Chapter Robotic Assembly and Reuse of Modular Elements in the Supply Chain of a Learning Factory for Construction and in the Context of Circular Economy
Language
EnglishAbstract
Although robotic solutions have been making significant contributions to fabrication environments, implementations in the construction are rare. It seems a disconnect between the industries exists where in construction the high number of non-uniform work tasks, the wide assortment of types and shapes of building materials and elements, and the presence of human workers creating safety hazards make the deployment of rather rigid robotic manipulators on construction sites much more complex than in production-like work environments. To advance construction with robotic solutions, it could prove beneficial to make each sector aware of the barriers that exist, and likewise, introduce a physical space for joint experimentation with state-of-the-art technologies from both fields. One way of alleviating this issue is to connect the sectors by providing hands-on education and research experiences, defined hereby as Learning Factory for Construction (LFC). This paper presents a scaled-down version of a LFC that has a robotic manipulator perform fully-automated and precise assembly, deconstruction, and reuse tasks of modular construction elements, whereas the elements are tracked with fiducial markers according to a known building information model and schedule. Furthermore, the FLC continuously gathers and analyzes data for performance, measures successful completions, assembly times, and potential quality defects. This project involved Masters level students with domain expertise from architectural, civil, and mechanical engineering in a cross-disciplinary and collaborative learning exercise of building a working prototype within a semester-long study project. Beyond the core tasks of the digital design and robotic application, the group developed theoretical concepts and limitations for more holistic views on circular economy, lean production, on- and off-site logistics, modularization, and construction safety, just as expected from a LFC. It is anticipated that the next generation of professionals working in the built environment and intending to solve some of the larger and more complex societal problems will require both the technical and communication skills that a LFC can stimulate. Therefore, LFC is expected to become an important component of active learning environments
Keywords
Active learning environment; automation and robotics; building information modeling; circular economy; human-machine interaction; learning factory for construction; modular construction; next-generation tech-savvy engineers; rapid prototyping and testingDOI
10.36253/979-12-215-0289-3.55ISBN
9791221502893, 9791221502893Publisher
Firenze University PressPublisher website
https://www.fupress.com/Publication date and place
Florence, 2023Series
Proceedings e report, 137Classification
Virtualization