Entwicklung einer Methode zum Einsatz von Reinforcement Learning für die dynamische Fertigungsdurchlaufsteuerung
Dissertations in Series (Dissertationen in Schriftenreihe)
dc.contributor.author | Lohse, Oliver | |
dc.date.accessioned | 2023-04-24T11:23:57Z | |
dc.date.available | 2023-04-24T11:23:57Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://library.oapen.org/handle/20.500.12657/62536 | |
dc.description.abstract | This work aims to develop a method that can reschedule the matrix production in the case of a disruption. For this purpose, different artificial intelligence methods are combined in a novel way. The developed method is validated on a theoretical and a real scheduling case. | en_US |
dc.language | German | en_US |
dc.relation.ispartofseries | Reihe Informationsmanagement im Engineering Karlsruhe | en_US |
dc.subject.classification | thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TG Mechanical engineering and materials | en_US |
dc.subject.other | Produktionssteuerung; Reinforcement Learning; Künstliche Intelligenz; Terminierung; Production control; artificial intelligence; scheduling | en_US |
dc.title | Entwicklung einer Methode zum Einsatz von Reinforcement Learning für die dynamische Fertigungsdurchlaufsteuerung | en_US |
dc.type | book | |
oapen.identifier.doi | 10.5445/KSP/1000156002 | en_US |
oapen.relation.isPublishedBy | 44e29711-8d53-496b-85cc-3d10c9469be9 | en_US |
oapen.collection | AG Universitätsverlage | |
oapen.series.number | 25 | en_US |
oapen.pages | 208 | en_US |
peerreview.anonymity | All identities known | |
peerreview.id | 51a542ec-eaeb-47c2-861d-6022e981a97a | |
peerreview.open.review | No | |
peerreview.publish.responsibility | Books or series editor | |
peerreview.review.stage | Pre-publication | |
peerreview.review.type | Full text | |
peerreview.reviewer.type | Editorial board member | |
peerreview.reviewer.type | External peer reviewer | |
peerreview.title | Dissertations in Series (Dissertationen in Schriftenreihe) |