Show simple item record

dc.contributor.authorAnastasiadis, Johannes
dc.date.accessioned2023-08-29T07:50:59Z
dc.date.available2023-08-29T07:50:59Z
dc.date.issued2023
dc.identifier.urihttps://library.oapen.org/handle/20.500.12657/75890
dc.description.abstractIn this work, artificial neural networks trained in a supervised manner for spectral unmixing are investigated. For this purpose, a suitable network architecture is determined first. After that, the focus lies on the generation of suitable training data. Model-based methods that generate training data from real pure spectra and data-based methods that augment existing training data are presented and evaluated.en_US
dc.languageGermanen_US
dc.relation.ispartofseriesForschungsberichte aus der Industriellen Informationstechniken_US
dc.subject.otherdata generation; data augmentation; supervised training; artificial neural network; hyperspectral image; Datenerzeugung; Datenaugmentierung; überwachtes Training; Hyperspektralbild; künstliche neuronale Netzeen_US
dc.titleÜberwachte Methoden für die spektrale Entmischung mit künstlichen neuronalen Netzenen_US
dc.typebook
oapen.identifier.doi10.5445/KSP/1000159281en_US
oapen.relation.isPublishedBy44e29711-8d53-496b-85cc-3d10c9469be9en_US
oapen.series.number29en_US
oapen.pages198en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record