C12

C13 C14 C15 C16

(b)

R

R R R

R

R R

C1 C2 C3 C4

C5 C6 C7 C8

C9 C10 C11 C12

C13 C14 C15 C16

(c)

Figure 10.7
(a) Physical architecture; (b) logical topology 1; (c) logical topology 2.

307Reconfigurable Network-on-Chip Design

the NoC clock frequency, as flits may not be able to cross a long link within
a single router clock. For solving these problems, long links are segmented
into fixed-length links connected by a register (one-flit buffer). Data may be
sent over such a link in a pipelined fashion.

10.4.2.1 Application Mapping

The overall mapping problem for this architecture can be stated as follows:
Given a set of input applications using a specific set of IP cores,

 1. Attach the cores to different routers in the architecture.
 2. Determine the customized topology for each application, based on

mapping and application traffic characteristic.

Port 1

Router

Link Link

Port 2

Port 3

Port 4

Port 5

Topology switch

Li
nk

Li
nk

IP core

Figure 10.8
A multiplexer-based implementation.

308 Network-on-Chip

 3. Find a route for the traffic flows of each application. The routers are
assumed to follow table-driven routing; hence, specific routing algo-
rithms are not necessary.

The problem can be solved in a two-stage fashion. In the first stage, core-
to-network mapping is done, whereas topology and route generation are
performed in the second stage. Each application is described as a communica-
tion task graph (CTG), a directed graph G(V,E). Each node vi ∊ V represents
a task, whereas an edge ei,j ∊ E represents communication between nodes
vi and vj. The edge is labeled by ti,j, the communication volume (bits per sec-
ond) between the tasks. Tasks are assumed to be nonmigratory and already
mapped to IP cores.

Router Router Router Router

Router Router Router Router

Router Router Router Router

Router Router Router Router

Figure 10.9
A reconfigurable topology.

309Reconfigurable Network-on-Chip Design

10.4.2.2 Core-to-Network Mapping

A weight is assigned to each task graph based on its criticality. Criticality of an
application is defined as the percentage of time the application runs on the NoC.
It is assumed to be assigned by the designer of the NoC and is taken as an input
for the mapping problem. Mapping is performed by first constructing a synthetic/
average task graph, considering task graphs of all applications and their critical-
ity values. This average graph has nodes of all applications. Every pair of nodes
has an edge between them. The weight of edge ex,y, tx y,

avg, is calculated as

t

t W

n
x y

x y
i

i
i

,

,
avg applications=

×
∀ ∈∑

Router Router Router Router

Router Router Router Router

Router Router Router Router

Router Router Router Router

Figure 10.10
Another configuration of the topology in Figure 10.9.

310 Network-on-Chip

where:
Wi is the weight of ith task graph
tx y

i
, and tx y,

avg denote the communication volume of edge ex,y in the ith appli-
cation and the average graph, respectively

The number of input task graphs is n. Once the graph has been constructed,
mapping techniques noted in Chapter 5 can be utilized to get a mapping
solution.

10.4.2.3 Topology and Route Generation

In this step, suitable topologies and routes are generated for each individual
application. Due to their varying communication requirements, the applica-
tions may have inclinations to different topologies. For a particular applica-
tion, the configuration switches are set such that the number of hops between
source and destination routers for high-volume communications is as small
as possible. The basic idea is to select the heaviest communication flow yet to
be assigned a route and find a minimum hop count path for it.

All edges of an application are sorted in decreasing order of communica-
tion volume. All configuration switches are initially unconfigured. For each
edge of the application, a branch-and-bound algorithm is used to choose
the path with least cost. The communication cost component due to flow
through a router can be taken as 5, whereas that through a switch is 1. The
branch-and-bound steps for reconfiguration are carried out as follows:

 1. Branch: Every path starts at the source node, which happens to be
a router. A new branch to the path is created by adding a router
or a configuration switch adjacent to the current node in the par-
tial path. The added node must belong to the shortest path area—
routers and configuration switches located along one of the shortest
paths between source and destination nodes, as well as the neigh-
boring configuration switches. That is, for a router node, the path
is extended by including neighboring configuration switches along
the shortest path. If the node is a configuration switch, the path is
extended by adding neighboring routers and configuration switches
along the shortest path. This, of course, is restricted by the situation
in which the switch has already been configured. In this case, the
path can be extended and also constrained by the direction deter-
mined by the current configuration.

 2. Bound: A path may be bounded (i.e., discarded) if an addition of a
new node violates the bandwidth constraint of the newly added
link. In general, the bandwidth constraint of each link must be sat-
isfied. Also, if the cost of partial path reaching a particular node is
larger than the already known partial paths to that node, this path is

311Reconfigurable Network-on-Chip Design

discarded. The completed paths between a pair of nodes can also be
used to reject more costly partial paths. Moreover, if the current path
configures switches in such a way that all possible paths between
the source and destination nodes for at least one unmapped edge are
blocked, the partial path gets bounded.

10.5 Link Reconfiguration

In traditional NoC architectures, neighboring routers are connected via a
pair of unidirectional links. Each link is hardwired to carry traffic in one
direction only. However, depending upon the network traffic, it may be pos-
sible that one channel is overflowed with heavy traffic, whereas the traffic in
the other direction is almost zero. This results in inappropriate resource uti-
lization, leading to performance loss. A strategy has been presented in Lan
et al. (2011) that supports dynamic self-reconfiguration of links, resulting in
a bidirectional NoC architecture, aptly named as BiNoC. Adjacent routers
negotiate the flow directions of connecting links using a channel direction
 control (CDC) protocol.

10.5.1 estimating Channel Bandwidth utilization

Bandwidth utilization is defined as the percentage of time data channels that
are kept busy during the execution of an application.

U

N t

T N
t

T

=
×
=∑ busy

total

()
1

where:
T is the total execution time
Ntotal is the number of channels available to transmit data
Nbusy(t) is the number of channels busy at clock cycle t

It is obvious that the ideal value for U is 1. However, practical simulation with
different traffic patterns and routing algorithms leads to an interesting obser-
vation. The channel bandwidth utilization peaks at 45% and 40% for uniform
traffic with XY and odd–even routing, respectively, at a heavy traffic load. For
transpose traffic under XYY routing, U falls below 20%. Thus, it can be inferred
that even with two channels between a pair of routers, at most one channel is
kept busy on an average. The other channel remains idle, and thus can be uti-
lized to transport traffic in the other direction, improving performance.

312 Network-on-Chip

A modified router architecture for this purpose is shown in Figure 10.11
(Lan et al. 2011). The distinct components of the architecture are as follows:

 1. Reconfigurable input/output ports: One of the input/output ports is
marked as a high-priority (HP) port and the other one as a low- priority
(LP) port. Transmission directions for each channel between a pair of
routers are determined individually via a channel control protocol.

 2. Channel control module: This module determines the direction of each
channel at runtime, and also sends an arbitration request signal
to the switch allocator module. Two finite-state machines (FSMs),
shown in Figure 10.12, control the HP and LP ports of adjacent rout-
ers. Each FSM consists of the following three states:

 a. Free state: The channel is available for data output to adjacent router.
 b. Idle state: The channel is ready to input data from the adjacent router.
 c. Wait state: An intermediate state prepares the transition from idle

state to free state.

10.6 Summary

In this chapter, various schemes have been discussed for ReNoC design. The
reconfiguration can be obtained through topology changes, core attachment
patterns for routers, and the link reconfiguration. Local reconfiguration

input_req arbitration_req

Channel_req

Switch allocator

Virtual channels

Virtual channel
allocator

Channel control

HP–RSM LP–RSM

N1,S1,E1,W1,PE1

N2,S2,E2,W2,PE2

Routing logic

C
ro

ss
ba

rrH
P

in
pu

t/
ou

tp
ut

po
rt

s
H

P
in

pu
t/

ou
tp

ut
po

rt
s

output_req

Figure 10.11
Modified router architecture.

313Reconfigurable Network-on-Chip Design

in
pu

t_
re

q
=

0
||

ch
an

ne
l_

re
q

=
1

ou
tp

ut
_r

eq
 =

 1
co

un
t+

+

ou
tp

ut
_r

eq
 =

 0
co

un
t =

 0
ou

tp
ut

_r
eq

 =
 0

co
un

t =
 0

in
pu

t_
re

q
=

1
&

&
ch

an
ne

l_
re

q
=

0

co
un

t =
 4

 &
&

in
pu

t_
re

q
=

0

in
pu

t_
re

q
=

1

in
pu

t_
re

q
=

1
ch

an
ne

l_
re

q
=

1
&

&
 in

pu
t_

re
q

=
0

co
un

t <
 4

&
&

 in
pu

t_
re

q
=

1
in

pu
t_

re
q

=
0

ou
tp

ut
_r

eq
 =

ch
an

ne
l_

re
q

co
un

t <
 2

co
un

t =
 2

ch
an

ne
l_

re
q

=
0

||
in

pu
t_

re
q

=
1

W
ai

t

(a
)

(b
)

ou
tp

ut
_r

eq
 =

 1
co

un
t+

+

W
ai

t
Fr

ee

ou
tp

ut
_r

eq
 =

ch
an

ne
l_

re
q

Fr
ee

Id
le

Id
le

ch
an

ne
l_

re
q

=
0

ch
an

ne
l_

re
q

=
1

Fi
g

u
r

e
10

.1
2

FS
M

 f
or

 H
P

 p
or

t
(a

)
an

d
 L

P
 p

or
t

(b
).

(A
d

ap
te

d
 f

ro
m

 L
an

, Y
. C

.,
et

 a
l.,

 A
 b

id
ir

ec
ti

on
al

 N
oC

 (
B

iN
oC

)
ar

ch
it

ec
tu

re
 w

it
h

d
yn

am
ic

 s
el

f-
re

co
n

fi
gu

ra
bl

e
ch

an
ne

l,
IE

E
E

 T
ra

ns
ac

ti
on

s
on

 C
om

pu
te

r
A

id
ed

 D
es

ig
n

of
 In

te
gr

at
ed

 C
ir

cu
it

s
an

d
Sy

st
em

s,
 p

p.
 4

27
–4

40
, 2

01
1.

)

314 Network-on-Chip

strategies attempt to relocate cores to the neighboring routers of the one to
which it was originally mapped. These strategies provide the advantages of
shorter link lengths. However, topology reconfiguration-based approaches
may create long links. Suitable arrangement needs to be done to take care of
the link delays. The link reconfiguration-based approaches can change the
link directions between routers to cater to heavy traffic flow in one direction,
whereas in the other direction traffic may be negligible. However, the strat-
egy needs good amount of modification to the router architecture.

References

Ahmad, B., Erdogan, A. T., and Khawam, S. 2006. Architecture of a dynamically
reconfigurable NoC for adaptive reconfigurable MPSoC. NASA/ESA Conference
on Adaptive Hardware and Systems, IEEE, pp. 405–411.

Atienza, D., Angiolini, F., Murali, S., Pullini, A., Benini, L., and De Micheli G. 2008.
Network-on-chip design and synthesis outlook, Integration—The VLSI Journal,
vol. 41, no. 3, pp. 340–359.

Avakian, A., Nafziger, J., Panda, A., and Vemuri, R. 2010. A reconfigurable architec-
ture for multicore systems. IEEE International Symposium on Parallel & Distributed
Processing, IEEE, pp. 1–8.

Bartic, T. A., Mignolet, J. Y., Nollet, V., Marescaux, T., Verkest, D., Vernalde, S., and
Lauwereins, R. 2003. Highly scalable network-on-chip for reconfigurable sys-
tems. International Symposium on System-on-Chip, IEEE, pp. 79–82.

Bartic, T. A., Mignolet, J. Y., Nollet, V., Marescaux, T., Verkest, D., Vernalde, S.,
and Lauwereins, R. 2005. Topology adaptive network-on-chip design and
 implementation. IEE Proceedings Computers and Digital Techniques, vol. 152, no. 4,
pp. 467–472.

Dally, W. J. and Towles, B. 2001. Route packets, not wires: On-chip interconnection
networks, Design Automation Conference, IEEE, pp. 684–689.

Ding, H., Gu, H., Li, B., and Du, K. 2012. Configuring algorithm for reconfigurable
network-on-chip architecture. International Conference on Consumer Electronics,
Communications and Networks, IEEE, pp. 222–225.

Dumitriu, V. and Khan, G. N. 2009. Throughput-oriented NoC topology generation
and analysis for high performance SoCs, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 17, no. 10, pp. 1433–1446.

Elmiligi, H., El-Kharashi, M. W., and Gebali, F. 2007. Introducing OperaNP: A recon-
figurable NoC-based platform. Canadian Conference on Electrical and Computer
Engineering, IEEE, pp. 940–943.

Kunert, K., Wecksten, M., and Jonsson, M. 2007. Algorithm for the choice of topol-
ogy in reconfigurable on-chip networks with real time support. International
Conference on Nano-Networks, ACM.

Lan, Y. C., Lin, H. A., Lo, S. H., Hu, Y. H., and Chen, S. J. 2011. A bidirectional NoC
(BiNoC) architecture with dynamic self-reconfigurable channel. IEEE Transactions
on Computer Aided Design of Integrated Circuits and Systems, IEEE, pp. 427–440.

315Reconfigurable Network-on-Chip Design

Modarressi, M. and Sarbazi-Azad, H. 2007. Power-aware mapping for reconfigu-
rable NoC architectures. International Conference on Computer Design, IEEE,
pp. 417–422.

Modarressi, M., Sarbazi-Azad, H., and Tavakkol, A. 2010. An efficient dynamically
reconfigurable on-chip network architecture. ACM/IEEE Design Automation
Conference, IEEE, pp. 166–169.

Modarressi, M., Tavakkol, A., and Sarbazi-Azad, H. 2011. Application-aware topol-
ogy reconfiguration for on-chip networks. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 19, pp. 2010–2022.

Rana, V., Atienza, D., Santambrogio, M.D., Sciuto, D., and Micheli, G. De. 2009.
A reconfigurable network-on-chip architecture for optimal multi-processor SoC
communication, VLSI-SOC, IEEE, pp. 1–20.

Soumya, J., Sharma, A., and Chattopadhyay, S. 2013. Multi-application network-on-
chip design using global mapping and local reconfiguration. ACM Transactions
on Reconfigurable Technologies and Systems, vol. 7, no. 2, p. 2014.

Stensgaard, M. B. and Sparso, J. 2008. ReNoC: A network-on-chip architecture
with reconfigurable topology. The 2nd ACM/IEEE International Symposium on
Networks-on-Chip, IEEE, pp. 55–64.

Wu, L. W., Tang, W. X., and Hsu, Y. 2011. A novel architecture and routing algorithm
for dynamic reconfigurable network-on-chip. International Symposium on Parallel
and Distributed Processing with Applications, IEEE, pp. 177–182.

Zheng, L., Jueping, C., Ming, D., Lei, Y., and Zan, L. 2010. Hybrid communication
reconfigurable network on chip for MPSoC. International Conference on Advanced
Information Networking and Applications, IEEE, pp. 356–361.

317

11
Three-Dimensional Integration
of Network-on-Chip

11.1 Introduction

On-chip networks can enhance the communication bandwidth among the
individual functional blocks of an integrated system, but at the same time,
speed and power consumed by the networks are eventually limited by the
delay of the wires connecting the network links. In the upcoming technolo-
gies, it is hardly sufficient to support the ever-increasing performance demand,
without raising the energy consumption. Since long wire is the major bottle-
neck in designing a network-on-chip (NoC)-based system in deep submicron
(DSM) technology, in terms of performance, speed, and energy consumption,
researchers are trying to find out the alternatives to it. Current-mode signal-
ing (Bashirullah et al. 2003; Nigussie et al. 2007), wave pipelined interconnects
(Deodhar and Davis 2005), and low-swing signaling (Zhang et al. 2000) are the
incremental techniques to address this problem to some extent. Three emerg-
ing technologies have been envisioned to address the above issues: three-
dimensional (3D) NoC, photonic NoC, and wireless NoC (Carloni et al. 2009).

