Show simple item record

dc.contributor.authorJordan, Bénédicte F.
dc.contributor.authorSonveaux, Pierre
dc.date.accessioned2019-10-04 14:29:40
dc.date.accessioned2020-04-01T14:06:57Z
dc.date.accessioned2016-08-01 23:55
dc.date.accessioned2019-10-04 14:29:40
dc.date.accessioned2020-04-01T14:06:57Z
dc.date.accessioned2016-12-31 23:55:55
dc.date.accessioned2019-10-04 14:29:40
dc.date.accessioned2020-04-01T14:06:57Z
dc.date.available2020-04-01T14:06:57Z
dc.date.issued2011
dc.identifier612595
dc.identifierOCN: 1030814339en_US
dc.identifier.urihttp://library.oapen.org/handle/20.500.12657/32342
dc.description.abstractHypoxia, a partial pressure of oxygen (pO2) below physiological needs, is a limiting factor affecting the efficiency of radiotherapy. Indeed, the reaction of reactive oxygen species (ROS, produced by water radiolysis) with DNA is readily reversible unless oxygen stabilizes the DNA lesion. While normal tissue oxygenation is around 40 mm Hg, both rodent and human tumors possess regions of tissue oxygenation below 10 mm Hg, at which tumor cells become increasingly resistant to radiation damage (radiobiological hypoxia) (Gray, 1953). Because of this so-called “oxygen enhancement effect”, the radiation dose required to achieve the same biologic effect is about three times higher in the absence of oxygen than in the presence of normal levels of oxygen (Gray et al., 1953; Horsman & van der Kogel, 2009). Hypoxic tumor cells, which are therefore more resistant to radiotherapy than well oxygenated ones, remain clonogenic and contribute to the therapeutic outcome of fractionated radiotherapy (Rojas et al., 1992).
dc.languageEnglish
dc.subject.classificationthema EDItEUR::P Mathematics and Science::PD Science: general issuesen_US
dc.subject.othertumor
dc.subject.othersystematic therapies
dc.subject.otherhypoxia
dc.subject.otherradiotherapy
dc.subject.othercancer sensitivity
dc.subject.othertumor
dc.subject.othersystematic therapies
dc.subject.otherhypoxia
dc.subject.otherradiotherapy
dc.subject.othercancer sensitivity
dc.subject.otherBlood
dc.subject.otherHemodynamics
dc.subject.otherMagnetic resonance imaging
dc.subject.otherNeoplasm
dc.subject.otherOxygen
dc.subject.otherPerfusion
dc.subject.otherRadiation therapy
dc.subject.otherVasodilation
dc.titleChapter 13 Targeting Tumor Perfusion and Oxygenation Modulates Hypoxia and Cancer Sensitivity to Radiotherapy and Systemic Therapies
dc.typechapter
oapen.identifier.doi10.5772/23332
oapen.relation.isPublishedBy09f6769d-48ed-467d-b150-4cf2680656a1
oapen.relation.isPartOfBookf8819a36-74fb-4e74-ad33-23e97c839e51
oapen.relation.isFundedBy7292b17b-f01a-4016-94d3-d7fb5ef9fb79
oapen.collectionEuropean Research Council (ERC)
oapen.chapternumber1
oapen.grant.number243188
oapen.grant.acronymTUMETABO
oapen.grant.programFP7
oapen.remark.publicRelevant Wikipedia pages: Blood - https://en.wikipedia.org/wiki/Blood; Hemodynamics - https://en.wikipedia.org/wiki/Hemodynamics; Hypoxia (medical) - https://en.wikipedia.org/wiki/Hypoxia_(medical); Magnetic resonance imaging - https://en.wikipedia.org/wiki/Magnetic_resonance_imaging; Neoplasm - https://en.wikipedia.org/wiki/Neoplasm; Oxygen - https://en.wikipedia.org/wiki/Oxygen; Perfusion - https://en.wikipedia.org/wiki/Perfusion; Radiation therapy - https://en.wikipedia.org/wiki/Radiation_therapy; Vasodilation - https://en.wikipedia.org/wiki/Vasodilation
oapen.identifier.ocn1030814339


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record