Logo Oapen
  • Search
  • Join
    • Deposit
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    View Item 
    •   OAPEN Home
    • View Item
    •   OAPEN Home
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Thermal Evaluation of Indoor Climate and Energy Storage in Buildings

    Proposal review

    Thumbnail
    Download PDF Viewer
    Web Shop
    Contributor(s)
    Shukla, Shailendra Kumar (editor)
    Language
    English
    Show full item record
    Abstract
    There is a need to reduce energy consumption for space cooling and heating via energy efficient solutions/technologies for implementation in the buildings. Thermal energy storage regulates indoor temperature, shifting the peak load to the off-peak hours and reducing the energy need for space cooling and heating. This book presents the most recent advances related to the thermal energy storage system design and integration in buildings. Additionally, modelling, application, synthetization, and characterization of energy efficient building materials are also considered. Features: Provides a deep understanding of thermal energy storage technology and summarizes its utility and feasibility that can be commercially implemented worldwide Covers recent advancements related to thermal energy storage system design and integration in buildings Discusses modelling, application, synthetization, and characterization of energy-efficient building materials Details novel and emerging heat storage materials and their application to energy and environmental processes Highlights the need for future research on building comfort in cooling, heating, and ventilation through a green energy perspective This book is aimed at researchers and graduate students in mechanical, renewable energy, and HVAC engineering.
    URI
    https://library.oapen.org/handle/20.500.12657/101531
    Keywords
    Building Materials; Greenery Systems; Bioclimatic; Facades; Renewable Energy; Environmental Livability; Urban Systems
    DOI
    10.1201/9781003415695
    ISBN
    9781040101964, 9781032527772, 9781003415695, 9781040101995, 9781040101964
    Publisher
    Taylor & Francis
    Publisher website
    https://taylorandfrancis.com/
    Publication date and place
    2024
    Imprint
    CRC Press
    Classification
    Energy efficiency
    Heating, lighting, ventilation
    Environmentally-friendly (‘green’) architecture and design
    Alternative and renewable energy sources and technology
    Mechanical engineering
    Energy
    Agribusiness and primary industries
    Pages
    346
    Rights
    https://creativecommons.org/licenses/by-nc-nd/4.0/
    • Imported or submitted locally

    Browse

    All of OAPENSubjectsPublishersLanguagesCollections

    My Account

    LoginRegister

    Export

    Repository metadata
    Logo Oapen
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN

    Newsletter

    • Subscribe to our newsletter
    • view our news archive

    Follow us on

    License

    • If not noted otherwise all contents are available under Attribution 4.0 International (CC BY 4.0)

    Credits

    • logo EU
    • This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 683680, 810640, 871069 and 964352.

    OAPEN is based in the Netherlands, with its registered office in the National Library in The Hague.

    Director: Niels Stern

    Address:
    OAPEN Foundation
    Prins Willem-Alexanderhof 5
    2595 BE The Hague
    Postal address:
    OAPEN Foundation
    P.O. Box 90407
    2509 LK The Hague

    Websites:
    OAPEN Home: www.oapen.org
    OAPEN Library: library.oapen.org
    DOAB: www.doabooks.org

     

     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Differen formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.