Show simple item record

dc.contributor.authorAnastasiadis, Johannes
dc.date.accessioned2023-08-29T07:50:59Z
dc.date.available2023-08-29T07:50:59Z
dc.date.issued2023
dc.identifierOCN: 1404419351
dc.identifier.urihttps://library.oapen.org/handle/20.500.12657/75890
dc.description.abstractIn this work, artificial neural networks trained in a supervised manner for spectral unmixing are investigated. For this purpose, a suitable network architecture is determined first. After that, the focus lies on the generation of suitable training data. Model-based methods that generate training data from real pure spectra and data-based methods that augment existing training data are presented and evaluated.en_US
dc.languageGermanen_US
dc.relation.ispartofseriesForschungsberichte aus der Industriellen Informationstechniken_US
dc.subject.otherdata generation; data augmentation; supervised training; artificial neural network; hyperspectral image; Datenerzeugung; Datenaugmentierung; überwachtes Training; Hyperspektralbild; künstliche neuronale Netzeen_US
dc.titleÜberwachte Methoden für die spektrale Entmischung mit künstlichen neuronalen Netzenen_US
dc.typebook
oapen.identifier.doi10.5445/KSP/1000159281en_US
oapen.relation.isPublishedBy44e29711-8d53-496b-85cc-3d10c9469be9en_US
oapen.collectionAG Universitätsverlage
oapen.series.number29en_US
oapen.pages198en_US
peerreview.anonymityAll identities known
peerreview.id51a542ec-eaeb-47c2-861d-6022e981a97a
peerreview.open.reviewNo
peerreview.publish.responsibilityBooks or series editor
peerreview.review.stagePre-publication
peerreview.review.typeFull text
peerreview.reviewer.typeEditorial board member
peerreview.reviewer.typeExternal peer reviewer
peerreview.titleDissertations in Series (Dissertationen in Schriftenreihe)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record