 1. 3D NoC: After the advent of 3D integrated circuit (IC), as it exhib-
its higher performance and lesser energy consumption, researchers
have amalgamated NoC with 3D IC that gives birth to a new tech-
nology, 3D NoC. In 3D IC, multiple silicon layers are integrated verti-
cally in a stack where interlayer distance is taken as tens of microns.
Copper through-silicon via (TSV) is the mostly used interconnect
between two adjacent silicon layers (Savidis et al. 2010). Copper wire
is also used as an intralayer interconnect.

 2. Photonic NoC: The major challenges in adopting photonic commu-
nication in NoC design are flit buffering and header processing
(Shacham et al. 2007; Petracca et al. 2008). Moreover, integrat-
ing a modulator and detector onto the silicon within a standard
 complementary metal oxide semiconductor (CMOS) process is also
a difficult task (Haurylau et al. 2006). In addition, the detector and

318 Network-on-Chip

modulator should exhibit performance characteristics that ensure
that the optical links outperform the electrical interconnect (Chen et al.
2007). The integration of silicon photonic devices with CMOS ICs for
chip-to-chip communication became commercially available (Gunn
2006). This remarkable achievement has paved the path to design a 3D
IC-based photonic NoC where the top layer is used for high-bandwidth
circuit-switched optical network and the bottom layer is used for low-
bandwidth packet-switched electronic network (Ye et al. 2009). The
cores are placed at the electronic layer and are connected to the opti-
cal layer through TSVs and via electro-optical/optoelectronic interfaces.
The header information (source and destination addresses) is routed
through the electronic layer to set up the optical path between source
and destination. The payload information is transmitted along the
reserved optical path at very high speed without buffering, whereas the
tailer is used to release the path. It leverages two important advantages
of optical communication: (1) the energy dissipation is essentially inde-
pendent of the bit rate and (2) the energy dissipation is independent
of transmission distance. Hence, photonic NoCs can deliver very high
bandwidth and offer a low-power communication medium (Carloni
et al. 2009). Photonic NoC research is now growing extensively and a
number of implementations have already been reported in literature
(Vantrease et al. 2008; Cianchetti et al. 2009; Pan et al. 2009). Gu et al.
(2009) proposed the design of optical router for photonic NoC.

 3. Wireless NoC: Another promising alternative to two-dimensional
(2D) NoC is the use of radio frequency (RF)/wireless interconnects
for signal transmission. Unlike photonic and 3D NoCs, NoC with
RF interconnects can be built using existing 2D CMOS technology.
But it requires long on-chip transmission lines that serve as wave
guides. It achieves an on-chip effective speed of light signal propa-
gation and also saves power consumption (Chang et al. 2008).

This chapter describes the 3D integration of NoC in detail. The rest of the
chapter is organized as follows: Section 11.2 describes the pros and cons of
3D integration. Section 11.3 describes the design and evaluation of 3D NoC
architecture. Performance and cost evaluation of 3D NoC architecture is per-
formed with self-similar and application-specific traffic and compared with
that of 2D NoC counterpart. Finally, Section 11.4 summarizes this chapter.

11.2 3D Integration: Pros and Cons

In the many-core era, integrating large number of cores on a 2D IC has lim-
ited floorplanning choices. Although the size of an individual core is reduced
up to a certain level due to technology shrinking, chip sizes may increase

319Three-Dimensional Integration of Network-on-Chip

due to the incorporation of huge number of cores on single silicon die. The
3D IC technology that stacks multiple layers of active silicon using special
vertical interconnects, known as through-silicon vias, is an attractive solution
to this problem. A survey of existing 3D fabrication technologies were car-
ried out by Beyne (2006). The pros and cons of going in vertical direction
were investigated by Davis et al. (2005). Three-dimensional IC has higher
integration density and smaller form factor. However, due to low thermal
conductivity of dielectric materials inserted between two adjacent layers,
 high-temperature zones will get created, particularly in layers away from
heat sink. This will necessitate better cooling arrangement. Dissipated heat at
any layer is conducted to the ambient through vertical and horizontal flows.
However, larger length of a wafer than its thickness makes vertical heat flow
to be dominant. Figure 11.1a shows a cross section of vertically stacked tiles
for an n-layer 3D IC. Each layer consists of a silicon layer (bottom), an inter-
layer dielectric (ILD) and Cu layer, and a glue layer. Figure 11.1b depicts the
dissipated heat of a tile at layer i that flows to layer (i − 1) through silicon at
layer i, glue at layer (i − 1), and insulator at layer (i − 1). This unequal heat dis-
sipation has negative impacts on system reliability and performance. Over
the past few years, 3D IC has evolved into a design paradigm. The salient
features and important challenges of 3D integration are briefly reviewed in
Sections 11.2.1 and 11.2.2.

11.2.1 Opportunities of 3D integration

•	 Decrease in interconnect length: A common metric to characterize
the longest interconnect is to assume that its length is equal to
the summation of length and breadth of the die. Hence, for a 2D
square-shaped die of area A, the length of the longest interconnect
is L2D max = 2√A. Implementing the same design in n-layered 3D IC
requires an area of (A/n) in each plane keeping the total area of the
system remains same with 2D case. Hence, for an n-layered 3D IC,
the length of the longest interconnect is L3D max = 2√(A/n), consider-
ing that each plane is square in shape. The actual benefit of 3D
IC relies on the fact that the relatively long wires (approximately in
millimeters) of 2D IC can be replaced by the interlayer TSVs whose
lengths are about tens of microns. This considerable decrease in
interconnect length minimizes the link delay and link energy con-
sumption significantly and at the same time more immunity to
noise (Topol et al. 2006; Flic and Bertozzi 2010). Due to increased
connectivity, 3D ICs have the potential for enhancing system per-
formance, achieving better functionality, and for producing higher
packaging density compared to its traditional 2D counterpart
(Davis et al. 2005).

•	 Heterogeneous and multifunctional SoC design: Unlike 2D planer
ICs, 3D ICs offer increased system integration either by increasing

320 Network-on-Chip

Glue(n − 1)

Cu(n − 1)

R(n − 1)

R(2)

R(1)

Cu(n − 2)

Cu(1)

Si(1)

Si(n − 1)

Si(n)
R(n)

Si(2)

Glue(n − 2)

Glue(1)

ILD(1)

Package

(b)

(a)

ILD(n − 1)

ILD(n − 2)

P(n) Chip layer n

Chip layer n − 1

Chip layer 1

Heat sink

Package

Si_1

Si_2

Si_3

Si_(n − 1)

Si_(n)

Cu + ILD

Cu + ILD

Cu + ILD

Cu + ILD

Cu + ILD

Chip layer 2

Glue layer
(polymide)

P(n − 1)

P3

P2

P1

Figure 11.1
(a) A cross section of vertically stacked layers for an n-layer 3D IC; (b) heat dissipation in an
n-layer 3D IC.

321Three-Dimensional Integration of Network-on-Chip

functionality or by combining different technologies. Currently,
SoC solutions limit designers to one fabrication technology for
both analog and digital circuits. Usage of 3D ICs allows integrat-
ing the best technology for a particular portion of an application
into the chip cube (Davis et al. 2005). In a typical 3D SoC, opti-
cal devices, analog circuitry, and digital circuitry can be imple-
mented in separate layers. This defining feature of 3D ICs offers
unique opportunities for highly heterogeneous and multifunc-
tional systems.

11.2.2 Challenges of 3D integration

•	 Thermal effects: One of the major concerns in 3D IC design is ther-
mal effects. Although shorter interconnect length causes decrease
in power consumption, the power density is more in 3D IC com-
pared to that in 2D IC due to lesser footprint area. As the power
density increases, the temperature of those planes not adjacent
to the heat sink of the package will rise. Each 10°C increase in
operating temperature increases delay by almost 5%. Doubling
the heat density without any improvement in cooling capacity
will lead to more than 30% degradation in performance (Davis
et al. 2005). While performance benefit is the major aspect in 3D
IC, performance degradation due to temperature increment is the
main bottleneck.

•	 Interconnect design: In 3D IC, due to integration of different
 fabrication process or disparate technologies in different lay-
ers, interconnect design is the major design challenge in 3D IC.
In these diverse systems, global interconnect such as clock dis-
tribution grows in interest. Figure 11.2 shows different clock
 distribution structures for 3D IC-based systems. In Figure 11.2a,

Tiers

Clock tree

Clock root

Tiers

Clock tree

Clock root

Figure 11.2
Clock distribution structures for 3D IC-based systems. (a) H-Tree is at each layer of 3D IC;
(b) H-Tree is at ground layer of 3D IC.

322 Network-on-Chip

H-tree is replicated in each layer of 3D IC, whereas clock root
can be at any layer (ground layer in the figure). The clock signal
is propagated in each layer through TSV. The impedance of the
TSV will cause clock skew between the layers. Furthermore, due
to temperature difference, the clock skew between the layers will
be more prominent. Figure 11.2b depicts another scenario where
H-tree is at the same layer with the clock root (ground layer in the
figure). From each leaf of this H-tree, interlayer TSVs are propa-
gated across the layers. In this structure, clock skew due to tem-
perature difference between the layers can be mitigated at the
cost of more number of TSVs.

•	 Reliability: The primary failure mechanisms for TSVs are misalign-
ments and random (complete or partial) open defects (Patti 2007).
Misalignments are due to imprecise wafer alignment prior to and
during wafer bonding (Figure 11.3), which results in shifts of the
bonding pads from their nominal positions. Random defects com-
prise a variety of physical phenomena during, for example, the ther-
mal compression process used in wafer stacking, eventually leading
to opens along TSVs (Loi et al. 2011).

•	 CAD tools: CAD algorithm and tool development for 3D IC is another
challenge to design 3D NoC-based system. Until now, CAD tools
have been mostly the outcome of academic research. Industry con-
tribution to this problem is still in its infancy.

Copper

Layer 2

Layer 1

Si substrate Active layer FSG—low K

Figure 11.3
Cross section of a vertical link (TSV) across two layers and worst-case misalignment scenario.
FSG, fluorinated silicate glass.

323Three-Dimensional Integration of Network-on-Chip

11.3 Design and Evaluation of 3D NoC Architecture

Similar to 2D NoC, mesh topology is a popular network structure in 3D
NoC. Pavlidis and Friedman (2007) showed a different NoC architecture on
3D IC (e.g., 3D IC–2D NoC and 3D IC–3D NoC) as shown in Figure 11.4. In 3D
IC–2D NoC (Figure 11.4a), the interconnection network (router) is contained
within one physical plane, while each processing element (PE) is integrated
in multiple planes. In 3D IC–3D NoC (Figure 11.4b), both the interconnection
network and the PEs can span more than one physical plane of the stack.
In 3D IC–2D NoC, due to the reduction in horizontal link length, zero-load
latency and energy consumption can be lesser than the conventional 2D
IC–2D NoC. With 3D IC–3D NoC, greatest saving in both energy and zero-
load latency can be achieved, due to reduced average distance and horizon-
tal link length.

Although the nodes in each layer of 3D IC–3D NoC communicate through
packet-switched network, due to the small interlayer spacing, Li et al. (2006)
suggested the usage of buses for vertical communication having single-hop
delay between the layers. Jacob et al. (2005) also showed that employing
wide buses for vertical communication in 3D IC is beneficial to improve the
overall system performance. Feero and Pande (2009) compared the perfor-
mance and energy consumption of different types of mesh-based 3D NoC
structures, namely, fully connected 3D mesh, stacked mesh, and ciliated 3D
mesh (Figure 11.5), by applying self-similar traffic in a cycle-accurate NoC
simulator. A fully connected 3D mesh structure (Figure 11.5b) employs a
seven-port router. Each node is connected to a single core, four cardinal
directions (north, south, east, and west), and vertically adjacent layers
(up and down) by using point-to-point unidirectional opposite links. In a
stacked mesh (Figure 11.5c), instead of using point-to-point vertical links,
bus (32- or 128-bit) is used from each node for interlayer communication.
A switch in a stacked mesh network has, at most, six ports: one to the IP, one
to the bus, and four for the cardinal directions (Figure 11.5c). In a ciliated 3D
mesh (Figure 11.5d), two cores are connected to a single router. Cores resid-
ing in different layers are connected to the router via point-to-point links.

(a) (b)

Router

PEnp

Ln

Lv

Figure 11.4
Various NoC topologies on 3D IC: (a) 3D IC–2D NoC; (b) 3D IC–3D NoC.

324 Network-on-Chip

In the ciliated 3D mesh network, each switch contains seven ports (one for
each cardinal direction, one either up or down, and one to each of the two
IP blocks), as shown in Figure 11.5d.

Feero and Pande (2009) reported that a ciliated 3D mesh structure has
slightly higher throughput than a 2D mesh-based NoC, but considerably
lesser throughput than that of fully connected 3D mesh and stacked mesh
structures. The stacked mesh structure, while employing a 32-bit bus for
vertical communication, shows worse performance than the fully connected
3D mesh-based NoC. This performance gap can be diminished by using a
128-bit bus for vertical communication. On the energy front, the ciliated 3D
mesh structure consumes the least average energy per packet due to lesser
number of links and switches. The stacked mesh structure with 128-bit bus
has higher average energy consumption per packet than the fully connected
3D mesh-based NoC. The average energy consumption profile per cycle is
the highest in stacked mesh and the least in ciliated 3D mesh. The energy
profile of a fully connected 3D mesh structure is almost similar to the 2D
NoC implementation. On the area front, due to higher connectivity of the
routers, the fully connected 3D mesh-based NoC occupies the largest area
among all the 3D mesh-based NoCs. Moreover, on the floorplanning aspect,
minimizing the number of TSVs between two adjacent layers reduces the
fabrication cost and silicon area (Pavlidis and Friedman 2009). In a four-
layered ciliated 3D mesh structure, TSVs connect between layer 1 and layer 2
and layer 1 and layer 3 through layer 2. Thus, between layer 1 and layer 2,

(a) (c)

(b) (d)

y
yx

z

Coordinate axes

IP block

Switch

Interconnect

Bus

Bus node

2.5 mm

~μm

lNOC

lNOC lNOC2 =

x

Figure 11.5
Mesh-based NoC architectures: (a) 2D mesh; (b) fully connected 3D mesh; (c) stacked mesh;
 (d) ciliated 3D mesh.

325Three-Dimensional Integration of Network-on-Chip

the number of TSVs is large, which may cause floorplanning problems. To
reduce the number of interlayer vias, usage of a combination of 2D and
3D mesh-based network routers was proposed by Pavlidis and Friedman
(2009). Depending on the position of vertical interconnection links, a num-
ber of mesh-based heterogeneous 3D NoC structures were developed. The
performance, area requirement, and energy consumption of these hetero-
geneous networks were evaluated and compared with those of the fully
connected 3D mesh-based NoC.

