Logo Oapen
  • Search
  • Join
    • Deposit
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    View Item 
    •   OAPEN Home
    • View Item
    •   OAPEN Home
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Driver Behavior Analysis and Decision-Making for Autonomous Driving at Non-Signalized Inner City Intersections

    Thumbnail
    Download PDF Viewer
    Web Shop
    Author(s)
    Weinreuter, Hannes
    Collection
    AG Universitätsverlage
    Language
    English
    Show full item record
    Abstract
    The focus of this work is on human driving behavior in road traffic. Two aspects of it are covered, the prediction of it, including the identification of relevant influencing factors, as well as the behavior generation for autonomous vehicles. The behavior prediction is based on a field study during which participants drove a measurement vehicle through inner-city traffic. Using the driven trajectories and lidar recordings complexity features to describe the surroundings at the intersection, the traffic there and the driving path are defined. The driving behavior is characterized by further features. Based on the complexity features regression models are trained to predict the behavior features. For that, linear regression, random forest and gradient boosting machine are utilized. Different complexity feature sets, including ones that are reduced with the help of an autoencoder, are used for prediction. The results show that the driving behavior can be predicted reliably. However, when using complexity feature sets with only few features the prediction performance is reduced. In order to obtain a complexity score that is in line with human perception of complexity, an online study using videos of approaches to intersections was conducted. In pairwise comparisons participants were asked to identify the more complex situation. From that data complexity scores for the intersection passes included in the study are calculated. Several methods are used to assign these scores to the runs of the original field study. Behavior regression models are trained using these assigned complexity scores. The results show that behavior prediction with the complexity scores is possible, however, most variants require to also consider the turning direction as a second feature. The behavior generation for decision-making at T-intersections is based on a discrete event system (DES). For it, several features are used to define events that describe the status of the decision-making process at the intersection. The events trigger the transitions between the states of the DES. All states are associated with either offensive or defensive driving behavior, which is implemented using the intelligent driver model. The algorithm is validated with a simulation framework. Using a generic map and several real maps, the decision-making model is simulated 14400 times while interacting with further cooperation vehicles. None of these runs resulted in a collision involving the vehicle running the algorithm and the times to pass the intersection can be explained by the numbers of cooperation vehicles and the intersection layouts. Further simulations are used to investigate the influence of limited visibility at the intersections on the model.
    URI
    https://library.oapen.org/handle/20.500.12657/98202
    Keywords
    pairwise comparisons; behavior prediction; discrete event modelling; decision making; autonomous driving; paarweise Vergleiche; Verhaltensprädiktion; ereignisdiskrete Modellierung; Entscheidungsfindung; Autonomes Fahren
    DOI
    10.5445/KSP/1000175979
    ISBN
    9783731513933
    Publisher
    KIT Scientific Publishing
    Publisher website
    https://www.ksp.kit.edu/index.php?link=shop&sort=all
    Publication date and place
    Karlsruhe, 2025
    Series
    Forschungsberichte aus der Industriellen Informationstechnik, 35
    Classification
    Electrical engineering
    Pages
    228
    Rights
    https://creativecommons.org/licenses/by-sa/4.0/
    • Imported or submitted locally

    Browse

    All of OAPENSubjectsPublishersLanguagesCollections

    My Account

    LoginRegister

    Export

    Repository metadata
    Logo Oapen
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN

    Newsletter

    • Subscribe to our newsletter
    • view our news archive

    Follow us on

    License

    • If not noted otherwise all contents are available under Attribution 4.0 International (CC BY 4.0)

    Credits

    • logo EU
    • This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 683680, 810640, 871069 and 964352.

    OAPEN is based in the Netherlands, with its registered office in the National Library in The Hague.

    Director: Niels Stern

    Address:
    OAPEN Foundation
    Prins Willem-Alexanderhof 5
    2595 BE The Hague
    Postal address:
    OAPEN Foundation
    P.O. Box 90407
    2509 LK The Hague

    Websites:
    OAPEN Home: www.oapen.org
    OAPEN Library: library.oapen.org
    DOAB: www.doabooks.org

     

     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Differen formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.