Belief State Planning for Autonomous Driving
Planning with Interaction, Uncertain Prediction and Uncertain Perception
Abstract
This work presents a behavior planning algorithm for automated driving in urban environments with an uncertain and dynamic nature. The algorithm allows to consider the prediction uncertainty (e.g. different intentions), perception uncertainty (e.g. occlusions) as well as the uncertain interactive behavior of the other agents explicitly. Simulating the most likely future scenarios allows to find an optimal policy online that enables non-conservative planning under uncertainty.
Keywords
Autonomes Fahren; Entscheidungsfindung; Verhaltensgenerierung; Trajektorienplanung; Interaktion; Autonomous Driving; Decision Making; Behavior Planning; Trajectory Planning; Interactive PlanningDOI
10.5445/KSP/1000122855ISBN
9783731510390, 9783731510390Publisher
KIT Scientific PublishingPublisher website
https://www.ksp.kit.edu/index.php?link=shop&sort=allPublication date and place
Karlsruhe, 2021Imprint
KIT Scientific PublishingSeries
Schriftenreihe / Institut für Mess- und Regelungstechnik, Karlsruher Institut für Technologie, 47Classification
Mechanical engineering and materials