Most of the research works in 3D NoC are based on mesh topology. There
are very few works reported on tree topologies. In any tree-based network,
the length of the interconnection link increases toward the root of the tree,
whereas the mesh structure has a uniform wire length. In a torus network,
the length of the end-around connection increases with increasing network
size. Therefore, torus and tree-based topologies may not be a good choice
for NoC designers while attempting large number of cores in a 2D IC. In 3D
IC implementation, due to the shorter TSVs, the intrinsic problem of hav-
ing long interconnection wires in tree-based topologies gets significantly
resolved. Matsutani et al. (2008) instantiated a number of existing tree-based
topologies in 3D platform and showed the benefit of energy reduction
over their 2D implementation. Similar to Matsutani et al. (2008), instead
of proposing any new 3D tree-based topology, Feero and Pande (2009)
also instantiated the already existing butterfly fat tree (BFT) and the fat
tree structures in 3D platform to show the energy reduction over their
2D implementations. However, mesh-of-tree (MoT) topology in 3D con-
text is not included in any of the existing studies. This chapter proposes
an extension of MoT topology for the 3D environment and carries out
performance and cost benefits of the proposed 3D structure over its 2D
counterpart. Detailed performance evaluation, energy consumption, and
area estimation have been carried out for the proposed structure and
compared with BFT and two variants of mesh networks for equal number
of cores in 3D NoC context. The salient contributions of this chapter are
as follows:

 1. A new 3D MoT topology has been proposed. Expressions for the
number of directed edges and the average distance in an M × N × Z
MoT have been formulated.

 2. Performance and cost of proposed MoT-based 3D NoC have been
evaluated under self-similar traffic. The results have been compared
with BFT and two variants of mesh networks, having the same num-
ber of cores, in 3D NoC context. Simulation results show MoT’s appli-
cability as communication infrastructure design of 3D NoC.

 3. Performance and cost benefits of all 3D NoC structures have been
shown over their 2D counterparts.

326 Network-on-Chip

 4. The MoT-based 3D NoC also works fine under real benchmark
 applications such as dual video object plane decoder (DVOPD)
 having 32 cores.

11.3.1 3D Mesh-of-Tree Topology

A 2D M × N MoT topology can be extended to a 3D structure by connecting
multiple M × N 2D MoTs via M × N number of vertical trees. The number
of leaf nodes in each vertical tree of an M × N × Z MoT is Z, where Z is the
number of M × N 2D MoTs. Figure 11.6 shows a 2 × 4 × 4 MoT structure hav-
ing four layers of 2 × 4 2D MoTs, each of which has two row trees of depth
2 and four column trees of depth 1. For each row tree, RS and RR denote the
row stem and row root nodes, respectively, whereas for each column tree, CR
denotes a column root node. The ZS and ZR are the stem and root nodes in
the vertical trees, respectively. The leaf nodes (L) are common to all the three
types of trees. Two cores (not shown in Figure 11.6) are attached with each
leaf node. The stem (RS and ZS) and root (RR, CR, and ZR) nodes are not hav-
ing any core attached to them. Thus, in an M × N × Z MoT, 2 × (M × N × Z)
number of cores can be attached. In general, an M × N × Z MoT has the fol-
lowing properties:

 1. Number of nodes = 4 × (M × N × Z)−(M × Z + N × Z + M × N)
 2. Diameter = 2 ⌊(log2 M)⌋ + 2⌊(log2 N)⌋ + 2 ⌊(log2 Z)⌋
 3. Bisection width = min(M × Z, N × Z, M × N)
 4. Symmetric and recursive structure

In Sections 11.3.1.1 and 11.3.1.2, a general formulation of the number of
directed edges and the average distance for an M × N × Z MoT is presented
where all the trees are complete binary trees.

11.3.1.1 Number of Directed Edges

The number of undirected edges in any complete binary tree having k leaf
nodes is (2k − 2). In an M × N × Z MoT structure, the number of leaf nodes
in each row tree, column tree, and vertical tree are N, M, and Z, respectively.
Thus, the number of edges (É) of an undirected M × N × Z MoT graph can be
formulated as

 É = × × − + × × − + × × −[]M Z N N Z M M N Z() () ()2 2 2 2 2 2

In the proposed 3D MoT structure, adjacent nodes are connected by two unidi-
rectional opposite edges. Thus, the number of directed edges can be written as

 E M N Z M Z N Z M N= = × × × − × + × + ×2 12 4É () (11.1)

327Three-Dimensional Integration of Network-on-Chip

11.3.1.2 Average Distance

In a complete binary tree having N leaf nodes, where two cores are con-
nected to each leaf, distribution of destination cores from a specific source
core is as follows: single core at distance 0, two cores at distance 2, four cores

L L L

LL

L

CRCRCRCR

RS

RS

RS RS

RS

RS

L

L

CR CR

CR

CR CR

CR CR CR

CRCR

L

ZR

ZR ZR

ZS ZS ZS ZS

ZSZSZSZS

ZRZR

RS

RS

RS

RS

RS

RS

RS

RS

L

L

L L

LL

LLL

L

L L

LL

L L

L L

LL

L

L

L

RR

RR

RR

RR

RR

RR

RR

RR

RS

RS
ZS ZS

ZS

ZRZRZR

CR CR

ZSZS

ZS ZS ZS

Figure 11.6
A 2 × 4 × 4 MoT topology.

328 Network-on-Chip

at distance 4, eight cores at distance 6, and so on as depicted in Chapter 2.
The summation of minimum distances to all the destination cores from a
specific source core in a complete binary tree, noted in Equation 2.4, is repro-
duced in Equation 11.2 for the sake of continuity.

 S N N Nb = − −[log ()]4 4 12 (11.2)

A ()2 21 0× ×N MoT consists of two row-wise binary trees of depth log2N and
N column-wise binary trees of depth 1 (which can be written as log2

12). Each
row tree consists of ()21×N cores. Thus, the summation of minimum dis-
tances of ()21×N cores lying in the second row tree from any specific core of
the first row tree can be written as 2 2 2 20 1

2
1× + × ×S Nb () (log) . Hence, the

summation of minimum distances to all the destination cores from a specific
source core in a ()2 21 0× ×N MoT is

 S N S S NM b b(() (log))2 2 2 2 2 21 0 0 1
2

1× × = + × + × × (11.3)

In the same way, a ()2 22 0× ×N MoT consists of two ()2 21 0× ×N MoTs where
each ()2 21 0× ×N MoT contains 21 row-wise binary trees. The depth of each
column tree of ()2 22 0× ×N MoT is 2 (which can be written as log2

22). Thus,
the summation of minimum distances of ()21×N cores lying in the second
()2 21 0× ×N MoT from any specific core of the first ()2 21 0× ×N MoT is equal
to () (log)2 2 2 21 2

2
2× ×+ × S Nb . Thus, the summation of minimum distances

to all the destination cores from a specific source core in ()2 22 0× ×N MoT is
as follows:

 S N S N S NM M b((() (log)))2 2 2 2 2 2 2 22 0 1 0 1 2
2

2× × = × × + × + × × (11.4)

In general, a ()log2 22 0M N× × MoT can be split into two ()(log)2 22 1 0M N− × × MoTs,
where each ()(log)2 22 1 0M N− × × MoT consists of 2 2 1(log)M − row-wise binary trees.
The depth of each column tree of ()log2 22 0M N× × MoT is log ()log

2 2 2 M . Thus, the
summation of minimum distances of (2 2(log)M N×) cores lying in the second
()(log)2 22 1 0M N− × × MoT from any specific core of the first ()(log)2 22 1 0M N− × ×
MoT is equal to { () [log (]})(log) log log2 2 2 22 2 21

2
M M MS N− × + ××b . Thus for a

()log2 22 0M N× × MoT, the summation of minimum distances to all the desti-
nation cores from a specific source core can be written as

S N S N

S

M M

M M

M M

b

() ()

(

log (log)

(log) log

2 2 2 2

2 2

2 2

2 2

0 1 0

1

× × = × ×

+ × + ×

−

− NN M) log ()log× { }2 22
2

 (11.5)

After simplification, the above equation becomes

 S M N M N M N M N M NM() ()log ()× × = × × × × − × × + + 2 4 8 40
2 (11.6)

While considering the third dimension, a (M N× ×21) MoT can be split
into two ()M N× ×20 MoTs, where each ()M N× ×20 MoT is connected by

329Three-Dimensional Integration of Network-on-Chip

a vertical tree of depth 1. Thus, for an ()M N× ×21 MoT, the summation of
minimum distances to all the destination cores from a specific source core
can be written as

S M N S M N S M N

M N
M M M() () ()

(log)

× × = × × + × × ×

+ × × ×

2 2 2 2

2 2 2

1 0 0 0

1
2

1 (11.7)

In the similar fashion, an ()logM N Z× ×2 2 MoT can be split into two
()(log)M N Z× × −2 2 1 MoTs. The summation of minimum distances to all the des-
tination cores of an ()logM N Z× ×2 2 MoT from a specific source core can be
written as

S M N S M N

S M

Z Z

Z

M M

M N

() ()

()

log (log)

(log)

l

× × = × ×

+
× × × +

−

−

2 2

2 2

2

2 2

2

1

1 0

oog log(log)2 22 22
Z ZM N× × ×

 (11.8)

After simplification, the above equation becomes

S M N Z M N Z M N Z

M Z N Z M N

M() ()log

()

× × = × × × × × −

+ × + × + ×

4 3

4

2

(11.9)

Due to the symmetric structure of 3D MoT topology, the summation of mini-
mum distances to all the destination cores from any source core is always
same. Hence, the average distance of an M × N × Z MoT network connecting
C number of cores can be written as

 D

M N Z M N Z

M Z N Z M N
C

M =

× × × × × −
+ × + × + ×

−

4 3

4
1

2log ()

()
 (11.10)

In general, for an M × N × ⌈C/(2 × M × N)⌉ MoT network (C being the total
 number of cores attached) having two cores connected to each leaf node,
the number of directed edges (Equation 11.1) and the average distance
(Equation 11.10) can be written, respectively, as

 E M N C MN MN M C MN N C MNM = () − + + ()12 2 4 2 2× × × ×/ / /

 D

MN C MN MN C MN

MN C MN
M

M N
=

 () −()
+ + +

4 2 2 3

4 2

2× × ×

× ×

/ log /

/ CC MN

C

/

()

2

1

 ()

−

As E/D is a good indicator for the throughput of a network without con-
sidering contentions between packets, it can be shown by taking partial

330 Network-on-Chip

derivatives that the value of (E DM M/) reaches its maximum and DM reaches
its minimum when the condition M = N = C M N/2 holds. This implies
that 3D MoT network will show maximum throughput and minimum
latency in a congestion-free environment when the number of row trees, that
of column trees, and that vertical trees are same. To work with the proposed
3D MoT topology, an addressing scheme and a deterministic routing algo-
rithm is presented in Section 11.3.1.2.1.

11.3.1.2.1 Addressing Scheme and Routing Algorithm

The addressing scheme for each individual node of a 2D M × N MoT has been
described in Chapter 2, where the address of each node consists of four fields:
row number (RN), column level (CL), column number (CN), and row level (RL). The
same scheme has been extended to address every individual node of a 3D
M × N × Z MoT with an additional field, layer number (LN). In the M × N × Z MoT
with Z number of layers in stack, each layer consists of a 2D M × N MoT. The
number of bits required for addressing each core of an M × N × Z MoT is shown
in Table 11.1. For example, in a 4 × 4 × 4 MoT, each core needs a 15-bit address.

In 3D NoC, similar to 2D NoC, every two adjacent routers are connected to
each other via two unidirectional opposite links, each one with its own data,
framing, and flow control signals. Message passing communication is fol-
lowed by wormhole switching approach, where messages are sent by means
of packets, which are further decomposed into flits (flow control units). A flit
can be classified as header, payload, tailer, and invalid flit. Header flit carries
information about the source and destination addresses, whereas payload
and tailer flits contain the actual data.

A deadlock- and livelock-free dimension order routing algorithm for 2D
M × N MoT has been proposed in Chapter 2. Routing decision is taken by leaf
and stem routers, whereas each root router is replaced by a first-in first-out
(FIFO). In 3D MoT, from any source, a packet will first traverse through the
vertical tree to reach a leaf node whose layer number is same as that of des-
tination core. After reaching that layer, the packet will traverse through the
column tree to reach a leaf node whose RN is the same as that of the destina-
tion node. After matching the RN, the packet will traverse through the row
tree to reach a leaf node whose CN is the same as that of the destination node.
The packet will next go to the destination core depending on the Core-ID bit.
To implement the routing scheme of the proposed 3D MoT structure in hard-
ware, wormhole router has been designed as described in Chapter 3.

TABLe 11.1

Bits Required for Addressing a Core in M × N × Z MoT

Core-ID LN RN CL CN RL

1 log2Z 2 2()log M log log2 2 2()M 2 2()log N log log2 2 2()N

331Three-Dimensional Integration of Network-on-Chip

11.3.2 Performance and Cost evaluation

For evaluating the performance of 3D NoC, a SystemC-based cycle-accurate
simulator has been developed as described in Chapter 4. In this work, similar
to Chapter 4, each core is inserted in a tile of dimension 2.5 mm × 2.5 mm. Due
to increased burden of placing multilayer IPs in a limited number of layers, as
depicted in the work of Feero and Pande (2009), this work assumes each core
to be placed in a single silicon layer. A thorough evaluation of performance
of 3D MoT structure along with its energy consumption and area overhead is
performed. The results are compared with 3D BFT and 3D mesh-based net-
works having the same number of cores. Here, performance and cost of all
the networks are compared for a 32-core-based system. For a fair comparison
with 3D MoT having two cores at each leaf level router, another variation of 3D
mesh topology, connecting two cores to each router, is also included in this
comparative study. To reduce the number of interlayer vias and to simplify
the floorplanning problem, unlike ciliated 3D mesh structure, two cores are
placed in a single layer. In this work, it has been considered that single link
traversal of length approximately 2.5 mm can be completed in a single clock
cycle. The length of the core-to-router link is taken to be 1.25 mm. Similar to
Chapter 4, Figures 11.7 through 11.10 show the possible distributions of cores,
routers, and links for chip area estimation. These diagrams enable us to com-
pare the area overheads of alternate NoC topologies under consideration.

In general, in 3D mesh structure having a single core attached with each
router, the middle layers have three types of routers: (1) center having node
degree 7, (2) edge having node degree 6, and (3) corner having node degree
5. For a mesh structure with 32 cores, a probable distribution of cores, rout-
ers, and links of a 2 × 4 × 4 network is shown in Figure 11.7 with bisection
width 8. Depending on the connectivity, the middle layer of this network
has two types of routers: (1) edge having node degree 6 and (2) corner having
node degree 5. The length of the links between the two rows and the last two
columns in each layer is taken as tens of micron, whereas the rest of the
inter-router links in a single layer is 2.5 mm long, as shown in Figure 11.7.
The length of the vertical links between two adjacent layers is taken to be
20 μm, as in the work of Feero and Pande (2009).

In the second variant of mesh network, having two cores connected with
each router, the middle layer consists of three types of routers: (1) center hav-
ing node degree 8, (2) edge having node degree 7, and (3) corner having node
degree 6. For a 32-core-based system, a similar distribution of cores, routers,
and links of such 2 × 2 × 4 mesh architecture is shown in Figure 11.8. The
middle layer of this network has only one type of router with node degree 6.
The number of routers required and the bisection width of this network are
half of those for the first variant of 3D mesh network. As wire delay increases
exponentially with its length, the links having more than 2.5 mm length are
pipelined. The registers used for pipelining are shown as small white nodes
in Figure 11.8. In this structure, the links between two adjacent rows in a

332 Network-on-Chip

layer are few micrometers long, whereas between the two adjacent layers,
the links are 20 μm long. Here, mesh topology having a single core attached
to each router is termed as Mesh-1 network, whereas that having two cores
attached to each router is termed as Mesh-2 network.

