Chapter Leveraging Smart Contracts in Building Information Modeling (BIM) for Unified Project Execution: A Theoretical Framework.
Author(s)
Lawal, Oluwatoyin
Nawari, Nawari
Language
EnglishAbstract
Over time, several procurement methods have been adopted to facilitate the successful delivery of construction projects with minimal financial losses in order to offer maximum value to clients. In recent years, the Integrated Project Delivery (IPD) procurement model has been introduced for better overall financial performance. In this model, every member of the project team has a stake in overall profit or risk irrespective of the extent of their roles and change orders and correction of errors and omissions are managed effectively with minimal contractual disruptions. This paper aims to address some of the previously cited barriers in earlier scholarly work, and it proposes a conceptual framework that integrates two novel concepts towards tackling technological and financial barriers in adopting IPD namely, BIM and Smart Contracts (SC). A framework is developed for a BIM-blockchain-IPD whereby the BIM model is integrated with blockchain technology, thereby acting as an immutable and transparent information repository and a platform for interdisciplinary collaboration in Architecture, Engineering and Construction (AEC) projects. The smart contract feature of blockchain technology offers an automated equitable distribution of risk and reward amongst project stakeholders based on agreements at project inception. Thus, the research contributes to a more efficient project delivery method by avoiding information asymmetry amongst stakeholders through a tamper-proof, BIM-enabled Common Data Environment (CDE). The proposed framework is validated with qualitative analysis of information obtained based on AEC industry procurement workflows
Keywords
Integrated Project Delivery; Smart Contract; Blockchain; BIM; AEC; Common Data EnvironmentDOI
10.36253/979-12-215-0289-3.34ISBN
9791221502893, 9791221502893Publisher
Firenze University PressPublisher website
https://www.fupress.com/Publication date and place
Florence, 2023Series
Proceedings e report, 137Classification
Virtualization