Distributed Optimization with Application to Power Systems and Control
Abstract
Mathematical optimization techniques are among the most successful tools for controlling technical systems optimally with feasibility guarantees. Yet, they are often centralized—all data has to be collected in one central and computationally powerful entity. Methods from distributed optimization overcome this limitation. Classical approaches, however, are often not applicable due to non-convexities. This work develops one of the first frameworks for distributed non-convex optimization.
Keywords
Verteilte Optimierung; Dezentrale Optimierung; ALADIN; ADMM; Optimal Power Flow; distributed optimization; decentralized optimization; optimal power flowDOI
10.5445/KSP/1000144792ISBN
9783731511809, 9783731511809Publisher
KIT Scientific PublishingPublisher website
https://www.ksp.kit.edu/index.php?link=shop&sort=allPublication date and place
Karlsruhe, 2022Imprint
KIT Scientific PublishingClassification
Maths for computer scientists