Show simple item record

dc.contributor.authorValdemar, Lipenko
dc.contributor.authorSebastian, Nigl
dc.contributor.authorAndreas, Roither-Voigt
dc.contributor.authorZelenay, David
dc.date.accessioned2021-06-02T10:13:38Z
dc.date.available2021-06-02T10:13:38Z
dc.date.issued2021
dc.identifierONIX_20210602_10.5772/intechopen.92896_495
dc.identifier.urihttps://library.oapen.org/handle/20.500.12657/49381
dc.description.abstractIndustrial performance optimization increasingly makes the use of various analytical data-driven models. In this context, modern machine learning capabilities to predict future production quality outcomes, model predictive control to better account for complex multivariable environments of process industry, Bayesian Networks enabling improved decision support systems for diagnostics and fault detection are some of the main examples to be named. The key challenge is to integrate these highly heterogeneous models in a holistic system, which would also be suitable for applications from the most different industries. Core elements of the underlying solution architecture constitute highly decoupled model microservices, ensuring the creation of largely customizable model runtime environments. Deployment of isolated user-space instances, called containers, further extends the overall possibilities to integrate heterogeneous models. Strong requirements on high availability, scalability, and security are satisfied through the application of cloud-based services. Tieto successfully applied the outlined approach during the participation in FUture DIrections for Process industry Optimization (FUDIPO), a project funded by the European Commission under the H2020 program, SPIRE-02-2016.
dc.languageEnglish
dc.subject.classificationbic Book Industry Communication::T Technology, engineering, agriculture::TB Technology: general issues::TBC Engineering: general
dc.subject.otherindustrial optimization, model predictive control integration, machine learning model integration, Bayesian network integration, enterprise resource planning (ERP) forecast model integration, prediction model integration, model calculation graph, microservice-oriented architecture, cloud computing
dc.titleChapter Operationalizing Heterogeneous Data-Driven Process Models for Various Industrial Sectors through Microservice-Oriented Cloud-Based Architecture
dc.typechapter
oapen.identifier.doi10.5772/intechopen.92896
oapen.relation.isPublishedBy09f6769d-48ed-467d-b150-4cf2680656a1
oapen.relation.isFundedByH2020-SPIRE-2016
oapen.grant.number723523
oapen.grant.acronymFUDIPO


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record