Entwicklung einer Methode zum Einsatz von Reinforcement Learning für die dynamische Fertigungsdurchlaufsteuerung
Abstract
This work aims to develop a method that can reschedule the matrix production in the case of a disruption. For this purpose, different artificial intelligence methods are combined in a novel way. The developed method is validated on a theoretical and a real scheduling case.
Keywords
Produktionssteuerung; Reinforcement Learning; Künstliche Intelligenz; Terminierung; Production control; artificial intelligence; schedulingDOI
10.5445/KSP/1000156002ISBN
9783731512820Publisher
KIT Scientific PublishingPublisher website
https://www.ksp.kit.edu/index.php?link=shop&sort=allPublication date and place
2023Series
Reihe Informationsmanagement im Engineering Karlsruhe, 25Classification
Mechanical engineering and materials