Show simple item record

dc.contributor.authorGuirguis, Karim
dc.date.accessioned2025-04-14T12:06:32Z
dc.date.available2025-04-14T12:06:32Z
dc.date.issued2025
dc.identifier.urihttps://library.oapen.org/handle/20.500.12657/100728
dc.description.abstractIn this dissertation, three novel Generalized Few-Shot Object Detection (G-FSOD) approaches are presented to minimize the forgetting of previously learned classes while learning new classes with limited data. The first two approaches reduce the forgetting of base classes if they are still available during training. The third approach, for scenarios without base data, uses knowledge distillation to improve the knowledge transfer.en_US
dc.languageEnglishen_US
dc.relation.ispartofseriesSchriftenreihe Automatische Sichtprüfung und Bildverarbeitungen_US
dc.subject.classificationthema EDItEUR::U Computing and Information Technology::UY Computer science::UYA Mathematical theory of computation::UYAM Maths for computer scientistsen_US
dc.subject.otherOptical Inspection; Object Detection; Deep Learning; Few Shot Learning; Optische Inspektion; Objekt-Erkennung; Computer Vision; Tiefes Lernenen_US
dc.titleTowards Learning Object Detectors with Limited Data for Industrial Applicationsen_US
dc.typebook
oapen.identifier.doi10.5445/KSP/1000174849en_US
oapen.relation.isPublishedBy44e29711-8d53-496b-85cc-3d10c9469be9en_US
oapen.series.number8en_US
oapen.pages262en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record