A BFT-based NoC with four cores attached in each leaf level router is shown
in Figure 11.9. The BFT-based network connecting 32 cores also has three types
of routers: (1) leaf having node degree 6, (2) stem having node degree 6, and (3)
root having node degree 2. The routing decisions are taken by leaf and stem
routers, whereas the root router is replaced by a FIFO and is used to pipeline
the links. In 2D NoC implementation, as shown in Chapter 4, the length of the
longest wire of the BFT-based network is (,)/min l l1 2 2 , where l1 and l2 are

≈ 20 μm

≈ 10 mm

≈
5

m
m

Figure 11.7
A 3D 2 × 4 × 4 Mesh-1 network.

333Three-Dimensional Integration of Network-on-Chip

the length and breadth of the chip, respectively. Hence, the links need to be
pipelined to restrict its delay within the clock cycle budget. In a 3D environ-
ment, when the same BFT network is mapped onto a four-layer 3D IC, the
longest interswitch wire length is reduced by a factor of 4, approximately.
This reduced wire length leads to the reduction in the number of pipelining
stages and also reduces the link energy consumption. As the interlayer dis-
tance is very less, there is no need to pipeline the interlayer links. Hence, the
root router (shown as dotted node in Figure 11.9) is bypassed.

A probable distribution of cores, routers, and links of the proposed MoT-
based 3D NoC with two cores attached to each leaf level router is shown
in Figure 11.10. This network also has three types of routers: (1) leaf having

≈20 μm

≈10 mm

≈5
 m

m

Figure 11.8
A 3D 2 × 2 × 4 Mesh-2 network.

334 Network-on-Chip

node degree 5, (2) stem having node degree 3, and (3) root having node degree
2. The routing decisions are taken at leaf and stem routers, whereas the root
routers are replaced by FIFOs and are used to pipeline the links. In 2D NoC
implementation, as shown in Chapter 4, the longest edge of MoT topology is
the connection between a stem and its corresponding root router. The length
can be estimated as (, /)max l l1 2 4, where l1 and l2 are the length and breadth
of the chip, respectively.

As the wire delay increases with its length, it is essential to pipeline the
links after a certain length, such that its delay does not fall into the criti-
cal path of the design. When the proposed MoT network is mapped onto a
four-layer 3D IC, the longest interswitch wire is reduced by about a factor

≈20 μm

≈10 mm

≈5
 m

m

Figure 11.9
A 3D BFT network.

335Three-Dimensional Integration of Network-on-Chip

of 2 compared to its 2D structure. It can be observed from Figure 11.10 that
the links between leaf and root routers of the column tree in each layer
are tens of micrometers long. The length of the interlayer links is 20 μm.
Hence, like BFT, the root nodes of the column trees and the vertical trees
(shown as dotted node in Figure 11.10) of the proposed MoT-based 3D NoC
is bypassed. Here, it is customary to say that for larger number of cores in
each layer, mesh structures are planer, whereas BFT and MoT networks
require two metal layers to route the links. Moreover, the wire density of
mesh networks is more uniform across any given cross section than that of
BFT and MoT.

≈20 μm

≈10 mm

≈5
 m

m

Figure 11.10
A 3D 2 × 2 × 4 MoT network.

336 Network-on-Chip

However, the TSV process does not scale with the CMOS technology. TSV
diameters and pitches are 2–3 times bigger than transistor gate lengths. This
implies that, even moving to newer technologies, the intrinsic cost for ver-
tical interconnect does not change. For this geometry and sizing, the TSV
inductance and inductive coupling becomes negligible and the intrinsic TSV
delay can be assumed as a function of resistance and capacitance only.

Routers for all the above-mentioned networks have been designed in
Verilog HDL and synthesized using Synopsys Design Vision supporting 90 nm
technology. For a specific network, critical path delay of a router increases
as the routing logic and arbitration complexity increase with increasing
connectivity. Hence, in a network, the router with the highest connectivity
has the minimum frequency. To support mesochronous clocking, the clock
with the minimum frequency is applied to all the routers of a network.
Table 11.2 depicts the clock frequencies of the routers used in the middle
layers of the 3D NoC structures under consideration. Due to their least con-
nectivity requirements, MoT routers can run at a higher frequency compared
to others. However, in this work, to provide a consistent comparison with
other networks, all the routers are driven at 1.5 GHz clock. The worst-case
link delay (as shown in Chapter 4) is much lesser than the router clock period
of 666 ps. The delay of interlayer vias and the links having a length of tens
of microns is also very less. Hence, those links do not come into the critical
path of the overall NoC.

11.3.2.1 Network Area Estimation

Table 11.2 contains the silicon area required by each type of router from its
gate-level netlist to implement the middle layer of different four-layered
3D NoCs by taking 32-bit flit size. For a fair comparison of the networks,
this section revisits all the four-layered networks taken here into consid-
eration. Although the dimension of each tile is taken as a square of side
2.5 mm, inter-tile spacing in each layer varies significantly with underlying
topology due to varying sizes of routers, which in turn causes variations in
layer dimension. For larger network dimension in each layer, the number
of links running through inter-tile spaces of a specific layer varies in dif-
ferent networks. For larger number of cores in a single layer, while mesh
structure (both Mesh-1 and Mesh-2) has uniform wiring density, MoT and
BFT have nonuniform wire densities in each layer and use flyover links
over the top of another router as shown in Chapter 4. Thus, to compare the
dimension of the middle layer in different topologies, this work has taken
uniform channel width of 32 bits for all the networks. The width of each
wire and inter-wire spacing are taken to be the same and equal to 0.25 µm,
as mentioned earlier. The dimension of each router is assumed to be a per-
fect square.

The dimensions of the middle layer of a mesh-based network can be
estimated as follows: The routers in each row are placed between two

337Three-Dimensional Integration of Network-on-Chip

TA
B

Le
 1

1.
2

R
ou

te
r

C
on

ne
ct

iv
it

y,
 S

il
ic

on
 A

re
a,

 a
nd

 F
re

qu
en

cy
 in

 th
e

M
id

d
le

 L
ay

er
 o

f F
ou

r-
L

ay
er

ed
 3

D
 N

oC
 w

it
h

D
if

fe
re

nt
 T

yp
es

 o
f N

et
w

or
ks

u

nd
er

 C
on

si
de

ra
ti

on

N
et

w
or

k
s

Ty
p

e
1

R
ou

te
r

Ty
p

e
2

R
ou

te
r

Ty
p

e
3

R
ou

te
r

P
os

it
io

n
C

on
n

ec
ti

vi
ty

A
re

a
(m

m
2)

Fr
eq

u
en

cy

(G
H

z)
P

os
it

io
n

C
on

n
ec

ti
vi

ty
A

re
a

(m
m

2)
Fr

eq
u

en
cy

(G

H
z)

P
os

it
io

n
C

on
n

ec
ti

vi
ty

A
re

a
(m

m
2)

Fr
eq

u
en

cy

(G
H

z)

M
es

h-
1

C
en

te
r

7
0.

13
2

1.
52

E
d

ge
6

0.
11

5
1.

55
C

or
ne

r
5

0.
07

9
1.

6
M

es
h-

2
C

en
te

r
8

0.
15

1.
50

E
d

ge
7

0.
13

2
1.

52
C

or
ne

r
6

0.
11

5
1.

55
B

FT

L
ea

f
6

0.
11

5
1.

52
St

em
6

0.
11

5
1.

52
R

oo
ta

4
0.

06
1.

66
M

oT
L

ea
f

5
0.

07
2

1.
60

St
em

3
0.

04
1

1.
70

R
oo

t
2

0.
02

2
1.

90

a I
n

B
FT

 n
et

w
or

k
w

it
h

2n c
or

es
, t

he
 c

on
ne

ct
iv

it
y

of
 r

oo
t r

ou
te

rs
 is

 4
 w

he
n

n
is

 e
ve

n
an

d
 is

 2
 w

he
n

n
is

 o
d

d
.

338 Network-on-Chip

row-wise adjacent tiles such that the breadth of the layer increases just
because of channel width. The length of the layer will increase by the
length of the routers that occupy maximum area in each column. Thus,
in a 3D NoC having eight cores in each layer, the dimension of the mid-
dle layer of 2 × 4 × 4 Mesh-1 network considering unidirectional opposite
links gets incremented from 10 mm × 5 mm to 11.5 mm × 5.064 mm, and
that of 2 × 2 × 4 Mesh-2 network becomes 10.678 mm × 5.064 mm. For a
BFT-based network, the length of the middle layer increases due to leaf,
stem, and root routers, whereas its breadth increases just because of chan-
nel width. The dimension of the middle layer of a four-layered BFT net-
work having eight cores in each layer becomes 11.017 mm × 5.064 mm. For
a 3D MoT-based network, all routers and repeaters of a row tree in each
layer are also placed between row-wise adjacent tiles such that they do
not increase the breadth of the layer. For a 2 × 2 × 4 MoT network hav-
ing eight cores in each layer, the dimension of the middle layer becomes
10.684 mm × 5.064 mm. For larger number of cores in each layer, it can
be noted that only the stem routers of the column trees of each 2 × 2
MoT subnetwork will increase the breadth of the layer. The length of the
layer will be increased due to the routers and repeaters of the row tree.
Taking all these factors into account, the dimension of the middle layer
of a 4 × 4 × 4 MoT network having 32 cores in each layer increases from
20 mm × 10 mm to 21.624 mm × 10.404 mm. Assuming each router to be
a perfect square, the length of each side of the stem router is found to be
200 µm which is almost 6 times wider than the cross section of two oppo-
site unidirectional 32-bit links. Thus, unlike mesh and BFT networks, MoT
network connects up to 16 cores in a single row tree in each layer, and
its channel width will not increase the breadth of the layer. In the same
way, it can be shown that the dimension of the middle layer of a 4 × 8 × 4
Mesh-1 and a 4 × 4 × 4 Mesh-2 (both having 32 cores in each layer) network
becomes 22.856 mm × 10.128 mm and 21.5 mm × 10.128 mm, respectively.
For a four-layered BFT based network, the dimension of the middle layer
having 32 cores becomes 22.33 mm × 10.128 mm. For a 1024-core system
where 256 cores are residing in each layer, the area of 16 × 16 × 4 Mesh-
1, 16 × 8 × 4 Mesh-2, 16 × 8 × 4 MoT, and BFT networks are incremented
from 40 mm × 40 mm to 45.76 mm × 40.512 mm, 43.048 mm × 40.512 mm,
43.504 mm × 41.616 mm, and 46.38 mm × 40.768 mm, respectively.

Table 11.3 depicts the area overhead of underlying networks for 32-,
128-, and 1024-core-based systems where the number of cores residing in
each layer is 8, 32, and 256, respectively. It may be noted that in all cases
the area occupied by the MoT network is lesser than that of Mesh-1 and
BFT-based networks, but higher than that of Mesh-2 network. Although
there exists a possibility of trading-off this additional area for energy/
performance benefits, in this work, this avenue has not been explored as
it goes deep into the physical design issues of systems involving these
NoC topologies.

339Three-Dimensional Integration of Network-on-Chip

11.3.2.2 Network Aspect Ratio

Besides channel width and flit size, the network aspect ratio has also an
important role in determining the overall performance and cost of NoC, as
described in Chapter 4. In general, for an M × N × C/(M × N) Mesh-1 net-
work (where M and N being the number of nodes in each row and column,
respectively, and C being the total number of cores attached), the average dis-
tance (D) and the number of directed edges (E) can be written respectively, as
(Pavlidis and Friedman 2007)

D

C M C M

C M
=

 () + + ()

− () +() −

M N N M N N

N M N MN

M

× × ×

×

×

/ /

/

3 NN N× C M/ () −

1

E

M C MN C MN M

C MN N
=

 −() + −()

+ −()

2
1 1

1
×

× × × ×

× ×

N N

M

/ /

/

It can be shown that the value of E/D reaches its maximum and the value of D
reaches its minimum when the condition M = N = (C/M × N) is held. This sig-
nifies that a cubic 3D mesh network with equal number of rows, columns, and
vertical layers will show better throughput and lesser latency than a cuboidal
structure having the same area. This statement is also true for a Mesh-2 network.

Table 11.4 shows the different topological parameters such as diameter,
average distance in hops (D), and number of directed edges (E) of all the
four-layered 3D NoCs under consideration, having eight cores in each layer.
It also compares with their 2D networks for connecting 32 cores.

In the simulation, the packet length is fixed to 64 flits, as in the work of
Pande et al. (2005). The packet injection is continued for the entire simulation
time of 200,000 cycles of the routers’ clock including 10,000 cycles to make
the network stable from the initial transient effects. The following section

TABLe 11.3

Area Overhead of the Middle Layer of Different Four-Layered 3D NoCs Having
8-Core, 32-Core, and 256-Core in Each Layer

Networks

8 Cores/Layer 32 Cores/Layer 256 Cores/Layer

Area
Required

(mm2)
Overhead

(%)

Area
Required

(mm2)
Overhead

(%)

Area
Required

(mm2)
Overhead

(%)

Mesh-1 58.24 16.47 231.49 15.75 1853.83 15.86
Mesh-2 54.07 8.14 217.75 8.88 1743.96 8.99
BFT 55.79 11.58 226.16 13.08 1890.82 18.17
MoT 54.10 8.20 224.98 12.49 1810.46 13.15

340 Network-on-Chip

compares the performance and cost of the proposed 3D MoT-based network
with other network topologies under consideration. For deterministic rout-
ing in 3D mesh networks, ZXY routing is adopted, whereas a least common
ancestor (LCA) routing (Pande et al. 2003) is used for BFT-based networks.

11.3.3 Simulation results with Self-Similar Traffic

11.3.3.1 Accepted Traffic versus Offered Load

The accepted traffic depends on the rate at which the cores inject traffic into
the network as discussed in Chapter 4. Figure 11.11 compares the throughput
of all the 3D networks under consideration, each with 32 cores, by applying a
uniformly distributed self-similar traffic. For determining network through-
put, besides E and D, the network bisection width has also an important role
to play. A network with higher bisection width is expected to perform better.
The bisection width of a 3D 2 × 4 × 4 Mesh-1 network is 8, whereas for other
3D networks under consideration, the value is 4. Table 11.5 shows that the
value of E/D is the highest in 3D Mesh-1 network and the least in BFT net-
work. In the proposed 3D MoT network, after bypassing the root of the col-
umn trees and vertical trees of 2 × 2 × 4 network as shown in Figure 11.10,
the values of E, D, and E/D become 88, 3.61 and 24.37, respectively. However,
the value of E/D for a 2 × 2 × 4 Mesh-2 network is 23.33. Therefore, in a con-
tention-free environment, the throughput of 3D Mesh-1 is expected to be
the highest and that of 3D BFT be the least, whereas the throughput of 3D
MoT network is higher than that of 3D Mesh-2 network. In the simulation,
similar responses have been observed for all 3D networks under consider-
ation by applying a uniformly distributed traffic, as shown in Figure 11.11.

