Logo Oapen
  • Search
  • Join
    • Deposit
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN
    View Item 
    •   OAPEN Home
    • View Item
    •   OAPEN Home
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Algorithms for Big Data

    DFG Priority Program 1736

    Thumbnail
    Download PDF Viewer
    Web Shop
    Contributor(s)
    Bast, Hannah (editor)
    Korzen, Claudius (editor)
    Meyer, Ulrich (editor)
    Penschuck, Manuel (editor)
    Language
    English
    Show full item record
    Abstract
    This open access book surveys the progress in addressing selected challenges related to the growth of big data in combination with increasingly complicated hardware. It emerged from a research program established by the German Research Foundation (DFG) as priority program SPP 1736 on Algorithmics for Big Data where researchers from theoretical computer science worked together with application experts in order to tackle problems in domains such as networking, genomics research, and information retrieval. Such domains are unthinkable without substantial hardware and software support, and these systems acquire, process, exchange, and store data at an exponential rate. The chapters of this volume summarize the results of projects realized within the program and survey-related work. This is an open access book.
    URI
    https://library.oapen.org/handle/20.500.12657/61296
    Keywords
    computer hardware; computer networks; computer programming; computer science; computer systems; directed graphs; distributed computer systems; distributed systems; engineering; graph theory; graphic methods; internet; mathematics; microprocessor chips; network protocols; parallel processing systems; processors; signal processing; telecommunication systems; theoretical computer science
    DOI
    10.1007/978-3-031-21534-6
    ISBN
    9783031215346, 9783031215346
    Publisher
    Springer Nature
    Publisher website
    https://www.springernature.com/gp/products/books
    Publication date and place
    Cham, 2022
    Grantor
    • Goethe-Universität Frankfurt am Main - [...]
    Imprint
    Springer Nature Switzerland
    Series
    Lecture Notes in Computer Science, 13201
    Classification
    Network hardware
    Algorithms and data structures
    Mathematical theory of computation
    Pages
    285
    Rights
    http://creativecommons.org/licenses/by/4.0/
    • Imported or submitted locally

    Browse

    All of OAPENSubjectsPublishersLanguagesCollections

    My Account

    LoginRegister

    Export

    Repository metadata
    Logo Oapen
    • For Librarians
    • For Publishers
    • For Researchers
    • Funders
    • Resources
    • OAPEN

    Newsletter

    • Subscribe to our newsletter
    • view our news archive

    Follow us on

    License

    • If not noted otherwise all contents are available under Attribution 4.0 International (CC BY 4.0)

    Credits

    • logo EU
    • This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 683680, 810640, 871069 and 964352.

    OAPEN is based in the Netherlands, with its registered office in the National Library in The Hague.

    Director: Niels Stern

    Address:
    OAPEN Foundation
    Prins Willem-Alexanderhof 5
    2595 BE The Hague
    Postal address:
    OAPEN Foundation
    P.O. Box 90407
    2509 LK The Hague

    Websites:
    OAPEN Home: www.oapen.org
    OAPEN Library: library.oapen.org
    DOAB: www.doabooks.org

     

     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Differen formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.