Show simple item record

dc.contributor.authorAnneken, Mathias
dc.date.accessioned2023-08-29T07:29:03Z
dc.date.available2023-08-29T07:29:03Z
dc.date.issued2023
dc.identifierOCN: 1403109722
dc.identifier.urihttps://library.oapen.org/handle/20.500.12657/75885
dc.description.abstractHuman support in surveillance tasks is crucial due to the overwhelming amount of sensor data. This work focuses on the development of data fusion methods using the maritime domain as an example. Various anomalies are investigated, evaluated using real vessel traffic data and tested with experts. For this purpose, situations of interest and anomalies are modelled and evaluated based on different machine learning methods.en_US
dc.languageGermanen_US
dc.relation.ispartofseriesKarlsruher Schriften zur Anthropomatiken_US
dc.subject.otherspatio-temporal data; situation analysis; anomaly detection; räumlich-zeitliche Daten; Maritime Überwachung; Anomaliedetektion; maritime surveillance; Situationsanalyse; machine learning; Maschinelles Lernenen_US
dc.titleAnomaliedetektion in räumlich-zeitlichen Datensätzenen_US
dc.typebook
oapen.identifier.doi10.5445/KSP/1000158519en_US
oapen.relation.isPublishedBy44e29711-8d53-496b-85cc-3d10c9469be9en_US
oapen.collectionAG Universitätsverlage
oapen.series.number51en_US
oapen.pages264en_US
peerreview.anonymitySingle-anonymised
peerreview.id2e56347d-034c-4741-9c0e-93c383a81b66
peerreview.open.reviewNo
peerreview.publish.responsibilityPublisher
peerreview.review.stagePre-publication
peerreview.review.typeFull text
peerreview.reviewer.typeEditorial board member
peerreview.titleAnthology / Conference Proceedings (Sammelband / Tagungsbände)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record