Show simple item record

dc.contributor.authorLingelbach, Yannick
dc.date.accessioned2024-07-29T08:30:58Z
dc.date.available2024-07-29T08:30:58Z
dc.date.issued2024
dc.identifier.urihttps://library.oapen.org/handle/20.500.12657/92444
dc.description.abstractThis work presents a data mining framework applied to industrial heattreatment (bainitization and case hardening) aiming to optimize processes and reduce costs. The framework analyses factors such as material, production line, and quality assessment for preprocessing, feature extraction, and drift corrections. Machine learning is employed to devise robust prediction strategies for hardness. Its implementation in an industry pilot demonstrates the economic benefits of the framework.en_US
dc.languageEnglishen_US
dc.relation.ispartofseriesSchriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologieen_US
dc.subject.classificationthema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TG Mechanical engineering and materialsen_US
dc.subject.otherData Mining; Case Hardening; Bainitizing; Industrial Heattreatment; Machine Learning; Datenanalyse; Einsatzhärten; Bainitisieren; Industrielle Wärmebehandlung; Maschinelles Lernenen_US
dc.titleApplication of Data Mining and Machine Learning Methods to Industrial Heat Treatment Processes for Hardness Predictionen_US
dc.typebook
oapen.identifier.doi10.5445/KSP/1000169018en_US
oapen.relation.isPublishedBy44e29711-8d53-496b-85cc-3d10c9469be9en_US
oapen.series.number114en_US
oapen.pages278en_US
peerreview.anonymityAll identities known
peerreview.id51a542ec-eaeb-47c2-861d-6022e981a97a
peerreview.open.reviewNo
peerreview.publish.responsibilityBooks or series editor
peerreview.review.stagePre-publication
peerreview.review.typeFull text
peerreview.reviewer.typeEditorial board member
peerreview.reviewer.typeExternal peer reviewer
peerreview.titleDissertations in Series (Dissertationen in Schriftenreihe)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record