Logo Oapen
  • Search
  • Join
    • Deposit
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    View Item 
    •   OAPEN Home
    • View Item
    •   OAPEN Home
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Chapter Profiling visitors of a national park in Italy through unsupervised classification of mixed data

    Thumbnail
    Download PDF Viewer
    Web Shop
    Author(s)
    Caruso, Giulia cc
    Evangelista, Adelia cc
    Gattone, Stefano Antonio cc
    Language
    English
    Show full item record
    Abstract
    Cluster analysis has for long been an effective tool for analysing data. Thus, several disciplines, such as marketing, psychology and computer sciences, just to mention a few, did take advantage from its contribution over time. Traditionally, this kind of algorithm concentrates only on numerical or categorical data at a time. In this work, instead, we analyse a dataset composed of mixed data, namely both numerical than categorical ones. More precisely, we focus on profiling visitors of the National Park of Majella in the Abruzzo region of Italy, which observations are characterized by variables such as gender, age, profession, expectations and satisfaction rate on park services. Applying a standard clustering procedure would be wholly inappropriate in this case. Therefore, we hereby propose an unsupervised classification of mixed data, a specific procedure capable of processing both numerical than categorical variables simultaneously, releasing truly precious information. In conclusion, our application therefore emphasizes how cluster analysis for mixed data can lead to discover particularly informative patterns, allowing to lay the groundwork for an accurate customers profiling, starting point for a detailed marketing analysis.
    URI
    https://library.oapen.org/handle/20.500.12657/58216
    Keywords
    Cluster analysis; mixed data; unsupervised learning; customers profiling
    DOI
    10.36253/978-88-5518-304-8.27
    ISBN
    9788855183048, 9788855183048
    Publisher
    Firenze University Press
    Publisher website
    https://www.fupress.com/
    Publication date and place
    Florence, 2021
    Series
    Proceedings e report, 127
    Classification
    Social research & statistics
    Pages
    6
    Rights
    https://creativecommons.org/licenses/by/4.0/
    • Imported or submitted locally

    Browse

    All of OAPENSubjectsPublishersLanguagesCollections

    My Account

    LoginRegister

    Export

    Repository metadata
    Logo Oapen
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN

    Newsletter

    • Subscribe to our newsletter
    • view our news archive

    Follow us on

    License

    • If not noted otherwise all contents are available under Attribution 4.0 International (CC BY 4.0)

    Credits

    • logo EU
    • This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 683680, 810640, 871069 and 964352.

    OAPEN is based in the Netherlands, with its registered office in the National Library in The Hague.

    Director: Niels Stern

    Address:
    OAPEN Foundation
    Prins Willem-Alexanderhof 5
    2595 BE The Hague
    Postal address:
    OAPEN Foundation
    P.O. Box 90407
    2509 LK The Hague

    Websites:
    OAPEN Home: www.oapen.org
    OAPEN Library: library.oapen.org
    DOAB: www.doabooks.org

     

     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Differen formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.