Show simple item record

dc.contributor.authorGyarmati, Katalin
dc.contributor.editorCharpin, Pascale
dc.contributor.editorPott, Alexander
dc.contributor.editorWinterhof, Arne
dc.date.accessioned2019-11-18 23:55
dc.date.accessioned2020-01-07 16:47:06
dc.date.accessioned2020-04-01T09:28:09Z
dc.date.available2020-04-01T09:28:09Z
dc.date.issued2013
dc.identifier1006388
dc.identifierOCN: 1135845523en_US
dc.identifier.urihttp://library.oapen.org/handle/20.500.12657/23754
dc.description.abstractIn the second half of the 1990s Christian Mauduit and András Sárközy [86] introduced a new quantitative theory of pseudorandomness of binary sequences. Since then numerous papers have been written on this subject and the original theory has been generalized in several directions. Here I give a survey of some of the most important results involving the new quantitative pseudorandom measures of finite bi-nary sequences. This area has strong connections to finite fields, in particular, some of the best known constructions are defined using characters of finite fields and their pseudorandom measures are estimated via character sums.
dc.languageEnglish
dc.subject.classificationthema EDItEUR::P Mathematics and Science::PB Mathematics::PBF Algebraen_US
dc.subject.classificationthema EDItEUR::P Mathematics and Science::PB Mathematics::PBW Applied mathematicsen_US
dc.subject.classificationthema EDItEUR::U Computing and Information Technology::UY Computer scienceen_US
dc.subject.otherCharacter sum
dc.subject.otherExponential sum
dc.subject.otherPermutation Polynomial
dc.subject.otherAlmost Perfect Nonlinear Function
dc.subject.otherFinite Field
dc.titleChapter Measures of Pseudorandomness
dc.typechapter
oapen.identifier.doi10.1515/9783110283600.43
oapen.relation.isPublishedBy2b386f62-fc18-4108-bcf1-ade3ed4cf2f3
oapen.relation.isPartOfBook71105342-6442-4069-93cf-0ef78e3a68bf
oapen.relation.isFundedBy7292b17b-f01a-4016-94d3-d7fb5ef9fb79
oapen.relation.isbn9783110282405
oapen.collectionEuropean Research Council (ERC)
oapen.place.publicationBerlin/Boston
oapen.grant.number228005
oapen.grant.acronymPRIMEGAPS
oapen.identifier.ocn1135845523


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record