Logo Oapen
  • Search
  • Join
    • Deposit
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    View Item 
    •   OAPEN Home
    • View Item
    •   OAPEN Home
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Chapter 6 Optogenetic actuation, inhibition, modulation and readout for neuronal networks generating behavior in the nematode Caenorhabditis elegans

    Thumbnail
    Download PDF Viewer
    Author(s)
    de Bono, Mario
    Schafer, William R.
    Gottschalk, Alexander
    Contributor(s)
    Hegemann, Peter (editor)
    Sigrist, Stephan (editor)
    Collection
    European Research Council (ERC); EU collection
    Language
    English
    Show full item record
    Abstract
    Elucidating the mechanisms by which nervous systems process information and generate behavior is among the fundamental problems of biology. The complexity of our brain and plasticity of our behaviors make it challenging to understand even simple human actions in terms of molecular mechanisms and neural activity. However the molecular machines and operational features of our neural circuits are often found in invertebrates, so that studying flies and worms provides an effective way to gain insights into our nervous system. Caenorhabditis elegans offers special opportunities to study behavior. Each of the 302 neurons in its nervous system can be identified and imaged in live animals [1, 2], and manipulated transgenically using specific promoters or promoter combinations [3, 4, 5, 6]. The chemical synapses and gap junctions made by every neuron are known from electron micrograph reconstruction [1]. Importantly, forward genetics can be used to identify molecules that modulate C. elegans’ behavior. Forward genetic dis-section of behavior is powerful because it requires no prior knowledge. It allows molecules to be identified regardless of in vivo concentration, and focuses attention on genes that are functionally important. The identity and expression patterns of these molecules then provide entry points to study the molecular mechanisms and neural circuits controlling the behavior. Genetics does not provide the temporal resolution required to study neural circuit function directly. However, neural activity can be monitored using genetically encoded sensors for Ca2+ (e.g., GCaMP and cameleon) [7, 8, 9, 10] and voltage (e.g., mermaid, arclight or VSFP- Butterfly) [11, 12, 13]. In C. elegans, imaging studies have focused largely on single neurons in immobilized animals [14]. However, it is now becoming possible to image the activity of single neurons in freely moving animals, and of multiple neurons in three dimensions. Additionally, increasingly sophisticated hardware allows precise spatial control of neural activity in freely moving C. elegans, using light activated channels and pumps (see Section 6.2). From a reductionist perspective, the worm model is very exciting because it has the potential to reveal how neural circuits work in enormous detail. This potential has fostered collaborations between physicists, engineers, and neuroscientists. Here we try to convey some of the excitement in this fast moving field.
    Book
    Optogenetics
    URI
    http://library.oapen.org/handle/20.500.12657/23758
    Keywords
    Biophysics; Genetic Engineering; Neuroscience; Optics; Vision Restoration
    DOI
    10.1515/9783110270723.61
    ISBN
    9783110270716
    OCN
    1135844905
    Publisher
    De Gruyter
    Publisher website
    https://www.degruyter.com/
    Publication date and place
    Berlin/Boston, 2013
    Grantor
    • FP7 Ideas: European Research Council - 269058 - ACMO Research grant informationFind all documents
    Classification
    Biophysics
    Genetics (non-medical)
    Neurosciences
    Human biology
    Rights
    All rights reserved
    • Imported or submitted locally

    Browse

    All of OAPENSubjectsPublishersLanguagesCollections

    My Account

    LoginRegister

    Export

    Repository metadata
    Logo Oapen
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN

    Newsletter

    • Subscribe to our newsletter
    • view our news archive

    Follow us on

    License

    • If not noted otherwise all contents are available under Attribution 4.0 International (CC BY 4.0)

    Credits

    • logo EU
    • This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 683680, 810640, 871069 and 964352.

    OAPEN is based in the Netherlands, with its registered office in the National Library in The Hague.

    Director: Niels Stern

    Address:
    OAPEN Foundation
    Prins Willem-Alexanderhof 5
    2595 BE The Hague
    Postal address:
    OAPEN Foundation
    P.O. Box 90407
    2509 LK The Hague

    Websites:
    OAPEN Home: www.oapen.org
    OAPEN Library: library.oapen.org
    DOAB: www.doabooks.org

     

     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Differen formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.