Show simple item record

dc.contributor.authorByrne, Charles L.
dc.date.accessioned2025-05-12T09:38:07Z
dc.date.available2025-05-12T09:38:07Z
dc.date.issued2014
dc.identifierONIX_20250512_9781482241853_82
dc.identifier.urihttps://library.oapen.org/handle/20.500.12657/101549
dc.description.abstractSignal Processing: A Mathematical Approach is designed to show how many of the mathematical tools the reader knows can be used to understand and employ signal processing techniques in an applied environment. Assuming an advanced undergraduate- or graduate-level understanding of mathematics-including familiarity with Fourier series, matrices, probab
dc.languageEnglish
dc.relation.ispartofseriesChapman & Hall/CRC Monographs and Research Notes in Mathematics
dc.subject.classificationthema EDItEUR::U Computing and Information Technology::UY Computer science
dc.subject.classificationthema EDItEUR::U Computing and Information Technology::UB Information technology: general topics
dc.subject.classificationthema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TH Energy technology and engineering::THR Electrical engineering
dc.subject.classificationthema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TJ Electronics and communications engineering::TJK Communications engineering / telecommunications
dc.subject.classificationthema EDItEUR::P Mathematics and Science::PB Mathematics::PBW Applied mathematics
dc.subject.otherFourier Series
dc.subject.otherfourier
dc.subject.otherDFT
dc.subject.othertransform
dc.subject.otherFourier Transform
dc.subject.otherseries
dc.subject.otherT− 1
dc.subject.otherBlue Estimate
dc.subject.othercauchy's
dc.subject.otherRemote Sensing
dc.subject.otherinequality
dc.subject.otherHilbert Space
dc.subject.otherremote
dc.subject.otherTransmission Tomography
dc.subject.othersensing
dc.subject.otherMinimum Norm Solution
dc.subject.otherrandom
dc.subject.otherCovariance Matrix
dc.subject.othervariable
dc.subject.otherexponential
dc.subject.otherPower Spectrum
dc.subject.otherRandom Variables
dc.subject.otherDFT Calculation
dc.subject.otherX-ray Transmission Tomography
dc.subject.otherInverse Ft
dc.subject.otherFir
dc.subject.otherNoise Power Spectrum
dc.subject.otherShort Time Fourier Transform
dc.subject.otherImpulse Response Sequence
dc.subject.otherOrthogonality Principle
dc.titleSignal Processing
dc.title.alternativeA Mathematical Approach, Second Edition
dc.typebook
oapen.identifier.doi10.1201/b17672
oapen.relation.isPublishedBy7b3c7b10-5b1e-40b3-860e-c6dd5197f0bb
oapen.relation.isFundedByb818ba9d-2dd9-4fd7-a364-7f305aef7ee9
oapen.relation.isbn9781482241853
oapen.relation.isbn9780429158711
oapen.relation.isbn9781040071212
oapen.relation.isbn9781482241846
oapen.relation.isbn9780367658946
oapen.collectionKnowledge Unlatched (KU)
oapen.imprintChapman and Hall/CRC
oapen.pages439
oapen.grant.number[...]
peerreview.anonymitySingle-anonymised
peerreview.idbc80075c-96cc-4740-a9f3-a234bc2598f1
peerreview.open.reviewNo
peerreview.publish.responsibilityPublisher
peerreview.review.stagePre-publication
peerreview.review.typeProposal
peerreview.reviewer.typeInternal editor
peerreview.reviewer.typeExternal peer reviewer
peerreview.titleProposal review
oapen.review.commentsTaylor & Francis open access titles are reviewed as a minimum at proposal stage by at least two external peer reviewers and an internal editor (additional reviews may be sought and additional content reviewed as required).


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record