Show simple item record

dc.contributor.authorPinchasov-Grinblat, Yulia
dc.contributor.authorDubinsky, Zvy
dc.date.accessioned2019-10-04 14:35:28
dc.date.accessioned2020-04-01T14:06:46Z
dc.date.accessioned2016-08-01 23:55
dc.date.accessioned2019-10-04 14:35:28
dc.date.accessioned2020-04-01T14:06:46Z
dc.date.accessioned2016-12-31 23:55:55
dc.date.accessioned2019-10-04 14:35:28
dc.date.accessioned2020-04-01T14:06:46Z
dc.date.available2020-04-01T14:06:46Z
dc.date.issued2013
dc.identifier612613
dc.identifierOCN: 1030819229en_US
dc.identifier.urihttp://library.oapen.org/handle/20.500.12657/32333
dc.description.abstractThe photoacoustic method allows direct determination of the energy-storage efficiency of photosynthesis by relating the energy stored by it to the total light energy absorbed by the plant material (Canaani et al., 1988; Malkin & Cahen, 1979; Malkin et al., 1990). These authors applied the photoacoustic method to leaves in the gas phase, where brief pulses caused concomitant pulses of oxygen that caused a pressure transient detected by a microphone. This method is based on the conversion of absorbed light to heat. Depending on the efficiency of the photosynthetic system, a variable fraction of the absorbed light energy is stored, thereby affecting the heat evolved and the resulting photoacoustic signal. The higher the photosynthetic efficiency, the greater will be the difference between the stored energy with and without ongoing photosynthesis (Cha & Mauzerall, 1992). These authors collected microalgal cells onto a filter and studied them by an approach similar to that previously used with leaves. In both cases, the oxygen signal is combined with that of thermal expansion resulting from conversion of the fraction of the light energy in the pulse that is not stored by photochemistry.
dc.languageEnglish
dc.subject.classificationthema EDItEUR::P Mathematics and Science::PD Science: general issuesen_US
dc.subject.otherphotosynthesis
dc.subject.otherphotoacoustics
dc.subject.otherphotosynthesis
dc.subject.otherphotoacoustics
dc.subject.otherAlgae
dc.subject.otherChlorophyll
dc.subject.otherNannochloropsis
dc.subject.otherPhaeodactylum tricornutum
dc.subject.otherThermal expansion
dc.titleChapter 11 Photoacoustics — A Novel Tool for the Study of Aquatic Photosynthesis
dc.typechapter
oapen.identifier.doi10.5772/56600
oapen.relation.isPublishedBy09f6769d-48ed-467d-b150-4cf2680656a1
oapen.relation.isPartOfBook317cae62-9bf0-47c7-900c-8e411bf5777d
oapen.relation.isFundedBy7292b17b-f01a-4016-94d3-d7fb5ef9fb79
oapen.relation.isFundedBy7292b17b-f01a-4016-94d3-d7fb5ef9fb79
oapen.collectionEuropean Research Council (ERC)
oapen.chapternumber1
oapen.grant.number249930
oapen.grant.number309646
oapen.grant.acronymCORALWARM
oapen.grant.acronymECHOGREEN
oapen.grant.programFP7
oapen.grant.programFP7
oapen.remark.publicRelevant Wikipedia pages: Algae - https://en.wikipedia.org/wiki/Algae; Chlorophyll - https://en.wikipedia.org/wiki/Chlorophyll; Nannochloropsis - https://en.wikipedia.org/wiki/Nannochloropsis; Phaeodactylum tricornutum - https://en.wikipedia.org/wiki/Phaeodactylum_tricornutum; Photoacoustic spectroscopy - https://en.wikipedia.org/wiki/Photoacoustic_spectroscopy; Photosynthesis - https://en.wikipedia.org/wiki/Photosynthesis; Photosynthetic efficiency - https://en.wikipedia.org/wiki/Photosynthetic_efficiency; Photosynthetic reaction centre - https://en.wikipedia.org/wiki/Photosynthetic_reaction_centre; Thermal expansion - https://en.wikipedia.org/wiki/Thermal_expansion
oapen.identifier.ocn1030819229


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record