Chapter 4 Applications of Monte Carlo Simulation in Modelling of Biochemical Processes
dc.contributor.author | Tenekedjiev, Kiril Ivanov | |
dc.contributor.author | Nikolova, Natalia Danailova | |
dc.contributor.author | Kolev, Krasimir | |
dc.contributor.author | Ivanov, Kiril | |
dc.contributor.author | Danailova, Natalia | |
dc.contributor.author | Kolev, Krasimir | |
dc.date.accessioned | 2019-10-04 14:49:35 | |
dc.date.accessioned | 2020-04-01T13:38:50Z | |
dc.date.accessioned | 2017-04-12 23:55 | |
dc.date.accessioned | 2019-10-04 14:49:35 | |
dc.date.accessioned | 2020-04-01T13:38:50Z | |
dc.date.accessioned | 2017-03-01 23:55:55 | |
dc.date.accessioned | 2019-10-04 14:49:35 | |
dc.date.accessioned | 2020-04-01T13:38:50Z | |
dc.date.available | 2020-04-01T13:38:50Z | |
dc.date.issued | 2012 | |
dc.identifier | 627382 | |
dc.identifier | OCN: 1030816752 | en_US |
dc.identifier.uri | http://library.oapen.org/handle/20.500.12657/31531 | |
dc.description.abstract | The biochemical models describing complex and dynamic metabolic systems are typically multi-parametric and non-linear, thus the identification of their parameters requires nonlinear regression analysis of the experimental data. The stochastic nature of the experimental samples poses the necessity to estimate not only the values fitting best to the model, but also the distribution of the parameters, and to test statistical hypotheses about the values of these parameters. In such situations the application of analytical models for parameter distributions is totally inappropriate because their assumptions are not applicable for intrinsically non-linear regressions. That is why, Monte Carlo simulations are a powerful tool to model biochemical processes. | |
dc.language | English | |
dc.subject.classification | thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSB Biochemistry | en_US |
dc.subject.other | biochemistry | |
dc.subject.other | monte carlo simulation | |
dc.subject.other | biochemistry | |
dc.subject.other | monte carlo simulation | |
dc.subject.other | Confidence interval | |
dc.subject.other | Confidence region | |
dc.subject.other | Enzyme | |
dc.subject.other | Enzyme kinetics | |
dc.subject.other | Fatty acid | |
dc.subject.other | Plasmin | |
dc.subject.other | Random variable | |
dc.title | Chapter 4 Applications of Monte Carlo Simulation in Modelling of Biochemical Processes | |
dc.type | chapter | |
oapen.identifier.doi | 10.5772/14984 | |
oapen.relation.isPublishedBy | 09f6769d-48ed-467d-b150-4cf2680656a1 | |
oapen.relation.isPartOfBook | f2e388d7-7fba-4011-886d-3edbbf66e522 | |
oapen.relation.isFundedBy | d859fbd3-d884-4090-a0ec-baf821c9abfd | |
oapen.collection | Wellcome | |
oapen.chapternumber | 1 | |
oapen.grant.number | 083174 | |
oapen.remark.public | Relevant Wikipedia pages: Biochemistry - https://en.wikipedia.org/wiki/Biochemistry; Confidence interval - https://en.wikipedia.org/wiki/Confidence_interval; Confidence region - https://en.wikipedia.org/wiki/Confidence_region; Enzyme - https://en.wikipedia.org/wiki/Enzyme; Enzyme kinetics - https://en.wikipedia.org/wiki/Enzyme_kinetics; Fatty acid - https://en.wikipedia.org/wiki/Fatty_acid; Monte Carlo method - https://en.wikipedia.org/wiki/Monte_Carlo_method; Plasmin - https://en.wikipedia.org/wiki/Plasmin; Random variable - https://en.wikipedia.org/wiki/Random_variable | |
oapen.identifier.ocn | 1030816752 |