Next, we will show the throughput gains of the 3D networks over their 2D
counterparts. For 2D structures, the dimensions of the networks are taken
to be 4 × 8 for Mesh-1, 4 × 4 for Mesh-2, and 4 × 4 for MoT. 2D BFT and 2D
MoT have been shown in Chapter 4. The bisection width of all 2D networks
under consideration is 4. Due to higher E/D value, 3D Mesh-1, 3D Mesh-2,
and 3D MoT networks are expected to show better throughput than their

TABLe 11.4

Topological Parameters of Different Networks with 32 Cores

Networks

Number of
Edges (E)

Average
Distance (D) E/D Diameter

2D 3D 2D 3D 2D 3D 2D 3D

Mesh-1 104 128 4.00 3.10 26.00 41.33 10 7
Mesh-2 48 56 2.65 2.40 18.15 23.33 6 5
BFT 40 40 2.84 2.84 14.08 14.08 4 4
MoT 96 112 5.16 4.65 18.60 24.11 8 8

341Three-Dimensional Integration of Network-on-Chip

2D counterparts. Table 11.5 shows a comparison of throughputs of different
2D and 3D networks with varying locality factor. For BFT network, although
the same topology is mapped onto four-layered 3D IC, the number of pipe-
lined registers gets reduced as discussed earlier. Moreover, the root routers
are bypassed as shown in Figure 11.9. Therefore, the values of E, D, and E/D
of the optimized 3D BFT network become 32, 2.32, and 13.79, respectively.
As the values of E/D in 2D and 3D networks are very close to each other, in
actual traffic condition, their throughput values are almost identical.

11.3.3.2 Throughput versus Locality Factor

The effect of traffic spatial localization on network throughput is shown
in Table 11.5. It can be observed that localization of traffic has a significant
impact in all the 3D networks as it enhances the network throughput. As the
locality factor increases, more traffic are directed toward their local clusters,
thus traversing lesser hops, which in turn increases throughput.

In BFT, localized traffic is constrained within a cluster consisting of a single
subtree having four cores. It can be observed that the throughput of BFT-based

A
cc

ep
te

d
tr

affi
c

(fl
its

/c
yc

le
/I

P)
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4
0.

01
6

0.
01

8
0.

02
0

0.
02

2
0.

02
4

0.
02

6
0.

02
8

0.
03

0

Offered load (packets/cycle/Ip)

3D Mesh-1

3D MoT

3D Mesh-2

3D BFT

Figure 11.11
Accepted traffic with uniformly distributed offered load in different 3D networks under
consideration.

TABLe 11.5

Throughput Variation with Locality Factor in 2D and 3D Networks

Locality Factor

BFT Mesh-1 Mesh-2 MoT

2D 3D 2D 3D 2D 3D 2D 3D

0.0 0.25 0.25 0.26 0.38 0.27 0.31 0.29 0.34
0.3 0.27 0.27 0.30 0.42 0.31 0.37 0.36 0.4
0.5 0.34 0.34 0.35 0.45 0.35 0.42 0.40 0.45
0.8 0.43 0.43 0.44 0.54 0.61 0.64 0.65 0.66

342 Network-on-Chip

networks is the least among all the networks under uniformly distributed
 traffic. For localized traffic, although its throughput increases with increasing
locality factor, it has the minimum value compared to other networks. This is
due to the fact that BFT-based networks are more congested as there are three
destination cores in the local cluster and lesser number of edges.

In Mesh-1 network, localized traffic is constrained within the destinations
placed at the shortest Manhattan distance, whereas Mesh-2 network enjoys
the advantage of having only a single core in its local clusters. In case of
highly localized traffic, the benefit of connecting two cores in each router
becomes clearly visible, as depicted in Table 11.5. The proposed MoT-based
NoC also has a single destination core in its local cluster. Thus, at highly
localized traffic, more packets will reach their destinations, resulting in
higher throughput.

Table 11.5 also compares the throughput of 3D networks with their 2D
counterparts. Intuitively, it can be stated that as the number of packets tra-
versing toward the local cluster increases with increasing locality factor, the
difference of average hop count between 2D and 3D structures converges.
Hence, at highly localized traffic, increment in throughput of 3D networks is
lesser than that of 2D networks.

11.3.3.3 Average Overall Latency under Localized Traffic

In a contention-free environment, zero-load latency (in cycles) is another
widely used performance metric. Zero-load latency of a network is the
latency where only one packet traverses through the network (Pavlidis and
Friedman 2007). Table 11.6 shows the zero-load latency of all the networks
including the cycle delay of source router. According to wormhole router
architecture, each router has a two-cycle latency (one cycle in each input
 buffer [IB] and switch arbiter [SA] unit), whereas routers having node degree 2
have single-cycle latency. Cycle latency of inter-router link traversal of all the
networks is taken from Figures 11.7 through 11.10.

TABLe 11.6

Number of Inter-Router Links, FIFOs, and Zero-Load Latency (in Cycle) of the
Networks under Consideration with 32 Cores

Networks

Zero-Load
Latency (Cycle)

Number of Inter-Router Links

Number of
FIFOs

Few
Micrometers ≈2.5 mm

2D 3D 2D 3D 2D 3D 2D 3D

Mesh-1 10.00 8.20 24 96 80 32 136 160
Mesh-2 8.45 7.74 8 40 64 32 80 88
BFT 10.00 6.65 0 0 96 32 80 72
MoT 12.32 8.71 32 56 80 32 128 120

343Three-Dimensional Integration of Network-on-Chip

Under actual traffic scenario, where contention of packets is a major chal-
lenge, latency of any network depends on both offered load and locality
 factor. Here, simulation has been carried out to estimate the average overall
latency for all the networks with uniformly distributed and localized load as
shown in Figures 11.12 through 11.15. It shows that at lower load, the latency
variation is not significant. This is because at lower traffic, contention in the
network is less. The contention increases as the offered load increases, which
in turn increases the latency. Simulation results show that as the offered load
increases toward the network saturation point, latency increases exponen-
tially, which signifies that packets will take much longer time to reach their
destinations. Therefore, it is always desirable to operate any network below
its saturation point.

2D BFT

3D BFT

2D Mesh-1

3D Mesh-1

2D Mesh-2

3D Mesh-2

2D MoT

3D MoT

Offered load (packets/cycle/IP)
0.002 0.004 0.006 0.008 0.012 0.014 0.0160.010

Av
er

ag
e

ov
er

al
l l

at
en

cy
(n

um
be

r o
f c

lo
ck

 c
yc

le
s)

1200

1000

800

600

400

200

0

Figure 11.13
Latency variation in different 2D and 3D networks under consideration with offered load at
locality factor of 0.3.

Offered load (packets/cycle/IP)
0.002

200

0

400

600

800

1000

1200

0.004 0.006 0.008 0.010 0.012 0.014 0.016

Av
er

ag
e

ov
er

al
l l

at
en

cy
(n

um
be

r o
f c

lo
ck

 c
yc

le
s)

2D BFT

3D BFT

2D Mesh-1

3D Mesh-1

2D Mesh-2

3D Mesh-2

2D MoT

2D MoT

Figure 11.12
Latency variation in different 2D and 3D networks under consideration with uniformly dis-
tributed offered load.

344 Network-on-Chip

Although the zero-load latency of 3D MoT-based network is the maximum
as shown in Table 11.6, in actual traffic condition, 3D MoT network experi-
ences lesser contention than 3D Mesh-2 and 3D BFT networks. This happens
as 3D MoT network has more inter-router links than 3D BFT and 3D Mesh-2
networks. Thus, it encounters lesser contention and has a better latency pro-
file under uniformly distributed traffic, as shown in Figure 11.12. However,
due to more interconnection links in 3D Mesh-1 network, it experiences lesser
contention than 3D MoT network. Thus, 3D Mesh-1 shows the best latency
profile among all the topologies. Figure 11.12 also shows the improvement of
latency profile in 3D networks over their 2D counterparts. Table 11.6 depicts
the difference of zero-load latencies between 2D and 3D networks. In BFT
networks, due to the elimination of pipelined registers and bypassing of the

2D BFT

3D BFT

2D Mesh-1

3D Mesh-1

2D Mesh-2

3D Mesh-2

2D MoT

3D MoT

0.002 0.004 0.006 0.008
Offered load (packets/cycle/IP)

0.010 0.012 0.014 0.016 0.018

1500

1200

900

600

300

0

Av
er

ag
e

ov
er

al
l l

at
en

cy
(n

um
be

r o
f c

lo
ck

 c
yc

le
s)

Figure 11.15
Latency variation in different 2D and 3D networks under consideration with offered load at
locality factor of 0.8.

0.002

1200

1000

Av
er

ag
e

ov
er

al
l l

at
en

cy
(n

um
be

r o
f c

lo
ck

 c
yc

le
s)

800

600

400

200

0
0.004 0.006 0.008

Offered load (packets/cycle/IP)
0.010 0.012 0.014 0.016

2D BFT

2D Mesh-1

3D Mesh-1

2D Mesh-2

3D Mesh-2
2D MoT

3D MoT

3D BFT

Figure 11.14
Latency variation in different 2D and 3D networks under consideration with offered load at
locality factor of 0.5.

345Three-Dimensional Integration of Network-on-Chip

root routers in a 3D environment, the value of zero-load latency is lesser
than in 2D networks. But due to lesser number of inter-router links in BFT
networks, in actual traffic condition, simulation results show that both the
networks have almost similar latency profile under uniformly distributed
and localized traffic conditions.

The effect of traffic spatial localization on the average overall latency has also
been studied for all the networks under consideration (shown in Figures 11.13
through 11.15). The average overall latency of all the networks decreases with
increasing locality factor. As the locality factor increases, more traffic will go
to their local clusters. Hence, packets traverse lesser number of hops and will
create lesser contention in the network. It can be observed that the latency pro-
file of both Mesh-2 and MoT networks in a 3D environment becomes closer to
their 2D counterparts with increasing locality factor. This is due to the fact that
the contention in all these networks becomes almost identical at highly local-
ized traffic as they have single destination cores in their local clusters.

From the graphs shown in Figures 11.14 and 11.15, it can be observed that
the latency profile of the 3D 2 × 4 × 4 Mesh-1 network improves significantly
over the 2D 4 × 8 Mesh-1 network. Due to the rectangular structure of 2D
Mesh-1 network, packets traverse more hops in row-wise direction under
uniform distribution. Thus, the network suffers from more contention. In
3D topology, due to the square structure in vertical surface, the contention is
less. It has been observed in simulation that 3D Mesh-1 network has the best
latency profile under uniformly distributed and localized traffic condition.

11.3.3.4 Energy Consumption

Energy consumption in NoC is the summation of the energy consumed by
the routers and the communication links. Both these factors are network
topology dependent. Energy consumption of the proposed 3D MoT-based
network after applying clock gating in the FIFO under uniformly distributed
self-similar traffic is shown in Figure 11.16 for 200,000 cycles.

It can be observed that the network energy consumption increases lin-
early with the offered load but saturates as the offered load increases to
the throughput limit, similar to 2D NoC. Beyond saturation, no additional
packets can be injected successfully into the network and, consequently, no
additional energy is consumed. Simulation result shows that after gating the
write clock, the total energy consumption by all the FIFOs is about 35% of the
overall network energy consumption, whereas all the links consume almost
50% of it. The combined energy consumption by the routing logics arbiters
and control logic is about 15% of the total energy consumption.

Table 11.7 presents a comparison of average energy consumption at satu-
ration for all the networks connecting 32 cores in 2D and 3D platforms. In
3D MoT network with dimension 2 × 2 × 4, the number of leaf routers having
connectivity 5 is 16 and that of stem routers (in vertical direction) having con-
nectivity 3 is 8. In 4 × 4 2D MoT network, the number of leaf routers having

346 Network-on-Chip

connectivity 4 is 16 and that of stem routers having connectivity 3 is also 16. In
both 2D and 3D networks, the number of root routers having connectivity 2 is
8. Due to higher connectivity, 3D leaf routers consume more energy than 2D
leaf routers. However, as the number of stem routers is less in 2 × 2 × 4 3D MoT
network, the total energy consumption by all the stem routers is lesser than its
2D counterpart. Moreover, from Figure 11.10 it can be intuitively said that in 3D
MoT network, lesser traffic will pass through the root routers than in 2D under
uniformly distributed traffic. Hence, the energy consumption by the root rout-
ers is also less. It has been found that the total energy consumption by all the
routers of 2 × 2 × 4 MoT network is lesser than that of 4 × 4 MoT network.

For a system with 128 or more number of cores, Table 11.8 shows that the
number of FIFOs required to implement 3D MoT network is significantly
higher than its 2D implementation. As FIFOs are the most energy-hungry
components of a router, the total router energy consumption of 3D struc-
tures will be more than its 2D counterpart for networks with large num-
ber of cores. In BFT network, although the same topology is mapped onto

TABLe 11.7

Average Energy Consumption per Cycle at Saturation by Different Network
Structures Connecting 32 Cores at 2D and 3D Platforms

Networks

Average Energy (pJ/cycle) at Saturation under Uniform Distribution

Routers Links Networks

2D 3D 2D 3D 2D 3D

Mesh-1 292.70 323.36 355.71 252.35 648.41 575.71
Mesh-2 205.13 207.67 325.37 228.28 530.50 435.95
BFT 202.21 174.54 368.16 210.89 570.37 385.43
MoT 305.79 237.07 370.29 232.29 676.08 469.36

100

Routers

Offered load (packets/cycle/IP)

Links

Network

80

60

En
er

gy
 c

on
su

m
pt

io
n

(μ
J)

40

20

0

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

6

0.
01

8

0.
01

2

0.
01

4

0.
01

0

0.
02

6

0.
02

8

0.
02

2

0.
02

4

0.
02

0

0.
03

0

Figure 11.16
Network energy consumption of 3D MoT network under uniformly distributed offered load.

347Three-Dimensional Integration of Network-on-Chip

3D structure, due to the elimination of root routers (Figure 11.9), the total
energy consumption by the routers is reduced in 3D network. However, the
total energy consumption by the routers in both 3D Mesh-1 and 3D Mesh-2
networks is more than that of its 2D structures due to more FIFOs that exist
in the design (Tables 11.6 and 11.8) and more packet reception. While com-
paring with the proposed 3D MoT structure, the number of FIFOs is less
in 3D BFT and 3D Mesh-2 networks for any number of cores, as shown in
Table 11.8, which in turn causes lesser energy consumption by the routers.
The energy consumption by the routers of 3D Mesh-1 is higher than that of
3D MoT as it requires more number of FIFOs for any number of cores.

Interconnection links, as shown in Figure 11.16, are the most energy-
hungry components at higher offered load. The core-to-router links of length
1.25 mm and the inter-router links of length 2.5 mm are the major energy-con-
suming links. Link energy consumption in all the 3D networks, due to lesser
number of 2.5 mm links compared to 2D structures (Table 11.6), is drastically
reduced which causes energy reduction in the overall network. Table 11.9
shows the average energy consumption per cycle by the routers, links, and
network at saturation for all the NoC structures under uniformly distributed
self-similar traffic. With increasing locality factor, as more packets are sent to
their local clusters, energy consumption of the local links increases, whereas
that of the inter-router links decreases. The toggling of data in those ports of
router that connect to cores increases, whereas the toggling of data in other
ports decreases with increasing locality factor.

