Logo Oapen
  • Search
  • Join
    • Deposit
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    View Item 
    •   OAPEN Home
    • View Item
    •   OAPEN Home
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Chapter Deep Learning-Based Pose Estimation for Identifying Potential Fall Hazards of Construction Worker

    Thumbnail
    Download PDF Viewer
    Web Shop
    Author(s)
    Lee, Seungsoo
    Choi, Woonggyu
    Park, Minsoo
    Jeon, Yuntae
    Quoc Tran, Dai
    Park, Seunghee
    Language
    English
    Show full item record
    Abstract
    Fall from height (FFH) is one of the major causes of injury and fatalities in construction industry. Deep learning-based computer vision for safety monitoring has gained attention due to its relatively lower initial cost compared to traditional sensing technologies. However, a single detection model that has been used in many related studies cannot consider various contexts at the construction site. In this paper, we propose a deep learning-based pose estimation approach for identifying potential fall hazards of construction workers. This approach can relatively increase the accuracy of estimating the distance between the worker and the fall hazard area compared to the existing methods from the experimental results. Our proposed approach can improve the robustness of worker location estimation compared to existing methods in complex construction site environments with obstacles that can obstruct the worker's position. Also, it is possible to provide information on whether a worker is aware of a potential fall risk area. Our approach can contribute to preventing FFH by providing access information to fall risk areas such as construction site openings and inducing workers to recognize the risk area even in Inattentional blindness (IB) situations
    URI
    https://library.oapen.org/handle/20.500.12657/89070
    Keywords
    deep learning; keypoint detection; pose estimation; computer vision; construction site safe
    DOI
    10.36253/979-12-215-0289-3.62
    ISBN
    9791221502893, 9791221502893
    Publisher
    Firenze University Press
    Publisher website
    https://www.fupress.com/
    Publication date and place
    Florence, 2023
    Series
    Proceedings e report, 137
    Classification
    Virtualization
    Pages
    7
    Rights
    https://creativecommons.org/licenses/by-nc/4.0/legalcode
    • Imported or submitted locally

    Browse

    All of OAPENSubjectsPublishersLanguagesCollections

    My Account

    LoginRegister

    Export

    Repository metadata
    Logo Oapen
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN

    Newsletter

    • Subscribe to our newsletter
    • view our news archive

    Follow us on

    License

    • If not noted otherwise all contents are available under Attribution 4.0 International (CC BY 4.0)

    Credits

    • logo EU
    • This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 683680, 810640, 871069 and 964352.

    OAPEN is based in the Netherlands, with its registered office in the National Library in The Hague.

    Director: Niels Stern

    Address:
    OAPEN Foundation
    Prins Willem-Alexanderhof 5
    2595 BE The Hague
    Postal address:
    OAPEN Foundation
    P.O. Box 90407
    2509 LK The Hague

    Websites:
    OAPEN Home: www.oapen.org
    OAPEN Library: library.oapen.org
    DOAB: www.doabooks.org

     

     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Differen formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.