Logo Oapen
  • Search
  • Join
    • Deposit
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    View Item 
    •   OAPEN Home
    • View Item
    •   OAPEN Home
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Chapter Bayes Theory as a Methodological Approach to Assess the Impact of Location Variables of Hyperscale Data Centres: Testing a Concept

    Thumbnail
    Download PDF Viewer
    Web Shop
    Author(s)
    King, David
    Wanigarathna, Nadeeshani
    Jones, Keith
    Ofori-Kuragu, Joseph
    Language
    English
    Show full item record
    Abstract
    The theme of ’The Impact of Engineering Practices on a Sustainable Built Environment’ emphasises the importance of considering various dimensions of resilient infrastructure. Selecting the location for a Hyperscale Data Centre is a crucial process that involves assessing the impact of various location variables. To determine the viability of a location, it is essential to identify the potential risks associated with each variable. This paper presents a proprietary methodological approach that includes a Delphi study to identify risks, a Likert scoring system to assess prior probabilities, and a Bayesian theory-based decision tree to assess the impact through risk prediction. The paper's contributions are significant, and the proposed methodology makes it possible to predict the risk level of each location variable by identifying the appropriate contingency percentage. The study's findings indicate that the paper's proposed approach is an effective way to mitigate the risks associated with selecting a location for a Hyperscale Data Centre. Embracing this knowledge allows us to align research and practise with the conference’s call to studying the resilience of buildings and infrastructure to natural disasters and climate change, and developing strategies for adaptation and mitigation, ensuring that these practises become integral to shaping the future of Data Centres
    URI
    https://library.oapen.org/handle/20.500.12657/89093
    Keywords
    Bayes Theorem; Delphi; Data Centre; Location Variables
    DOI
    10.36253/979-12-215-0289-3.39
    ISBN
    9791221502893, 9791221502893
    Publisher
    Firenze University Press
    Publisher website
    https://www.fupress.com/
    Publication date and place
    Florence, 2023
    Series
    Proceedings e report, 137
    Classification
    History and Archaeology
    Pages
    9
    Rights
    https://creativecommons.org/licenses/by-nc/4.0/legalcode
    • Imported or submitted locally

    Browse

    All of OAPENSubjectsPublishersLanguagesCollections

    My Account

    LoginRegister

    Export

    Repository metadata
    Logo Oapen
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN

    Newsletter

    • Subscribe to our newsletter
    • view our news archive

    Follow us on

    License

    • If not noted otherwise all contents are available under Attribution 4.0 International (CC BY 4.0)

    Credits

    • logo EU
    • This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 683680, 810640, 871069 and 964352.

    OAPEN is based in the Netherlands, with its registered office in the National Library in The Hague.

    Director: Niels Stern

    Address:
    OAPEN Foundation
    Prins Willem-Alexanderhof 5
    2595 BE The Hague
    Postal address:
    OAPEN Foundation
    P.O. Box 90407
    2509 LK The Hague

    Websites:
    OAPEN Home: www.oapen.org
    OAPEN Library: library.oapen.org
    DOAB: www.doabooks.org

     

     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Differen formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.