Show simple item record

dc.contributor.authorZhao, Zheng Alan
dc.contributor.authorLiu, Huan
dc.date.accessioned2025-04-22T11:38:46Z
dc.date.available2025-04-22T11:38:46Z
dc.date.issued2011
dc.identifierONIX_20250422_9781439862100_21
dc.identifierONIX_20250422_9781439862100_21a
dc.identifier.urihttps://library.oapen.org/handle/20.500.12657/101027
dc.description.abstractSpectral Feature Selection for Data Mining introduces a novel feature selection technique that establishes a general platform for studying existing feature selection algorithms and developing new algorithms for emerging problems in real-world applications. This technique represents a unified framework for supervised, unsupervised, and semisupervise
dc.languageEnglish
dc.relation.ispartofseriesChapman & Hall/CRC Data Mining and Knowledge Discovery Series
dc.subject.classificationthema EDItEUR::U Computing and Information Technology::UY Computer science
dc.subject.classificationthema EDItEUR::U Computing and Information Technology::UN Databases::UNF Data mining
dc.subject.classificationthema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TJ Electronics and communications engineering::TJF Electronics engineering::TJFM Automatic control engineering
dc.subject.classificationthema EDItEUR::P Mathematics and Science::PB Mathematics::PBT Probability and statistics
dc.subject.otherFeature Selection Algorithms
dc.subject.otherFeature Selection
dc.subject.otherSpectral Feature Selection
dc.subject.otherMultivariate Formulations
dc.subject.otherdata mining
dc.subject.otherData Set
dc.subject.othermachine learning
dc.subject.otherFisher Score
dc.subject.otherdimensionality reduction
dc.subject.otherLaplacian Matrix
dc.subject.otherSimilarity Matrix
dc.subject.otherfeature extraction
dc.subject.otherhigh-dimensional data processing
dc.subject.otherRedundant Features
dc.subject.otherExisting Feature Selection
dc.subject.otherNormalized Laplacian Matrix
dc.subject.otherRank Aggregation
dc.subject.otherF2 F3 F4 F5 F6
dc.subject.otherFeature Selection Techniques
dc.subject.otherF1 F2 F3 F4 F5
dc.subject.otherTIMP Metallopeptidase Inhibitor
dc.subject.otherGene Selection
dc.subject.otherComputer Nodes
dc.subject.othermicroRNA Microarray
dc.subject.otherLDA
dc.titleSpectral Feature Selection for Data Mining
dc.typebook
oapen.identifier.doi10.1201/b11426
oapen.relation.isPublishedBy7b3c7b10-5b1e-40b3-860e-c6dd5197f0bb
oapen.relation.isFundedByb818ba9d-2dd9-4fd7-a364-7f305aef7ee9
oapen.relation.isbn9781439862100
oapen.relation.isbn9781138112629
oapen.relation.isbn9781439862094
oapen.relation.isbn9781000023046
oapen.relation.isbn9780429107191
oapen.relation.isbn9781000023077
oapen.collectionKnowledge Unlatched (KU)
oapen.imprintChapman and Hall/CRC
oapen.pages224
oapen.grant.number[...]
oapen.identifier.ocn773311146
peerreview.anonymitySingle-anonymised
peerreview.idbc80075c-96cc-4740-a9f3-a234bc2598f1
peerreview.open.reviewNo
peerreview.publish.responsibilityPublisher
peerreview.review.stagePre-publication
peerreview.review.typeProposal
peerreview.reviewer.typeInternal editor
peerreview.reviewer.typeExternal peer reviewer
peerreview.titleProposal review
oapen.review.commentsTaylor & Francis open access titles are reviewed as a minimum at proposal stage by at least two external peer reviewers and an internal editor (additional reviews may be sought and additional content reviewed as required).


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record