Principles of Catastrophic Forgetting for Continual Semantic Segmentation in Automated Driving
Anthology / Conference Proceedings (Sammelband / Tagungsbände)
Author(s)
Kalb, Tobias Michael
Collection
AG UniversitätsverlageLanguage
EnglishAbstract
Deep learning excels at extracting complex patterns but faces catastrophic forgetting when fine-tuned on new data. This book investigates how class- and domain-incremental learning affect neural networks for automated driving, identifying semantic shifts and feature changes as key factors. Tools for quantitatively measuring forgetting are selected and used to show how strategies like image augmentation, pretraining, and architectural adaptations mitigate catastrophic forgetting.
Keywords
Automated Driving; Semantic Segmentation; Catastrophic Forgetting; Continual Learning; Deep Learning; Automatisiertes Fahren; Semantische Segmentierung; Katastrophales Vergessen; Kontinuierliches LernenDOI
10.5445/KSP/1000171902ISBN
9783731513735Publisher
KIT Scientific PublishingPublisher website
https://www.ksp.kit.edu/index.php?link=shop&sort=allPublication date and place
2024Series
Karlsruher Schriften zur Anthropomatik, 65Classification
Maths for computer scientists