Show simple item record

dc.contributor.authorDupé, François-Xavier
dc.contributor.authorPires, Sandrine
dc.contributor.authorStarck, Jean-Luc
dc.contributor.authorLeonard, Adrienne
dc.contributor.authorLeonard, Adrienne
dc.contributor.authorStarck, Jean-Luc
dc.contributor.authorPires, Sandrine
dc.contributor.authorDupé, Franois-Xavier
dc.date.accessioned2019-10-04 14:29:00
dc.date.accessioned2020-04-01T14:06:58Z
dc.date.accessioned2016-08-01 23:55
dc.date.accessioned2019-10-04 14:29:00
dc.date.accessioned2020-04-01T14:06:58Z
dc.date.accessioned2016-12-31 23:55:55
dc.date.accessioned2019-10-04 14:29:00
dc.date.accessioned2020-04-01T14:06:58Z
dc.date.available2020-04-01T14:06:58Z
dc.date.issued2012
dc.identifier612591
dc.identifierOCN: 1030818880en_US
dc.identifier.urihttp://library.oapen.org/handle/20.500.12657/32344
dc.description.abstractOur current cosmological model, backed by a large body of evidence from a variety of different cosmological probes (for example, see [1, 2]), describes a Universe comprised of around 5% normal baryonic matter, 22% cold dark matter and 73% dark energy. While many cosmologists accept this so-called concordance cosmology – the ΛCDM cosmological model – as accurate, very little is known about the nature and properties of these dark components of the Universe. Studies of the cosmic microwave background (CMB), combined with other observational evidence of big bang nucleosynthesis indicate that dark matter is non-baryonic. This supports measurements on galaxy and cluster scales, which found evidence of a large proportion of dark matter. This dark matter appears to be cold and collisionless, apparent only through its gravitational effects.
dc.languageEnglish
dc.subject.classificationthema EDItEUR::P Mathematics and Science::PD Science: general issuesen_US
dc.subject.otherstatistics
dc.subject.otherexploring
dc.subject.otheruniverse
dc.subject.otherstatistics
dc.subject.otherexploring
dc.subject.otheruniverse
dc.subject.otherAlgorithm
dc.subject.otherCross-correlation matrix
dc.subject.otherDiscrete wavelet transform
dc.subject.otherHigher-order statistics
dc.subject.otherPhysical cosmology
dc.subject.otherRedshift
dc.subject.otherWavelet
dc.subject.otherWeak gravitational lensing
dc.titleChapter 2 Exploring the Components of the Universe Through Higher-Order Weak Lensing Statistics Higher-Order Weak Lensing Statistics
dc.typechapter
oapen.identifier.doi10.5772/51871
oapen.relation.isPublishedBy09f6769d-48ed-467d-b150-4cf2680656a1
oapen.relation.isPartOfBook5d588364-6507-4874-ae75-99773e51d619
oapen.relation.isFundedBy7292b17b-f01a-4016-94d3-d7fb5ef9fb79
oapen.collectionEuropean Research Council (ERC)
oapen.chapternumber1
oapen.grant.number228261
oapen.grant.acronymSPARSEASTRO
oapen.grant.programFP7
oapen.remark.publicRelevant Wikipedia pages: Algorithm - https://en.wikipedia.org/wiki/Algorithm; Cross-correlation matrix - https://en.wikipedia.org/wiki/Cross-correlation_matrix; Discrete wavelet transform - https://en.wikipedia.org/wiki/Discrete_wavelet_transform; Higher-order statistics - https://en.wikipedia.org/wiki/Higher-order_statistics; Physical cosmology - https://en.wikipedia.org/wiki/Physical_cosmology; Redshift - https://en.wikipedia.org/wiki/Redshift; Wavelet - https://en.wikipedia.org/wiki/Wavelet; Weak gravitational lensing - https://en.wikipedia.org/wiki/Weak_gravitational_lensing
oapen.identifier.ocn1030818880


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record