Show simple item record

dc.contributor.authorde Benito Delgado, Miguel
dc.date.accessioned2022-06-18T05:34:36Z
dc.date.available2022-06-18T05:34:36Z
dc.date.issued2019
dc.identifier.urihttps://library.oapen.org/handle/20.500.12657/56755
dc.description.abstractThis work introduces a family of effective plate theories for multilayered materials with internal misfit. This is done for scaling laws ranging from Kirchhoff's theory to the linearised von Kármán one. An intermediate von Kármán-like theory is introduced to play a central interpolating role with a new parameter which switches between the adjacent regimes. After proving the necessary Gamma-convergence and compactness results, minimising configurations are characterised. Finally, the interpolating theory is numerically approximated using a discrete gradient flow and the relevant Gamma-convergence and compactness results for the discretisation are proved. This provides empirical evidence for the existence of a critical region of the parameter around which minimisers experience a stark qualitative change.
dc.languageEnglish
dc.subject.otherMathematics
dc.titleEffective two dimensional theories for multi-layered plates
dc.typebook
oapen.identifier.doihttps://doi.org/10.30819/4984
oapen.relation.isPublishedBy1059eef5-b798-421c-b07f-c6a304d3aec8
oapen.relation.isFundedByb818ba9d-2dd9-4fd7-a364-7f305aef7ee9
oapen.relation.isbn9783832549848
oapen.collectionKnowledge Unlatched (KU)
oapen.imprintLogos Verlag Berlin
oapen.identifierhttps://openresearchlibrary.org/viewer/e1dc8fef-5597-4d21-a2ab-0b830abca8af
oapen.identifier.isbn9783832549848


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record