Logo Oapen
  • Search
  • Join
    • Deposit
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    View Item 
    •   OAPEN Home
    • View Item
    •   OAPEN Home
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Number Fields

    Thumbnail
    Download PDF Viewer
    Web Shop
    Author(s)
    Keune, Frans
    Language
    English
    Show full item record
    Abstract
    Number Fields is a textbook for algebraic number theory. It grew out of lecture notes of master courses taught by the author at Radboud University, the Netherlands, over a period of more than four decades. It is self-contained in the sense that it uses only mathematics of a bachelor level, including some Galois theory. Part I of the book contains topics in basic algebraic number theory as they may be presented in a beginning master course on algebraic number theory. It includes the classification of abelian number fields by groups of Dirichlet characters. Class field theory is treated in Part II: the more advanced theory of abelian extensions of number fields in general. Full proofs of its main theorems are given using a ‘classical’ approach to class field theory, which is in a sense a natural continuation of the basic theory as presented in Part I. The classification is formulated in terms of generalized Dirichlet characters. This ‘ideal-theoretic’ version of class field theory dates from the first half of the twentieth century. In this book, it is described in modern mathematical language. Another approach, the ‘idèlic version’, uses topological algebra and group cohomology and originated halfway the last century. The last two chapters provide the connection to this more advanced idèlic version of class field theory. The book focuses on the abstract theory and contains many examples and exercises. For quadratic number fields algorithms are given for their class groups and, in the real case, for the fundamental unit. New concepts are introduced at the moment it makes a real difference to have them available.
    URI
    https://library.oapen.org/handle/20.500.12657/62284
    Keywords
    Galois theory; Idèlic version of class field theory; Ideal-theoretic version of class field theory; Abelian number fields; Class Field Theory; Algebraic Number Theory; Textbook
    DOI
    10.54195/IPVU4488
    ISBN
    9789493296039
    Publisher
    Radboud University Press
    Publisher website
    https://radbouduniversitypress.nl/
    Publication date and place
    Nijmegen, the Netherlands, 2023
    Classification
    Mathematics
    Pages
    587
    Rights
    https://creativecommons.org/licenses/by-nc-nd/4.0/
    • Imported or submitted locally

    Browse

    All of OAPENSubjectsPublishersLanguagesCollections

    My Account

    LoginRegister

    Export

    Repository metadata
    Logo Oapen
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN

    Newsletter

    • Subscribe to our newsletter
    • view our news archive

    Follow us on

    License

    • If not noted otherwise all contents are available under Attribution 4.0 International (CC BY 4.0)

    Credits

    • logo EU
    • This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 683680, 810640, 871069 and 964352.

    OAPEN is based in the Netherlands, with its registered office in the National Library in The Hague.

    Director: Niels Stern

    Address:
    OAPEN Foundation
    Prins Willem-Alexanderhof 5
    2595 BE The Hague
    Postal address:
    OAPEN Foundation
    P.O. Box 90407
    2509 LK The Hague

    Websites:
    OAPEN Home: www.oapen.org
    OAPEN Library: library.oapen.org
    DOAB: www.doabooks.org

     

     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Differen formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.