Multimodal Panoptic Segmentation of 3D Point Clouds
Anthology / Conference Proceedings (Sammelband / Tagungsbände)
dc.contributor.author | Dürr, Fabian | |
dc.date.accessioned | 2023-10-16T10:21:05Z | |
dc.date.available | 2023-10-16T10:21:05Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://library.oapen.org/handle/20.500.12657/76838 | |
dc.description.abstract | The understanding and interpretation of complex 3D environments is a key challenge of autonomous driving. Lidar sensors and their recorded point clouds are particularly interesting for this challenge since they provide accurate 3D information about the environment. This work presents a multimodal approach based on deep learning for panoptic segmentation of 3D point clouds. It builds upon and combines the three key aspects multi view architecture, temporal feature fusion, and deep sensor fusion. | en_US |
dc.language | English | en_US |
dc.relation.ispartofseries | Karlsruher Schriften zur Anthropomatik | en_US |
dc.subject.other | Temporal Fusion; Sensor Fusion; Semantic Segmentation; Panoptic Segmentation; Zeitliche Fusion; Semantische Segmentierung; Panoptische Segmentierung; Sensorfusion; Deep Learning | en_US |
dc.title | Multimodal Panoptic Segmentation of 3D Point Clouds | en_US |
dc.type | book | |
oapen.identifier.doi | 10.5445/KSP/1000161158 | en_US |
oapen.relation.isPublishedBy | 44e29711-8d53-496b-85cc-3d10c9469be9 | en_US |
oapen.series.number | 62 | en_US |
oapen.pages | 248 | en_US |
peerreview.anonymity | Single-anonymised | |
peerreview.id | 2e56347d-034c-4741-9c0e-93c383a81b66 | |
peerreview.open.review | No | |
peerreview.publish.responsibility | Publisher | |
peerreview.review.stage | Pre-publication | |
peerreview.review.type | Full text | |
peerreview.reviewer.type | Editorial board member | |
peerreview.title | Anthology / Conference Proceedings (Sammelband / Tagungsbände) |