Show simple item record

dc.contributor.authorThorgeirsson, Adam Thor
dc.date.accessioned2024-09-16T10:02:59Z
dc.date.available2024-09-16T10:02:59Z
dc.date.issued2024
dc.identifier.urihttps://library.oapen.org/handle/20.500.12657/93282
dc.description.abstractIn this work, an extension of the federated averaging algorithm, FedAvg-Gaussian, is applied to train probabilistic neural networks. The performance advantage of probabilistic prediction models is demonstrated and it is shown that federated learning can improve driving range prediction. Using probabilistic predictions, routing and charge planning based on destination attainability can be applied. Furthermore, it is shown that probabilistic predictions lead to reduced travel time.en_US
dc.languageEnglishen_US
dc.relation.ispartofseriesKarlsruher Schriftenreihe Fahrzeugsystemtechniken_US
dc.subject.classificationthema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TG Mechanical engineering and materialsen_US
dc.subject.otherReichweite; Federated Learning; Probabilistic Predictions; Driving Range; Electric Vehicles; Föderiertes Lernen; Probabilistische Vorhersage; Elektrofahrzeugeen_US
dc.titleProbabilistic Prediction of Energy Demand and Driving Range for Electric Vehicles with Federated Learningen_US
dc.typebook
oapen.identifier.doi10.5445/KSP/1000171796en_US
oapen.relation.isPublishedBy44e29711-8d53-496b-85cc-3d10c9469be9en_US
oapen.series.number116en_US
oapen.pages190en_US
peerreview.anonymityAll identities known
peerreview.id51a542ec-eaeb-47c2-861d-6022e981a97a
peerreview.open.reviewNo
peerreview.publish.responsibilityBooks or series editor
peerreview.review.stagePre-publication
peerreview.review.typeFull text
peerreview.reviewer.typeEditorial board member
peerreview.reviewer.typeExternal peer reviewer
peerreview.titleDissertations in Series (Dissertationen in Schriftenreihe)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record