Show simple item record

dc.contributor.authorKalb, Tobias Michael
dc.date.accessioned2024-10-31T14:03:26Z
dc.date.available2024-10-31T14:03:26Z
dc.date.issued2024
dc.identifier.urihttps://library.oapen.org/handle/20.500.12657/94140
dc.description.abstractDeep learning excels at extracting complex patterns but faces catastrophic forgetting when fine-tuned on new data. This book investigates how class- and domain-incremental learning affect neural networks for automated driving, identifying semantic shifts and feature changes as key factors. Tools for quantitatively measuring forgetting are selected and used to show how strategies like image augmentation, pretraining, and architectural adaptations mitigate catastrophic forgetting.en_US
dc.languageEnglishen_US
dc.relation.ispartofseriesKarlsruher Schriften zur Anthropomatiken_US
dc.subject.classificationthema EDItEUR::U Computing and Information Technology::UY Computer science::UYA Mathematical theory of computation::UYAM Maths for computer scientistsen_US
dc.subject.otherAutomated Driving; Semantic Segmentation; Catastrophic Forgetting; Continual Learning; Deep Learning; Automatisiertes Fahren; Semantische Segmentierung; Katastrophales Vergessen; Kontinuierliches Lernenen_US
dc.titlePrinciples of Catastrophic Forgetting for Continual Semantic Segmentation in Automated Drivingen_US
dc.typebook
oapen.identifier.doi10.5445/KSP/1000171902en_US
oapen.relation.isPublishedBy44e29711-8d53-496b-85cc-3d10c9469be9en_US
oapen.collectionAG Universitätsverlage
oapen.series.number65en_US
oapen.pages236en_US
peerreview.anonymitySingle-anonymised
peerreview.id2e56347d-034c-4741-9c0e-93c383a81b66
peerreview.open.reviewNo
peerreview.publish.responsibilityPublisher
peerreview.review.stagePre-publication
peerreview.review.typeFull text
peerreview.reviewer.typeEditorial board member
peerreview.titleAnthology / Conference Proceedings (Sammelband / Tagungsbände)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record