A network with more links will definitely have higher network throughput
but at the cost of more energy consumption. Therefore, the average energy

TABLe 11.8

Number of Inter-Router Links and FIFOs Required to Implement 2D NoC and
Four-Layered 3D NoC with 64 and 128 Cores

Networks

Number of Inter-Router Links

Number of FIFOsFew Micrometers ≈2.5 mm
Number
of TSVs2D 3D 2D 3D 2D 3D

64 Cores

Mesh-1 32 64 192 128 96 288 352
Mesh-2 8 16 136 96 48 168 192
BFT 0 0 256 64 48 160 160
MoT 64 96 192 96 48 272 272

128 Cores

Mesh-1 48 96 416 320 192 592 736
Mesh-2 16 32 320 256 96 352 416
BFT 0 0 640 256 96 352 336
MoT 128 192 512 320 96 576 672

348 Network-on-Chip

consumption per packet reception is a meaningful metric while comparing
the energy consumption of various network structures. Table 11.9 shows
the reduction of average energy per packet at saturation in 3D networks
over their 2D structures for a 32-core-based system. It can be observed
that 3D Mesh-1 network, due to higher connectivity of the routers, con-
sumes the highest average energy per packet at saturation at all locality
factors. As the throughput of the BFT structure is the least, its average
packet energy is also higher than the proposed 3D MoT network under
all localized conditions. 3D Mesh-2 network, due to its lesser energy con-
sumption and lesser throughput at uniformly distributed and low local-
ized traffic, shows similar average packet energy consumption as 3D MoT.
At highly localized traffic, due to the single core in the local clusters, both
3D MoT and 3D Mesh-2 networks show similar energy consumption per
packet.

In this work, as links are pipelined after every 2.5 mm, Table 11.8 shows
the number of 2.5 mm links for all the 2D and 3D networks for systems with
larger number of cores. In 2D NoC platform, it can be observed that MoT
requires more 2.5 mm links than Mesh-1 network with increasing number of
cores. BFT requires the maximum number of 2.5 mm links, whereas Mesh-2
network requires the least. It can be seen that Mesh-1 requires more number
of FIFOs than MoT network in all the cases, whereas Mesh-2 and BFT require
comparatively lesser number of FIFOs. In a 3D environment, the require-
ment of 2.5 mm links in Mesh-1 and MoT networks is higher than in BFT and
Mesh-2. As interconnection links and FIFOs are the major energy-consuming
components in any network, due to more FIFOs and 2.5 mm links, it can be
apparently estimated that the total energy consumption of 3D Mesh-1 net-
work will be more than that of 3D MoT network at any localized condition.
However, due to lesser number of FIFOs and 2.5 mm links in 3D BFT and
3D Mesh-2 networks, they are expected to consume lesser energy than that
of the proposed 3D MoT structure. Moreover, the number of TSVs required
for 3D Mesh-1 network is double that for other 3D networks taken here into

TABLe 11.9

Average Energy Consumption per Packet at Saturation by Different Network
Structures Connecting 32 Cores at 2D and 3D Platforms

Networks

Average Energy per Packet (nJ) at Saturation

Locality
Factor = 0.0

Locality
Factor = 0.3

Locality
Factor = 0.5

Locality
Factor = 0.8

2D 3D 2D 3D 2D 3D 2D 3D

Mesh-1 5.15 3.01 4.48 2.76 3.85 2.63 2.92 2.21
Mesh-2 4.02 2.79 3.32 2.41 3.05 2.07 2.02 1.72
BFT 4.47 3.03 3.97 2.91 3.42 2.54 2.54 2.09
MoT 4.52 2.77 3.69 2.38 3.30 2.18 2.27 1.74

349Three-Dimensional Integration of Network-on-Chip

consideration. From performance side, due to lesser interconnection links,
the throughput of 3D BFT and 3D Mesh-2 networks will be lesser under uni-
formly distributed and low localized traffic.

11.3.4 Simulation results with Application-Specific Traffic

For evaluating the MoT network under real benchmark application, this
chapter considers a DVOPD application consisting of 32 cores where two
VOPDs are running in parallel. The core graph of DVOPD application has
been shown in Chapter 4. Due to unavailability of mapping algorithm in the
literature for 3D NoC structures, this chapter uses hand mapping of cores
for all the 3D NoCs taken here into consideration. Table 11.10 shows the hand
mapping of cores with their names and coordinates.

The performance and cost of MoT network is evaluated and compared
with other networks taken here into consideration. Here, traffic generation
is done in a self-similar manner. However, the communication requirements
of the tasks in the application have been taken into consideration. The total
traffic generated per unit time confirms with the bandwidth requirement
specified for the edges of the task graph.

In the simulation, the parameters such as packet length, flit size, link
width, core size, and operating frequency of the networks are taken as same
as before. Table 11.11 presents the simulation results of different 3D NoC
structures. As the average overall latencies of all the topologies are well
below the network saturation point, it can be stated that the injection loads
to the network are less. Figure 11.16 shows that at low offered load, router
energy dominates over the link energy. Thus, due to low offered load and
high- connectivity routers in Mesh-1 network, its energy consumption is the
highest. From the simulation results, it can be stated that the hand map-
ping solution for MoT is comparable with the other 3D NoC structures.

TABLe 11.10

Hand Mapping of Cores in Four-Layered 3D SoC

Coordinate

Cores Mapped in Different Active Silicon Layers

Layer 0 Layer 1 Layer 2 Layer 3

0,0 vop mem1 arm2 vld2 ac/dc pred2
0,1 vop rec1 sh mem2 sh mem1 stripe mem2
0,2 down samp2 arith dec1 inv scan1 idct2
0,3 arith dec2 pad2 rld1 iquant2
1,0 pad1 arm1 vld1 rld2
1,1 mem2 down samp1 stripe mem1 inv scan2
1,2 up samp1 vop rec2 ac/dc pred1 mem1
1,3 idct1 vop mem2 iquant1 up samp2

350 Network-on-Chip

Evolution of better mapping algorithm for all the networks will definitely
improve the mapping solution. However, we do not address the issue in
this work.

11.4 Summary

In this chapter, we have proposed a 3D MoT topology and applied it in 3D
NoC design. The performance and cost of the proposed MoT-based 3D NoC
have been evaluated by applying a self-similar traffic and compared with a
well-known tree-based topology, BFT, and two variants of mesh topology
connecting single or two cores to each router. For uniformly distributed and
less localized traffic condition, the throughput and latency values obtained
for MoT are better than all other topologies excepting Mesh-1. However, at
highly localized traffic condition, both Mesh-2 and MoT perform equally
well, as both of them are having a single destination core in their local clus-
ters. The area overhead of 3D MoT network is lesser than those of 3D BFT and
3D Mesh-2 structures. Moreover, for a 32-core-based system, MoT shows the
least average packet energy consumption, almost similar to 3D Mesh-2 net-
work. Thus, taking performance and cost into consideration, MoT appears to
be a very competitive topology among the alternatives proposed in the lit-
erature. The MoT network has also been evaluated and compared with other
topologies under a real benchmark application, DVOPD. The comparative
study shows that MoT-based 3D NoC also works fine under an application-
specific traffic. On the architecture front of the wormhole router, due to lesser
connectivity of MoT routers, synthesis result (Table 11.2) shows that they can
be operated at a higher frequency than other networks, thus increasing the
speed of the overall network. However, for a system with large number of
cores, like other tree-based topologies, MoT will also suffer from the large
number of pipelining stages required for the longer edges in each silicon
layer. Adopting current mode signaling in NoC link and usage of photonic
interconnects in 3D NoC are expected to alleviate this bottleneck, making
MoT a more acceptable topology for larger core-based 3D NoC design.

TABLe 11.11

Simulation Results of All 3D NoCs under Consideration for DVOPD Application

Networks
Average Overall Latency

(Cycle)
Total Energy Consumption

(μJ)

Mesh-1 93.98 59.36
Mesh-2 94.53 46.71
BFT 96.61 42.49
MoT 95.47 47.25

351Three-Dimensional Integration of Network-on-Chip

References

Bashirullah, R., Liu, W., and Cavin, R. K. 2003. Current-mode signaling in deep sub-
micrometer global interconnects. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 11, no. 3, pp. 406–417.

Beyne, E. 2006. The rise of the 3rd dimension for system integration. Proceedings of
IEEE International Interconnect Technology Conference, Burlingame, CA, IEEE,
pp. 1–5, June 5–7.

Carloni, L. P., Pande, P. P., and Yuan, X. 2009. Networks-on-Chip in emerging intercon-
nect paradigms: Advantages and challenges. Proceedings of ACM/IEEE International
Symposium on Networks-on-Chips, San Diego, CA, IEEE, pp. 93–102, May 10–13.

Chang, M. F. et al. 2008. CMP network-on-chip overlaid with multi-band RF inter-
connect. Proceedings of International Symposium on High-Performance Computer
Architecture, Salt Lake City, UT, IEEE, pp. 191–202, February 16–20.

Chen, G., Chen, H., Haurylau, M., Nelson, N. A., Albonesi, D. H., Fauchet, P. M., and
Friedman, E. G. 2007. Predictions of CMOS compatible on-chip optical intercon-
nect. Integration, the VLSI Journal, vol. 40, no. 4, pp. 434–446.

Cianchetti, M. J., Kerekes, J. C., and Albonesi, D. H. 2009. Phastlane: A rapid tran-
sit optical routing network. International Symposium on Computer Architecture
Austin, Texas, USA, ACM, pp. 441–450, 20–24 June.

Davis, W. R., Wilson, J., Mick, S., Xu, J., Hua, H., Mineo, C., Sule, A. M., Steer, M.,
and Franzon, P. D. 2005. Demystifying 3D ICs: The pros and cons of going
vertical. IEEE Design and Test of Computers, IEEE, vol. 22, no. 6, pp. 498–510,
November–December.

Deodhar, V. V. and Davis, J. A. 2005. Optimization of throughput performance for
low-power VLSI interconnects. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 13, no. 3, pp. 308–318.

Feero, B. S. and Pande, P. P. 2009. Networks-on-chip in a three dimensional environment:
A performance evaluation. IEEE Transactions on Computers, vol. 58, no. 1, pp. 32–45.

Flic, J. and Bertozzi, D. 2010. Designing Network On-Chip Architectures in the Nanoscale
Era. Chapman & Hall/CRC Computational Science, Boca Raton, FL.

Gu, H., Xu, J., and Wang, Z. 2008. A low-power low-cost optical router for optical
 network-on-chip in multiprocessor system-on-chips. Proceedings of IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), Tampa, Florida, IEEE,
pp. 19–24, May 13–15.

Gunn, C. 2006. CMOS photonics for high-speed interconnects. IEEE Micro, IEEE,
vol. 26, no. 2, pp. 58–66, March–April.

Haurylau, M., Chen, G., Chen, H., Zhang, J., Nelson, N. A., Albonesi, D. H., Friedman,
E. G., and Fauchet, P. M. 2006. IEEE Journal of Selected Topics in Quantum
Electronics, IEEE, vol. 12, no. 6, pp. 1699–1705.

Jacob, P., Erdogan, O., Zia, A., Belemjian, P. M., Kraft, R. P., and McDonald, J. F. 2005.
Predicting the performance of a 3D processor-memory stack. IEEE Design and
Test of Computers, IEEE, vol. 22, no. 6, pp. 540–547, November–December.

Li, F., Nicopoulos, C., Richardson, T., Xie, Y., Narayanan, V., and Kandemir, M. 2006.
Design and management of 3D chip multiprocessors using network-in-memory.
Proceedings of IEEE International Symposium on Computer Architecture, Boston,
MA, IEEE, pp. 130–142, June 17–21.

352 Network-on-Chip

Loi, I., Angiolini, F., Fujita, S., Mitra, S., and Benini, L. 2011. Characterization and
implementation of fault-tolerant vertical links for 3-D networks-on-chip. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 30,
no. 1, pp. 124–134.

Matsutani, H., Koibuchi, M., Hsu, F., and Amano, H. 2008. Three-dimensional layout
of on-chip tree-based networks. Proceedings of International Symposium on Parallel
Architectures, Algorithms, and Networks, Sydney, NSW, IEEE, pp. 281–288, May 7–9.

Nigussie, E., Lehtonen, T., Tuuna, S., Plosila, J., and Isoaho, J. 2007. High-performance
long NoC link using delay-insensitive current-mode signaling, Journal of VLSI
Design, Hidwai Publishing Corporation, Article ID 46514, pp. 1–13.

Pan, Y., Kumar, P., Kim, J., Memik, G., Zhang, Y., and Choudhary, A. 2009. Firefly:
Illuminating future network-on-chip with nanophotonics. International Symposium
on Computer Architecture, Austin, Texas, ACM, pp. 429–440, June 20–24.

Pande, P. P., Grecu, C., Jones, M., Ivanov, A., and Saleh, R. 2005. Performance evaluation
and design trade-offs for MP-SOC interconnect architectures. IEEE Transactions
on Computers, vol. 54, no. 8, pp. 1025–1040.

Pande, P. P., Grecu, C., Ivanov, A., and Saleh, R. 2003. High-throughput switch-based
interconnect for future SoCs. Proceedings of IEEE International Workshop on
 System-on-Chip for Real Time Applications, pp. 304–310.

Patti, R. 2007. Impact of wafer-level 3-D stacking on the yield of ICs. Future Fab Int.
http://www.futurefab.com/documents.asp?d_id = 4415.

Pavlidis, V. F. and Friedman, E. G. 2007. 3-D Topologies for networks-on-chip. IEEE
Transactions on VLSI Systems, vol. 15, no. 10, pp. 1081–1090.

Pavlidis, V. F. and Friedman, E. G. 2009. Three-Dimensional Integrated Circuit Design.
Morgan Kaufmann Publishers, Burlington, MA.

Petracca, M., Bergman, K., and Carloni, L. P. 2008. Photonic networks-on-chip:
Opportunities and challenges. Proceedings of IEEE International Symposium on
Circuits and Systems, Seattle, WA, IEEE, pp. 2789–2792, May 18–21.

Savidis, I., Alam, S. M., Jain, A., Pozder, S., Jones, R. E., and Chatterjee, R. 2010.
Electrical modeling and characterization of through-silicon vias (TSVs) for 3-D
integrated circuits. Microelectronics Journal, Elsevier, vol. 41, pp. 9–16.

Shacham, A., Bergman, K., and Carloni, L. P. 2007. The case for low-power photonic
networks-on-chip. Proceedings of Design and Automation Conference (DAC), San
Diego, California, ACM, pp. 132–135, June 4–8.

Topol, A. W., Tulipe, D. C. L., Shi, L., Frank, D. J., Bernstein, K., Steen, S. E., Kumar, A.,
Singco, G. U., Young, A. M., Guarini, K. W., and Ieong, M. 2006. Three-dimensional
integrated circuits. IBM Journal of Research and Development, vol. 50, nos. 4/5, p. 491.

Vantrease, D., Schreiber, R., Monchiero, M., Mclaren, M., Jouppi, N. P., Fiorentino, M.,
Davis, A., Binkert, N., Beausoleil, R. G., and Ahn, J. H. 2008. Corona: System impli-
cations of emerging nanophotonic technology. International Symposium on Computer
Architecture, Beijing, Peoples Republic of Chins, IEEE, pp. 153–164, June 21–25.

Ye, Y., Duan, L., Xu, J., Ouyang, J., Hung, M. K., and Xie, Y. 2009. 3D optical networks-
on-chip (NoC) for multiprocessor systems-on-chip (MPSoC). Proceedings of
IEEE International Conference on 3D System Integration, San Francisco, CA, IEEE,
pp. 1–6, September 28–30.

Zhang, H., George, V., and Rabaey, J. M. 2000. Low swing on-chip signaling tech-
niques: Effectiveness and robustness. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 8, no. 3, pp. 264–272.

