A computational multi-scale approach for brittle materials
dc.contributor.author | Ernesti, Felix | |
dc.date.accessioned | 2023-04-24T11:16:28Z | |
dc.date.available | 2023-04-24T11:16:28Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://library.oapen.org/handle/20.500.12657/62534 | |
dc.description.abstract | Materials of industrial interest often show a complex microstructure which directly influences their macroscopic material behavior. For simulations on the component scale, multi-scale methods may exploit this microstructural information. This work is devoted to a multi-scale approach for brittle materials. Based on a homogenization result for free discontinuity problems, we present FFT-based methods to compute the effective crack energy of heterogeneous materials with complex microstructures. | en_US |
dc.language | English | en_US |
dc.relation.ispartofseries | Schriftenreihe Kontinuumsmechanik im Maschinenbau | en_US |
dc.subject.classification | thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TG Mechanical engineering and materials | en_US |
dc.subject.other | Effektive Rissenergie; FFT-basierte Homogenisierungsmethoden; Phasenfeld-Bruchmechanik; Minkowski-Tensoren; Fast-Marching-Methoden; Effective crack energy; FFT-based computational homogenization; Phase-field fracture; Minkowski tensors; Fast marching methods | en_US |
dc.title | A computational multi-scale approach for brittle materials | en_US |
dc.type | book | |
oapen.identifier.doi | 10.5445/KSP/1000156458 | en_US |
oapen.relation.isPublishedBy | 44e29711-8d53-496b-85cc-3d10c9469be9 | en_US |
oapen.series.number | 24 | en_US |
oapen.pages | 264 | en_US |