Please note that on 5 November, between 10:30 and 11:30 CET, the system will be offline for planned maintenance.
Thank you
Chapter Educational mismatch and productivity: evidence from LEED data on Italian firms
Language
EnglishAbstract
This study aims at evaluating the impact of educational mismatch onto firm-level productivity for a large set of Italian firms. In particular, over (under)-education refers to situations where individual’s educational attainment is higher (lower) than the education required by the job, thereby producing a surplus (deficit) of education. Based on the integration of the LEED (Linked Employer Employee Database) Istat Statistical Register Asia Occupazione – which provides information on workers’ age, professional qualification and educational attainment – and the Istat Frame-SBS Register, we perform an analysis in the spirit of the ORU (Over, Required and Under Education) model proposed by Kampelmann e Rycx (2012). The dataset is based on a large panel of over 55,000 manufacturing and services firms with more than 20 employees, covering the 2014-2019 period. The empirical strategy is based on a two-step procedure: first, ORU indicators are computed at the worker-level; second, we estimate a firm-level productivity (value added per employee) function where the key variables of interest are the ORU indicators collapsed at the firm-level, taking into account both firm and workers characteristics. The productivity function is estimated by GMM-system by Arellano and Bond (1995) e Blundell and Bond (1988). Main results point out that over/under-education affects productivity growth in both manufacturing and services firms: firm’s productivity rises following a one unit increase in mean years of over-education – with spiking results for medium and high-tech manufacturing firms –, whereas a growth in under-education hampers productivity dynamics in high and medium-high tech manufacturing and knowledge-intensive services firms.
Keywords
Educational mismatch; Productivity; Linked Employer-Employee Dataset; GMM-SystemDOI
10.36253/979-12-215-0106-3.52ISBN
9791221501063, 9791221501063Publication date and place
Florence, 2023Series
Proceedings e report, 134Classification
Society and Social Sciences