Logo Oapen
  • Search
  • Join
    • Deposit
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    View Item 
    •   OAPEN Home
    • View Item
    •   OAPEN Home
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Chapter The joint estimation of accuracy and speed: An application to the INVALSI data

    Thumbnail
    Download PDF Viewer
    Web Shop
    Author(s)
    Bungaro, Luca
    Desimoni, Marta
    MATTEUCCI, MARIAGIULIA
    MIGNANI, STEFANIA
    Language
    English
    Show full item record
    Abstract
    In Italy, the National Institute for the Evaluation of the Education and Training System (INVALSI) every year administers standardized tests via computer-based testing (CBT) to students attending grades 8, 10, and 13. The CBT mode allows to collect data not only on the students’ response accuracy (RA) based on item responses, but also on their response times (RT). By using these data, it is now possible to estimate the speed ability of examinees, besides the usual ability (e.g. Italian language, mathematics or English ability). In this study, we use the 2018 mathematics data for grade 10 to estimate the ability and speed of students following the fully Bayesian approach of Fox et al. (2021), who implemented in the R package LNIRT the models of van der Linden (2007) and Klein Entik et al. (2009). In a second step, we use the estimated mathematics ability and speed in a bivariate multilevel model, where the first-level units are represented by students and the second-level units are represented by classes. Covariates such as gender, school type, immigrant status, economic, social, and cultural status, prior achievement, grade retention, student anxiety, class compositional variables, and geographical area are included in the model. The main results show that the ability and speed are inversely proportional, e.g. as ability increases, speed decreases. Also, differences in the students performance by gender and school type are significant for both ability and speed.
    Book
    ASA 2022 Data-Driven Decision Making
    URI
    https://library.oapen.org/handle/20.500.12657/74911
    Keywords
    educational assessment; large standardized test; mathematics achievement; IRT models for response times; multilevel models
    DOI
    10.36253/979-12-215-0106-3.39
    ISBN
    9791221501063, 9791221501063
    Publisher
    Firenze University Press, Genova University Press
    Publication date and place
    Florence, 2023
    Series
    Proceedings e report, 134
    Classification
    Society and Social Sciences
    Pages
    6
    Rights
    https://creativecommons.org/licenses/by/4.0/
    • Imported or submitted locally

    Browse

    All of OAPENSubjectsPublishersLanguagesCollections

    My Account

    LoginRegister

    Export

    Repository metadata
    Logo Oapen
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN

    Newsletter

    • Subscribe to our newsletter
    • view our news archive

    Follow us on

    License

    • If not noted otherwise all contents are available under Attribution 4.0 International (CC BY 4.0)

    Credits

    • logo EU
    • This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 683680, 810640, 871069 and 964352.

    OAPEN is based in the Netherlands, with its registered office in the National Library in The Hague.

    Director: Niels Stern

    Address:
    OAPEN Foundation
    Prins Willem-Alexanderhof 5
    2595 BE The Hague
    Postal address:
    OAPEN Foundation
    P.O. Box 90407
    2509 LK The Hague

    Websites:
    OAPEN Home: www.oapen.org
    OAPEN Library: library.oapen.org
    DOAB: www.doabooks.org

     

     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Differen formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.