Dynamic Switching State Systems for Visual Tracking
Dissertations in Series (Dissertationen in Schriftenreihe)
dc.contributor.author | Becker, Stefan | |
dc.date.accessioned | 2021-02-17T16:38:35Z | |
dc.date.available | 2021-02-17T16:38:35Z | |
dc.date.issued | 2020 | |
dc.identifier | ONIX_20210217_9783731510383_3 | |
dc.identifier | OCN: 1266287173 | |
dc.identifier.uri | https://library.oapen.org/handle/20.500.12657/46859 | |
dc.description.abstract | This work addresses the problem of how to capture the dynamics of maneuvering objects for visual tracking. Towards this end, the perspective of recursive Bayesian filters and the perspective of deep learning approaches for state estimation are considered and their functional viewpoints are brought together. | |
dc.language | English | |
dc.relation.ispartofseries | Karlsruher Schriften zur Anthropomatik | |
dc.subject.classification | thema EDItEUR::U Computing and Information Technology::UY Computer science | en_US |
dc.subject.other | videobasierte Objektverfolgung | |
dc.subject.other | state estimation | |
dc.subject.other | visual tracking | |
dc.subject.other | trajectory prediction | |
dc.subject.other | Trajektorienpradiktion | |
dc.subject.other | Zustandsschatzung | |
dc.title | Dynamic Switching State Systems for Visual Tracking | |
dc.type | book | |
oapen.identifier.doi | 10.5445/KSP/1000122541 | |
oapen.relation.isPublishedBy | 44e29711-8d53-496b-85cc-3d10c9469be9 | |
oapen.series.number | 50 | |
oapen.pages | 228 | |
oapen.place.publication | Karlsruhe | |
peerreview.anonymity | All identities known | |
peerreview.id | 51a542ec-eaeb-47c2-861d-6022e981a97a | |
peerreview.open.review | No | |
peerreview.publish.responsibility | Books or series editor | |
peerreview.review.stage | Pre-publication | |
peerreview.review.type | Full text | |
peerreview.reviewer.type | Editorial board member | |
peerreview.reviewer.type | External peer reviewer | |
peerreview.title | Dissertations in Series (Dissertationen in Schriftenreihe) |