Deep material networks for efficient scale-bridging in thermomechanical simulations of solids
dc.contributor.author | Gajek, Sebastian | |
dc.date.accessioned | 2023-09-04T12:19:03Z | |
dc.date.available | 2023-09-04T12:19:03Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://library.oapen.org/handle/20.500.12657/76126 | |
dc.description.abstract | We investigate deep material networks (DMN). We lay the mathematical foundation of DMNs and present a novel DMN formulation, which is characterized by a reduced number of degrees of freedom. We present a efficient solution technique for nonlinear DMNs to accelerate complex two-scale simulations with minimal computational effort. A new interpolation technique is presented enabling the consideration of fluctuating microstructure characteristics in macroscopic simulations. | en_US |
dc.language | English | en_US |
dc.relation.ispartofseries | Schriftenreihe Kontinuumsmechanik im Maschinenbau | en_US |
dc.subject.other | deep material networks; data-driven modeling; Two-scale simulations; Deep Material Networks; Datengetriebene Modellierung; Zweiskalensimulationen; micromechanics; Mikromechanik; machine learning; Maschinelles Lernen | en_US |
dc.title | Deep material networks for efficient scale-bridging in thermomechanical simulations of solids | en_US |
dc.type | book | |
oapen.identifier.doi | 10.5445/KSP/1000155688 | en_US |
oapen.relation.isPublishedBy | 44e29711-8d53-496b-85cc-3d10c9469be9 | en_US |
oapen.series.number | 26 | en_US |
oapen.pages | 326 | en_US |