Show simple item record

dc.contributor.authorErdle, Hannes
dc.date.accessioned2022-07-18T11:55:23Z
dc.date.available2022-07-18T11:55:23Z
dc.date.issued2022
dc.identifierONIX_20220718_9783731511960_113
dc.identifier.issn2192-693X
dc.identifier.urihttps://library.oapen.org/handle/20.500.12657/57536
dc.description.abstractA physically-based dislocation theory of plasticity is derived within an extended continuum mechanical context. Thermodynamically consistent flow rules at the grain boundaries are derived. With an analytical solution of a three-phase periodic laminate, dislocation pile-up at grain boundaries and dislocation transmission through the grain boundaries are investigated. For the finite element implementations, numerically efficient approaches are introduced based on accumulated field variables.
dc.languageEnglish
dc.relation.ispartofseriesSchriftenreihe Kontinuumsmechanik im Maschinenbau
dc.subject.classificationthema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TG Mechanical engineering and materialsen_US
dc.subject.otherGradienten-Kristallplastizität
dc.subject.otherErweiterte Kontinuumstheorie
dc.subject.otherKontinuumsversetzungstheorie
dc.subject.otherKorngrenzmodellierung
dc.subject.otherFinite Elemente Methode
dc.subject.otherGradient Crystal Plasticity
dc.subject.otherExtended Continuum Theory
dc.subject.otherContinuum Dislocation Theory
dc.subject.otherGrain Boundary Modeling
dc.subject.otherFinite Element Method
dc.titleModeling of Dislocation
dc.title.alternativeGrain Boundary Interactions in Gradient Crystal Plasticity Theories
dc.typebook
oapen.identifier.doi10.5445/KSP/1000146388
oapen.relation.isPublishedBy44e29711-8d53-496b-85cc-3d10c9469be9
oapen.relation.isbn9783731511960
oapen.imprintKIT Scientific Publishing
oapen.series.number19
oapen.pages186
oapen.place.publicationKarlsruhe


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record