Logo Oapen
  • Search
  • Join
    • Deposit
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    View Item 
    •   OAPEN Home
    • View Item
    •   OAPEN Home
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Land Carbon Cycle Modeling

    Proposal review

    Matrix Approach, Data Assimilation, Ecological Forecasting, and Machine Learning

    Thumbnail
    Download PDF Viewer
    Web Shop
    Contributor(s)
    Luo, Yiqi (editor)
    Smith, Benjamin (editor)
    Language
    English
    Show full item record
    Abstract
    Carbon moves through the atmosphere, through the oceans, onto land, and into ecosystems. This cycling has a large effect on climate – changing geographic patterns of rainfall and the frequency of extreme weather – and is altered as the use of fossil fuels adds carbon to the cycle. The dynamics of this global carbon cycling are largely predicted over broad spatial scales and long periods of time by Earth system models. This book addresses the crucial question of how to assess, evaluate, and estimate the potential impact of the additional carbon to the land carbon cycle. The contributors describe a set of new approaches to land carbon cycle modeling for better exploring ecological questions regarding changes in carbon cycling; employing data assimilation techniques for model improvement; doing real- or near-time ecological forecasting for decision support; and combining newly available machine learning techniques with process-based models to improve prediction of the land carbon cycle under climate change. This new edition includes seven new chapters: machine learning and its applications to carbon cycle research (five chapters); principles underlying carbon dioxide removal from the atmosphere, contemporary active research and management issues (one chapter); and community infrastructure for ecological forecasting (one chapter). Key Features Helps readers understand, implement, and criticize land carbon cycle models Offers a new theoretical framework to understand transient dynamics of the land carbon cycle Describes a suite of modeling skills – matrix approach to represent land carbon, nitrogen, and phosphorus cycles; data assimilation and machine learning to improve parameterization; and workflow systems to facilitate ecological forecasting Introduces a new set of techniques, such as semi-analytic spin-up (SASU), unified diagnostic system with a 1-3-5 scheme, traceability analysis, and benchmark analysis, and PROcess-guided machine learning and DAta-driven modeling (PRODA) for model evaluation and improvement Reorganized from the first edition with seven new chapters added Strives to balance theoretical considerations, technical details, and applications of ecosystem modeling for research, assessment, and crucial decision-making
    URI
    https://library.oapen.org/handle/20.500.12657/101463
    Keywords
    Ecosystem Modeling; Data Assimilation in Modeling; Assessing Models; Types of Models
    DOI
    10.1201/9781032711126
    ISBN
    9781040026298, 9781032711126, 9781032698496, 9781040026311, 9781498737029, 9781040026298
    OCN
    1416972747
    Publisher
    Taylor & Francis
    Publisher website
    https://taylorandfrancis.com/
    Publication date and place
    2024
    Grantor
    • Cornell University - [...]
    Imprint
    CRC Press
    Classification
    Environmental science, engineering and technology
    Geochemistry
    Sedimentology and pedology
    Botany and plant sciences
    Zoology and animal sciences
    Freshwater biology
    Biodiversity
    Agricultural science
    Pages
    312
    Rights
    https://creativecommons.org/licenses/by-nc-nd/4.0/
    • Imported or submitted locally

    Browse

    All of OAPENSubjectsPublishersLanguagesCollections

    My Account

    LoginRegister

    Export

    Repository metadata
    Logo Oapen
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN

    Newsletter

    • Subscribe to our newsletter
    • view our news archive

    Follow us on

    License

    • If not noted otherwise all contents are available under Attribution 4.0 International (CC BY 4.0)

    Credits

    • logo EU
    • This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 683680, 810640, 871069 and 964352.

    OAPEN is based in the Netherlands, with its registered office in the National Library in The Hague.

    Director: Niels Stern

    Address:
    OAPEN Foundation
    Prins Willem-Alexanderhof 5
    2595 BE The Hague
    Postal address:
    OAPEN Foundation
    P.O. Box 90407
    2509 LK The Hague

    Websites:
    OAPEN Home: www.oapen.org
    OAPEN Library: library.oapen.org
    DOAB: www.doabooks.org

     

     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Differen formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.