353

12
Conclusions and Future Trends

12.1 Conclusions

Network-on-chip (NoC) has evolved as a viable solution to the
 communication problem between cores in a system-on-chip (SoC). System
cost, in terms of area, delay, power, and so on, has contributions from both
computation and communication requirements. Individual cores can be
designed efficiently to make computation faster, but communication may
become a bottleneck. As discussed in all chapters, the solution is influ-
enced by several factors. The first and foremost issue is the topology in
which routers are to be connected. While regular topologies, such as mesh
and tree, make the design process simpler with predictable link delay and
power consumption values, irregular application-specific topologies are
expected to produce better performance. Individual routers should be sim-
ple with modules, such as ports, routing logic, arbiter, and channel alloca-
tor. Design of routing algorithm plays an important role, as it has to be free
from deadlock and livelock problems, which may route in a shortest path
through the network. Performance of such a network is often evaluated
with the help of simulators and traffic generators. Apart from application-
specific traffic, networks are often evaluated using uniform, self- similar,
hot spot, and other types of traffic. For regular topologies, cores of an
application are mapped onto individual routers using some mapping
techniques. The mapped core gets attached to that router and all commu-
nication to and from the core is made through that router. The mapping
problem is NP-hard; however, many heuristic strategies have been devel-
oped for the same. However, to achieve better performance, application-
specific NoC architectures are evolved. Multiapplication NoC design calls
for a reconfigurable architecture, in which the same network resources
are reused for different applications. The power consumed by the NoC in
either case can be reduced using various strategies, such as encoding, seri-
alization, and clock gating. A related issue is that of reliability of the sys-
tem. Electromagnetic interference, synchronization failure, and soft errors
come up as challenges to a reliable system operation. Testing of such sys-
tem requires testing individual cores, routers, and links.

354 Network-on-Chip

12.2 Future Trends

One of the upcoming NoC architectures discussed in the book is three-
dimensional (3D) NoC. The NoC layers grow vertically with reduced com-
munication overhead. The other directions, which are in progress, include
the following:

•	 Photonic NoC
•	 Wireless NoC

12.2.1 Photonic NoC

Photonic communication can provide large data transfers with minimal power
consumption. Photonic NoC provides the following two major advantages:

•	 Multiple terabits per second (Tbps) communication on a single wave-
guide (link) with limited power dissipation

•	 Power consumption that is independent of the link length and scales
only with link transmission interface circuitry, such as modulators,
drivers, and receivers

A major problem with the implementation of photonic NoC is the lack of opti-
cal memory and impracticality of optical processing. Shacham et al. (2007)
proposed a hybrid approach for this situation. An optical plane is used for
high-bandwidth multiwavelength transmission links, whereas an electronic
plane performs network management and control functions (Figure 12.1).
The communication takes place as follows:

 1. A photonic circuit is reserved by a source core by sending a path
setup packet over the electronic network to the destination core.
The destination replies with a short acknowledgment pulse over the
photonic network.

 2. The source sends data over the photonic circuit, combining the time-
division multiplexing (TDW) and wavelength-division multiplexing
(WDM).

 3. The communication is terminated by the source transmitting a tear-
down packet, commonly known as path teardown process.

12.2.2 Wireless NoC

Deb et al. (2012) has shown that silicon-integrated antennas can operate in a
millimeter-wave range of few tens to 100 GHz. Carbon nanotubes (CNTs) show
excellent emission and absorption characteristics leading to an antenna-like

355Conclusions and Future Trends

behavior that can operate at optical frequencies. These two factors couple up
and open the direction of designing wireless NoCs (WiNoCs) with on-chip
antennas and suitable transceivers. The wireless communication alleviates the
latency and energy dissipation issues of conventional technologies, and also
solves the complex interconnect routing and placement problems. Multihop
communication of traditional technologies can be converted into a single hop,
resulting in significant saving in delay for communication. An ultrawideband
(UWB) 4 × 4 two-dimensional (2D) mesh architecture-based WiNoC is shown
in Figure 12.2. The processor tiles access the network via radio frequency (RF)
nodes. Packets are delivered to destinations through single or multiple hops.

12.3 Comparison between Alternatives

The three emerging NoC architectures can be compared at different angles.
As far as the design requirements are concerned, 3D NoCs contain multiple
layers of active devices, while optical NoCs require silicon photonic compo-
nents and WiNoCs have on-chip metal or CNT-based antennas. 3D NoCs

Optical switch

Metallic
interconnect

Electronic
router

Functional core

Optical layer

Electronic layer

Optical interconnect

Figure 12.1
A 4 × 4 optical NoC structure.

356 Network-on-Chip

enjoy higher connectivity and reduced hop count compared to 2D NoCs.
Bandwidth advantages of optical NoCs come from the usage of high-speed
optical devices and links. WiNoCs use single-hop high- bandwidth wireless
links. Power dissipation is low in 3D NoC due to shorter average path length.
Optical NoCs dissipate negligible power in optical data transport, whereas in
WiNoCs, multihop paths can be replaced by single-hop links. Reliability may
suffer in 3D NoCs due to the failure of vertical via. However, temperature
sensitivity of photonic components and noisy wireless channels can be the
sources of failure in optical NoCs and WiNoCs, respectively. The major chal-
lenge with 3D NoC is to handle the thermal problems due to higher power
densities, particularly for the layers away from the heat sink. Integration
of on-chip photonic components is the major challenge in photonic NoCs.
Design of low-power millimeter-wave transceivers and control over CNT
growth is the challenge for making WiNoC a success.

Wireless link

Control wires

RF node

Core

Figure 12.2
A 4 × 4 WiNoC structure.

357Conclusions and Future Trends

References

Deb, S., Ganguly, A., Pande, P. P., Belzer, B., and Heo, D. 2012. Wireless NoC as inter-
connection backbone for multicore chips: Promises and challenges. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, pp. 228–239.

Petracca, M., Lee, B. G., Bergman, K., and Carloni, L. P. 2009. Photonic NoCs: System-
level design exploration, IEEE Micro, IEEE Computer Society, pp. 74–84, August.

Shacham, A., Bergman, K., and Carloni, L. P. 2007. On the design of a photonic
 network-on-chip. Proceedings of the NOCS. Washington DC, pp. 53–64.

Ye, Y., Duan, L., Xu, J., Ouyang, J., Hung, M. K., and Xie, Y. 2009. 3D optical network-
on-chip (NoC) for multiprocessor systems-on-chip (MPSoC). Proceedings of the
3D System Integration.

359

Index

Note: Locators followed by “f” and “t” denote figures and tables in the text

3D integrated circuit (3D IC), 317
clock distribution structures for,

321, 321f
n-layer

cross section of stacked layers,
319, 320f

heat dissipation in, 319, 320f
NoC topologies on, 323, 323f

3D integration, 318–322
challenges of, 321–322

CAD tools, 322
interconnect design, 321–322
reliability, 322
thermal effects, 321

opportunities of, 319–321
decrease in interconnect

length, 319
heterogeneous and

multifunctional SoC design,
319, 321

3D NoC architecture, design and
evaluation of, 323–350

application-specific traffic,
simulation results with,
349–350, 350t

hand mapping of cores, 349, 349t
MoT topology

2 × 4 × 4, 327f
average distance, 327–330
number of directed edges, 326
properties, 326

performance and cost evaluation,
331–340

network area estimation, 336, 337t,
338, 339t

network aspect ratio, 339–340, 340t
self-similar traffic, simulation results

with
accepted traffic vs. offered load,

340–341, 341f
energy consumption, 345–349,

346f, 346t, 347t, 348t

Lavg under localized traffic,
342–345, 342t, 343f, 344f

throughput vs. locality factor,
341–342, 341t

1500 wrapper, 246, 247f

A

ACK/NACK flow control protocol,
44, 45f

Adaptive router architecture design,
70–73

Adaptive voltage scaling (AVS), 160
Aggressor lines, 81, 237
Ant colony optimization (ACO), 123
Application Specific Integrated Circuit

(ASIC), 290
Application-specific NoC (ASNoC), 263

literature survey, 265–267
synthesis problem, 264–265
synthesis with flexible router

placement, see ASNoC
synthesis with flexible router
placement

Architecture-aware analytic mapping
algorithm (A3MAP), 149

ASNoC synthesis with flexible router
placement, 277–284

communication trace graph, 277f
ILP for

constraints, 279–281
objective function, 279
variables, 278–279

PSO for
evolution of generation, 283
local and global bests, 282
particle structure and fitness

function, 282
swap operator, 283
swap sequence, 283–284

router locations, 277f
routers at corners, 277f

360 Index

Asynchronous FIFO design, 54–56
dual-clock, 56f
FIFO memory, 56f
scalable gray code concept, 55, 55f

Automated test equipment (ATE), 245
Automated test pattern generation

(ATPG), 239
Average overall latency (Lavg), 80

under localized traffic
in 3D NoC with self-similar

traffic, 342–345, 342t, 343f, 344f
in MoT with VC router, 110–111,

110f, 111f, 112f
MoT with WH router

at different locality factors,
86–87, 87f

under localized traffic, 99–101, 99t,
100f, 101f

B

Bandwidth (BW), 80
utilization, 311

Best effort (BE) service, 45–46
Best fit decreasing (BFD) heuristics, 247
BI Hamming (BIH) code, 223
Binary and gray coding scheme,

170, 170t
Binomial mapping (BMAP), 129

flowchart, 130f
OCN design flow in, 129f
stages of OCN synthesis process

in, 129
Bisection width, 75
Bit error (ε), probability, 228
Bit error rate (BER), 174, 228, 228f
Bose–Chaudhuri–Hocquenghem (BCH)

code, 220
Boundary shift code (BSC), 224
Built-in self-repair (BISR)

mechanism, 204
Built-in self-test (BIST), 254, 257
Built-in soft error resilience (BISER)

technique, 206
Burst word error, probability, 229
Bus-invert (BI) code, 168, 222

hardware of, 168, 169f
scheme with 8-bit data bus, 169t

Butterfly fat tree (BFT) network, 75, 325
2D, 21, 21f
3D, 333, 334f
distribution of cores, routers, and

links in, 77f
router classification, 76

C

Capacitive crosstalk avoidance
techniques

CAC, 212–216
driver strength, 211
increase inter-wire spacing, 211
OCS, 211–212
usage of shielding and duplicating

wire, 210, 211t
Channel direction control (CDC)

protocol, 311
Channel power consumption, 255
Channel width and flit size, selection, 84
Chip-Level Integration of

Communicating
Heterogeneous Elements
(CLICHÉ), 14–15

Chip multiprocessing (CMP)
system, 1, 9

Clustering-based approach, 276f
Communication cost (fitness), 282
Communication dependence

and computation model
(CDCM), 138

Communication fabric, testing, 236–244
NoC links, 237–238
NoC switches, 238–239
test data transport, 239–241
transport time minimization,

241–244
multicast test scheduling, 244
unicast test scheduling, 242–244

Communication task graph (CTG), 308
Communication weighted model

(CWM), 137
Complementary metal oxide

semiconductor (CMOS)
technology, 63, 77, 156, 317

Concentrated mesh (CMESH)
topology, 16

361Index

Constructive heuristics
for application mapping, 128–134

binomial merging iteration,
130–131, 132f

hardware cost optimization,
132–134

topology mapping and traffic
surface creation, 131–132

with iterative improvement, 134–141
initialization phase, 134–135
iterative improvement phase,

136–137
other constructive strategies,

137–141
shortest path computation,

135–136
Core graph, 120
Cores, testing, 245–260

core wrapper design, 246–250
1500 wrapper, 246, 247f
algorithm, 249t
two wrappers, 248f

heuristic algorithms, 253–258
ILP formulation, 250–253
PSO-based strategy

evolution of generations, 259–260
particle structure and fitness,

258–259, 259f
Crosstalk avoidance and double error

correction (CADEC) codes,
226–227, 226f

Crosstalk avoidance code (CAC), 210,
212

FOC, 212–213, 213t
FPC, 214–215
FTC, 213–214
OLC, 216

Crosstalk delay, 197
to MAF model, 195, 196f
types of, 199t

Custom interconnection topology and
route generation, 271–277

constraints, 274–277
latency, 276
node-to-port mapping, 274
port capacity, 274
port-to-port mapping, 274
traffic routing, 274–276

objective function, 273–274
router allocation for, 272f
variables

derived, 273
independent, 272–273

Cyclic redundancy check (CRC), 217
Cyclic redundancy codes (CRCs), 218

D

DAP bus-invert (DAPBI) code, 227
Data link layer, 4
Deep submicron (DSM) technology, 75,

191, 237, 317
of n interconnects, 167, 167f

Design-for-testability (DfT) logic, 246
Discrete PSO (DPSO) technique,

mapping using, 141–149
augmentations to, 144–149
convergence of DPSO, 143
evolution of generations, 142–143
overall PSO algorithm, 144
particle structure, 141–142, 142f

Double error detection (DED) codes, 220
Double-switching errors, 198, 198f

false/double clocking due to, 199f
Drain-to-source current (IDS), 157
Duato’s protocol, 41
Duplicate-add-parity (DAP) code, 224
Dynamic adaptive–deterministic

(DyAD) routing, 70–73, 71f
Dynamic frequency scaling (DFS), 155

architecture of, 180f
in system-level power reduction,

179–185
characteristics, 184t
DFS algorithm, 183
history-based DFS, 181–182,

182f, 184t
link controller, 183–184

Dynamic voltage and frequency scaling
(DVFS), 160

Dynamic voltage scaling (DVS), 155,
172–179

characteristics, 173
components of links, 173f
hardware implementation, 178, 178f
history-based, 174–178

362 Index

E

Edge (e), weight of, 298, 309–310
Electromagnetic interference

(EMI), 2, 194
Energy and reliability trade-off in

coding technique, 227–230
Energy overhead, 173
Energy reduction, 230
Error-correcting code (ECC), 220
Extended-BFT interconnection (EFTI)

network, 21, 22f
Extended generalized fat-tree (XGFT), 9

F

Failures in time (FIT), 193
Faults in NoC fabric, sources of,

193–204
due to aging effects

HCI, 195
NBTI, 194

permanent faults, 194
transient faults

capacitive crosstalk, 195, 196f,
197–199

other sources of, 203–204
soft errors, 199–203

Fiduccia–Mattheyses (FM) partitioning
algorithm, 265

Field-programmable gate array
(FPGA), 289

Finite-state machines (FSMs), 312, 313f
First-in first-out (FIFO), 9, 34, 236, 330

asynchronous design, 54–55
design of memory, 56f
dual-clock asynchronous, 54, 56f
gating write clock of, 158f
impact of size and placement in

energy and performance of
network, 90–93, 90f

component-wise energy
consumption, 92f, 93f

network energy consumption,
91f, 93f

Flow control
protocol, 43–45
signals, 58

Forbidden overlap codes (FOCs),
212–213

combining adjacent subchannels
in, 214f

truth table, 213t
Forbidden pattern code (FPC), 214–215

combining adjacent subchannels
in, 216f

truth table, 215t
Forbidden pattern condition, 214
Forbidden transition codes (FTCs),

213–214
combining adjacent subchannels

in, 215f
truth table, 214f

Forbidden transition condition, 213
Forward error correction (FEC)

technique, 220

G

GALS style of communication, 57, 57f
Gaussian pulse Q(x), 228
Generic core interface (GCI), 46
Genetic algorithm (GA), 123, 266
Globally asynchronous locally

synchronous (GALS) style, 3
go-back-N retransmission, 219
Greedy incremental (GI) heuristics, 138
Ground bounce, 203
Guaranteed throughput (GT) service,

45–46

H

Hamming code, 220, 221f
Head-of-line (HoL), 30
Hop-by-hop (HBH) error control, 219
Hot carrier injection (HCI), 195
Hurst parameter (HP), 83
Hybrid-communication ReNoC

