Logo Oapen
  • Search
  • Join
    • Deposit
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    View Item 
    •   OAPEN Home
    • View Item
    •   OAPEN Home
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Chapter Given N forecasting models, what to do?

    Thumbnail
    Download PDF Viewer
    Web Shop
    Author(s)
    Culotta, Fabrizio
    Language
    English
    Show full item record
    Abstract
    This work evaluates the forecasting performances of different models using data on Italian unemployment and employment rates over the years 2004-2022 at the monthly frequency. The logic of this work is inspired by the series of M-Competitions, i.e. the tradition of competitions organized to test the forecasting performances of classical and innovative models. Given N competing models, only one winner is selected. The types of forecasting models range from the Exponential Smoothing family to ARIMA-like models, to their hybridization, to machine learning and neural network engines. Model combinations through various ensemble techniques are also considered. Once the observational period is split between the training and test set, the estimated forecasting models are ranked in terms of fitting on the training set and in terms of their forecast accuracy on the test set. Results confirm that it does not exist yet a single superior universal model. On the contrary, the ranking of different forecasting models is specific to the adopted training set. Secondly, results confirm that performances of machine learning and neural network models offer satisfactory alternatives and complementarities to the traditional models like ARIMA and Exponential Smoothing. Finally, the results stress the importance of model ensemble techniques as a solution to model uncertainty as well as a tool to improve forecast accuracy. The flexibility provided by a rich set of different forecasting models, and the possibility of combining them, together represent an advantage for decision-makers often constrained to adopt solely pure, not-combined, forecasting models. Overall, this work can represent a first step toward the construction of a semi-automatic forecasting algorithm, which has become an essential tool for both trained and untrained eyes in an era of data-driven decision-making.
    Book
    ASA 2022 Data-Driven Decision Making
    URI
    https://library.oapen.org/handle/20.500.12657/74927
    Keywords
    Forecasting performances; M-Competitions; Model types; Model ensemble techniques; Decision-making and forecast accuracy
    DOI
    10.36253/979-12-215-0106-3.55
    ISBN
    9791221501063, 9791221501063
    Publisher
    Firenze University Press, Genova University Press
    Publication date and place
    Florence, 2023
    Series
    Proceedings e report, 134
    Classification
    Society and Social Sciences
    Pages
    6
    Rights
    https://creativecommons.org/licenses/by/4.0/
    • Imported or submitted locally

    Browse

    All of OAPENSubjectsPublishersLanguagesCollections

    My Account

    LoginRegister

    Export

    Repository metadata
    Logo Oapen
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN

    Newsletter

    • Subscribe to our newsletter
    • view our news archive

    Follow us on

    License

    • If not noted otherwise all contents are available under Attribution 4.0 International (CC BY 4.0)

    Credits

    • logo EU
    • This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 683680, 810640, 871069 and 964352.

    OAPEN is based in the Netherlands, with its registered office in the National Library in The Hague.

    Director: Niels Stern

    Address:
    OAPEN Foundation
    Prins Willem-Alexanderhof 5
    2595 BE The Hague
    Postal address:
    OAPEN Foundation
    P.O. Box 90407
    2509 LK The Hague

    Websites:
    OAPEN Home: www.oapen.org
    OAPEN Library: library.oapen.org
    DOAB: www.doabooks.org

     

     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Differen formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.