Show simple item record

dc.contributor.authorLi, Lanxiao
dc.date.accessioned2024-05-21T07:51:03Z
dc.date.available2024-05-21T07:51:03Z
dc.date.issued2024
dc.identifier.urihttps://library.oapen.org/handle/20.500.12657/90368
dc.description.abstractDeep learning is widely applied to sparse 3D data to perform challenging tasks, e.g., 3D object detection and semantic segmentation. However, the high performance of deep learning comes with high costs, including computational costs and the effort to capture and label data. This work investigates and improves the efficiency of deep learning for sparse 3D data to overcome the obstacles to the further development of this technology.en_US
dc.languageEnglishen_US
dc.relation.ispartofseriesForschungsberichte aus der Industriellen Informationstechniken_US
dc.subject.classificationthema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TH Energy technology and engineering::THR Electrical engineeringen_US
dc.subject.otherEfficiency; 3D Data; Artificial Intelligence; Effizienz; 3D-Daten; Künstliche Intelligenz; Deep Learningen_US
dc.titleComputational, Label, and Data Efficiency in Deep Learning for Sparse 3D Dataen_US
dc.typebook
oapen.identifier.doi10.5445/KSP/1000168541en_US
oapen.relation.isPublishedBy44e29711-8d53-496b-85cc-3d10c9469be9en_US
oapen.series.number33en_US
oapen.pages256en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record