(HCR- NoC), 290–291

I

Idle periods (Pi), 83
Input buffer age, 175
Input buffer utilization, 175

363Index

Input FIFO buffer (IB), 58
Input flow controller (IFC), 58
Input read switch (IRS), 58
Integer linear programming (ILP), 123

-based approach in local
reconfiguration, 299–301

constraints, 300–301
objective function, 300
parameters and variables,

300, 300t
for flexible router placement

constraints, 279–281
objective function, 279
variables, 278–279

formulation, 123–127
other, 127–128
in testing cores, 250–253

Intellectual property (IP), 119, 235
calculate ranking, 131
sets, 130

merging of, 131, 133f
refreshing, 131

Interconnection network, 13f
Internal power consumption, 156
Iteration (Ti), idle periods in, 83

K

Kernighan–Lin (K–L) partitioning
scheme, 140–141

L

Largest communication first (LCF)
heuristics, 138

Latency, 80; see also Average overall
latency (Lavg)

Least common ancestor (LCA)
algorithm, 33, 93, 340

Linear feedback shift register (LFSR),
218, 219f

Link-based mapping (LBMAP), 139
Link reconfiguration

estimating channel bandwidth
utilization, 311–312

modified router architecture,
312, 312f

Link utilization, 174, 181–182, 182f

Locality factor, 85
MoT with WH router

energy consumption at different,
88–90, 88f, 89f

Lavg at different, 86–87, 87f
throughput vs., 85–86, 87f

throughput vs.
in 3D NoC with self-similar

traffic, 341–342, 341t
MoT with VC router,

109–110, 110f
MoT with WH router, 98–99, 98f

Local link, 76
Local reconfiguration approach,

291–304, 292f, 293f
area overhead, 294–296

of different architectures, 297t
for module types, 295, 295t
parameters for Orion, 294, 295t
router areas, 295, 295t

design flow, 296–299, 298f
configuration generation, 299
construction of CCG, 298
mapping of CCG, 299

ILP-based approach
constraints, 300–301
objective function, 300
parameters and variables,

300, 300t
iterative reconfiguration, 303–304
multiplexers, 293–294
PSO formulation, 301–302
routers, 292–293
selection logic, 294, 294f

Look-up table (LUT), 61, 62f
Low-power code (LPC), 168–170, 221
Low-power methods for NoC links,

166–172
bus energy model, 167–168
low-power coding, 168–170
low-swing signaling, 171–172, 172f
on-chip serialization, 170–171, 171f

Low-power methods for NoC routers
clock gating, 158–159

router-level, 159f
write clock of FIFO, 158, 158f

gate-level power optimization,
159–160, 160f

364 Index

Low-power methods for NoC routers
(Continued)

multivoltage design, 160–164
placement of level shifter, 164, 164f
short-circuit current flow, 161–163,

161f, 162f, 163f
multi-VT design, 164–165
power gating

architectural trade-offs, 165
challenges, 166
leakage power-saving profile

using, 165f

M

Mapping problem, 120–123
constraints for, 124–127
onto mesh topology, 121f

Mapping using DPSO, 141–149
augmentations to

initial population generation,
145–147

multiple PSO, 144
other evolutionary approaches,

148–149
convergence of DPSO, 143
evolution of generations, 142–143
overall PSO algorithm, 144
particle structure, 141–142, 142f

Maximum aggressor fault (MAF)
model, 195, 237

effect of crosstalk, 195, 196f
state machine for, 238f

Mean time between failures (MTBF),
155, 193

Mesh-1 network, 76, 332, 332f
Mesh-2 network, 76, 332, 333f
Mesh-of-tree (MoT) network, 22, 23f, 26f

deterministic routing in M × N,
33–41

addressing scheme, 34, 35f
avoidance of routing-dependent

deadlock, 37–38, 40–41
proof for shortest path, 37
routing algorithm, 34, 36–37

distribution of cores, routers, and
links

4 × 4 mesh structure, 77f
4 × 4 MoT structure, 78f

4 × 8 mesh structure, 76f
BFT networks, 77f

labeling of channels in, 39f, 40f
performance and cost

comparison of
with NoC structures having VC

router, 109–114
with NoC structures having WH

router, 93–103
simulation results and analysis of

with VC router, 103–109
with WH router, 84–90

topology in 3D NoC, 326–330, 335f
2 × 4 × 4, 327f
properties, 326

Mixed integer linear programming
(MILP)-based approach, 127,
268, 276–277

Modified dual-rail (MDR) code, 224
MoT network, simulation results and

analysis of
with VC router, 103–109

accepted traffic
comparison, 104f

area required, 108–109, 108t
energy consumption, 105–108,

107f, 108f
latency vs. offered load, 104–105,

105f, 106f, 107f
throughput vs. offered load,

104, 105f
with WH router, 84–90

accepted traffic vs. offered load,
85, 85f

energy consumption at
different locality factors, 88–90,
88f, 89f

Lavg at different locality factors,
86–87, 87f

throughput vs. locality factor,
85–86, 87f

MoT with NoC, performance and cost
comparison of

having VC router, 109–114
accepted traffic vs. offered load,

109, 109f
area overhead, 113–114, 114t
energy consumption,

111–113, 113f

365Index

Lavg under localized traffic,
110–111, 110f, 111f, 112f

throughput vs. locality factor,
109–110, 110f

having WH router, 93–103
accepted traffic vs. offered load,

97, 97f
energy consumption, 102–103,

102f, 103f
Lavg under localized traffic, 99–101,

99t, 100f, 101f
network area estimation, 94–95,

94t, 95t
network aspect ratio, 96–97, 96t
throughput vs. locality factor,

98–99, 98f
Multicast test cost, 244
Multicast wrapper unit (MWU), 240
Multicast mode, 239

data transfer, 240f
transport, 241f

Multilevel voltage scaling (MVS), 160
Multiobjective adaptive immune

algorithm (MAIA), 149
Multiple error-correcting (MEC)

codes, 220
Multiple supply voltage (MSV), 160
Multiprocessor system-on-chip

(MPSoC) architecture, 1,
13, 291

N

Negative-bias temperature instability
(NBTI), 194

Network assignment (NA), 148
Network diameter, 14
Network interface (NI) module, 3, 31,

46–48, 47f, 127
Network layer, 5
Network-on-chip (NoC), 3

3D, 317
4 × 4 optical, 355f
abstraction layers, 4–5
development research issues, 5–8, 7f

application mapping, 7
communication infrastructure, 5
communication paradigm, 6
evaluation framework, 6

evaluation methodologies of, 75–81
cost metrics, 80–81
performance metrics, 78, 80

examples, 8–10
interconnect

bus encoding scheme for, 212f
low-swing signaling in, 172f

mesh-based, 323–324, 324f
paradigm, 4f
photonic, 317–318, 354
reconfigurations for ASIC-based, 290
SoC to, 3–5
testing

with input/output cores for,
245, 245f

issues, 236
wireless, 318, 354–355, 356f

Network processors, 127
Network topologies, 14–29

average distance, 25–29
BFT network, 21, 21f
binary tree network, 19, 20f
CMESH network, 17–18, 18f
EFTI network, 21, 22f
Flattened BFT, 23, 24f
folded torus network, 16, 17f
mesh network, 15f
MoT network, 22, 23f, 26f
number of edges, 25
octagon network, 17, 18f
spidergon network, 19, 19f
SPIN network, 20, 20f
torus network, 15, 16f

NoC links
four node with unidirectional,

243, 244f
low-power methods for, 166–172

bus energy model, 167–168
low-power coding, 168–170
low-swing signaling, 171–172
on-chip serialization, 170–171

testing, 237–238
NoC routers, low-power methods for

clock gating, 158–159, 158f
gate-level power optimization,

159–160
multivoltage design, 160–164
multi-VT design, 164–165
power gating, 165–166

366 Index

O

Odd-even turn model rules, 40, 41f
oe-fixed router, 71
On-chip network (OCN), 129
On-chip serialization (OCS) technique,

211–212
One lambda coding (OLC), 216
Open Core Protocol (OCP), 46
Output FIFO buffer (OB), 58
Output flow control (OFC), 58
Output read switch (ORS), 58

P

Packet disassembler (PD), 46–47
Packet maker (PM), 46–47
Particle swarm optimization (PSO),

123, 281
for flexible router placement

evolution of generation, 283
local and global bests, 282
particle structure and fitness

function, 282
swap operators, 283
swap sequence, 283–284

formulation in local reconfiguration,
301–302

Path teardown process, 354
Permanent fault controlling

techniques, 204
Photonic NoC, 317–318, 354
Physical layer, 4
Pilot signal, 171
Power bounce, 203

Q

Q8WARE, 265
Quality of service (QoS), 6, 45–46, 127

R

Reconfigurable NoC (ReNoC)
design flow of, 296–297, 298f
literature review, 290–291

Reed–Solomon (RS) code, 220
Round-robin arbiter, 61, 62f
Router power consumption, 255

Routers classification
4 × 4 network, 76
4 × 8 network, 76
BFT-based network, 76
MoT-based network, 77

Routing computation (RC) unit, 58
Routing logic block (RLB), 240
Routing strategies, 30–43

avoidance of message-dependent
deadlock, 41–43

request–response, 42f
solutions to, 43f

classification based on
adaptability, 31
single packet, 30

routing-dependent deadlock, 31–41,
32f, 33f

S

Scalable, programmable,
integrated network (SPIN),
9, 20, 20f, 75

Self-similar traffic
in 3D NoC architecture simulation

results with
accepted traffic vs. offered load,

340–341, 341f
energy consumption, 345–349,

346f, 346t, 347t, 348t
Lavg under localized traffic,

342–345, 342t, 343f, 344f
throughput vs. locality factor,

341–342, 341t
algorithm, 83f
MoT with NoC structures having

WH router, comparison of,
93–103

accepted traffic vs. offered load,
97, 97f

energy consumption, 102–103,
102f, 103f

Lavg under localized traffic, 99–101,
99t, 100f, 101f

network area estimation, 94–95,
94t, 95t

network aspect ratio, 96–97, 96t
throughput vs. locality factor,

98–99, 98f

367Index

Single-chip cloud computer (SCC), 9
Single error correction (SEC), 220
Single-event transient (SET) pulse, 201
Single-event upset (SEU), 200
Soft error rate (SER), 201
Soft errors, 199–203

in back-to-back inverter, 200, 200f
classification of effect, 201
correction, 206–210

combinational logic, 207–210,
208f, 209f

in latches, 207f
using time-shifted output, 209f

in D-type latch, 200, 201f
Sort-based mapping (SBMAP), 139
STALL/GO flow control protocol, 44, 44f
Static voltage scaling (SVS), 160
Store-and-forward (SAF) packet

switching techniques, 29
Subthreshold leakage current (Isub), 156
Swap operation, 259–260
Switch allocation, 64
Switch arbiter (SA), 58, 205
Switching power consumption, 155–156
Switching techniques, 29–30

and packet format, 53–54, 54f
Switch-to-switch flow control

schemes, 218
System-level floorplanning, 268–271

constraints, 269–270
mesh topology constraints,

270–271, 270f
objective function, 269
variables

dependent, 268–269
independent, 268

System-level power reduction, 172–188
DFS, 179–185

characteristics, 184t
DFS algorithm, 183
history-based DFS, 181–182, 182f
link controller, 183–184

DVS, 172–179
characteristics, 173
components of links, 173f
hardware implementation, 178, 178f
history-based DVS, 174–178

runtime power gating, 186–188, 188f
VFI partitioning, 185–186

System-on-chip (SoC), 1, 75, 129, 191, 235,
319, 321

categories, 1
hand mapping of cores in four-

layered 3D, 349, 349t
integration and its challenges, 1–2
to NoC, 3–5

T

TD factor, 202
Template-based efficient mapping

(TEM) algorithm, 139
T-Error flow control protocol, 44, 45f
Test access mechanism (TAM), 235
Three-dimensional (3D) NoC, 317
Three-wire model

energy obtained from HSPICE, 82t
parasitic capacitance, inductance,

and resistance of, 81t
Throughput, 78

vs. locality factor, 85–86, 87f, 98–99,
98f, 109–110, 110f, 341–342, 341t

vs. offered load, 104, 105f
Through-silicon vias (TSVs), 8, 317, 319

misalignments, 322, 322f
Time division multiplexed access

(TDMA), 138
Time division multiplexing (TDW), 354
Topology graph, 120, 122
Topology reconfiguration, 304–311,

308f, 309f
architecture, 306–311

application mapping, 307–308
core-to-network mapping,

309–310
and route generation, 310–311
routers wrapped by

switches, 305f
logical, 306f
modification around routers, 305
multiplexer-based implementation,

307f
Traffic modeling, 81–84
Transient fault controlling techniques

inter-router link error control,
210–221

capacitive crosstalk avoidance
techniques, 210–216

368 Index

Transient fault controlling techniques
(Continued)

error correction, 220–221
error detection and

retransmission, 216–220, 217f
intra-router error control, 205–210

Transport layer, 5
Travelling salesman problem (TSP), 141
Tree-based topologies, limitations of,

114–115
Triple modular redundancy (TMR)

technique, 204, 218
Triplication error correction coding,

225, 225f
Two-dimensional integrated circuit

(2D IC), 8

U

Ultra-deep submicron (UDSM), 155, 220
Unicast cost function, 242
Unicast mode, 239

data transfer, 240f
transport, 241f

Unified coding framework,
221–227, 222f

joint CAC and ECC scheme
(CAC + ECC), 224–227, 225t

joint CAC and LPC scheme
(CAC + LPC), 222–223, 223f

joint CAC, LPC, and ECC scheme
(CAC + LPC + ECC), 227

joint LPC and ECC scheme
(LPC + ECC), 223–224, 224f

V

VC allocation, 64
VC allocator (VCA), 205

error, 206
VC router architecture design, 63–70

input channel module, 65, 66f
modified, 65f
nonspeculative, 64f
output links, 66–70

(P – 1)*V, 66, 67f
switch allocator, 69–70, 69f
VC allocator, 66, 68f, 69

Very large scale integration (VLSI),
158, 191

Victim line, 237
Video object plane decoder

(VOPD), 119
application graph for, 121f
block diagram of, 120f

Virtual channel (VC), 187
Virtual cut-through (VCT) packet

switching techniques, 29
Virtual ground (VGND), 187
Voltage–frequency island (VFI)

2D mesh network with, 185f
interface between voltages, 187f
partitioning, 155, 185–186

W

Wavelength-division multiplexing
(WDM), 354

Wire
parasitic components of,

192–193, 193f
self-capacitance, 191–192
test sequence for, 238t

Wireless NoC (WiNoC), 318, 354–355,
356f

Wormhole (WH) router, 78
architecture design, 57–63

connections for, 59f
data path, 63f
input channel module, 58
leaf level nodes, 60f
output channel module, 58, 61–63
priority logic, 61, 61f

connectivity, number and frequency
of, 79t

MoT with NoC having, comparison
of, 93–103

accepted traffic vs. offered load,
97, 97f

energy consumption, 102–103,
102f, 103f

Lavg under localized traffic, 99–101,
99t, 100f, 101f

network area estimation, 94–95,
94t, 95t

network aspect ratio, 96–97, 96t

369Index

throughput vs. locality factor,
98–99, 98f

MoT with, simulation results and
analysis of, 84–90

accepted traffic vs. offered load,
85, 85f

energy consumption at different
locality factors, 88–90, 88f, 89f

Lavg at different locality factors,
86–87, 87f

throughput vs. locality factor,
85–86, 87f

X

XY routing in 2D mesh topology, 32, 33f

	9781466565265
	9781466565265_text

