Show simple item record

dc.contributor.authorTenekedjiev, Kiril Ivanov
dc.contributor.authorNikolova, Natalia Danailova
dc.contributor.authorKolev, Krasimir
dc.contributor.authorIvanov, Kiril
dc.contributor.authorDanailova, Natalia
dc.contributor.authorKolev, Krasimir
dc.date.accessioned2019-10-04 14:49:35
dc.date.accessioned2020-04-01T13:38:50Z
dc.date.accessioned2017-04-12 23:55
dc.date.accessioned2019-10-04 14:49:35
dc.date.accessioned2020-04-01T13:38:50Z
dc.date.accessioned2017-03-01 23:55:55
dc.date.accessioned2019-10-04 14:49:35
dc.date.accessioned2020-04-01T13:38:50Z
dc.date.available2020-04-01T13:38:50Z
dc.date.issued2012
dc.identifier627382
dc.identifierOCN: 1030816752en_US
dc.identifier.urihttp://library.oapen.org/handle/20.500.12657/31531
dc.description.abstractThe biochemical models describing complex and dynamic metabolic systems are typically multi-parametric and non-linear, thus the identification of their parameters requires nonlinear regression analysis of the experimental data. The stochastic nature of the experimental samples poses the necessity to estimate not only the values fitting best to the model, but also the distribution of the parameters, and to test statistical hypotheses about the values of these parameters. In such situations the application of analytical models for parameter distributions is totally inappropriate because their assumptions are not applicable for intrinsically non-linear regressions. That is why, Monte Carlo simulations are a powerful tool to model biochemical processes.
dc.languageEnglish
dc.subject.classificationthema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSB Biochemistryen_US
dc.subject.otherbiochemistry
dc.subject.othermonte carlo simulation
dc.subject.otherbiochemistry
dc.subject.othermonte carlo simulation
dc.subject.otherConfidence interval
dc.subject.otherConfidence region
dc.subject.otherEnzyme
dc.subject.otherEnzyme kinetics
dc.subject.otherFatty acid
dc.subject.otherPlasmin
dc.subject.otherRandom variable
dc.titleChapter 4 Applications of Monte Carlo Simulation in Modelling of Biochemical Processes
dc.typechapter
oapen.identifier.doi10.5772/14984
oapen.relation.isPublishedBy09f6769d-48ed-467d-b150-4cf2680656a1
oapen.relation.isPartOfBookf2e388d7-7fba-4011-886d-3edbbf66e522
oapen.relation.isFundedByd859fbd3-d884-4090-a0ec-baf821c9abfd
oapen.collectionWellcome
oapen.chapternumber1
oapen.grant.number083174
oapen.remark.publicRelevant Wikipedia pages: Biochemistry - https://en.wikipedia.org/wiki/Biochemistry; Confidence interval - https://en.wikipedia.org/wiki/Confidence_interval; Confidence region - https://en.wikipedia.org/wiki/Confidence_region; Enzyme - https://en.wikipedia.org/wiki/Enzyme; Enzyme kinetics - https://en.wikipedia.org/wiki/Enzyme_kinetics; Fatty acid - https://en.wikipedia.org/wiki/Fatty_acid; Monte Carlo method - https://en.wikipedia.org/wiki/Monte_Carlo_method; Plasmin - https://en.wikipedia.org/wiki/Plasmin; Random variable - https://en.wikipedia.org/wiki/Random_variable
oapen.identifier.ocn1030816752


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record